Asset Price Bubbles in Incomplete Markets

Robert A. Jarrow* Philip Protter†‡ Kazuhiro Shimbo§

March 19, 2007

Abstract

This paper studies asset price bubbles in a continuous time model using the local martingale framework. Providing careful definitions of the asset's market and fundamental price, we characterize all possible price bubbles in an incomplete market satisfying the "no free lunch with vanishing risk" and "no dominance" assumptions. We propose a new theory for bubble birth which involves a nontrivial modification of the classical framework. We show that the two leading models for bubbles as either charges or as strict local martingales, respectively, are equivalent. Finally, we investigate the pricing of derivative securities in the presence of asset price bubbles, and we show that: (i) European put options can have no