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Abstract

We examine the optimal design of and interaction between capital and liquidity regulations.
Banks, not internalizing a fire sale externality, overinvest in risky assets and underinvest in
liquid assets in the competitive equilibrium. Capital requirements can alleviate the inefficiency—
however, banks respond by decreasing their liquidity ratios. Hence, the regulator preemptively
sets capital ratios at high levels. Ultimately, this interplay between banks and the regulator leads
to inefficiently low levels of risky assets and liquidity. Macroprudential liquidity requirements
that complement capital regulations restore constrained efficiency, improve financial stability
and allow for a higher level of investment in risky assets.
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1 Introduction

The recent financial crisis led to a redesign of bank regulations, with an emphasis on the

macroprudential aspects of regulation. Prior to the crisis, capital adequacy requirements were

the dominant tool of bank regulators around the world. The crisis, however, revealed that

even well-capitalized banks can experience a deterioration of their capital ratios due in part

to illiquid positions. Several financial institutions faced liquidity constraints simultaneously,

which created an urgent need for regulators and central banks to intervene in markets to

restore financial stability. Without the unprecedented liquidity and asset price supports of

leading central banks, those liquidity problems could have resulted in a dramatic collapse of

the financial system. The experience brought liquidity and its regulation into the spotlight.1

A third generation of bank regulation principles, popularly known as Basel III, strengthens

the previous Basel capital adequacy accords by adding macroprudential aspects and liquidity

requirements such as the liquidity coverage ratio (LCR) and net stable funding ratio.

Several countries, including the United States and the countries in the European Union,

have already adopted Basel III liquidity requirements together with the enhanced capital

requirements. However, the guidance from theoretical literature on the regulation of liquidity

and the interaction between liquidity and capital regulations is quite limited, as emphasized

by Bouwman (2012) as well. The scarcity of academic guidance is also apparent in a 2011

survey paper on illiquidity by Jean Tirole, in which he succinctly asks, “Can we trust the

institutions to properly manage their liquidity, once excessive risk taking has been controlled

by the capital requirement?” (Tirole, 2011).

In this paper, we show that banks’ choices of capital and liquidity ratios in an unregulated

competitive equilibrium are inefficient under a fire sale externality and we investigate the

optimal design of capital and liquidity regulations to restore the constrained efficiency. In

particular, we analyze whether it suffices to introduce capital regulations alone and let banks

freely choose their liquidity ratios or whether liquidity also needs to be regulated. We

consider a three-period model in which a continuum of banks have access to two types of

assets. Banks have to decide at the initial period how many risky and liquid assets to carry

in their portfolio. We allow for a flexible balance sheet size, such that banks can increase

both their risky and liquid assets at the same time. Banks start with a fixed amount of

equity capital and borrow the funds necessary to finance their portfolio from consumers.

The risky asset has a constant return but requires, with a known probability, additional

investment in the future before collecting returns. This additional investment cost creates a

liquidity need, which is proportional to the amount of risky assets on a bank’s balance sheet.

1See Rochet (2008), Bouwman (2012), Stein (2013), Tarullo (2014) and Allen (2014) for recent discussions on the
regulation of bank liquidity.
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The liquid asset provides zero net return; however, it can be used to cover the additional

investment cost. A limited-commitment problem prevents banks from raising additional

external finance in the second period. Therefore, if liquidity from the initial period is not

enough to offset the shock, the only other option is for the banks to sell some of their risky

assets to outside investors to save the remaining risky assets.2 This sell-off of risky assets

takes the form of fire sales because outside investors’ demand for risky assets is downward-

sloping: Outside investors are less productive in managing the risky asset, and the marginal

product of each risky asset decreases as the amount of risky assets managed by outside

investors increases. Thus, outside investors offer a lower price when banks try to sell a

higher quantity of risky assets. A lower price, in turn, requires each bank to further increase

the quantity of risky assets to be sold, creating an externality that goes through asset prices.

Atomistic banks do not take into account the effect of their initial portfolio choices on

the fire sale price. If banks hold more risky assets, the liquidity need in case of an aggregate

shock is greater. As a result, there are more fire sales and a lower fire sale price, which in turn

requires each bank to sell more risky assets to raise the required liquidity. Similarly, smaller

liquidity buffers in the banks’ initial portfolios lead to greater fire sales and a lower fire sale

price. We compare the unregulated competitive equilibrium in which banks freely choose

their capital and liquidity ratios to the allocations of a constrained planner. Without inter-

nalizing the effect on the fire sale price, banks overinvest in the risky asset and underinvest

in the liquid assets in the unregulated competitive equilibrium. The constrained planner, in

contrast, is subject to the same constraints as the private agents but internalizes the effect

of initial allocations on the fire sale price. We also investigate how the constrained efficient

allocations can be implemented using quantity-based capital and liquidity regulations, as in

the Basel Accords.

The constrained inefficiency of competitive equilibrium in this paper is due to the exis-

tence of a pecuniary externality under incomplete markets. In our framework, this is the

only externality.3 The Pareto suboptimality due to pecuniary externalities is well known in

the literature. Greenwald and Stiglitz (1986), for instance, show that pecuniary externalities

by themselves are not a source of inefficiency but can lead to significant welfare losses when

markets are incomplete or when there is imperfect information. More recently, Lorenzoni

(2008) shows that the combination of pecuniary externalities in the fire sale market and

limited commitment in financial contracts leads to too much investment in risky assets in

the competitive equilibrium.

2The liquidity shock is aggregate in nature; therefore, the liquidity need cannot be satisfied within the banking
system, as all the banks are in need of liquidity. This assumption is not crucial for the results. In Section 5.4, we
study the case with idiosyncratic shocks.

3We do not model agency or information problems that the literature has traditionally used to justify capital or
other bank regulations.
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In this paper, the incompleteness of markets arises from the financial constraints of

bankers in the interim period. Specifically, similarly to Kiyotaki and Moore (1997), Lorenzoni

(2008), Korinek (2011), and Stein (2012) we assume that a limited-commitment problem

prevents banks from borrowing the funds necessary for restructuring when the liquidity

shock hits. If the markets are complete and banks can borrow by pledging the future return

stream from the assets, fire sales are avoided. In this first-best world, there is no need

for either capital or liquidity requirements because a systemic externality in the financial

markets no longer exists.

Although the probability and size of a liquidity shock are exogenous in the model, whether

fire sales take place in equilibrium is endogenously determined, as is the amount of fire sales.

In principle, banks can perfectly insure themselves against fire sale risk by holding sufficiently

high liquidity. However, such insurance is never optimal. The intuition is straightforward.

The marginal return on liquid assets is greater than one as long as there are fire sales. Perfect

insurance guarantees that no fire sale takes place, and as a result the marginal return on liquid

assets is equal to one, which is dominated by the marginal return on risky assets. In other

words, there is no need to hoard any liquidity when there is no fire sale risk. Thus, banks’

optimal choice of liquidity is less than the amount sufficient to avoid fire sales completely:

In equilibrium, fire sales take place when the liquidity shock hits.

Our results indicate that the constrained efficient allocation can be achieved with joint

implementation of capital and liquidity regulations (complete regulation). In particular, a

regulator can implement the optimal allocations by imposing a minimum risk-weighted cap-

ital ratio and a minimum liquidity ratio as a fraction of risky assets. The regulation required

is macroprudential because it addresses the instability in the banking system by targeting

aggregate capital and liquidity ratios. Banks hold liquid assets for microprudential reasons

even if there is no regulation on liquidity because they can use these resources to protect

against liquidity shocks. Liquidity is advantageous from a macroprudential standpoint as

well: Higher liquidity holdings lead to less-severe decreases in asset prices during times of

distress. However, banks fail to internalize this macroprudential aspect of liquidity, which re-

sults in inefficiently low liquidity ratios when there is no regulation. Similarly, banks neglect

the macroprudential effects of capital ratios and end up choosing inefficiently low capital

ratios in the competitive equilibrium. A minimum risk-weighted capital ratio requirement

combined with a minimum liquidity ratio, as in Basel III, can restore constrained efficiency.

We then use this model to answer Tirole’s question, mentioned above, by studying a

regulatory framework with capital requirements alone, similar to the pre-Basel III episode,

which we call partial regulation. In this setup, banks respond to the introduction of capital

regulations by decreasing their liquidity ratios further below the already inefficient levels
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in the competitive equilibrium. If there is no regulation, banks choose a composition of

risky and safe assets in their portfolio that reflects their privately optimal level of risk-

taking. When the level of risky investment is limited by capital regulations, banks reduce

the liquidity of their portfolio in order to get closer to their privately optimal level of fire sale

risk. This is, in a sense, an unintended consequence of capital regulation: Capital regulation

improves financial stability by limiting aggregate risky investment, which in turn weakens

banks’ incentives to hold liquidity because the marginal benefit of liquidity decreases with

financial stability. The regulator tightens capital regulations under a capital ratio regime to

offset banks’ lower liquidity ratios, reducing socially profitable long-term investments. As a

result, bank capital ratios under partial regulation are inefficiently high.

The aforementioned findings have important policy implications. The lack of complemen-

tary liquidity requirements leads to inefficiently low levels of long-term investments and se-

vere financial crises, undermining the purpose of capital adequacy requirements. Our results

indicate that the pre-Basel III regulatory framework, with its focus on capital requirements,

was inefficient and ineffective in addressing systemic instability caused by liquidity shocks,

and that Basel III liquidity regulations are a step in the right direction.

Our contribution is twofold. First, to the best of our knowledge, this is one of the first

papers to study the interaction between capital and liquidity regulations. We show that

capital regulation alone cannot restore constrained efficiency and that augmenting capital

regulation with liquidity regulation both restores constrained efficiency and improves finan-

cial stability. Second, we contribute to the fire sales literature by introducing an explicit role

for safe assets and showing that even though banks can perfectly hedge against fire sale risk

by holding sufficient liquidity, they still choose to take some of this risk. Moreover, even the

constrained planner, while choosing a higher liquidity ratio than unregulated banks, takes

some fire sale risk.

The paper proceeds as follows. Section 2 contains a brief summary of related literature.

Section 3 provides the basics of the model and presents the unregulated competitive equilib-

rium and the constrained planner’s problem. Section 4 compares two alternative regulatory

frameworks: complete regulation (both capital and liquidity regulations) and partial regu-

lation (only capital regulation) and discusses policy implications of the model. Section 5

investigates the robustness of the results to some changes in the model environment. Section

6 concludes. The online appendix contains the closed-form solutions of the model and proofs.
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2 Literature review

Even though capital regulations have been studied extensively on their own, we are aware of

only a few papers that investigate the interaction between capital and liquidity regulations

and their optimal determination. Kashyap, Tsomocos, and Vardoulakis (2014) consider an

extended version of the Diamond and Dybvig (1983) model to investigate the effectiveness of

several bank regulations in addressing two common financial system externalities:4 excessive

risk-taking due to limited liability and bank runs. The central message of the paper is that a

single regulation alone is never sufficient to correct for the inefficiencies created by these two

externalities. Unlike our paper, their paper does not consider fire sale externalities, which

causes a divergence in our results. For example, in their paper, optimal regulation does not

necessarily involve capital or liquidity regulations.

Walther (2015) also studies macroprudential regulation in a model characterized by pe-

cuniary externalities due to fire sales. In his setup, the fire sale price is exogenously fixed

and the socially optimal outcome is to have “no fire sales” in equilibrium, whereas in our

paper partial fire sales are not only allowed, they are also optimal. Walther shows that both

macroprudential regulation and Pigouvian taxation can achieve the “no fire sales” outcome;

however, implementation of Pigouvian taxation requires more information. Pigouvian taxa-

tion serves as an important theoretical benchmark, yet it is not part of the toolkit designed

by the Basel Committee. Our paper analyzes quantity-based regulations, as in the Basel

Accords.

De Nicoló, Gamba, and Lucchetta (2012) consider a dynamic model of bank regulation

and shows that liquidity requirements, when added to capital requirements, eliminate the

benefits of mild capital requirements by hampering bank maturity transformation and, hence,

result in lower bank lending, efficiency, and social welfare. In that model, liquidity is only

welfare-reducing because, unlike our paper, the authors do not consider the role of liquidity

in insuring banks against the fire sale risk.

Covas and Driscoll (2014) study the introduction of liquidity requirements on top of

existing capital requirements in a nonlinear dynamic general equilibrium model. They show

that the presence of liquidity regulation makes bank loans less sensitive to the capital ratio

and that the quantitative macroeconomic impacts of these regulatory tools are larger in

partial equilibrium. Unlike Covas and Driscoll (2014) we study the socially optimal outcome

and how to reach it using capital and liquidity regulation.

Even though the literature on the interaction between capital and liquidity requirements

is limited, there are studies that examine the interaction between different tools available to

4The authors consider the following regulations: deposit insurance, loan-to-value limits, dividend taxes, and capital
and liquidity ratio requirements.
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regulators. Acharya, Mehran, and Thakor (2015) show that the optimal capital regulation

requires a two-tiered capital requirement with some bank capital invested in safe assets.

The special capital should be unavailable to creditors upon failure so as to retain market

discipline and should be available to shareholders only contingently on good performance in

order to contain risk-taking.

Arseneau et al. (2015) study the interaction between secondary market liquidity and firms’

capital structure when search frictions in the secondary market generate a liquidity premium

in the primary market. Agents do not internalize the effects of portfolio allocations in the

primary market on the secondary market illiquidity, and thus on the liquidity premium. The

unregulated equilibrium is constrained inefficient and the authors, focusing on quantitative

easing, show that, similar to our result, two policy tools (both asset purchases and interest

on reserves) are needed to restore the constrained efficiency.

Hellmann, Murdock, and Stiglitz (2000) show that while capital requirements can induce

prudent behavior, they lead to Pareto-inefficient outcomes by reducing banks’ franchise val-

ues, hence providing incentives for gambling. Pareto-efficient outcomes can be achieved by

adding deposit-rate controls as a regulatory instrument. Such controls restore prudent behav-

ior by increasing franchise values. Similar to their result, we show that capital requirements

provide Pareto efficiency only if they are combined with liquidity requirements.

As in our paper, a few seminal papers have pointed out the inefficiency of liquidity

choice of banks in laissez-faire equilibrium under market incompleteness or informational

frictions. Bhattacharya and Gale (1987) consider an extended version of Diamond and

Dybvig (1983) with several banks and show that when banks face privately observed liquidity

shocks, they underinvest in liquid assets and free-ride on the common pool of liquidity in

the interbank market. Allen and Gale (2004b) show that when markets for hedging liquidity

risk is incomplete, private liquidity hoardings of banks is inefficient. Whether there is too

much or too little liquid assets in the laissez-faire equilibrium depends on the coefficient of

relative risk aversion: if it is greater than one, the liquidity is inefficiently low.

Several papers study liquidity and its regulation without explicitly analyzing its inter-

action with capital requirements or its role in addressing fire sale externalities. Calomiris,

Heider, and Hoerova (2013) argue that the role of liquidity requirements should be conceived

not only as an insurance policy that addresses the liquidity risks in distressed times, as pro-

posed by Basel III, but also as a prudential regulatory tool that makes crises less likely.

Repullo (2005) shows, in direct contrast to our result, that a higher capital requirement

reduces the attractiveness of risky investment, and hence, causes a bank to increase its in-

vestment in safe assets. In his model, the balance sheet size of bank is exogenously fixed,

and hence, a decrease in risky investment necessarily implies an increase in safe assets. In
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contrast, we consider a model with a flexible bank balance sheet in which capital require-

ment decreases risky investment level, and banks respond by decreasing their liquidity ratios.

Perotti and Suarez (2011) show that banks choose an excessive amount of short term debt

in the presence of systemic externalities and analyze the effectiveness of liquidity regulations

as in Basel III as opposed to Pigovian taxation in implementing the social optimal level of

short term funding.

Farhi et al. (2009) consider a Diamond-Dybvig model with unobservable liquidity shocks

and unobservable trades. They show that competitive equilibria are inefficient even if the

markets for aggregate risk are complete and that optimal allocations can be implemented

through a simple liquidity ratio requirement on financial intermediaries.

Our paper is also related to the literature that features financial amplification and asset

fire sales, which includes the seminal contributions of Fisher (1933), Bernanke and Gertler

(1989), Kiyotaki and Moore (1997), Krishnamurthy (2003, 2010), and Brunnermeier and

Pedersen (2009). In our model, fire sales result from the combined effects of asset-specificity

and correlated shocks that hit an entire industry or economy. This idea, originating with

Williamson (1988) and Shleifer and Vishny (1992), is employed by fire sale models such as

Lorenzoni (2008), Korinek (2011), and Kara (2016). These papers show that under pecuniary

externalities arising from asset fire sales, there exists overinvestment in risky assets in a

competitive setting compared with the socially optimal solution. However, unlike our paper,

none of these papers give an explicit role for safe assets, which banks can use to completely

insure themselves against the fire sale risk.

Similar to our result, Stein (2012) shows that both the liquidity and investment decision

of individual banks are distorted: Banks, not internalizing the fire sale externality, rely too

much on short term debt, a cheap form of financing, which in turn supports greater lending.

The liquidity choice in Stein’s model is on the liability side of banks’ balance sheet. We

model the liquidity hoarding decision on the asset side. More importantly, in Stein’s setup

once the liquidity choice of banks is aligned with the socially optimal level by regulation, the

investment decision is also aligned automatically. Similarly, when banks are exposed to the

social cost of short term financing, through Pigouvain taxation for example, marginal cost

increases which brings down the bank lending to the socially optimal level. This is contrary

to our results. In our paper, regulating liquidity alone or imposing a tax on it is not sufficient

to guarantee the socially optimal level of investment. Both the amount of total liquidity and

total investment determine the amount of fire sales, and thus should be regulated.

The constrained inefficiency of competitive markets in this paper is due to the existence

of pecuniary externalities under incomplete markets. The Pareto suboptimality of compet-

itive markets when the markets are incomplete goes back at least to the work of Borch
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(1962). The idea was further developed in the seminal papers of Hart (1975), Stiglitz (1982),

and Geanakoplos and Polemarchakis (1986), among others. Greenwald and Stiglitz (1986)

extended the analysis by showing that, in general, pecuniary externalities by themselves

are not a source of inefficiency but can lead to significant welfare losses when markets are

incomplete or there is imperfect information.

In our model, limited commitment problem prevents the laissez-faire markets from attain-

ing Pareto optimality by distorting every choice variable. Therefore, banks’ private choices

of capital and liquidity are inefficient and reaching the second-best requires intervention in

both choices of banks. This result is in the spirit of Lipsey and Lancaster (1956) who show

that failure to satisfy a single Pareto condition requires distorting potentially all the other

Pareto conditions in order to attain the second-best outcome.

3 Model

The model consists of three periods, t = 0, 1, 2; along with a continuum of banks and

a continuum of consumers, each with a unit mass. There is also a unit mass of outside

investors. All agents are risk-neutral and derive utility from consumption in the initial and

final periods.

There are two types of goods in this economy, a consumption good and an investment

good (that is, the liquid and the illiquid asset). Consumers are endowed with e units of

consumption goods at t = 0 but none at t = 1 and t = 2.5 Banks have a technology

that converts consumption goods into investment goods one-to-one at t = 0. Investment

goods that are managed by a bank until the last period will yield R > 1 consumption goods

per unit. However, investment goods are subject to a liquidity shock at t = 1, which we

discuss in detail below, and hence we refer to them as the risky assets. Risky assets can

be thought as mortgage-backed securities or a portfolio of loans to firms in the corporate

sector.6 Investment goods can never be converted back into the consumption goods, and

they fully depreciate after the return is collected at t = 2.

Banks choose at t = 0 how many risky assets to hold, denoted by ni, and how many liquid

(safe) assets, denoted by bi, to put aside for each unit of risky assets. The total amount of

liquid assets held by each bank is then nibi, and bi can be interpreted as a liquidity ratio.

The return on the liquid asset is normalized to one. Therefore, the total asset size of a

bank is ni + nibi = (1 + bi)ni. On the liability side, each bank is endowed with E units

5We assume that the initial endowment of consumers is sufficiently large, and it is not a binding constraint in
equilibrium.

6To simplify the exposition, we abstract from modeling the relationship between banks and firms. Instead, we
assume that banks directly invest in physical projects. This assumption is equivalent to assuming that there are no
contracting frictions between banks and firms, as more broadly discussed by Stein (2012).
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equity capital at t = 0 in terms of consumption goods. The fixed amount of equity capital

assumption captures the fact that it is difficult for banks to raise equity in the short-term,

and it is also imposed by others in the banking literature (see for example, Almazan, 2002;

Repullo, 2005; Dell’Ariccia and Marquez, 2006). Hence, each bank raises Li = (1 + bi)ni−E
units of consumption goods from consumers at t = 0 to finance its portfolio of safe and risky

assets.

We assume that the initial equity of banks is sufficiently large to avoid default in the bad

state in equilibrium. As a result, the deposits are safe, and hence consumers inelastically

supply deposits to banks at net zero interest rate at the initial period. This assumption

also allows us to focus on only one friction—that is, fire sale externalities—and to study the

implications of this friction for the optimal regulation of bank capital and liquidity. However,

as we show in Section 5, our results are robust to relaxing this assumption and allowing bank

default in equilibrium.

We assume that there is a nonpecuniary cost of operating a bank, captured by Φ((1 +

bi)ni). The operational cost is increasing in the size of the balance sheet, Φ′(·) > 0, and it is

convex, Φ′′(·) > 0. This assumption, similar to the ones imposed by Van den Heuvel (2008)

and Acharya (2003, 2009), ensures that the banks’ problem is well defined and that there

is an interior solution to this problem. The convex operational cost assumption allows us

to have banks with flexible balance sheet size in the model. If the balance sheet size of the

bank is fixed, and liquid and risky (illiquid) assets are the only assets a bank can buy, then

the choice between liquid and illiquid (risky) asset boils down to a single choice—namely,

an allocation problem. If a bank increases its risky assets, the amount of liquid assets in the

bank’s portfolio necessarily decreases because now there are fewer resources available for the

liquid assets. In our framework with flexible balance sheets, banks can increase or decrease

the amount of risky and liquid assets simultaneously, if it is optimal for them to do so. As

a result, this setup allows us to study two independent choices of banks, as well as their

interaction.

Investment and deposit collection decisions are made at time t = 0. The only uncertainty

in the model is about the risky asset and is resolved at the beginning of t = 1: The economy

lands in good times with probability 1−q and in bad times with probability q. In good times,

no bank is hit with liquidity shocks, and therefore no further action is taken. Banks keep

managing their investment goods and in the final period realize a total return of Rni + nibi.

However, in bad times, the risky assets are distressed. In case of distress, the investment

(risky assets) has to be restructured in order to remain productive. Restructuring costs are

equal to c ≤ 1 units of consumption goods per unit of the risky asset. If c is not paid, the

risky investment is scrapped (that is, it fully depreciates). For the case of bank loans, the
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liquidity shock can be considered a utilization of committed credit lines or loan commitments,

which increases in bad times (Holmström and Tirole, 2001; Stein, 2013). Firms may need

the extra resources to cover operating expenses or other cash needs. For mortgage-backed

securities, a liquidity shock may arise if investors’ risk perception of these assets changes in

bad times and requires banks to post extra margin in order to keep financing the investment.

A bank can use the liquid assets hoarded from the initial period, nibi, to carry out the

restructuring of the distressed investment at t = 1. However, if the liquid assets are not

sufficient to cover the entire cost of restructuring, the bank needs external finance. Other

than banks, only outside investors are endowed with liquid resources at this point. Because

of a limited-commitment problem, banks cannot borrow the required resources from outside

investors. In particular, similarly to Kiyotaki and Moore (1997) and Korinek (2011), we

assume that banks can only pledge the market value, not the dividend income, of their asset

holdings next period to outside investors. This assumption prevents banks from borrowing

between the interim and the final periods because the value of all assets are zero in the

final period, and hence banks have no collateral to pledge to outside investors in the interim

period.7 In other words, this assumption states that the contracts between banks and outside

investors are not enforceable.

The only way for banks to raise the funds necessary for restructuring is by selling some

fraction of the risky asset to outside investors in an exchange of consumption goods.8 Allen

and Gale (2004b) in part build a model arguing that in the realm of financial intermediaries,

markets for hedging liquidity risk are likely to be more incomplete than the markets for

hedging asset return risk. We take the same approach here. Our assumption that the

return of risky assets is nonstochastic essentially captures the efficient sharing of that risk

and admits that asset returns are not the source of price volatility. If markets for hedging

liquidity risk were complete as well, there would be no need to sell assets to obtain liquidity

(Allen and Gale, 2004b, 2005).

The asset sales by banks are in the form of fire sales: The risky asset is traded below

7For simplicity, we assume that the commitment problem is extreme (that is, banks cannot commit to pay any
fraction of their production to outside investors). Assuming a milder but sufficiently strong commitment problem
where banks can commit a small fraction of their production, as Lorenzoni (2008) and Gai et al. (2008) do, does not
change the results of this paper. If we complete the markets by allowing banks to borrow from outside investors by
pledging the all-future-return stream from the assets, there would not be a reason for fire sales and the first-best world
would be established. In the first-best world, there would not be a need for regulation as the pecuniary externality
in financial markets would be eliminated.

8An alternative story would be that households come in two generations, as in Korinek (2011), and the assets
produce a (potentially risky) return in the interim period in addition to the safe return in the final period. In this
case, banks can borrow from the first-generation households at the initial period because they have sufficient collateral
to back their promises in the interim period, but banks cannot borrow from second-generation households because
the value of all assets is zero in the final period. In this alternative story, second-generation households will be the
buyers of assets from banks, and they will employ assets in a less productive technology to produce returns in the
final period similar to outside investors here.
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Figure 1: Timing of the model

t=0 
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Good times 
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its fundamental value for banks, and the price decreases as banks try to sell more assets.

Banks retain only a fraction, γ, of their risky assets after fire sales, which depends on banks’

liquidity shortages as well as on the fire sale price of risky asset. The sequence of events is

illustrated in Figure 1.

We first solve the competitive equilibrium of the model when there is no regulation on

banks. Second, we present the constrained planner’s problem and analyze its implementa-

tion using both quantity-based capital and liquidity requirements as in the Basel Accords.

Last, we consider a partially regulated economy in which there is capital regulation but no

regulation on bank liquidity ratios. The liquidity regulation requires the banks to satisfy a

minimum liquidity ratio such that bi ≥ b. The capital regulation requires banks to satisfy

a minimum risk-weighted capital ratio, k, at t = 0, such that ki = E/ni ≥ k. Because the

inside equity of banks, E, is fixed in our model, the minimum risk-weighted capital ratio

regulation is equivalent to a regulation in the form of an upper limit on initial risky invest-

ment levels, n̄, such that banks’ investments have to satisfy ni ≤ n̄, where n̄ ≡ E/k. For

analytical convenience, we use the upper bound on risky investment formulation for capital

regulation in the rest of the paper.

3.1 Crisis and fire sales

The decision of agents at time t=0 depends on their expectations regarding the events at time

t = 1. Thus, applying the solution by backwards induction, we first analyze the equilibrium

at the interim period in each state of the world for a given set of investment levels. We

then study the equilibrium at t = 0. Note that if the good state is realized at t = 1, banks

take no further action and obtain a total return of πGoodi = Rni + bini at the final period,

t = 2. Therefore, for the interim period t = 1, studying the equilibrium only for bad times

is sufficient. We start with the problem of outside investors in bad times, then analyze the

problem of banks.
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3.1.1 Outside investors

Outside investors are endowed with large resources of consumption goods at t = 1, and

they can purchase investment goods from the banks. Some examples of outside investors

who are available to buy assets from the banking industry in distress times are private

equity firms, hedge funds, or Warren Buffet (Diamond and Rajan, 2011). Let us denote the

amount of investment goods they buy from the banks by y. The outside investors have a

concave production technology and employ these investment goods to produce F (y) units

of consumption goods at t = 2. Let P denote the market price of the investment good in

bad times at t = 1.9 Each outside investor takes the market price as given and chooses the

amount of investment goods to buy, y, in order to maximize net returns from investment at

t = 2:

max
y≥0

F (y)− Py.

The first-order condition of the investors’ maximization problem, F ′(y) = P , determines the

outside investors’ (inverse) demand function for the investment good. We can define their

demand function, Qd(P ), as follows: Qd(P ) ≡ F ′(P )−1 = y.

Assumption 1 (Concavity). F ′(y) > 0 and F ′′(y) < 0 for all y ≥ 0, with F ′(0) ≤ R.

The Concavity assumption establishes that outside investors are less efficient than the

banks. Outside investors’ return is strictly increasing in the amount of assets employed,

F ′(y) > 0, and they face decreasing returns to scale in the production of consumption

goods, F ′′(y) < 0, whereas banks are endowed with a constant returns to scale technology,

as described earlier. Together with concavity, F ′(0) ≤ R implies that outside investors are

less productive than banks at each level of investment goods employed.

The concavity of the return function implies that the demand function of outside investors

for investment goods is downward-sloping (see Figure 2). In other words, outside investors

require higher discounts to absorb more assets from distressed banks at t = 1. The decreasing

returns to scale technology assumption is a reduced way of modeling the existence of industry-

specific heterogeneous assets, similarly to Kiyotaki and Moore (1997), Lorenzoni (2008), and

Korinek (2011). In this more general setup, outside investors would first purchase assets

that are easy to manage, but as they continue to purchase more assets, they would need to

buy those that require increasingly sophisticated management and operation skills.

The idea that some assets are industry-specific and, hence, less productive in the hands

of outsiders has its origins in Williamson (1988) and Shleifer and Vishny (1992).10 In these

9The price of the investment good at t = 0 will be one as long as there is positive investment, and the price at
t = 2 will be zero because the investment good fully depreciates at this point.

10Industry-specific assets can be physical or they can be portfolios of financial intermediaries (Gai et al., 2008).
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studies, the authors claim that when major players in such industries face correlated liquidity

shocks and cannot raise external finance due to debt overhang, agency, or commitment

problems, they have to sell assets to outsiders. Outsiders are willing to pay less than the

value in best use for the assets of distressed enterprises because they do not have the specific

expertise to manage these assets well and therefore face agency costs of hiring specialists to

run these assets.11 For instance, monitoring and collection skills of loan officers greatly affect

the value of bank assets, particularly bank loans. The lack of such skills among outsiders

creates a deadweight cost of fire sales (Acharya et al., 2011).

Empirical and anecdotal evidence suggests the existence of fire sales of physical as well

as financial assets. Using a large sample of commercial aircraft transactions, Pulvino (2002)

shows that distressed airlines sell aircraft at a 14 percent discount from the average market

price. This discount exists when the airline industry is depressed but not when it is booming.

Coval and Stafford (2007) shows that fire sales exist in equity markets when mutual funds

engage in sales of similar stocks.

Next, we need to impose more structure on the return function of outside investors in

order to ensure that the equilibrium of this model exists and is unique.

Assumption 2 (Elasticity).

εd =
∂Qd(P )

∂P

P

Qd(P )
=

F ′(y)

yF ′′(y)
< −1 for all y ≥ 0

The Elasticity assumption states that outside investors’ demand for the investment good

is elastic. This assumption implies that the amount spent by outside investors on asset

purchases, Py = F ′(y)y, is strictly increasing in y. Therefore, we can also write the Elasticity

assumption as F ′(y) + yF ′′(y) > 0. If this assumption was violated, multiple levels of asset

sales would raise a given amount of liquidity, and multiple equilibria in the asset market

at t = 1 would be possible. This assumption is imposed by Lorenzoni (2008) and Korinek

(2011) in order to rule out multiple equilibria under fire sales.12

Assumption 3 (Regularity). F ′(y)F ′′′(y)− 2F ′′(y)2 ≤ 0 for all y ≥ 0.

The Regularity assumption holds whenever the demand function of outside investors is

11As opposed to the asset specificity idea discussed earlier, in Allen and Gale (1994, 1998) and Acharya and
Yorulmazer (2008), the reason for fire sales is the limited amount of available cash in the market to buy long-term
assets offered for sale by agents who need liquid resources immediately. The scarcity of liquid resources leads to
necessary discounts in asset prices, a phenomenon known as “cash-in-the-market pricing.” Uhlig (2010) analyzes
other market failures that might result in fire sales.

12Gai et al. (2008) provide the leading example where this assumption is not imposed and multiple equilibria in
the asset market are therefore considered. The authors assume that the choice of equilibrium is determined by the
ex-ante beliefs of agents. They show that under both pessimistic and optimistic beliefs, the competitive equilibrium
is constrained inefficient and exhibits overinvestment.
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log-concave, but it is weaker than log-concavity.13 Log-concavity of a demand function is a

common assumption used in the Cournot games literature.14 This assumption ensures the

existence and uniqueness of an equilibrium in a simple n-player Cournot game. In our setup,

this assumption guarantees that the objective functions are well behaved. It is crucial to

proving some key results of our paper.15

Assumption 4 (Technology). 1 + qc < R ≤ 1/(1− q).

The first inequality in the Technology assumption states that the net expected return on

the risky asset is positive. As described, R stands for the t = 2 return on the risky asset,

which requires one unit investment in terms of consumption goods at t = 0. The expected

cost of restructuring is equal to qc, where c is the restructuring cost that arrives with a

probability q. The second inequality, R < 1/(1− q), means that the return in the good state

alone is not high enough to make banks’ expected profit positive. It ensures that there is no

scrapping of investment goods in the bad state.

3.1.2 Banks’ problem in the bad state

Consider the problem of bank i when bad times are realized at t = 1. The bank has an

investment level, ni, and liquid assets of bini chosen at the initial period. If bi ≥ c, the bank

has enough liquid resources to restructure all of the assets. In this case, the bank obtains

a gross return of Rni + (bi − c)n on its portfolio at t = 2. However, if bi < c, then the

bank does not have enough liquid resources to cover the restructuring costs entirely. In this

case, the bank decides what fraction of these assets to sell (1−γi) to generate the additional

resources for restructuring. Note that γi then represents the fraction of assets that a bank

keeps after fire sales.16 Thus, the bank takes the price of the investment good (P ) as given

13A function is said to be log-concave if the logarithm of the function is concave. Let φ(y) ≡ F ′(y) denote the
(inverse) demand function of outside investors. We can rewrite this assumption as φ(y)φ′′(y) − 2φ′(y)2 ≤ 0. We can
show that the demand function is log-concave if and only if φ(y)φ′′(y)−φ′(y)2 ≤ 0. Clearly the Regularity assumption
holds whenever the demand function is log-concave. However, it is weaker than log-concavity and may also hold if
the demand function is log-convex (that is, if φ(y)φ′′(y) − φ′(y)2 ≥ 0).

14Please see Amir (1996).
15Many regular return functions satisfy conditions given by the Concavity , Elasticity and Regularity assumptions.

Here are two examples that satisfy all three of the above assumptions: F (y) = R ln(1+y) and F (y) =
√
y + (1/2R)2.

The following example satisfies the Concavity assumption, but not the Elasticity and Regularity assumptions: F (y) =
y(R− 2αy) where 2αy < R for all y ≥ 0.

16Following Lorenzoni (2008) and Gai et al. (2008), we assume that banks have to restructure an asset before selling
it. Basically, this means that banks receive the asset price P from outside investors, use a part, c, to restructure
the asset, and then deliver the restructured assets to the investors. Therefore, banks sell assets only if P is greater
than the restructuring cost, c. We could assume, without changing our results, that it is the responsibility of outside
investors to restructure the assets that they purchase.
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and chooses γi to maximize total returns from that point on:

πBadi = max
0≤γi≤1

Rγini + P (1− γi)ni + bini − cni, (1)

subject to the budget constraint

P (1− γi)ni + bini − cni ≥ 0. (2)

The first term in (1) is the total return to be obtained from the unsold part of the assets.

The second term is the revenue raised by selling a fraction (1− γi) of the assets at the given

market price, P . The third term is the liquid assets hoarded at t = 0. The last term, cni,

gives the total cost of restructuring. Budget constraint (2) states that the sum of the liquid

assets carried from the initial period and the revenues raised by selling assets must at least

cover the restructuring costs.

By the Concavity assumption, the equilibrium price of assets must satisfy P ≤ F ′(0) ≤
R, otherwise outside investors would not purchase any assets. In equilibrium, we must also

have P ≥ c, otherwise in the bad state banks would scrap assets rather than selling them

; that is, there would not be any fire sale. However, if there is no supply, then there is an

incentive for each bank to deviate and to sell some assets to outsiders. The deviating bank

would receive a price close to F ′(0), which is greater than the cost of restructuring, c, by

assumption, as in Lorenzoni (2008). Having P ≥ c together with the Technology assumption

implies that investment goods are never scrapped in equilibrium.

The choice variable, γi, affects only the first two terms in the expected return function

of banks in (1), whereas the last terms are predetermined in the bad state at t = 1. The

continuation return is, therefore, actually a weighted average of R and P , where weights

are γi and 1 − γi, respectively. Banks want to choose the highest possible γi because they

receive R by keeping assets on the balance sheet, whereas by selling them they get P ≤ R.

Therefore, banks sell just enough assets to cover their liquidity shortage, cni − bini. This

means that the budget constraint binds, from which we can obtain γi = 1−(c−bi)/P ∈ (0, 1).

As a result, the fraction of investment goods sold by each bank is

1− γi =
c− bi
P
∈ (0, 1). (3)

The fraction of assets sold, 1− γi, is decreasing in the price of the investment good, P , and

in liquidity ratio, bi, and increasing in the cost of restructuring, c. Therefore, the supply of
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investment goods by each bank, i, is equal to

Qs
i (P, ni, bi) = (1− γi)ni =

c− bi
P

ni (4)

for c ≤ P ≤ R. This supply curve is downward-sloping and convex, which is standard in

the fire sales literature (see Figure 2, left panel). A negative slope implies that if there is

a decrease in the price of assets, banks have to sell more assets in order to generate the

resources needed for restructuring. A bank’s liquidity ratio, bi, also negatively affects its

asset supply in the bad state, as can be seen in (4), because a higher liquidity ratio allows a

bank to offset a larger fraction of the shock using the bank’s own resources.

We can substitute the optimal value of γi using (3) into (1) and write the maximized

total returns of banks in the bad state at t = 1 as πBadi = Rγini = R(1− c−bi
P

)ni for a given

ni and bi. Note that the sum of the last three terms in (1) is zero at the optimal choice of

γi because of the binding budget constraint.

3.1.3 Asset market equilibrium at date 1

We consider a symmetric equilibrium where ni = n and bi = b for all banks. Therefore, the

aggregate risky investment level is given by n and the liquidity ratio is given by b as there

is a continuum of banks with a unit mass. The equilibrium price of investment goods in the

bad state, P , is determined by the market clearing condition

Qd(P )−Qs(P ;n, b) = 0. (5)

This condition says that the excess demand in the asset market is equal to zero at the

equilibrium price. Qd(P ) is the demand function that was obtained from the first-order

conditions of the outside investors’ problem, given by (3.1.1). Qs(P, n, b) is the total supply

of investment goods obtained by aggregating the asset supply of each bank, given by (4).

This equilibrium is illustrated in the left panel of Figure 2. Note that the equilibrium

price of the risky asset and the amount of fire sales at t = 1 are functions of the initial total

investment in the risky asset and the aggregate liquidity ratio. Therefore, we denote the fire

sale price in terms of state variables as P (n, b). Lemma 1 addresses the effects of risky asset

levels and the liquidity ratio on the fire sale price, while in Lemma 2, the implications for

the fraction of risky asset sold is discussed.

Lemma 1. The fire sale price of risky asset, P (n, b), is decreasing in n and increasing in b.

Lemma 1 states that higher investment in the risky asset or a lower liquidity ratio increases

the severity of the financial crisis by lowering the asset prices. This effect is illustrated in
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Figure 2: Equilibrium in the investment goods market and comparative statics
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the right panel of Figure 2. Suppose that the banks enter the interim period with larger

holdings of risky assets. In this case, banks have to sell more assets at each price, as shown

by the supply function given by (4), because the total cost of restructuring, cn, is increasing

in the amount of initial risky assets, n. Graphically, the aggregate supply curve shifts to the

right, as shown by the dotted-line supply curve in the right panel of Figure 2, which causes

a decrease in the equilibrium price of investment goods. A lower initial liquidity ratio has a

similar effect by increasing the liquidity shortage in the bad state, (c−b)n, and hence causing

a larger supply of risky assets to the market. Lower asset prices, by contrast, induce more

fire sales by banks because of the downward-sloping supply curve. This result is formalized

in Lemma 2.

Lemma 2. The fraction of risky assets sold, 1 − γ(n, b), is increasing in n and decreasing

in b.

Together, Lemmas 1 and 2 imply that a higher initial investment in the risky investment

by some banks, or a lower liquidity ratio, creates negative externalities for other banks by

making financial crises more severe (that is, via lower asset prices, according to Lemma 1)

and more costly (that is, via more fire sales, according to Lemma 2).

3.2 Competitive equilibrium

As a benchmark, we first study the competitive equilibrium. At the initial period, each

bank, i, chooses the amount of investment in the risky asset, ni, and the liquidity ratio, bi,
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to maximize its expected profits:

Πi(ni, bi) = (R + bi − qc)ni −D(ni(1 + bi))− I(bi < c)q(R− P )Qs
i (P, ni, bi), (6)

where I(·) is the indicator function. Let Γ(ni, bi) ≡ (R+ bi− qc)ni−D(ni(1 + bi)) represent

the basic profits that would be obtained if there were no fire sales. D(ni(1 + bi)) = ni(1 +

bi) + Φ(ni(1 + bi)) is the sum of the initial cost of funds and the operational costs of a

bank. Because we assume that Φ(·) is convex, it follows that D(·) is convex as well; that is,

D′(·) > 0 and D′′(·) > 0. The last term is the expected cost of fire sales: If liquidity hoarded

at t = 0 is not sufficient to cover the shock in the bad state at t = 1, that is bi < c, then the

bank sells Qs
i (P, ni, bi) units of assets and loses R − P ≥ 0 on each unit sold. The amount

of assets sold, Qs
i (P, ni, bi), is a function of the initial portfolio allocations and the price of

assets, as shown by (4).

Whether or not fire sales take place in the competitive equilibrium depends on the initial

liquidity ratios of banks . If banks fully insure themselves against the fire sale risk—that is,

if they choose bi ≥ c for all i ∈ [0, 1] at t = 0—then fire sales in the bad state are avoided

completely. However, if banks purchase less than full insurance—that is, if bi < c—then

fire sales exist. The following proposition shows that in the competitive equilibrium, banks

optimally choose less than full insurance and, hence, fire sales take place.

Proposition 1. Banks take fire sale risk in equilibrium; that is, bi < c for all banks.

Even though both the amount (c) and frequency (q) of the aggregate liquidity shock are

exogenous in the model, whether and to what extent a fire sale takes place are endogenously

determined. In Proposition 1 we show that perfect insurance is never optimal and that banks

take some amount of fire sale risk; that is, they choose bi < c. The intuition of the proof is

as follows: The expected marginal return on liquid assets exceeds unity as long as there are

fire sales, and it decreases with the amount of liquidity. Perfect insurance guarantees that no

fire sale takes place and, as a result, the expected marginal return on liquid assets is equal

to one, which is dominated by the expected marginal return on risky assets. In other words,

there is no need to hoard any liquidity when there is no fire sale risk. Therefore, there is

an optimal interior level of liquidity ratio for which the private marginal return and cost of

liquidity are equalized.

Although banks take some fire sale risk, the main issue is whether banks take the socially

optimal amount of fire sale risk. We later show that because banks do not internalize the

pecuniary externalities, they end up taking too much risk. This is why bank regulation is

needed in this economy. Proposition 1 allows us to focus on the imperfect insurance case;

19



that is, bi < c. We can write banks’ problem under this result as:

Πi(ni, bi) = Γ(ni, bi)− q(R− P )Qs
i (P, ni, bi),

where the first term, represented by Γ(ni, bi) ≡ (R + bi − qc)ni − D(ni(1 + bi)), gives the

basic profits that would be obtained if there were no fire sales, and the second term gives the

expected cost of fire sales. The unique symmetric equilibrium in which ni = n and bi = b

for all banks i ∈ [0, 1] is determined by the first-order conditions of banks’ and investors’

problems and market clearing:

∂Γ

∂xi
− q(R− P )

∂Qs
i

∂xi
= 0, ∀xi ∈ {ni, bi} (7)

F ′(y) = P, (8)

y = Qs(P, n, b), (9)

where Qs
i (P, ni, bi) = c−bi

P
ni. We denote the symmetric unregulated competitive equilibrium

allocations that solve the first-order conditions (7), (8) and the market clearing condition

(9) by n, b, and the associated price of assets in the bad state by P .

We start by solving for the competitive equilibrium price, using the first-order conditions

above. Furthermore, we show in the next proposition that the closed-form solution for P is

independent of the functional form of the outside investors’ demand and the operational cost

of banks. However, in order to solve for equilibrium investment levels and liquidity ratios,

we need to make some functional-form assumptions.

Proposition 2. The competitive equilibrium price of assets is given by

P =
qR(1 + c)

R− 1 + q
. (10)

The equilibrium price, P , is increasing in the probability of the liquidity shock, q, and the

size of the shock, c, but decreasing in the return on the risky assets, R.

Proposition 2 shows that the price of assets in the bad state increases in the expected

size of the liquidity shock, qc. When banks expect to incur a larger additional cost for the

investment, or when they face this cost with a higher probability, they reduce risky invest-

ment levels and increase liquidity buffers, as we show in the next proposition. As a result,

there are fewer fire sales and a higher price for risky assets in the competitive equilibrium.

Proposition 2 implies that banks act less prudently (by increasing risky investment and re-

ducing liquidity) if they expect financial shocks to be less frequent (a lower q), which in turn

leads to more severe disruption to financial markets (through lower asset prices and more
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fire sales) if shocks do materialize. Stein (2012) obtains a similar result as well.17

3.2.1 A closed-form solution for the competitive equilibrium

In order to obtain closed-form solutions for the equilibrium values of n and b, we need to

make functional-form assumptions for outside investors’ production technology, F , and the

operational cost of banks, Φ. Suppose that the operational costs of a bank are given by

Φ(x) = dx2, and hence Φ
′
(·) is increasing; that is, Φ

′
(x) = 2dx. Note that marginal cost of

funds is increasing in parameter d. On the demand side, suppose that the outside investors’

return function is given by F (y) = R ln(1 + y). It is easy to verify that this function satisfies

the Concavity , Elasticity , and Regularity assumptions. In Section B.1 in the online appendix,

we solve for the competitive equilibrium investment level and liquidity ratios, as follows:

n =
τ

τ + 1

q(τ + 1) + 2dR

2d(1 + c)
, b =

cq(τ + 1)− 2dR

q(τ + 1) + 2dR
,

where

τ ≡ R

P
− 1 =

R− 1 + q

q(1 + c)
− 1.

Proposition 3 presents the comparative statics of the liquidity ratio and risky investment

level with respect to model parameters in the competitive equilibrium.

Proposition 3. The comparative statics for the competitive equilibrium risky investment

level, n, and liquidity ratio, b, are as follows:

1. The risky investment level (n) is increasing in the return on the risky asset (R) and

decreasing in the size of the liquidity shock (c), probability of the bad state (q), and the

marginal cost parameter (d).

2. The liquidity ratio (b) is increasing in the return on the risky asset (R), size of the liq-

uidity shock (c), and the probability of the bad state (q), and decreasing in the marginal

cost parameter (d).

Proposition 3 shows that b and n move in the same direction in response to R and d, while

they move in opposite directions in response to c and q. Risky and liquid assets can increase

or decrease simultaneously as a response to a change in R and d, thanks to the flexible bank

balance sheet size. This result is intuitive because cq is the expected value of the liquidity

need at the interim period, and as this need increases, the bank holds more liquidity and

17This result is reminiscent of the financial instability hypothesis of Minsky (1992), who suggests that “over periods
of prolonged prosperity, the economy transits from financial relations that make for a stable system to financial
relations that make for an unstable system.”
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fewer risky assets. Of course, this result does not say whether the bank increases its liquidity

ratio sufficiently from a socially optimal perspective.

3.3 Constrained planner’s problem

In this section, we consider the problem of a constrained planner who is subject to the same

market constraints as the private agents. In particular, the planner takes the limited com-

mitment in financial contracts between banks and outside investors as given. However, unlike

banks, the constrained planner takes into account the effect of initial portfolio allocations

on the price of assets in the bad state. Assume that banks have all the bargaining power at

date 0, so that their creditors do not extract any surplus from banks’ investments. Then the

constrained planner maximizes the sum of banks’ and outside investors’ profits:

max
n,b,y

Γ(n, b)− I(b < c)q{(R− P )Qs(P, n, b)− [F (y)− Py]}, (11)

subject to y = Qs(P, n, b),

F ′(y) = P,

where I(·) is the indicator function and Qs(P, n, b) = c−b
P
n is the amount of assets sold by

banks in the bad state at t = 1. The term, F (y)− Py, gives the profits of outside investors

in case of fire sales. The first question is whether the constrained planner would avoid fire

sales completely by setting b ≥ c. The next proposition addresses this question.

Proposition 4. It is optimal for the constrained planner to take fire sale risk; that is, the

constrained optimal liquidity ratio satisfies b < c.

The proposition states that it is optimal for the constrained planner to expose the banking

sector to some amount of fire sale risk. In other words, full insurance is not constrained

optimal. A higher liquidity ratio decreases fire sales by decreasing the liquidity shortage of

each bank (microprudential) and by increasing the price of the risky asset (macroprudential).

That is, holding liquidity makes each bank less exposed to the fire sale risk, and the fire

sales are less severe as a result of higher fire sale prices. However, the marginal benefit

decreases with the amount of liquidity at both the bank and aggregate levels. Meanwhile, the

opportunity cost of holding liquidity is the foregone profit from not investing in risky asset.

The constrained social planner weighs the opportunity cost against the microprudential and

macroprudential benefits of liquidity in the bad state and determines the optimal amount of

fire sale risk to take.

In the proof of Proposition 4 we show that full insurance is not optimal as long as the

price of assets does not decrease severely as a result of a small amount of asset sales. A
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smooth demand curve with an intercept close to R is a sufficient condition to get this result.

For example, setting F ′(0) = R would be sufficient, however, the necessary condition is much

looser, as shown in the proof.
Proposition 4 allows us to focus on the b < c case when analyzing the constrained

planner’s problem given by (11). Corresponding first-order conditions with respect to x ∈
{n, b} are, respectively,

∂Γ

∂x
− q

[
(R− P )

(
∂Qs

∂x
+
∂Qs

∂P

∂P

∂x

)
−Qs ∂P

∂x
− (F ′(y)− P )

(
∂y

∂x
+
∂y

∂P

∂P

∂x

)
+ y

∂P

∂x

]
= 0, (12)

whereQs = c−b
P
n. Using an envelope argument, F ′(y) = P , and the market clearing condition

y = Qs, we can simplify the optimality condition for welfare to:

∂Γ

∂x
− q(R− P )

∂Qs

∂x
− q(R− P )

∂Qs

∂P

∂P

∂x
= 0, ∀x ∈ {n, b} (13)

We denote the constrained efficient allocations that solve the first-order conditions (13) by

n∗∗, b∗∗, and the associated price of assets in the bad state by P ∗∗. Section B.2 in the online

appendix presents the closed-form solutions for n∗∗, b∗∗ and P ∗∗.

These first-order conditions are similar to the first-order conditions of the banks’ problem

in Section 3.2 except that each condition contains an additional term: −q(R− P )∂Q
s

∂P
∂P
∂x

for

x ∈ {n, b}. The difference arises because unlike the individual banks, the constrained planner

takes into account how changing the initial risky investment level and liquidity ratio affects

the price of assets, P , and the hence, the amount of assets sold to outside investors, Qs. In

other words, the constrained social planner internalizes the fire sale externalities, that is, the

planner internalizes the fact that larger risky investments or lower liquidity ratios lead to a

lower asset price and more fire sales in the bad state.

Using (4), we obtain that ∂Qs

∂P
= −(c − b)n/P 2 < 0, that is, the supply of assets is

downward-sloping for banks. Therefore, the extra term in constrained planner’s problem is

negative for risky investment because in Lemma 1 we have shown that ∂P/∂n < 0. This

term captures the extra units of fire sales by other banks, caused by each banks’ additional

investment in the risky asset. Similarly, when comparing the first-order conditions with

respect to the liquidity ratio, the extra term in constrained planner’s problem is positive

because we have shown in Lemma 1 that ∂P/∂b > 0. This term captures the public good

property of liquidity: The liquid asset held by banks not only insures them against the fire

sale risk but also constitutes a positive externality on other banks via greater fire sale prices.

In the next proposition, we compare the competitive equilibrium level of risky assets and

liquidity ratios with the constrained efficient allocations. To perform the comparison, we use

the closed-form solutions of equilibrium outcomes presented in the online appendix.
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Proposition 5. Competitive equilibrium allocations compare to the constrained efficient al-

locations as follows:

1. Risky investment levels: n > n∗∗

2. Liquidity ratios: b < b∗∗

Proposition 5 shows that in the competitive equilibrium, unregulated banks overinvest

in the risky asset, n > n∗∗, and inefficiently insure against liquidity shocks by holding low

liquidity ratios, b < b∗∗. The inefficiency of the competitive equilibrium allocations is due to a

combination of banks’ failure to internalize the effects of initial portfolio choices on prices and

limited-commitment problem that prevents banks from raising external finance in the bad

state. Because there is less risky investment and more liquidity under constrained planner’s

solution, the efficient solution features a higher price of assets in the bad state by Lemma

1 and less fire sales by Lemma 2 compared to the competitive equilibrium. Meanwhile, the

lower fire sales imply less profits for outside investors.18 However, as total welfare is higher

under constrained planner’s problem compared to the competitive equilibrium, it is possible

to compensate outside investors by transferring resources from banks to them.

The first result of the proposition is reminiscent of Lorenzoni (2008) and Korinek (2011),

who show that there is excessive risky investment under fire sale externalities. The latter,

meanwhile, is reminiscent of Bhattacharya and Gale (1987) and Allen and Gale (2004b),

who show that private holdings of liquid assets are inefficient under incomplete markets.

Allowing banks to invest in both the risky illiquid asset and liquid asset, we show that the

pecuniary externality manifests itself in both choices of the banks and distorts both margins.

Together with the flexible balance sheet size, this setup allows us to study the interaction

between the two as well.

3.4 Implementing the constrained efficient allocations: complete regulation

In Proposition 5, we have shown that the socially optimal risky investment level is lower than

the privately optimal level and the socially optimal liquidity ratio is higher than the privately

optimal ratio because of the existence of pecuniary externalities. Therefore, the constrained

efficient allocations can be implemented by applying simple quantity regulations to banks.

In particular, a regulator can implement the optimal allocations (n∗∗, b∗∗) by imposing a

minimum liquidity ratio as a fraction of risky assets (bi ≥ b∗∗) and a maximum level of risky

investment (ni ≤ n∗∗). The latter corresponds to a minimum risk-weighted capital ratio;

that is, E/ni ≥ E/n∗∗.

The quantity-based rules can be mapped to the capital and liquidity regulations in the

Basel III accord. First, the risk-weighted capital ratio, E/ni, corresponds to the Basel

18This is due to the concave technology of outside investors: their profits, F (y) − Py, is increasing in y.
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definition, as it gives liquid assets, nibi, a zero risk weight while giving risky assets, ni, a

weight of one in the denominator. In reality, banks carry several risky assets on their balance

sheet for which Basel Accords require different risk weights. However, introducing assets

with different risk profiles to our setup would complicate the analysis without adding further

insight. Second, our liquidity regulation mimics the liquidity coverage ratio requirement

proposed in Basel III. The LCR requires banks to hold high-quality liquid assets against

the outflows expected in the next 30 days. In our setup, the expected cash outflow is the

expected liquidity need, qc, per each risky asset. Therefore, the liquidity requirement in

our setup can be equivalently written as bini/qcni ≥ b∗∗n∗∗/qcn∗∗. It is true that the LCR

focuses on liquidity shocks on the liability side whereas here we consider liquidity shocks on

the asset side. However, this modeling choice is not essential to our result; all we need is

a liquidity requirement in some states of the world that cannot be fully met with raising

external finance. If we instead model liquidity shock as a proportion of deposits, we would

then need capital regulation to limit the size of deposits and liquidity requirement to increase

the high quality liquid assets (cash). Although we have a stylized model, the time frame

between the two model periods can be calibrated according to Basel definitions as well.

The liquidity requirement was missing in the pre-Basel III era. In order to understand

whether Basel III regulations are a step in the right direction, one needs to compare them to

the pre-Basel III era. For this purpose, in the next section we study a regulated economy that

is similar to the Basel I and Basel II eras; that is, the capital ratios of banks are regulated

but there is no requirement on the banks’ liquidity. Hence, we consider banks that are free

to choose their liquidity ratios for a given capital requirement. This setup also allows us

to study the interaction of banks’ capital and liquidity ratios and to provide an answer to

Tirole’s question quoted in the introduction: What happens to banks’ liquidity when their

capital ratios are regulated? Do banks manage their liquidity in an efficient way, or does

capital regulation distort their choice of liquidity?

4 Partial regulation: regulating only capital ratios

In this section, we consider the problem of a regulator who chooses the level of risky in-

vestment, n, at t = 0 to maximize the net expected social welfare but who allows banks to

freely choose their liquidity ratio, bi. In the next section, we show that the optimal risky

investment level in this case is lower than the competitive equilibrium level. As a result,

the regulator can implement the optimal level by introducing it as a regulatory upper limit

on domestic banks’ risky investment level, which corresponds to the risk-weighted minimum

capital ratio requirement in our fixed amount of bank equity framework. We consider this
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case to mimic the regulatory framework in the pre-Basel III period, which predominantly

focused on capital adequacy requirements. We first analyze the problem of a representative

bank for a given regulatory investment level, n. The bank chooses the liquidity ratio, bi, to

maximize its expected profits; hence, the problem of the bank is as follows:

max
bi

Πi(bi;n) = max
bi

(R + bi − qc)ni −D(ni(1 + bi))− q(R− P )Qs
i (P, ni, bi) (14)

Using Qs
i (P, ni, bi) = c−bi

P
ni from (4), the first-order condition of the banks’ problem (14)

with respect to bi can be obtained as:

1− q + qR
1

P
= D

′
(n(1 + bi)).

From this first-order condition, we can obtain banks’ (implicit) reaction function to the

regulatory investment level—that is, the liquidity ratio, bi, that banks choose for each given

risky investment level, n—as follows:

bi(n) =
D
′−1(1− q + qR

P
)

n
− 1. (15)

The regulator takes this reaction function into account while choosing the optimal risky

investment level to maximize the expected social welfare:

max
n,y

Γ(n, b(n))− q{(R− P )Qs(P, n, b(n))− [F (y)− Py]}, (16)

subject to y = Qs(P, n, b(n)),

F ′(y) = P,

As before, we assume that banks have all the bargaining power at date 0, so that their

creditors do not extract any surplus from banks’ investments. Therefore, the social welfare is

equal to the sum of banks’ and outside investors’ expected profits: Unlike an unconstrained

social planner, the regulator is subject to the same constraints as the private agents. In

particular, the regulator takes the limited commitment of banks in financial contracts with

outside investors as given. Similar to the discussion in Section 3.3, the main difference of

this regulatory objective function from the banks’ problem given by (6) is that the regulator

takes into account the effect of the initial risky investment level on the price of assets in the

bad state. The optimal risky investment level in this case is determined by the following

first-order condition of the regulator’s problem with respect to n:
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∂Γ

∂n
+
∂Γ

∂b
b′(n)− q

[
(R− P )

(
∂Qs

∂n
+
∂Qs

∂b
b′(n) +

∂Qs

∂P

dP

dn

)
−QsdP

dn

]
+q

[
(F ′(y)− P )

(
∂y

∂n
+
∂y

∂b
b′(n) +

∂y

∂P

dP

dn

)
+ y

dP

dn

]
= 0,

where

Qs =
c− b
P

n and
dP

dn
=
∂P

∂n
+
∂P

∂b
b′(n).

Using an envelope argument, F ′(y) = P , and the market clearing condition y = Qs, we can

simplify the optimality condition for welfare to:

∂Γ

∂n
+
∂Γ

∂b
b′(n)− q(R− P )

(
∂Qs

∂n
+
∂Qs

∂b
b′(n)

)
− q(R− P )

∂Qs

∂P

dP

dn
= 0. (17)

We denote the optimal risky investment level that solves the first-order condition (17) by n∗,

the associated optimal liquidity choice of banks under partial regulation by b∗, and the price

of assets in the bad state by P ∗. Section B.3 in the online appendix presents the closed-form

solutions for n∗, b∗, and P ∗.

Changing n has an indirect effect on the asset price in the bad state in addition to its

direct effect because banks change their liquidity ratios in response to changes in n, which

then changes the price of assets in the equilibrium. The main question in this case is how

banks respond to a tightening of capital regulations. We answer this question in Proposition

6.

Proposition 6. Let the operational cost of a bank be given by Φ(x) = dx2. Then, for any

technology function for outside investors, F (·), that satisfies the Concavity, Elasticity, and

Regularity assumptions with F ′(0) = R, banks decrease their liquidity ratio as the regulator

tightens capital requirements; that is, b
′
(n) ≥ 0.

Proposition 6 shows that banks reduce their liquidity ratios as the regulator tightens

the risky investment level. The regulator attempts to correct banks’ excessive risk-taking

by introducing a risk-weighted capital ratio requirement. However, because this regulation

prevents banks from reaching their privately optimal level of risk, they react by reducing

their liquidity ratios. In other words, banks undermine the purpose of capital regulations

by carrying less-liquid portfolios. It would not be surprising to observe banks holding fewer

liquid assets when they are asked by the regulator to decrease their risky asset holdings.

However, what is stated in Proposition 6 goes beyond that: Banks also decrease their liquidity

ratios when the the regulator limits the risky investment level; that is, banks hoard less

liquidity per unit of risky asset.

27



The intuition of the proof is as follows: The marginal return to the liquidity ratio, bi, is

(1− q)ni + qR
P
ni, and it is decreasing in the fire sale price, P : Each unit of liquidity holding

per risky asset becomes less valuable as the fire sale price increases. Capital regulation lowers

the amount of risky investment, and hence increases the fire sale price as we show in Lemma

1. As a result, liquidity hoarding becomes less attractive for the banks, and they decrease

their liquidity ratio, bi. In other words, the benefit of holding liquidity is to be less exposed

to fire sale risk. A higher fire sale price (induced by capital regulations) means that the risk

is less costly, and thus it is optimal for banks to take more of that risk (decrease bi). The

fact that banks can decrease their liquid assets at the same time when capital regulation is

limiting their risky assets is possible due to the flexible balance sheet size of banks in our

model.

Note the role of rational expectations in generating this relationship between capital

regulation and liquidity ratios. Because the regulation applies to every bank, banks correctly

forecast the fire sale price to be higher as a result of less risky investment in the banking

system, and they optimally decrease their liquidity ratios. In a sense, Proposition 6 reveals an

unintended consequence of capital regulation when it is applied in isolation. If the financial

system is now more stable—that is, if there are higher fire sale prices and fewer fire sales—

banks’ incentive to hoard liquidity is smaller.

We can also use an analogy from automobile safety regulations to explain the result in

Proposition 6. Peltzman (1975) and Crandall and Graham (1984) show that whether auto-

motive safety regulations such as safety belts and airbags reduce the fatality rate depends

upon the response of drivers to the increased protection. The empirical evidence they present

shows that drivers do indeed increase their driving intensity as a response to safety regula-

tions, resulting in a less than expected reduction in fatality rates. Similarly, in our setup,

capital regulations intend to make the financial system safer, but individual banks respond

by taking more risk on the liquidity channel. As a result, there is a less than expected

increase in financial stability and welfare from regulation.

Proposition 6 states that for any elastic, log-concave demand function with the intercept

F ′(0) = R, the result b′(n) ≥ 0 holds. However, the condition is actually looser than that

because, as we have discussed, the Regularity assumption is weaker than log-concavity. In

online appendix A, we show that it is even possible to relax this constraint further and obtain

this result with weak inequality—that is, F ′(0) ≤ R—if we make the following assumption

on outside investors’ technology:

R <
F ′(F ′ + yF ′′)

F ′ + 2yF ′′
.

The proof provides a sufficient condition by showing that there is strategic complementarity
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between the regulatory risky investment level, n, and the liquidity ratio, bi, for each bank.

We use the monotone comparative statics techniques outlined by Vives (2001) to show that

banks’ profit function exhibits increasing differences between n and bi in the partial regulation

case.

4.1 Complete versus partial regulation: do we need liquidity requirements?

In this section, we investigate whether capital regulation alone can restore constrained effi-

ciency. For this reason, we compare the equilibrium outcomes (level of risky assets, liquidity

ratios, asset prices, and the amount of fire sales) in three different settings: a decentralized

equilibrium without any regulation, a partially regulated case in which there is only capital

regulation, and a complete regulation case in which the constrained optimum is achieved

using both capital and liquidity regulations. To perform the comparison, we use the closed-

form solutions of equilibrium outcomes presented in the online appendix. Proposition 7

summarizes the results.

Proposition 7. Risky investment levels, liquidity ratios, and financial stability measures

under competitive equilibrium (n, b, P , 1− γ, (1− γ)n), partial regulation equilibrium (n∗,

b∗, P ∗, 1 − γ∗, (1 − γ∗)n∗), and complete regulation equilibrium (n∗∗, b∗∗, P ∗∗, 1 − γ∗∗,

(1− γ∗∗)n∗∗) compare as follows:

1. Risky investment levels: n > n∗∗ > n∗

2. Liquidity ratios: b∗∗ > b > b∗

3. Financial stability measures

(a) Price of assets in the bad state: P ∗∗ > P ∗ > P

(b) Fraction of assets sold: 1− γ > 1− γ∗ > 1− γ∗∗

(c) Total fire sales: (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

In a partially regulated financial system, unlike the competitive economy, the overinvest-

ment problem does not arise. On the contrary, in Proposition 7 we show that the investment

in risky assets under partial regulation is inefficiently low compared to the constrained op-

timum: n∗ < n∗∗. The underinvestment is related to the liquidity choice of banks: The

problem of unregulated banks having inefficiently low liquidity ratios is exacerbated with

the introduction of capital regulation in isolation. In Proposition 7 we show that banks are

less liquid under partial regulation than they were in the competitive equilibrium, that is,

b∗ < b. As discussed in Proposition 6, as capital regulation limits the risky investment,

banks optimally choose less-liquid portfolios, which partially offsets the positive impact of

the reduction in risky investment on financial stability and welfare. Lower liquidity ratios
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expose the financial system to excessive fire sales and asset price decreases. The precaution-

ary behavior of the regulator is then to implement the capital regulation in a more restrictive

way, which increases the fire sale price but leads to an inefficiently low level of investment

in the profitable risky asset.

Higher liquidity ratios are why more investment in long-term assets is allowed under

complete regulation. Proposition 7 shows that the constrained optimal level of liquidity, b∗∗,

is higher than the liquidity chosen by banks under the partial regulation, b∗. Higher liquidity

ratios allow banks to hold more risky assets without increasing the fire sale risk. Therefore,

the socially optimal choice is to hold a higher level of risky investment supported by greater

liquidity ratios.

In order to see the interaction between the capital and liquidity requirements, consider

the following scenario: A country transitions from partial regulation to complete regulation

by imposing new liquidity rules in addition to existing capital rules. To be specific, this

transition can be compared to moving from the Basel I/II regulatory approach to the Basel

III regulatory approach. Assuming that capital regulation had been set optimally during the

pre-Basel III period, capital requirements can be relaxed after the introduction of liquidity

requirements. Therefore, our results would predict that more long-term profitable risky

investment can be financed via the banking system after the implementation of liquidity

requirements.

How effective is capital regulation in addressing financial instability caused by fire sales

when it is not accompanied by liquidity requirements? To answer this question, we can

compare the measures of financial instability across the two regulatory regimes. More fire

sales and a lower price of the risky asset in the bad state are associated with greater financial

instability, and they imply that the externality has a stronger presence in the economy.

Proposition 7 shows that the introduction of capital regulation in isolation increases the fire

sale price compared to the competitive equilibrium price. However, the price is still below

the socially optimal price level, which can only be achieved with the addition of liquidity

requirements. The message is the same when we compare both the fraction and the total

amount of risky assets that must be sold to withstand the liquidity shock under the two

regulatory regimes, as shown in items 3-a and 3-b in Proposition 7. In general, minimum

capital rules may actually serve several purposes, such as countering moral hazard problems

generated by the existence of limited liability and deposit insurance, that we do not analyze

in this paper. However, what we show here is that, under fire sale externalities, capital

regulations are not effective in achieving constrained optimum unless they are combined

with liquidity requirements.

Our results indicate that neither capital nor liquidity ratios alone are perfect predictors
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of potential instability; a better-capitalized banking system may end up conducting larger

fire sales. Under partial regulation, for instance, although the capital ratios are higher than

under complete regulation, the liquidity shock causes a larger disruption to financial markets.

Similarly, a more-liquid banking system may experience greater financial instability; banks

are more liquid in the unregulated competitive equilibrium compared with partial regulation,

but the shock leads to more distortions in the former.

We end this section by comparing bank size across three different regimes in the following

proposition, and we discuss the implications of this result for simple leverage ratio regulation.

Proposition 8. Bank balance sheet sizes across different regimes are as follows:

n(1 + b) = n∗∗(1 + b∗∗) > n∗(1 + b∗)

Proposition 8 shows that the bank size in the competitive equilibrium is equal to the

socially optimal size. However, bank size is inefficiently small under partial regulation as

there are both lower risky and liquid assets in this regime compared to the constrained opti-

mum. Proposition 8 provides an interesting result on the regulation of leverage ratio, which

can be defined as E
n(1+b)

in this setup. Proposition 8 shows that the optimal simple leverage

ratio is the same under complete regulation and unregulated competitive equilibrium. In our

setup, this proposition means that starting from the competitive equilibrium, it is possible

to obtain the constrained social optimum by reallocating funds from risky assets to liquid

assets without affecting the balance sheet size. However, as shown in Proposition 7, the two

cases are different in terms of financial stability implications. This suggests that, from a

financial stability perspective, what is important is not the size of a bank’s balance sheet

but its composition. Therefore, we can conclude that in the current setup, a leverage regula-

tion applied in isolation would be completely ineffective.19 However, the leverage regulation

combined either with a liquidity ratio requirement or with a risk-weighted capital regulation

would be sufficient to replicate the constrained social optimum.

4.2 Can regulating only liquidity be the solution?

In our model, fire sales are triggered by a liquidity shock in the bad state. Banks are solvent

as long as they can cover this liquidity requirement because the return on the risky asset

(R) is greater than the cost of restructuring needed to keep the investment alive (c) by

the Technology assumption. Therefore, one may wonder if the constrained optimum can be

implemented using liquidity regulation alone, that is, without using capital requirements at

19Nevertheless, leverage ratio regulation might be an important method of addressing other market failures, such
as risk shifting or informational asymmetries, which we do not study in this model.
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all. The short answer is no. First, note that, in Proposition 4, we show that it is not optimal

to avoid fire sales completely in the bad state by forcing banks to perfectly insure against

the liquidity shock by setting b = c. Second, regulating only liquidity means that banks are

free to choose their capital ratios. The questions then becomes whether banks choose the

optimal capital ratio when the minimum liquidity requirement is set optimally.

In order to answer this question, we first need to study bank behavior under liquidity

regulation alone. In this case, the regulator chooses the optimal liquidity ratio, b, at t = 0

to maximize the net expected social welfare but allows banks to freely choose their risky

investment level, ni. Consider the problem of a bank first: For a given regulatory liquidity

ratio, b, a bank chooses the level of risky investment, ni, to maximize its expected profits:

max
ni

Πi(ni; b) = max
ni

(R + b− qc)ni −D(ni(1 + b))− q(R− P )Qs
i (P, ni, b) (18)

The first-order condition of the banks’ problem (18) with respect to ni is

R + b− qc−D′(ni(1 + b))(1 + b)− q(R− P )
∂Qs

i

∂ni
= 0. (19)

From this first-order condition, we can obtain banks’ reaction function, ni(b), to the

regulatory liquidity ratio—that is, the optimal risky investment level, ni, that banks choose

for each given liquidity ratio, b. Now, using banks’ optimal response function, ni(b), we can

check if banks choose the constrained optimal risky investment level, n∗∗, if the regulator

sets the minimum liquidity ratio at the constrained optimal level, b∗∗. That is, can we have

ni(b
∗∗) = n∗∗? The next lemma answers this question:

Proposition 9. Banks do not choose the constrained optimal risky investment level, n∗∗, if

the regulator sets the minimum liquidity ratio at the constrained optimal level, b∗∗, that is,

ni(b
∗∗) 6= n∗∗.

Proposition 9 states that banks do not choose the optimal capital ratio when they are

asked by the regulator to hold the optimal liquidity ratio. In fact, in online appendix A

we show that they choose a higher level than the optimal level of risky investment, that

is, ni(b
∗∗) > n∗∗. Therefore, the constrained planner’s allocations cannot be implemented

by regulating liquidity alone. Banks can take on the fire sale risk through both liquidity

and capital channels. Therefore, implementing constrained efficiency requires restraining

banks on both channels. Otherwise, banks use the unregulated channel to take more risk,

undermining the regulator’s intent to correct for the fire sale externality.
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4.3 Implementing efficient allocations using a single regulatory constraint

Our analysis so far indicates that we cannot implement the optimal allocations using a

simple capital or liquidity regulation in isolation. However, it is worth asking whether we

could implement the constrained efficient allocations using more complex rules that combine

capital and liquidity regulations. In this section, we show that a linear combination of a

capital and a liquidity regulation similar is sufficient to replicate the efficient allocations in

a decentralized market.

Consider the following linear rule τnn + τbb ≤ k. Banks’ problem under the new rule is

as follows:

max
ni,bi

Γ(ni, bi)− q{(R− P )Qs
i (P, ni, bi)}, (20)

subject to τnni + τbbi ≤ k.

We can write the Lagrangian of banks’ problem in this case as follows:

Li = Γ(ni, bi)− q(R− P )Qs
i + λ(k − τnni − τbbi)

Corresponding first-order conditions of this problem are:

∂Li
∂ni

=
∂Γ

∂ni
− q(R− P )

∂Qs
i

∂ni
− λτn = 0 (21)

∂Li
∂bi

=
∂Γ

∂bi
− q(R− P )

∂Qs
i

∂bi
− λτb = 0 (22)

To see how this rule will work and how we find the optimal coefficients τn, τb and k,

we compare the first-order conditions of banks problem above to those of the constrained

planner’s problem, given by (13). We can choose k and τn, τb such that λ = 1. It is obvious

that in this case if we define τn, τb as follows, our linear rule will implement the optimal

allocations:

τn = q[(R− P )
∂Qs

∂P

∂P

∂n
] = q(R− P ∗∗)(c− b∗∗)2n∗∗

P ∗∗2
> 0 (23)

τb = q[(R− P )
∂Qs

∂P

∂P

∂b
] = −q(R− P ∗∗)(c− b∗∗)n∗∗2

P ∗∗2
< 0, (24)

which implies that

k = τnn
∗∗ + τbb

∗∗ = −q(R− P )
(c− b∗∗)2n∗∗

P 2
n∗∗2 + q(R− P )

(c− b∗∗)n∗∗2

P 2
b∗∗. (25)

This rule does not directly map into any of the current Basel III capital or liquidity
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requirements because it cannot be written in the form of a ratio of weighted balance sheet

items. The optimal rule punishes banks for holding risky assets and rewards them for higher

liquidity ratios. The rule is intuitive because in our model more risky assets increase fire sales

whereas more liquidity decreases fire sales. Therefore, the optimal rule indicates strategic

substitution between risky assets and liquidity from banks perspective. Banks can satisfy

the rule either by decreasing their risky investment or by increasing their liquidity ratios.

In that regard, this linear rule provides more flexibility to banks compared to the joint

implementation of capital and liquidity ratio requirements discussed earlier.

On a separate note, we can also implement the constrained efficient allocations using

Pigouvian taxation instead of quantity based rules. In this case, introducing two linear

Pigouvian taxes, one for risky investment and one for the liquidity ratio will be sufficient.

The Pigouvian tax rates will then be given by (23) and (24), respectively.

4.4 Further Policy Implications

Central banks and regulatory institutions around the world mainly focus on regulating banks

to improve financial stability. However, actions of nonbank financial institutions affect the

stability of the system as well. Yet, some financial institutions are partially or totally exempt

from bank regulations. For instance, in the U.S. hedge funds and investment banks do not

need to comply with Basel regulations, while small banks (banks with less than $50 billion in

total assets) are exempt from the Basel III liquidity requirement LCR.20 Nevertheless, insti-

tutions that are outside the scope of bank regulation and supervision are indirectly affected

by the regulatory rules. One such indirect channel arises because unregulated institutions

invest in similar risky assets and trade in the same common asset markets as regulated

banks. For instance, hedge funds or investment banks hold mortgage-backed securities in

their portfolios.

The portfolio allocations of unregulated institutions matter for the fire sale market be-

cause the sale of these risky assets in distress times contribute to the deterioration of fire

sale prices. Moreover, in case of fire sale externalities, regulations that require banks to be

more prudent could, at the same time, create incentives for unregulated institutions to take

on more fire sale risk. Therefore, from the perspective of bank regulation, it is important to

understand the reaction of unregulated institutions to bank regulation. For example, ignor-

ing the reaction of unregulated institutions could lead to over or under-regulation of banks.

Such spillover effects from unregulated institutions could hamper the ability of regulators to

achieve greater financial stability and welfare.

We analyze how unregulated financial institutions react to bank regulation as well as

20http://www.federalreserve.gov/newsevents/press/bcreg/20140903a.htm.
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what their reactions imply for financial stability. For that purpose, we introduce unregulated

financial institutions into our model. These institutions are identical to banks other than

being exempt from the regulatory requirements. As mentioned above, in case of liquidity

regulation these institutions can be considered as small banks. This simple setup allows us

to study the implications of the interaction between regulated and unregulated institutions

with minimal modification of our model.

We denote the choices of regulated institutions with (ñ, b̃) and those of unregulated

institutions with (n, b). As before, n and ñ are the amount of risky investment while b and

b̃ denote the liquid asset per unit risky asset. Liquidity needs of regulated and unregulated

institutions in bad times at t = 1 respectively are: (c − b̃)ñ and (c − b)n. The market

clearing condition in the fire sale market is (c − b̃)ñ + (c − b)n = Py. Thus, the fire sale

price is a function of ñ, b̃, n, b. Below we analyze the response of unregulated institutions to

bank regulation. In particular, we study the risky asset choice of an unregulated institution

and see how it changes as the regulator limits the total risky investment ñ, in the regulated

segment. An unregulated institution chooses ni, bi to maximize its expected profits, given

by:

Πi(ni, bi) = Γ(ni, bi)− q(R− P )Qs
i (P, ni, bi), (26)

where Qs
i (P, ni, bi) = (c − bi)ni/P . Here, the atomistic institution takes the fire sale price

P (ñ, b̃, n, b) as given and we treat ñ as a parameter of the model because unregulated in-

stitutions take it as given. The regulator effectively determines the aggregate amount of ñ

using capital regulations. Therefore, the first-order condition of the unregulated institution

with respect to ni is
∂Π(ni, bi)

∂ni
=
∂Γ

∂ni
− q(R− P )

c− bi
P

= 0.

The first-order-condition above determines the level of optimal risky investment for an un-

regulated institution, ni, for a given level of aggregate risky investment in the regulated

segment, ñ. In order to see how ni changes with ñ we need to evaluate the sign of the

cross-partial derivative of the profit function:

∂2Π(ni, bi)

∂ñ∂ni
= qR

c− bi
P 2

∂P

∂ñ
< 0.

The higher the level of risky investment allowed by the regulator, the lower the fire sale

price is, and that is captured by negative ∂P
∂ñ

. The lower fire sale price, in turn, leads to

lower level of risky asset left at the bank after the fire sales, which is captured by positive ∂γ
∂P

.

Altogether, using the monotone comparative statics techniques outlined by Vives (2001), the

negative sign of the cross-partial derivative indicates that n′(ñ) < 0, that is, as regulation
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tightens risky investment level of banks, unregulated institutions respond by increasing their

risky investment. Using the terminology of monotone comparative statics, ni and ñ are

strategic, yet imperfect, substitutes from the unregulated institution’s point of view.

Similarly, we evaluate how unregulated institutions respond to tighter liquidity regula-

tions.
∂Π(ni, bi)

∂bi
=
∂Γ

∂bi
+ q

R− P
P

ni = 0.

The first-order condition above determines the optimal liquidity ratio for an unregulated

institution, bi, for a given level of liquidity ratio in the regulated segment, b̃. In order to

see how bi changes with b̃ we evaluate the sign of the cross-partial derivative of the profit

function:
∂2Π(ni, bi)

∂b̃∂bi
= −qRni

1

P 2

∂P

∂b̃
< 0.

The sign of this derivative is negative by Lemma 1. The negative sign on the cross-partial

derivative shows that b′(b̃) < 0, that is, as the regulation require (some) banks to increase

their liquidity ratios, unregulated institutions respond by decreasing their liquidity ratios.

Thus, unregulated institutions free ride on the liquidity of regulated institutions.

In similar ways, we can also show that unregulated institutions increase the level of

their risky investment as the regulation requires more liquidity, that is n′(b̃) < 0, and they

decrease their liquidity buffers with the regulation on the amount of risky investment, that

is, b′(ñ) < 0. Regulations on ñ and b̃ make the financial system more stable by increasing the

fire sale price, which in turn create incentives for the unregulated institutions to invest more

in risky assets and decrease their liquidity buffer. The behavior of unregulated institutions

creates a counter force to the regulation.

To explain the intuition behind these results, we can consider another analogy from

automotive safety regulations in the spirit of Peltzman (1975): Cars and motorcycles usually

share the same roads. If we introduce speed restrictions on cars but not on motorcycles, roads

will initially become safer, but this will create incentives for motorcycle riders to increase

their driving intensity, creating a counter force to the regulation.

The effect analyzed in this section is similar to the one examined in international policy

coordination literature such as Acharya (2003), Dell’Ariccia and Marquez (2006), and Kara

(2016). These papers show that bank regulations across countries are strategic substitutes.

For instance, Kara (2016) shows that if the regulator of one country tightens capital reg-

ulations, the regulator of the other country finds it optimal to relax its capital regulations

and allow banks in its jurisdiction to invest more in risky assets. This result is driven by

the public good property of capital regulations in an international context under fire sale

externalities. Similarly, we show above that even in a given country bank capital and liquid-
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ity regulations have a public good property under fire sale externalities. If we regulate only

some institutions, unregulated institutions that engage in similar investment behavior will

free ride on the improved stability brought by disciplined institutions. Therefore, as argued

by Farhi et al. (2009), efficient regulations should have a wide scope and apply to all relevant

financial institutions.

5 Discussion of assumptions

In this section, we show that our results are robust to some changes in the modeling environ-

ment. First, we consider deposit markets that have monopolistic competition and endogenize

the deposit rate while assuming that banks have limited liability. In previous sections, we

assume that the bank equity is sufficiently large to prevent banks from defaulting in the bad

state; as a result, each bank can raise deposits from consumers at a net zero interest rate.

This new setup allows default in equilibrium. Second, we introduce deposit insurance and

limited liability together. We do not need the limited liability or deposit insurance assump-

tions in the basic setup because there is no default in equilibrium. We show that the results

of the paper do not change under these different modeling environments. This is because

the constrained inefficiency of the decentralized equilibrium, and hence the justification for

capital regulations and liquidity regulations, does not depend on a moral hazard problem

created by the existence of deposit insurance or limited liability for bank owners. Instead,

the inefficiency depends purely on the existence of pecuniary externalities under incomplete

markets. In other words, the inefficiency driven by fire sale externalities would prevail in a

narrow banking system in which banks are all financed by nothing but equity capital.

Next, we discuss relaxing the convex operational cost assumption and its implications for

our results. Last, we show that the aggregate nature of the liquidity shock is not material

for the mechanism or the conclusions of the model. We allow the liquidity shock to be

idiosyncratic rather than aggregate and show that this setup is isomorphic to the aggregate

shock case with a smaller liquidity shock.

5.1 Endogenizing the deposit rate

In previous sections, we assumed that bank equity is sufficiently large to prevent banks from

default in the bad state and, as a result, that each bank could raise deposits from consumers

at a net zero interest rate. Now, instead, suppose that each bank is a local monopsony in

the deposit market and there is limited liability for banks.21 We consider the decentralized

21We restrict attention to deposit contracts that are in the form of simple debt contracts. Debt contracts can be
justified by assuming that depositors can observe banks’ asset returns only at a cost. According to Townsend (1979),
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equilibrium without regulation in this setup. At the initial period, bank i will choose the

amount to invest in the risky asset, ni, the liquidity ratio, bi, and the interest rate on the

deposits, ri, to maximize the net expected profits:

max
ri,ni,bi

(1− q)[(R + bi)ni − riLi] + qmax{Rγini − riLi, 0} − E − Φ((1 + bi)ni), (27)

subject to

(1− q)riLi + qmin{Rγini, riLi} ≥ Li (IR), (28)

where γi = 1− (c− bi)/P is the fraction of assets retained by banks at t = 1 after fire sales,

P is the price of risky assets (which, as before, banks take as given), and Li = (1 + bi)ni−E
is the amount of deposits. The bank has to satisfy the individual rationality (IR) constraint

of consumers given in (28): The expected return to deposits must be greater than the initial

deposit of a consumer, Li. Each consumer receives a gross return of riLi in the good state,

which happens with probability 1− q. In the bad state, which arises with probability q, the

consumer obtains the minimum of the promised payment, riLi, and the returns available

to the bank after fire sales, Rγini. If Rγini < riLi, the bank defaults in the bad state. We

assume that a bank that is in default at t = 1 is required by law to manage the remaining

assets after fire sales until the final period and transfer generated resources, Rγini, to its

depositors. However, we do not introduce any exogenous cost of bank default to its depositors

or to the overall economy.

First, consider the choice of optimal ri for a given investment level, ni, and liquidity ratio,

bi. Because each bank is a local monopsony, the interest on deposit contracts needs to be

just high enough to induce risk-neutral consumers to deposit their endowments with them.

In technical terms, the individual rationality condition for consumers binds. If the returns

in the bad state are such that Rγini > Li, then banks can optimally set r∗i = 1. In this case,

similar to the basic model in Section 3, deposits are safe and consumers inelastically supply

deposits to banks. However, if Rγini < Li, banks have to offer a positive net interest rate

to consumers in the good state to compensate for their losses in the bad state. For the IR

condition of consumers to be satisfied, ri has to be such that

ri ≥
Li − qRγini

(1− q)Li
≡ r∗i . (29)

To obtain this constraint we rearrange the IR condition (28) and note that min{Rγini, riLi} =

Rγini. In order to maximize profits, banks set ri = r∗i .
22 Now, we can substitute the optimal

in the case of costly state verification, debt contracts are optimal.
22This setup requires the assumption that depositors can perfectly observe the equilibrium level of investment (ni),

the fraction of assets sold (1 − γi), and the price of assets (P ). However, we show in Section 5.2 that the results of
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r∗i back into the banks’ objective function (27) and simplify to obtain

max
ni,bi

(1− q)(R + bi)ni + qRγini − (1 + bi)ni − Φ((1 + bi)ni),

where we use Li + E = (1 + bi)ni and max{Rγini − riLi, 0} = 0 because Rγini − Li < 0 in

equilibrium, as argued earlier. Note that this problem is the same as the banks’ problem that

we considered in Section 3.2. Therefore, the liquidity ratio and level of risky investment in

the decentralized equilibrium are the same as the benchmark model. We can easily show that

the expected utility of a representative consumer is not affected by the current modification.

After substituting (29) for the equilibrium interest rate, r∗i , into the left-hand side of the IR

condition (28), consumer’s expected utility can be obtained as

(e− Li) + (1− q)Li
Li − qRγini

(1− q)Li
+ qRγini = e,

where we use that min{Rγini, riLi} = Rγini in equilibrium. Therefore, we obtain that the

social welfare function is also the same as the benchmark model. This implies that all results

in the paper continue to hold in this setup.

5.2 Deposit insurance and limited liability

Deposit insurance can be introduced into the model with a slight modification. Suppose that

the regulator (or a separate insurance agency) runs a domestic deposit insurance fund that

is fairly priced. In particular, banks pay deposit insurance fees in good times and, in ex-

change, the deposit insurance covers any deficit between the banks’ return and the promised

payments to depositors in bad times. We assume that each bank is a local monopsony in the

deposit market, as previously. Because of the deposit insurance, banks maximize profits by

offering consumers a net zero interest rate. As a result, consumers inelastically supply their

endowments to banks at the initial period. Let τi be the fee that banks pay to the deposit

insurance in good times per unit of deposits. The banks’ problem changes as follows:

max
ni,bi

(1− q)[(R + bi)ni − Li − τiLi] + qmax{Rγini − Li, 0} − E − Φ((1 + bi)ni).

The fair pricing of the deposit insurance requires (1 − q)τiLi = q max{Li − Rγini, 0}.
Substituting this fair value back into the banks’ problem and noting that banks default in

the paper do not change when we change the environment by introducing deposit insurance, which does not require
this perfect observation assumption.
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the bad state—that is, max{Rγini − Li, 0} = 0—gives

max
ni,bi

(1− q)(R + bi)ni + qRγini − E − Li − Φ(ni(1 + bi)).

Using Li = (1 + bi)ni − E, the last equation can be written as

max
ni,bi

(1− q)(R + bi)ni + qRγini − ni(1 + bi)− Φ(ni(1 + bi)) (30)

The problem of banks given by (30) is the same as in Section 3.2. Therefore, the liquidity

ratio and optimal level of investment in the decentralized equilibrium without regulation

remain the same. Note that the representative depositor consumes e − Li at the initial

period and Li in the final period in both states. As a result, the depositor’s expected utility

at t = 0 is e−Li +Li = e, and the social welfare function is also exactly the same as before.

To conclude, all of the results in the paper are robust to adding a fairly priced deposit

insurance and limited liability for banks in the model.

5.3 Operational costs of a bank

We assume a convex operational cost similar to the ones imposed by Van den Heuvel (2008)

and Acharya (2003, 2009) because it ensures the existence of an equilibrium. However, the

form of this function is not essential for our key results, as long as an equilibrium exists.

To be more specific, Propositions 1, 4 and 9 do not require any specific functional form and

Proposition 6 is robust to some alternative modeling choices such as concave cost functions,

like the square root or natural logarithm functions.23

In our model, the net interest rate on bank deposits is zero. Without an additional cost

(such as an operational cost) banks can borrow more from depositors and park these funds

as liquid assets (cash) in their portfolios. In that way they could freely insure against the

fire sale risk. We believe that such a scenario is not realistic. First, banks do face costs

to attract deposits. Second, unlimited amount of funds from depositors at zero cost would

cancel out the opportunity cost of holding liquid assets, namely the cost of bygone profits

from other investments. A constant balance sheet size would emphasize this opportunity cost

mechanism, as it does in many papers in the literature. However, with a fixed balance sheet

size, the choice between risky assets and liquid assets boils down to a mere portfolio allocation

problem. A setup with a single choice variable does not allow the type of interactions we

study. Thus, by employing a flexible balance sheet size, we avoid two extreme assumptions;

namely, that banks have an unlimited amount of funds at their disposal, and that bank

balance sheet size is inflexible.
23These results are not included here but are available upon request from the authors.
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Furthermore, whether bank size matters for the inefficiencies banks create is also discussed

in the context of the recent financial crisis, as well as how bank regulation might affect bank

size. Regulatory rules might affect bank profitability, which may lead banks to resize their

operations. To speak to these discussions, a flexible balance sheet size is important because

it also allows us to study the optimal size of banks’ balance sheets. Our result in Proposition

8 emphasizes that the composition of a bank’s balance sheet matters more than its size, and

that regulation does not necessarily imply a reduction in balance sheet size.

5.4 Idiosyncratic liquidity shocks

In the basic model, the liquidity shock is aggregate in nature, as in Lorenzoni (2008). In this

section, we show that the aggregate nature of the liquidity shock is without loss of generality

and that our results do not change if we allow idiosyncratic liquidity shocks. In this more

general setup, liquidity shocks hit only a fraction of the banks. Thus, banks are ex-post

heterogeneous in terms of their liquidity needs. Banks that receive the liquidity shock need

funding while others are left with excess liquidity. Banks with excess liquidity can use these

resources to buy the risky assets from the distressed banks, potentially at fire sale prices.24

Therefore, in this variant of the model, banks hoard liquidity also for a strategic purpose:

They can use their liquid assets to buy risky assets at fire sale prices. This function of

liquidity is also present in the models of Acharya, Shin, and Yorulmazer (2011), Allen and

Gale (2004b), Allen and Gale (2004a), and Gorton and Huang (2004). The amount of risky

assets that can be bought with the liquid holdings of a shock-free bank is bini

P
.

First, we analyze the case conditionally on the liquidity shock but without knowing

which banks receive the shock. We assume that, conditional on being in the bad state, the

probability of being hit with a liquidity shock is λ for each bank. Hence, by the law of

large numbers, a fraction λ of banks is hit by the liquidity shock in the bad state. The

expected profit of a bank before the realization of which banks receive the shock, conditional

on the bad state, is λRγini + (1− λ)(ni + bini

P
)R. The first term, λRγini, is the return from

remaining risky assets after fire sales multiplied by the probability of receiving the liquidity

shock, λ. The amount of remaining risky assets after fire sales is denoted by γi for bank i,

as in the benchmark model. The second term captures the returns from risky investment

in the case without the liquidity shock, including the returns from risky asset bought using

hoarded liquidity. We substitute for γi and rewrite the expected profit conditional on the

bad state, as follows:

24In principle, it is possible that the amount of excess liquidity in the banking system exceeds the liquidity needs of
the shock-receiving banks. At the end of this subsection we explain why this situation does not arise in equilibrium.
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Πi|bad = λR

(
1− c− bi

P

)
ni + (1− λ)niR + (1− λ)

bini
P
R,

= λRni −
λRcni
P

+ λR
bini
P

+ (1− λ)Rni +
bini
P
R− λbini

P
R.

Further simplification yields:

Πi|bad = R

(
1− cλ− bi

P

)
ni = Rγ̃ini,

where γ̃i = 1 − cλ−bi
P

. This γ̃i is similar to γi in the basic setup; the only difference is that

the size of the liquidity shock, c, is replaced with cλ in the numerator of the definition. In

this setup, when we set λ = 1, we are back to our benchmark case. Thus, allowing λ to be

between zero and one provides a more general model. In order to write the expected profits

of banks at t = 0 in this more general setup, we simply note that the economy ends up in the

bad state only with probability q and obtains the returns derived earlier, while good times

arise with probability 1− q and feature returns that are the same as in the benchmark case:

Πi = (1− q)(R + bi)ni + qR

(
1− cλ− bi

P

)
ni,

Compared with the benchmark case, the only difference in banks’ expected profit at

t = 0 is that c is replaced with cλ. For completeness, we conclude by writing the demand

and supply functions in this more-general case. The aggregate liquidity need in the bad state

is λ(c− b)n, and the liquidity supply is (1− λ)bn+ PQd(P ). Equating demand and supply

yields λ(c−b)n = (1−λ)bn+PQd(P ), and simplifying reduces this market-clearing condition

to (λc− b)n = PQd(P ). Compared with the market-clearing condition in the original setup,

the only difference is, again, that c has been replaced with λc. Thus, in this new setup, if

we relabel λc = c̃, we are back to our original setup where c is replaced with c̃.

It would be possible to have no fire sales in the bad state in this setup if the liquid

assets in the hands of shock-free banks were in excess of the liquidity need of shock-receiving

banks, so that the risky assets were traded within the banking system without needing to

sell to outside investors. Although this case is possible in principle, it is never observed

in equilibrium because it is not optimal for banks to hoard sufficient liquidity for this case

to arise. Comparing the demand for liquidity with the supply of liquidity in the case of

the liquidity shock, it is clear that the fire sales arise if and only if λcn is greater than bn.

In other words, fire sales are observed in equilibrium as long as c̃ > b. Given that c̃ is a

parameter, the ex-ante liquidity choice of banks determines whether fire sales occur. As we
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know from the benchmark case, banks optimally set bi < c. Because this is true for any

parameter value, it is true for c̃ as well. The intuition is the same: Holding liquidity is costly

if the shock does not materialize. Thus, for banks to hoard liquidity, there must be some

additional return to holding liquidity in case of the liquidity shock. This additional return is

only possible if the fire sale price is less than R, which is only possible if there are fire sales.

In other words, if there will not be any fire sales in the bad state—that is, if P = R—then

there is no benefit to holding liquidity. But this contradicts the assumption of sufficient

liquidity in the banking system.

6 Conclusion

In this paper, we investigate the optimal design of bank regulation and the interaction be-

tween capital and liquidity requirements. Our model is characterized by a fire sale externality,

because atomistic banks do not take into account the effect of their initial portfolio choices

on the fire sale price. Existence of this fire sale externality creates an inefficiency. In the

unregulated competitive equilibrium, banks overinvest in the risky asset and underinvest in

the liquid asset compared to a constrained planner’s allocations. We investigate whether

the constrained efficient allocations can be implemented using quantity-based capital and

liquidity regulations, as in the Basel Accords. The regulation required is macroprudential

because it addresses the instability in the banking system by targeting aggregate capital and

liquidity ratios.

Our results indicate that the pre-Basel III regulatory framework, with its reliance only on

capital requirements, was inefficient and ineffective in addressing systemic instability caused

by fire sales. Capital requirements can lead to less severe fire sales by forcing banks to

reduce risky assets—however, we show that banks respond to stricter capital requirements by

decreasing their liquidity ratios. Anticipating this response, the regulator preemptively sets

capital ratios at high levels. Ultimately, this interplay between banks and the regulator leads

to inefficiently low levels of risky assets and liquidity. Macroprudential liquidity requirements

that complement capital regulations, as in Basel III, restore constrained efficiency, improve

financial stability and allow for a higher level of investment in risky assets.

It is important to highlight that our results cannot be interpreted as indicating that the

actual capital regulation requirements were too high in a particular country (such as the

U.S.) in the pre-crisis period, which corresponds to pre-Basel III framework, and that now

they should be relaxed. Our results only say that if capital regulations were set optimally

from a welfare maximizing point in the absence of liquidity regulation, they would be set at

inefficiently high levels compared to the second-best environment in which the regulator is
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also endowed with the liquidity regulation tool. Our model is not meant to be quantitative

and hence does not speak to whether actual capital ratios in practice either under Basel I/II

or Basel III are too low or too high. However, many studies, most famously Admati et al.

(2010), have argued that current minimum capital requirements are too low.

The message of this paper goes beyond bank regulation. Our results imply that capital

ratios are not a good predictor of the stability of the banking system or any individual

bank under a potential distress scenario. Without sufficient liquidity buffers, banks’ capital

can easily erode with fire sale losses. Under fire sale externalities, then, a well-capitalized

banking system may experience greater losses than a less-capitalized banking system with

strong liquidity buffers. Thus, capital ratios alone cannot be barometers of soundness of

individual banks or a banking system.

The Basel III liquidity ratio LCR currently applies to only large banks in the U.S. In

contrast, our results suggests that liquidity regulations should apply even to small banks

because in our model all banks are small by definition, as we consider atomistic banks that

engage in fire sales markets and take asset prices as given. Answering the question of whether

liquidity regulations should be applied differently to large and small banks, like the question

of whether they should be applied differently to well-capitalized and poorly-capitalized banks,

is beyond the scope of our current model. We leave these interesting theoretical and policy

questions to future research.
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A Online Appendix A: Proofs omitted in the main text

Lemma 1. The fire sale price of risky asset, P (n, b), is decreasing in n and increasing in b.

Proof. The asset market clearing condition in the bad state at t = 1 is given as

Qs(P ) =
c− b
P

n = Qd(P ),

which can be written as
(c− b)n = PQd(P ). (A.1)

First, take the partial derivative of both sides of this last equation with respect to n:

c− b =
∂P

∂n
Qd(P ) + P

∂Qd(P )

∂P

∂P

∂n
,

=
∂P

∂n

{
Qd(P ) + P

∂Qd(P )

∂P

}
,

=
∂P

∂n
Qd(P )

{
1 + εd

}
,

where

εd =
∂Qd(P )

∂P

P

Qd
,

is the price elasticity of outside investors’ demand function. Rearranging the last equation gives

∂P

∂n
=

c− b
Qd(P )(1 + εd)

< 0

since 1 + εd < 0 by the Elasticity assumption, and c − b > 0 by assumption here because we are
examining the case with fire sales. We later show in Proposition 1 and 4 that c − b > 0 actually
holds in equilibrium.

For the second part of the proof take the partial derivative of both sides of (A.1) with respect
to b:

−n =
∂P

∂b
Qd(P ) + P

∂Qd(P )

∂P

∂P

∂b
,

=
∂P

∂b

{
Qd(P ) + P

∂Qd(P )

∂P

}
,

=
∂P

∂b
Qd(P )

{
1 + εd

}
.

Rearranging the last equation gives

∂P

∂b
= − n

Qd(P )(1 + εd)
> 0.

because 1 + εd < 0 by Elasticity assumption.
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Lemma 2. The fraction of risky assets sold, 1− γ(n, b), is increasing in n and decreasing in b.

Proof. Using (3) we can write banks’ asset sales in equilibrium as 1 − γ(n, b) = (c − b)/P (n, b).
Note that

∂(1− γ)

∂n
=
∂(1− γ)

∂P

∂P

∂n
> 0,

because ∂(1− γ)/∂P = −c/P 2 < 0 from (3) and by Lemma 1 we have that ∂P/∂n < 0. Similarly,
we can obtain

∂(1− γ)

∂b
= − 1

P
+
∂(1− γ)

∂P

∂P

∂b
< 0,

since ∂(1− γ)/∂P < 0 as shown above, and by Lemma 1 we have that ∂P/∂b > 0.

Proposition 1. Banks take fire sale risk in equilibrium; that is, bi < c for all banks.

Proof. It is straightforward to show that banks never carry excess liquidity in equilibrium, that
is, bi > c. This is because when bi > c the liquid assets in excess of the shock, (bi − c)n, have
no use even in the bad state; the expected return on liquid assets is equal to one and dominated
by the expected return on the risky asset, R − cq, by the Technology assumption. Therefore, for
contradiction assume that bi = c. Corresponding first-order conditions of bank’s problem given by
(6) with respect to ni and bi are respectively:

(1− q)(R+ bi) + qR = D
′
(ni(1 + bi))(1 + bi),

(1− q)ni + qni = D
′
(ni(1 + bi))ni.

The last equation implies that D
′
(ni(1 + bi)) = 1. Substitute this into the first equation to obtain

R + (1 − q)bi = 1 + bi. Now using bi = c gives R + (1 − q)c = 1 + c, which contradicts with the
Technology assumption, that is, R > 1 + cq. Therefore, we must have bi < c for all i ∈ [0, 1].

Proposition 2. The competitive equilibrium price of assets is given by

P =
qR(1 + c)

R− 1 + q
.

The equilibrium price, P , is increasing in the probability of the liquidity shock, q, and the size of
the shock, c, but decreasing in the return on the risky assets, R.

Proof. The first-order conditions of the banks’ problem (6) with respect to ni and bi respectively
are:

(1− q)(R+ bi) + qRγi = D
′
(ni(1 + bi))(1 + bi), (A.2)

(1− q)ni + qR
1

P
ni = D

′
(ni(1 + bi))ni, (A.3)

where γi = 1− (c− bi)/P as obtained in the previous section. Combining the two equations gives:

(1− q)R+ (1− q)bi + qR+ qR(
bi − c
P

) = (1− q) + (1− q)bi +
qR

P
+
qR

P
bi.

In this last equation, the terms that involve the liquidity ratio, bi, on both sides cancel out each
other, and hence we can solve for P , the competitive equilibrium price of assets. It is straightforward
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to obtain the sign of the derivative of the equilibrium price with respect to model parameters,
R, c, q.

Proposition 3. The comparative statics for the competitive equilibrium risky investment level, n,
and liquidity ratio, b, are as follows:

1. The risky investment level (n), is increasing in the return on the risky asset (R), and decreas-
ing in the size of the liquidity shock (c), probability of the bad state (q), and the marginal cost
of funds (d).

2. The liquidity ratio (b), is increasing in the return on the risky asset (R), size of the liquidity
shock (c), and the probability of the bad state (q), and decreasing in the marginal cost of funds
(d).

Proof. The derivatives below use the following closed-form solution for the competitive equilibrium
risky investment level and liquidity ratio as obtained in Section B.1:

n =
[R− 1− qc][R− 1 + q + 2dR(1 + c)]

(R− 1 + q)(1 + c)22d
, b =

cq − 2dR
τ+1

q + 2dR
τ+1

.

In most derivatives below, we use the Technology assumption (R− 1− qc > 0) to obtain the sign.
The derivatives for the risky investment level and their signs can be obtained as follows after some
algebraic manipulation:

∂n

∂R
=

(R− 1 + q)2 + 2d(1 + c)[(R+ q − 1)2 + (1− q)q(1 + c)]

(R− 1 + q)2(1 + c)22d
> 0.

∂n

∂c
=
−[2(R− 1) + q(1− c) + 2dR(1 + c)]

2d(1 + c)3
< 0.

∂n

∂q
=
−c(R− 1 + q)2 − 2dR(1 + c)(R− 1)(1 + c)

(R− 1 + q)2(1 + c)22d
< 0.

∂n

∂d
=
−(R− 1− qc)(R− 1 + q)

2(R− 1 + q)(1 + c)2d2
< 0.

Similarly, the derivatives for the liquidity ratio and their signs can be obtained as follows:

∂b

∂R
=

2d(1−q)
(τ+1)2

[ 2dRτ+1 + q]2
> 0.

∂b

∂c
=

q2

[ 2dRτ+1 + q]2
> 0.

∂b

∂q
=

2dR
(τ+1)2

[ 2dRτ+1 + q]2
> 0.

∂b

∂d
=
− 2R
τ+1q(1 + c)

[ 2dRτ+1 + q]2
< 0.

Proposition 4. It is optimal for the constrained planner to take fire sale risk; that is, the con-
strained optimal liquidity ratio satisfies b < c.

Proof. In principle, it is possible to completely insure against the fire sale risk. Under full insurance,
similar to some interpretation of narrow banking (Freixas and Rochet, 2008, Chapter 7.2.2), the
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banks are able to cover the liquidity need even in the worst scenario by using their liquid holdings.
However, we show that full insurance is not optimal and the constrained social planner takes some
fire sale risk, by setting the aggregate liquidity ratio less than the liquidity need in the bad state,
that is, by setting b < c.

To show this, we start with the full insurance case, that is b = c, and move ε amount of
investment from liquid asset to risky asset, and show that this reallocation is socially profitable.
Banks get exposed to fire sale risk as a result of this reallocation. First, we rewrite expected social
welfare function in terms of the aggregate level of liquid assets, defined as B ≡ bn, rather than the
liquidity ratio, b. We also ignore the expected profits of outsider investors for now for the sake of
creating a benchmark. We incorporate those into the social welfare function below to complete the
proof.

W = (1− q)(R+ b)n+ qR

(
1− c− b

P

)
n−D(n+ nb),

= (1− q)Rn+ (1− q)B + qRn− qRcn
P

+ qR
B

P
−D(n+B),

= Rn+ (1− q)B − qRcn
P

+ qR
B

P
−D(n+B).

In case of perfect insurance the size of liquidity hoarded at the initial period is equal to the size
of the liquidity need in the bad state, that is, B = cn. Expected social welfare in the full insurance
case boils down to Wfi = Rn+ (1− q)B −D(n+ B). Now, moving some amount of funds in the
initial period from liquid assets to the risky investment, yields Bnew = B − ε and nnew = n + ε.
Let us denote the fire sale price after the reallocation by Pε. Expected social welfare changes as
follows after the reallocation of funds

Wnew = Rnnew + (1− q)Bnew − qR
cnnew
Pε

+ qR
Bnew
Pε
−D(nnew +Bnew),

= R(n+ ε) + (1− q)(cn− ε)− qRc(n+ ε)

Pε
+ qR

cn− ε
Pε

−D(n+ ε+B − ε),

= Rn+ (1− q)B − qRcn
Pε

+ qR
B

Pε
+Rε− (1− q)ε− qRε1 + c

Pε
−D(n+B),

= Rn+ (1− q)B −D(n+B) + ε

(
R− 1 + q − qR1 + c

Pε

)
,

= Wfi + ε

(
R− 1 + q − qR1 + c

Pε

)
. (A.4)

Thus, Wnew > Wfi if and only if Pε >
qR(1+c)
R−1+q ≡ P̄c. In other words, as long as the fire sale

price does not decrease dramatically as a result of a small amount of fire sales, taking some fire
sale risk is socially optimal.

R − 1 + q in equation (A.4) is the benefit of reallocating the funds from liquid asset to risky
asset while qR 1+c

Pε
represents the expected cost of this reallocation. Though the benefit is constant,

the cost is decreasing in Pε. Therefore, lower fire sale price makes this reallocation of funds more
costly. Thus, the reallocation is optimal as long as it is not very costly to do so, as long as the
price does not decrease below a certain threshold which we solved as P̄c. This reallocation (i.e.
deviating from the full insurance) is optimal in our assumptions on the outside investors because
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our assumptions yield a smooth demand curve with a Pε close to R as we have F ′(0) = R.
Incorporating the profits of outside investors into the welfare function changes the constrained

planner’s problem as follows:

W = (1− q)(R+ b)n+ qR

(
1− c− b

P

)
n−D(n+ nb) + q[F (y)− Py] + e,

= (1− q)(R+ b)n+ qR

(
1− c− b

P

)
n−D(n+ nb) + q[F (y)− (cn−B)],

where we use the market clearing condition (B.8) to substitute Py = (c− b)n = cn−B. Similarly,
we can show that the expected social welfare changes as follows after the reallocation of ε unit of
funds from the risky to liquid assets:

Wnew = Wfi + ε(R− 1 + q)− qR (1 + c)ε

Pε
+ qF (yε)− q(1 + c)ε,

= Wfi + ε(R− 1 + q)− qR (1 + c)ε

Pε
+ q[F (yε)− yεPε],

where we use (1+c)ε
Pε

= yε. Note that the social welfare under full insurance now is equal to
Wfi = Rn+(1− q)B−D(n+B)+e as the expected profit of outsiders is zero under full insurance.
The following equation provides the indifference condition between deviating from full insurance or
not, for the social planner.

ε(R− 1 + q)− qR (1 + c)ε

Pε
+ q[F (yε)− yεPε] = 0.

This equation yields the cutoff level for the fire sale price, as a result of a tiny deviation from
full insurance, above which the deviation is socially profitable. Note that the benefit of reallocating
funds now is larger compared to one depicted equation (A.4) as the additional term, q[F (yε)−yεPε]
the expected profit of outside investors, is positive. Thus, the cutoff level P̄ here is lower compared
to the one above: P̄ < P̄c = qR(1+c)

R−1+q .

Therefore, as long as price does not suddenly drop to P̄ as a result of a marginal exposure to
fire sales, taking fire sale risk is optimal for the constrained planner.

Proposition 5. Competitive equilibrium allocations compare to the constrained efficient allocations
as follows:

1. Risky investment levels: n > n∗∗

2. Liquidity ratios: b < b∗∗

Proof. We defer the proof of this proposition to Lemmas 4 and 5, which are under the proof of
Proposition 7 below.

Proposition 6. Let the operational cost of a bank be given by Φ(x) = dx2. Then, for any technology
for outside investors F that satisfies the Concavity, Elasticity, and Regularity assumptions with
F ′(0) = R, banks decrease their liquidity ratio as the regulator tightens capital requirements; that
is, b

′
(n) ≥ 0.
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Proof. We are studying the partial regulation case, in which banks are free to choose their liquidity
ratio bi but the regulator limits their choice of ni. Therefore, we can write banks’ expected profit
function at t = 0 as follows

max
bi

Πi(bi;n) = (1− q){R+ bi}n+ qRγin−D(n(1 + bi)). (A.5)

Here, we can treat n like a parameter of the model because banks take it as given. The regulator, in
a sense, determines the aggregate amount of n. Therefore, the first-order conditions of the banks’
problem above is

∂Π(bi;n)

∂bi
= (1− q)n+ qRn

∂γ

∂bi
− n− 2dn2(1 + bi) = 0

= (1− q)n+ qRn
1

P
− n− 2dn2(1 + bi) = 0,

which can be simplified as

q

(
R

P
− 1

)
= 2dn(1 + bi). (A.6)

Note that we can obtain the derivative of the equilibrium price with respect to the regulatory
parameter, n, as follows:

∂P

∂n
=
F2(c− bi)
F1 + yF2

, (A.7)

where Fk ≡ dkF (y)
dyk

for k = 1, 2, and y shows the quantity of assets sold to outside investors in fire
sales.

Banks’ profit function exhibits increasing differences in bi and n if its cross derivative is positive.
Increasing differences mean that b′(n) > 0, that is, the optimal choice of bi in banks’ problem is
increasing with the regulatory parameter, n. We can obtain the cross derivative of banks’ expected
profit as

∂2Π(n, bi)

∂bi∂n
= (1− q) + qR

(
1

P
− n

P 2

∂P

∂n

)
− 1− 4dn(1 + bi).

Substituting for dn(1 + bi) from the banks’ first-order condition (A.6) and using the expression for
∂P/∂n, given by (A.7), and we can simplify the cross derivative of banks’ expected profit as follows

∂2Π(n, bi)

∂bi∂n
= (1− q) + qR

(
1

P
− n

P 2

F2(c− bi)
F1 + yF2

)
− 1− 2q

(
R

P
− 1

)
,

= −q + qR

(
1

P
− n(c− bi)

Py

1

P

yF2

F1 + yF2

)
− 2qR

P
+ 2q,

= q + qR

(
1

P
− n(c− bi)

Py

1

P

yF2

F1 + yF2

)
− 2qR

P
,

where in the second line we manipulated the second term within the parentheses by multiplying
and dividing by y. Now, use of the equality of y = n(c− bi)/P in equilibrium and finally substitute

55



P = F1 to get:

∂2Π(n, bi)

∂bi∂n
= q + qR

(
1

P
− 1

P

yF2

F1 + yF2

)
− 2qR

P
= q − qR

(
1

P
+

1

P

yF2

F1 + yF2

)

= q

{
1−R [F1 + 2yF2]

F1(F1 + yF2)

}
.

Increasing differences hold if

∂2Π(bi;n)

∂bi∂n
> 0⇔ R <

F1(F1 + yF2)

F1 + 2yF2
≡ κ. (A.8)

Therefore, if we assume that outside investors’ technology F satisfies (A.8), we are done. If we do
not make this assumption, we can instead assume that F1(0) = R and show that (A.8) holds for all
y > 0. Note that when y is equal to zero κ is equal to F1 by definition, and we have that F1(0) = R
by assumption. Therefore, in order to show that κ > R for all y > 0, all we need to show is that κ
is increasing in y. Below we show that the derivative of κ with respect to y is indeed positive:

dκ

dy
=

[F2(F1 + yF2) + F1(F2 + F2 + yF3)][F1 + 2yF2]

(F1 + 2yF2)2
,

=
[3F1F2 + yF 2

2 + F1F3y][F1 + yF2 + yF2]− [F1(F1 + yF2)][F2 + 2F2 + 2yF3]

(F1 + 2yF2)2
. (A.9)

Because the denominator of the derivative is positive we focus on the numerator to obtain the sign
of the derivative. The numerator of (A.9) can be simplified as follows:

dκ

dy
× (F1 + 2yF2)

2 = y(F 2
2 − F1F3)(F1 + yF2) + yF2[3F1F2 + yF 2

2 + F1F3y],

= y(F 2
2 − F1F3)F1 + yF2[yF

2
2 − yF1F3 + 3F1F2 + yF 2

2 + yF1F3],

= y(F 2
2 − F1F3)F1 + yF2[3F1F2 + 2yF 2

2 ].

Divide both sides with y to simplify further:

dκ

dy
× (F1 + 2yF2)

2

y
= F1F

2
2 − F 2

1F3 + 3F1F
2
2 + 2yF 3

2

= 4F1F2 − F 2
1F3 + 2yF 3

2

= 2F1F2 − F 2
1F3 + 2F1F2 + 2yF 3

2

= F1(2F
2
2 − F1F3) + 2F 2

2 (F1 + yF2) > 0.

2F 2
2 − F1F3 is positive due to the Regularity assumption, and F1 + yF2 is positive due to the

Elasticity assumption.

Proposition 7. Risky investment levels, liquidity ratios, and financial stability measures under
competitive equilibrium (n, b, P , 1−γ, (1−γ)n), partial regulation equilibrium (n∗, b∗, P ∗, 1−γ∗,
(1− γ∗)n∗), and complete regulation equilibrium (n∗∗, b∗∗, P ∗∗, 1− γ∗∗, (1− γ∗∗)n∗∗) compare as
follows:

56



1. Risky investment levels: n > n∗∗ > n∗

2. Liquidity ratios: b∗∗ > b > b∗

3. Financial stability measures

(a) Price of assets in the bad state: P ∗∗ > P ∗ > P

(b) Fraction of assets sold: 1− γ > 1− γ∗ > 1− γ∗∗

(c) Total fire sales: (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

Proof. Proof of this proposition is established through a series of lemmas below.

Lemma 3. P ∗∗ > P ∗ > P

Proof. Part 1: P ∗ > P . First, note that we obtain the competitive equilibrium price of assets in
the main text as:

P =
qR(1 + c)

R− 1 + q
=

β

Rσ
,

using the definitions of σ, β from (B.18) and (B.22). Now, take the cubic equation given by (B.23)
and divide it by Rσ to obtain:

R{2dσP ∗3 + (σqR− 2dβ)P ∗ − qβ}+ 2dβP ∗2 − 2d(1 + c)P ∗3 = 0

R

[
2d

R
P ∗3 +

(
q − 2dβ

σR

)
P ∗ − qβ

σR

]
+

2dβ

σR
P ∗2 − 2d(1 + c)

σR
P ∗3 = 0

Note that (1 + c)/σ = P , and substitute this into the equation above and manipulate:

R

[
2d

R
P ∗3 + (q − 2dP )P ∗ − qP

]
+ 2dPP ∗2 − 2d

R
PP ∗3 = 0

R

(
2d

R
P ∗2 + q

)
P ∗ −

(
2dRP ∗ + qR− 2dP ∗2 +

2d

R
P ∗3

)
P = 0

From this last equivalence we can obtain the price ratios in these two cases as:

P

P ∗
=

2dP ∗2 + qR
2d
R P

∗3 − 2dP ∗2 + 2dRP ∗ + qR
=

2dRP ∗2 + qR2

2dP ∗3 − 2dRP ∗2 + 2dR2P ∗ + qR2
, (A.10)

In order to show that P < P ∗, we need to show that the numerator of this ratio is less then its
denominator, that is

2dRP ∗2 + qR2 < 2dP ∗3 − 2dRP ∗2 + 2dR2P ∗ + qR2

4dRP ∗2 < 2dP ∗(P ∗2 +R2)

0 < (R− P ∗)2

The last inequality holds because we must have P ∗ < R in equilibrium. P ∗ < R holds in
equilibrium for the following reason: Assumption Concavity states that P ∗ ≤ R, yet the equality
cannot arise in equilibrium as P ∗ = R implies P = R as well due to (A.10). However P < R holds
due to the Technology assumption, R− cq − 1 > 0. Thus, we must have P ∗ < R.
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Part 2: P ∗∗ > P ∗. First, note that

R− 1− qc = R− 1 + q − q − qc = R− 1 + q − q(1 + c) = qRσ − q(1 + c) = q(σR− 1− c),

where σ, β are defined by (B.18) and (B.22). Using this equivalence we can write the polynomial
equation that gives P ∗∗, equation (B.10), as

(R− 1− qc)P ∗∗2 + qβP ∗∗ − qRβ = 0

q(σR− 1− c)P ∗∗2 + qβP ∗∗ − qRβ = 0

σR− 1− c
R

P ∗∗2 +
β

R
P ∗∗ = β

Now substitute β using the last equation above into the cubic equation that gives P ∗, equation
(B.23):

2d(σR− 1− c)P ∗3 + 2dβP ∗2 +R(σqR− 2dβ)P ∗ − qRβ = 0

2d(σR− 1− c)P ∗3 + 2dβP ∗2 +R

(
σqR− 2d

σR− 1− c
R

P ∗∗2 − 2d
β

R
P ∗∗

)
P ∗ − qRβ = 0

2d(σR− 1− c)P ∗3 + 2dβP ∗2 + σqR2P ∗ − 2d(σR− 1− c)P ∗∗2P ∗ − 2dβP ∗∗P ∗ − qRβ = 0

(2dσR− 1− c)P ∗(P ∗2 − P ∗∗2) + 2dβP ∗(P ∗ − P ∗∗) + qR(σRP ∗ − β) = 0(A.11)

Note that the first two terms in (A.11) must have the same sign, which will be equal to the inverse
of the sign of the last term, qR(σRP ∗ − β). Therefore, in order to show that P ∗ − P ∗∗ < 0, we
need to show that qR(σRP ∗ − β) > 0. We can write this last terms as

qR(σRP ∗ − β) = qR2σP ∗ − q(1 + c)R2 > 0⇔ σP ∗ − 1− c > 0.

Note that by Part 1, we know that P < P ∗. Hence, if σP − 1 − c ≥ 0 then we must necessarily
have σP ∗−1− c > 0. Using the closed-form solution of the competitive equilibrium, given by (10),
we can show that:

σP − 1− c =
R− 1 + q

qR

qR(1 + c)

R− 1 + q
− 1− c = 0

Therefore, we must have σP ∗−1− c > 0, which implies that P ∗∗ > P ∗ in order for equation (A.11)
to hold.

Lemma 4. b∗∗ > b > b∗

Proof. Part 1: b∗∗ > b. Note that the closed-form solutions for the liquidity ratios in these two
cases were obtained in equations (B.4) and (B.11) as:

b =
cq(τ + 1)− 2dR

q(τ + 1) + 2dR
, b∗∗ =

cq(τ∗∗ + 1)2 − 2dR

q(τ∗∗ + 1)2 + 2dR
.

Comparing the liquidity ratios under competitive equilibrium (b) and under the constrained plan-
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ner’s solution (b∗∗), we see that they have the same following functional form:

f(x) =
cqx− 2dR

qx+ 2dR
. (A.12)

The only difference is x = τ + 1 in the competitive case versus x = (τ∗∗ + 1)2 in the constrained
planner’s problem. First, note that

f ′(x) =
cq(qx+ 2dR)− (cqx− 2dR)q

(qx+ 2dR)2
=

2dRq(1 + c)

(qx+ 2dR)2
> 0. (A.13)

Therefore, in order to show that b∗∗ > b, all we need to show is that (τ∗∗ + 1)2 > τ + 1, which can
be written equivalently as:

R2

P ∗∗2
>
R

P
⇔ P ∗∗2 < RP.

Now, substitute P ∗∗2 from the solution to the constrained planner’s problem, given by (B.10) and
the competitive equilibrium price, P , from (10) to write this inequality as:

qβ(R− P ∗∗)

R− 1− qc
< R

qR(1 + c)

R− 1 + q

R− P ∗∗ < R
R− 1− qc
R− 1 + q

R

(
1− R− 1− qc

R− 1 + q

)
< P ∗∗

Rq(1 + c)

R− 1 + q
= P < P ∗∗.

The last inequality holds by Lemma 3. Therefore, (τ∗∗ + 1)2 > τ + 1, which implies that b∗∗ > b.

Part 2: b > b∗. Note that the closed-form solutions for the liquidity ratios in these two cases
were obtained in equations (B.4) and (B.14)as:

b =
cq(τ + 1)− 2dR

q(τ + 1) + 2dR
, b∗∗ =

cq(τ∗ + 1)− 2dR

q(τ∗ + 1) + 2dR
.

Comparing the liquidity ratios under competitive equilibrium (b) and under the partial regulation
case (b∗), we see that they have the same functional form, f(x), given above by (A.12). The only
difference is x = τ + 1 in the competitive case versus x = τ∗+ 1 in the partial case. We have shown
above, by (A.13), that f ′(x) > 0. Therefore, in order to show that b > b∗, all we need to show is
that τ > τ∗. Note that because τ∗ = R/P ∗ − 1 and τ = R/P − 1, and P ∗ > P by Lemma 3, we
have that τ > τ∗. This completes the proof.

Lemma 5. n > n∗∗ > n∗

Proof. Part 1: n > n∗∗. Using the closed-form solution for the competitive equilibrium, (B.5),
and for the constrained planner’s problem, (B.12), the difference in risky investment levels across
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these two cases can be written as

n− n∗∗ =
τ

τ + 1

q(τ + 1) + 2dR

2d(1 + c)
− τ∗∗

τ∗∗ + 1

q(τ∗∗ + 1)2 + 2dR

2d(1 + c)

=
1

2d(1 + c)

{
τ [q(τ + 1) + 2dR]

(τ + 1)
− τ∗∗[q(τ∗∗ + 1)2 + 2dR]

(τ∗∗ + 1)

}
=

1

2d(1 + c)

{
qτ + 2dR

τ

(τ + 1)
− qτ∗∗(τ∗∗ + 1)− 2dR

τ∗∗

(τ∗∗ + 1)

}
=

1

2d(1 + c)

{
qτ − qτ∗∗(τ∗∗ + 1) + 2dR

τ

(τ + 1)
− 2dR

τ∗∗

(τ∗∗ + 1)

}
First, note that τ = R/P −1 > τ∗∗ = R/P ∗∗−1 by Lemma 3, and this implies that 2dR τ

(τ+1) −
2dR τ∗∗

(τ∗∗+1) is positive. Therefore, n− n∗∗ is positive if qτ − qτ∗∗(τ∗∗ + 1) ≥ 0. Next, we show that

this inequality indeed holds. From (B.9) we have R− 1− qc = qR(R−P ∗∗)(1+c)
P 2 , which implies that:

τ =
R− 1− qc
q(1 + c)

=
R(R− P ∗∗)

P ∗∗2
=

R

P ∗∗
(
R

P ∗∗
− 1) = τ∗∗(τ∗∗ + 1),

where we use that τ = R/P − 1 and P = qR(1+c)
R−1+q , as given by 10.

Part 2: n∗∗ > n∗. For the second part of this lemma, we use the fact that P ∗∗ > P ∗ as shown
by Lemma 3. Using the closed-form solution for n∗∗ from (B.12) and n∗ from (B.15), we can write
the difference in risky investment levels across these two cases as:

n∗∗ − n∗ =
τ∗∗

τ∗∗ + 1

q(τ∗∗ + 1)2 + 2dR

2d(1 + c)
− τ∗

τ∗ + 1

q(τ∗ + 1) + 2dR

2d(1 + c)
,

=
1

2d(1 + c)

{
τ∗∗

τ∗∗ + 1
[q(τ∗∗ + 1)2 + 2dR]− τ∗

τ∗ + 1
[q(τ∗ + 1) + 2dR]

}
,

=
Θ

2d(1 + c)(τ∗ + 1)(τ∗∗ + 1)
(A.14)

where

Θ ≡ q(τ∗∗ + 1)(τ∗ + 1)[τ∗∗(τ∗∗ + 1)− τ∗] + 2dR[τ∗∗(τ∗ + 1)− τ∗(τ∗∗ + 1)]

= q(τ∗∗ + 1)(τ∗ + 1)[τ − τ∗] + 2dR[τ∗∗ − τ∗], (A.15)

where we use the equivalence, τ = τ∗∗(τ∗∗ + 1), obtained in Part 1 above. Since the denominator
of (A.14) is positive, in order to prove that n∗∗ − n∗ > 0, it suffices to show that Θ > 0. In order
to show that this inequality holds, first, we would like to write 2dR in θ in terms of τ ’s. For that
start from the cubic equation that gives the partial equilibrium price as obtained by (B.23):
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0 =
2d

q
(R− 1− qc)P ∗3 + 2dR(1 + c)P ∗2 +R2(σq − 2d(1 + c))P ∗ − (1 + c)qR2,

0 =
2d

q
q(1 + c)τP ∗3 + 2dR(1 + c)P ∗2 +R(R− 1 + q − 2dR(1 + c))P ∗ − (1 + c)qR2,

0 = 2d(1 + c)τP ∗3 + 2dR(1 + c)P ∗2 +R

(
qR(1 + c)

P
− 2dR(1 + c)

)
P ∗ − (1 + c)qR2,

0 = 2d(1 + c)τP ∗3 + 2dR(1 + c)P ∗2 +
qR2(1 + c)

P
P ∗ − 2dR2(1 + c)P ∗ − (1 + c)qR2,

0 = 2d(1 + c)τ
R3

(τ∗ + 1)3
+ 2dR(1 + c)

R2

(τ∗ + 1)2
+
qR2(1 + c)

P

R

τ∗ + 1
− 2dR2(1 + c)

R

τ∗ + 1
− (1 + c)qR2,

0 = 2d(1 + c)τ
R3

(τ∗ + 1)3
+ 2d(1 + c)

R3

(τ∗ + 1)2
+ qR2(1 + c)

τ + 1

R

R

τ∗ + 1
− 2d(1 + c)

R3

τ∗ + 1
− (1 + c)qR2,

0 =
2d(1 + c)R3

(τ∗ + 1)3
[τ + τ∗ + 1− (τ∗ + 1)2] + qR2(1 + c)

[
τ + 1

τ∗ + 1
− 1

]
,

0 =
2dR

(τ∗ + 1)2
[τ − τ∗(τ∗ + 1)]− q(τ∗ − τ)

where in the first line we use definition of σ, given by (B.18), to write σR− 1− c = (R− 1− qc)/q,
while using τ = R/P − 1 = (R− 1− qc)/[q(1 + c)] in the second line. In the third line we replaced

R − 1 + q with qR(1+c)
P using equation (10) for price in competitive equilibrium and later we use

P ∗ = R/(τ∗ + 1) to replace P ∗. From the last equation above we can obtain:

2dR =
q(τ∗ + 1)2(τ∗ − τ)

τ − τ∗(τ∗ + 1)
=

q(τ∗ + 1)2(τ∗ − τ)

τ∗∗(τ∗∗ + 1)− τ∗(τ∗ + 1)
,

where we use the equivalence, τ = τ∗∗(τ∗∗ + 1), again. Now we plug this expression for 2dR back
into (A.15) and show below that Θ > 0 holds:

q(τ∗∗ + 1)(τ∗ + 1)[τ − τ∗] > 2dR[τ∗ − τ∗∗] =
q(τ∗ + 1)2(τ∗ − τ)

τ∗∗(τ∗∗ + 1)− τ∗(τ∗ + 1)
[τ∗ − τ∗∗]

τ∗∗ + 1 >
(τ∗ + 1)(−1)(τ∗ − τ∗∗)
τ∗∗(τ∗∗ + 1)− τ∗(τ∗ + 1)

τ∗∗ + 1 >
(τ∗ + 1)(τ∗ − τ∗∗)

τ∗(τ∗ + 1)− τ∗∗(τ∗∗ + 1)

(τ∗∗ + 1)τ∗(τ∗ + 1)− τ∗∗(τ∗∗ + 1)2 > (τ∗ + 1)(τ∗ − τ∗∗)
(τ∗ + 1)[τ∗(τ∗∗ + 1)− (τ∗ − τ∗∗)] > τ∗∗(τ∗∗ + 1)2

(τ∗ + 1)τ∗∗(τ∗ + 1) > τ∗∗(τ∗∗ + 1)2

(τ∗ + 1)2 > (τ∗∗ + 1)2.

This inequality is true because P ∗∗ > P ∗, as shown by Lemma 3, which implies that τ∗ > τ∗∗,
using the definitions τ∗ = R/P ∗ − 1 and τ∗∗ = R/P ∗∗ − 1.

Lemma 6. 1− γ > 1− γ∗ > 1− γ∗∗
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Proof.

1− γ =
c− b
P

together with b∗∗ > b∗ and P ∗∗ > P ∗ =⇒ 1− γ∗ > 1− γ∗∗

To obtain (1− γ) > (1− γ∗), we can equivalently show that
c−b
P

c−b∗
P∗

> 1.

Using equations (B.4) and (B.14) for b and b∗ respectively, b = qc(τ+1)−2dR
2dR+q(τ+1) =⇒ c − b =

2dR(1+c)
2dR+q(τ+1) , and similarly we can derive c− b∗ = 2dR(1+c)

2dR+q(τ∗+1) . Writing τ and τ∗ in terms of P and

P ∗ we get the following,

c−b
P

c−b∗
P ∗

=
c− b
c− b∗

P

P ∗
=

2dP ∗ + q

2dP + q

P

P ∗
P ∗

P
> 1.

The last inequality holds because P ∗ > P by Lemma 3.

Lemma 7. (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

Proof. Given that the demand function for risky assets in the interim period is downward sloping
(continuous and differentiable as well), the prices disclose the amount of fire sales. Hence, we can
use the results in Lemma 3 to prove this lemma:

(1− γ)n =
R

P
− 1 and P ∗∗ > P ∗ > P =⇒ (1− γ∗∗)n∗∗ < (1− γ∗)n∗ < (1− γ)n.

Proposition 8. Bank balance sheet sizes across different regimes are as follows:

n(1 + b) = n∗∗(1 + b∗∗) > n∗(1 + b∗)

Proof. Using the closed-form solutions in Sections B.1 and B.2, we can write the bank size under
the competitive equilibrium and constrained planner’s problem as follows:

n(1 + b) =
τ

τ + 1

2dR+ q(τ + 1)

2d(1 + c)

q(τ + 1)(1 + c)

2dR+ q(τ + 1)
=

τ

τ + 1

q(τ + 1)

2d
=
qτ

2d
.

n∗∗(1 + b∗∗) =
τ∗∗

τ∗∗ + 1

2dR+ q(τ∗∗ + 1)2

2d(1 + c)

q(τ∗∗ + 1)2(1 + c)

2dR+ q(τ∗∗ + 1)2
=
qτ∗∗(τ∗∗ + 1)

2d
.

Above we use equations (B.5) and (B.4) for the balance sheet size in competitive equilibrium and
equations (B.11) and (B.12) for the constrained planner’s case. Note that in Part I of Lemma 5 we
show that τ = τ∗∗(τ∗∗+1). Thus, comparing the equations above we conclude n(1+b) = n∗∗(1+b∗∗).

Lastly, b∗∗ > b > b∗, as shown in Lemma 4, and n > n∗∗ > n∗, as shown in Lemma 5, together
imply that n(1 + b) > n∗(1 + b∗), that is, the bank balance sheet size is the smallest under partial
regulation.

Proposition 9. Banks do not choose the constrained optimal risky investment level, n∗∗, if the
regulator sets the minimum liquidity ratio at the constrained optimal level, b∗∗, that is, ni(b

∗∗) 6= n∗∗.
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Proof. For this proof we compare the first-order condition of the constrained planner’s problem
with respect to n, given by (13), and the first-order condition of banks’ problem with respect to
ni, given by (19) when only liquidity is regulated. We reproduce these two first-order conditions
below for convenience:

Ψ ≡ (1− q)(R+ b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
−D

′
(·)(1 + b) = 0,

Υ ≡ (1− q)(R+ b) + qRγi −D
′
(·)(1 + b) = 0.

The constrained planner’s first-order condition, Ψ, includes extra terms because planner internalizes
the effect of portfolio choices on asset prices and incorporated the well being of outside investors.
These extra terms are:

Z = qR
∂γ

∂n
n+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
Hence, we can write Ψ = Υ + Z. We first show that the sum of these extra terms is negative:

Z = qR
∂γ

∂n
n+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
= qR

∂γ

∂n
n+ q

{
P

(
c− b
P
− ∂γ

∂n
n

)
− c+ b

}
= qR

∂γ

∂n
n+ q

{
c− b− ∂γ

∂n
nP − c+ b

}
= qR

∂γ

∂n
n− qP ∂γ

∂n
= q

∂γ

∂n
n(R− P ) < 0,

where we use that in equilibrium F ′((1− γ)n∗∗) = P ∗∗. The sign of Z is negative because R > P ∗∗

by the Concavity assumption, and ∂γ/∂n < 0 by Lemma 2.
Z < 0 implies that banks’ first-order condition, Υ, evaluated at the constrained efficient allo-

cations, n∗∗, b∗∗ is positive, that is Υ(n∗∗, b∗∗) > 0. On the contrary, we have Υ(n(b∗∗), b∗∗) = 0 by
definition of optimality. Furthermore, we can show that Υ is decreasing in n for a given b, that is:

∂Υ

∂n
= qR

∂γ

∂n
−D′′(·)(1 + b)2 < 0,

because D
′′
(·) > 0 by assumption and ∂γ/∂n < 0 by Lemma 2. Therefore, we must have n(b∗∗) >

n∗∗.
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B Online Appendix B: Closed-form solutions

B.1 A closed-form solution for the competitive equilibrium

Let outside investors’ technology function be given by F = Rln(1+y). Outside investors choose how
much assets, y, to buy from banks in the bad state at t = 1 to maximize their profits, F (y)− Py,
where P is the price of assets. The first-order condition of this problem yields (inverse) demand
function of outside investors for risky assets:

P = F ′(y) =
R

1 + y
and hence y = F ′−1(P ) =

R

P
− 1 ≡ Qd(P ). (B.1)

We solve for the competitive equilibrium price, P , in the main text, as shown by (10). Now, use this
solution in the demand side function and define the total amount of assets purchased by outside
investors, τ , in terms of the exogenous variables as follows:

y =
R

P
− 1 =

R− 1 + q

q(1 + c)
− 1 ≡ τ. (B.2)

We obtain the total supply of asset by banks as (1−γ)n by (4) in Section 3.1.2. Hence, the market
clearing condition, (1− γ)n = τ , yields:

(c− b)n = Pτ =⇒ n =
Pτ

c− b
. (B.3)

This equation gives the investment level, n, as a function of the liquidity ratio, b. We can solve
for the latter from the first-order conditions of banks’ problem in the decentralized case, given by
(A.2-A.3), as derived in the proof of Proposition 2 below. Using R

P = τ + 1 from (B.2) and the

functional form of the operational cost, Φ
′
(n(1 + b)) = 2dn(1 + b), in the first-order condition with

respect to b, given by (A.3) yields:

1− q + q(τ + 1) = 1 + 2dn(1 + b),

1 + qτ = 1 + 2d
Pτ

c− b
(1 + b),

where in the second line we use n = Pτ/(c − b) from (B.3). Substituting R/(τ + 1) for P from
(B.2) yields

c− b =
2d

q

R(1 + b)

τ + 1
.

Finally, rearrange to obtain the liquidity ratio in the competitive equilibrium as

b =
cq(τ + 1)− 2dR

q(τ + 1) + 2dR
. (B.4)

To obtain the risky investment level in the competitive equilibrium substitute this expression
for b in (B.3):

n =
τ

τ + 1

q(τ + 1) + 2dR

2d(1 + c)
(B.5)

64



B.2 A closed-form solution for the constrained planner’s problem

Proposition 4 allows us to focus on the case b < c when analyzing the constrained planner’s problem.
The planner chooses n, b ≥ 0 to solve:

max
n,b

W (n, b) = (1− q){R+ b}n+ qRγn−D(n(1 + b)) + q[F ((1− γ)n)− P (1− γ)n],

The term in brackets, F ((1 − γ)n) − P (1 − γ)n, gives the profits of outside investors’ in the bad
state. After substituting P (1 − γ)n = (c − b)n from the market clearing condition, the first-order
conditions of the planner’s problem with respect to n and b are respectively:

(1− q)(R+ b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
= D

′
(n(1 + b))(1 + b),

(1− q)n+ qR
∂γ

∂b
n+ q

{
F ′((1− γ)n)

(
−∂γ
∂b

)
n+ n

}
= D

′
(n(1 + b))n, (B.6)

where γ = 1 + b−c
P

from banks’ problem in the bad state, as obtained in Section 3.1.2.
Combining the two first-order conditions to obtain:

(1− q)(R + b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
=[

(1− q) + qR
∂γ

∂b
+ qF ′((1− γ)n)

(
−∂γ
∂b

)
+ q

]
(1 + b) (B.7)

First, note that using the functional form for outside investors’ demand, given by (B.1), in
the market clearing condition (5) yields the price of assets in the bad state as a function of
initial portfolio allocations:

E(P, n, b) = Qd(P )−Qs(P, n, b) = 0 =⇒ R− P
P

=
c− b
P

n =⇒ P = R− (c− b)n. (B.8)

Substituting ∂γ
∂n

= − (c−b)2
P 2 and ∂γ

∂b
= R

P 2 , and later P = R − (c − b)n into (B.7) and noting
that F ′((1− γ)n) = P yields:

(1− q)(R+ b) + qR
{

1− c− b
P
− (c− b)2

P 2
n
}

+ q

{
P

(
c− b
P

+
(c− b)2

P 2
n

)
− c+ b

}
=[

(1− q) + qR
R

P 2
− qP R

P 2
+ q

]
(1 + b),

or equivalently:

(1− q)(R− 1) + (1− q)(1 + b) + qR− qR
{ (c− b)P + (c− b)2n

P 2

}
+ q

{
P

(c− b)P + (c− b)2n
P 2

− c+ b

}
=

(1− q)(1 + b) + q
R

P 2
(R− P )(1 + b) + q(1 + b).
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Note that (c − b)P + (c − b)2n = (c − b)[R − (c − b)n] + (c − b)2n = R(c − b). Substitute
this equilavance into the equation above and simplify:

R− 1 + q − qRR(c− b)
P 2

+ qP
R(c− b)
P 2

− qc+ qb = q
R

P 2
(R− P )(1 + b) + q + qb.

Further simplification yields:

R− 1− qc =
qR

P 2
{(R− P )(1 + b) +R(c− b)− P (c− b)}

R− 1− qc =
qR

P 2
{(R− [R− (c− b)n](1 + b) +R(c− b)− [R− (c− b)n](c− b)}

R− 1− qc =
qR

P 2
{(R−R + (c− b)n(1 + b) +R(c− b)−R(c− b) + (c− b)2n}

R− 1− qc =
qR

P 2
{(c− b)n(1 + b) + (c− b)2n}

R− 1− qc =
qR

P 2
{(c− b)n(1 + b+ c− b)}

R− 1− qc =
qR(c− b)n(1 + c)

P 2

R− 1− qc =
qR(R− P )(1 + c)

P 2
, (B.9)

where we substitute P = R− (c− b)n in the second line using the market clearing condition
(B.8), and (c − b)n = R − P using the same condition again in the last line above. From
(B.9) we obtain the following quadratic equation in P :

(R− 1− qc)P 2 + qR(1 + c)P − qR2(1 + c) = 0, (B.10)

which we can solve for the price of assets under constrained planner’s solution, P ∗∗:

P ∗∗ =
−qR(1 + c) +

√
q2R2(1 + c)2 + 4(R− 1− qc)qR2(1 + c)

2(R− 1− qc)
.

We can define τ ∗∗ ≡ R/P ∗∗ − 1 similar to (B.2) to represent the total amount of assets
sold under fire sales to outside investors in terms of the model parameters, and write risky
investment as a function of the liquidity ratio as n∗∗ = P ∗∗τ ∗∗/(c − b) using the market
clearing condition, similar to (B.8).

We use these equations to solve for the constrained efficient portfolio allocations n∗∗, b∗∗.
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For that start from the first-order condition with respect to b given above by (B.6):

1− q + qR
∂γ

∂b
+ q

{
F ′((1− γ)n)

(
−∂γ
∂b

)
+ 1

}
= D

′
(n(1 + b)),

1− q + qR
R

P 2
+ q

{
−P R

P 2
+ 1

}
= 1 + 2dn(1 + b),

q
R2

P 2
− qR

P
= 2dn(1 + b).

Writing all endogenous variables in terms of τ ∗ and simplifying yields

q(τ ∗∗ + 1)2 − q(τ ∗∗ + 1) = 2d
Pτ ∗∗

c− b
(1 + b),

q(τ ∗∗ + 1)(τ ∗∗ + 1− 1) = 2d
R

τ ∗∗ + 1

τ ∗∗

c− b
(1 + b),

q(τ ∗∗ + 1)2τ ∗∗(c− b) = 2dRτ ∗∗(1 + b),

q(τ ∗∗ + 1)2c− 2dR = b{2dR + q(τ ∗∗ + 1)2},

where we use R/P ∗∗ = τ ∗∗ + 1 and n∗∗ = P ∗∗τ ∗∗/(c − b). For future reference, using the
second from the last number, we can obtain the liquidity shortage per risky asset in the
constrained planner’s solution as

c− b∗∗ =
2dR(1 + b∗∗)

q(τ ∗∗ + 1)2
.

We can obtain the closed-form solution for the constrained efficient liquidity ratio, b∗∗, by
rearranging the last equation above, as

b∗∗ =
cq(τ ∗∗ + 1)2 − 2dR

q(τ ∗∗ + 1)2 + 2dR
. (B.11)

Finally, we can obtain the closed-form solution for the risky investment level by substituting
b∗∗ into n∗∗ = P ∗∗τ ∗∗/(c− b) and using P ∗∗ = R/(τ ∗∗ + 1)

n∗∗ =
Pτ ∗∗

c− b
,

=
Rτ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2dR

2dR(1 + c)
,

=
τ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2dR

2d(1 + c)
. (B.12)

B.3 A closed-form solution for the partial regulation case

In the partial regulation case, we consider the problem of a regulator who chooses the optimal
level of risky investment, n ≥ 0, at t = 0 to maximize the net expected social welfare but
who allows banks to freely choose their liquidity ratio, bi. The bank chooses the liquidity
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ratio, bi, to maximize its expected profits; hence, the problem of the bank is as follows:

max
bi

Πi(bi;n) = (1− q){R + bi}n+ qRγin−D(n(1 + bi).

The first-order condition of the banks’ problem (B.3) with respect to bi is

1− q + qR
1

P
= D

′
(n(1 + bi)). (B.13)

We use the same functional form assumptions as in the closed-form solutions of the
unregulated competitive equilibrium in Section B.1 and constrained planner’s problem in
Section B.2. We can also define τ ∗ ≡ R/P ∗ − 1 similar to (B.2) to represent the total
amount of assets sold under fire sales to outside investors in terms of the model parameters,
and write risky investment as a function of the liquidity ratio as n∗ = P ∗τ ∗/(c− b) using the
market clearing condition, similar to (B.8). Now, use the functional-form for the operational
cost in banks’ first-order condition and manipulate

1− q +
qR

P
= 1 + 2dn(1 + b),

q

(
R

P
− 1

)
= 2d

Pτ

c− b
(1 + b),

qτ = 2d
R

τ + 1

τ

c− b
(1 + b),

where we first use n = Pτ
c−b and then substitute P = R

τ+1
. From the last equation we can

obtain an expression for the liquidity ratio in this case in terms of τ ∗ as follows

b∗ =
qc(τ ∗ + 1)− 2dR

q(τ ∗ + 1) + 2dR
. (B.14)

Using n = Pτ
c−b and P = R

τ+1
once more, we can obtain a similar expression for the risky

investment level in this case in terms of τ ∗ as follows:

n∗ =
τ ∗

τ ∗ + 1

q(τ ∗ + 1) + 2dR

2d(1 + c)
. (B.15)

All that remains now is to obtain a closed-form solution for τ ∗ = R/P ∗−1, and substitute
that in (B.14) and (B.15) to obtain closed-form solutions for n∗ and b∗. To obtain a closed-
form solution for P ∗ we analyze the regulator’s problem. The regulator takes into account
that for any given n, the banks optimally choose their liquidity ratio b(n), as shown by the
response function (15). Hence, we can write the regulator’s objective function as:

max
n

W (n) = (1− q){R+ b(n)}n+ qRγn+ q[F ((1− γ)n)− (c− b(n))n]−D((1 + b(n))n),
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from which we can obtain the following first-order conditions with respect to n as

(1− q){R + b(n) + nb
′
(n)}+ qR

{
γ + n

dγ

dn

}
+ q[F ′(·)

(
1− γ − dγ

dn
n

)
− c+ b(n) + nb′(n)] =

D
′
(n(1 + b)){1 + b(n) + nb

′
(n)}.(B.16)

We use the same functional-form assumptions as in the closed-form solutions of the unreg-
ulated competitive equilibrium in Section B.1 and constrained planner’s problem in Section
B.2. First, note that substituting for P using (B.8) into γ, given by (3), we get

γ = 1 +
b(n)− c

P
= 1 +

b(n)− c
R + (b(n)− c)n

,

Using this equivalence, we can obtain the total derivative of γ with respect to n as:

dγ

dn
=

∂γ

∂b
b′(n) +

∂γ

∂n

=
P − (b(n)− c)n

P 2
b′(n)− (b(n)− c)2

P 2

=
b′(n)

P
− nb′(n)(b(n)− c)

P 2
− (b(n)− c)2

P 2
. (B.17)

Replacing dγ/dn in the first-order condition (B.16) with (B.17) and rearranging yields

(1− q){R+ b(n)}+ qR

(
1 +

b(n)− c
P

− n(b(n)− c)2

P 2

)
+ nb

′
(n)

{
1− q +

qR

P
−D′(·)− qR(b(n)− c)n

P 2

}
+q

[(
−b(n)− c

P
− b′(n)n

P
+
n2b′(n)(b(n)− c)

P 2
+
n(b(n)− c)2

P 2

)
P + (b(n)− c) + nb′(n)

]
−D

′
(·){1 + b(n)} = 0,

where we replace F ′((1− γ)n) = P using the market clearing condition (B.8) in the second
line. We have that 1 − q + qR/P −D′(·) = 0 from the banks’ first-order condition (B.13).
Hence, the first-order condition above can further be simplified as follows:

R− 1 + q − qR2(1 + c)

P 2
− qRn(b(n)− c)(1 + b(n))

P 2
− qRb′(n)n2(b(n)− c)

P 2

+
qn(b(n)− c)2P

P 2
+
qb′(n)n2(b(n)− c)P

P 2
= 0.

Divide the last equation by qR to obtain

R− 1 + q

qR
− R(1 + c)

P 2
− n(b(n)− c)(1 + b(n))

P 2
− b′(n)n2(b(n)− c)

P 2

+
n(b(n)− c)2P

RP 2
+
b′(n)n2(b(n)− c)P

RP 2
= 0.
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Let us define

σ ≡ R− 1 + q

qR
. (B.18)

Using this definition, we can write this first-order condition as

1

P 2

{
σP 2 −R(1 + c)− n(b(n)− c)(1 + b(n))− b′(n)(b(n)− c)n2

}
+

1

P 2

{
(b− c)2nP

R
+ b

′
(n)

n2(b− c)P
R

}
= 0. (B.19)

We focus on the terms inside the braces because in equilibrium price must be strictly
positive. Using this term, we would like to write endogenous variables n and b in terms
of the parameters of the model and P , and then, use these expression in the first-order
conditions of the banks’ problem (B.13) to obtain a closed-form solution for P . For that,
first, below we obtain 1 + b(n), n(b(n)− c) and b′(n) in terms of the parameters of the model
and P starting from the banks’ first-order condition (B.13):

(1− q) + q
R

P
= 1 + 2dn(1 + b), (B.20)

q(R− P ) = P2dn(1 + b),

q(R− P ) = [R + (b− c)n]2dn(1 + b),

−q(b− c)n = 2dn(1 + b)R + 2dn(1 + b)(b− c)n,
−(b− c)[q + 2dn(1 + b)] = 2d(1 + b)R,

where we substitute for P = R+ (b− c)n using (B.8). Now, take the derivative of both sides
with respect to n, and collect terms that involve b

′
(n):

−b′(n)[q + 2dn(1 + b)]− 2d(b− c)[1 + b+ nb′(n)] = 2dRb′(n),

−b′(n)[q + 2dn(1 + b)]− 2d(b− c)(1 + b)− 2d(b− c)nb′(n) = 2dRb′(n),

−b′(n)[2dR + 2dn(b− c) + q + 2dn(1 + b)] = 2d(b− c)(1 + b),

−b′(n)[2dR + q + 2dn(2b+ 1− c)] = 2d(b− c)(1 + b).

From the last equation we obtain:

b′(n) =
−2d(b− c)(1 + b)

2dR + q + 2dn(2b+ 1− c)
. (B.21)

We further simplify b′(n) in order to eliminate b from this expression. In order to do this
simplification, note that first, from the market clearing condition at t = 1, P = R+ (b− c)n,
as derived in (B.8), we can obtain that

b− c = −R− P
n

.
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Second, from the banks’ first-order condition, given by (B.20), we can obtain that

1 + b =
q

2dn

(
R

P
− 1

)
.

Use these values for 1 + b and b− c into (B.21) to write b′(n) as a function of n, P and the
parameters of the model as follows

b′(n) =
−2d(−1)R−P

n
q

2dn

(
R
P
− 1
)

2dR + q − 2d(R− P ) + 2d q
2d

(
R
P
− 1
) ,

=
q

n2P
(R− P )2

1
P

[2dRP + qP − 2dP (R− P ) + q(R− P )]
,

=
q(R− P )2

n2[2dRP + qP − 2dRP + 2dP 2 + qR− qP ]
,

=
q(R− P )2

n2[2dP 2 + qR]
.

Eventually, use the expressions obtained for 1 + b(n), n(b(n) − c) and b′(n) above to
rewrite the term inside the braces in (B.19) as:

σP 2 −R(1 + c) + (R− P )
q(R− P )

2dPn
+

q(R− P )2

n2[2dP 2 + qR]

R− P
n

n2 +
P (R− P )2

nR
− q(R− P )2

n2[2dP 2 + qR]

R− P
nR

Pn2 = 0

σP 2 −R(1 + c) +
q(R− P )2

n

[
1

2dP
+

R− P
2dP 2 + qR

]
+

(R− P )2P

nR

2dP 2 + qP

2dP 2 + qR
= 0

Note that the last equation takes the form of A + B/n + C/n = 0 where A,B,C group
relevant terms. Therefore, we can obtain n in the form of n = −B/A − C/A, that is, from
the last equation we can obtain n in terms of P and the parameters of the model:

n =
q(R− P )2

[
1

2dP
+ R−P

2dP 2+qR

]
R(1 + c)− σP 2

+
(R− P )2 (2dP

2+qP )P
(2dP 2+qR)R

R(1 + c)− σP 2
≡ ψ(P ) + φ(P ).

We can similarly obtain an expression for b in terms of P and the parameters of the
model using the equilibrium price function P = R + (b− c)n, which implies that

b =
P −R
n

+ c =
P −R + cn

n
=
P −R + c[ψ(P ) + φ(P )]

ψ(P ) + φ(P )
.

Now, substitute these expressions for n and b back into the banks’ first-order condition
(B.20) in order to obtain a fixed-point equation that involves only P as an endogenous
variable, from which we can solve for the equilibrium price P :

71



2dn(1 + b) = −q +
qR

P
,

2d[ψ(P ) + φ(P )]

[
P −R+ c[ψ(P ) + φ(P )]

ψ(P ) + φ(P )
+ 1

]
+ q =

qR

P

2dP{P −R+ (1 + c)[ψ(P ) + φ(P )]}+ qP = qR

−2dP (R− P ) + 2dP (1 + c)[ψ(P ) + φ(P )]} = q(R− P )

2d(1 + c)P [ψ(P ) + φ(P )] = (2dP + q)(R− P )

2d(1 + c)P (R− P )2
{
q

[
1

2dP
+

R− P
2dP 2 + qR

]
+
P (2dP 2 + qP )

R(2dP 2 + qR)

}
= [R(1 + c)− σP 2](R− P )(2dP + q)

2d(1 + c)P (R− P )

{
q
R(2dPR+ qR)

(2dP 2 + qR)R
+

2dP 2(2dP 2 + qP )

2dPR(2dP 2 + qR)

}
= [R(1 + c)− σP 2](2dP + q)

Now, we sum the terms in side the braces on the left-hand side and multiply both sides with the
common denominator of the left-hand side after summation and simplify further to get:

2d(1 + c)P (R− P ){qR(2dPR+ qR) + 2dP 2(2dP 2 + qP )} = [R(1 + c)− σP 2](2dP + q)2dPR(2dP 2 + qR)

(1 + c)(R− P ){qR2(2dP + q) + 2dP 3(2dP + q)} = [R(1 + c)− σP 2](2dP + q)R(2dP 2 + qR)

(1 + c)(R− P )(2dP + q)(qR2 + 2dP 3) = [R(1 + c)− σP 2](2dP + q)R(2dP 2 + qR)

(1 + c)(R− P )(qR2 + 2dP 3) = [R(1 + c)− σP 2]R(2dP 2 + qR)

(1 + c)R(qR2 + 2dP 3)− (1 + c)P (qR2 + 2dP 3) = R2(1 + c)(2dP 2 + qR)− σP 2R(2dP 2 + qR)

(1 + c)R2dP 2 − (1 + c)qR2 − (1 + c)2dP 3 = R2(1 + c)2dP − σR2dP 3 − σPRqR

We can rearrange this last equation to obtain a cubic equation in terms of the partial equilibrium
price:

(σ2dR− (1 + c)2d)P 3 + (1 + c)R2dP 2 + [σqR2 −R2(1 + c)2d]P − (1 + c)qR2 = 0

2d(σR− 1− c)P 3 + 2dR(1 + c)P 2 +R2(σq − 2d(1 + c))P − (1 + c)qR2 = 0.

Define
β ≡ R(1 + c). (B.22)

Replacing β for R(1 + c) we can also write the cubic equation for the partial regulation price
as follows:

2d(σR− 1− c)P ∗3 + 2dβP ∗2 +R(σqR− 2dβ)P ∗ − qRβ = 0 (B.23)

It is easy to show that this cubic equation has only one real root and two complex conjugate
roots. The only real root can easily be obtained using Vieta’s substitution for cubic equations.
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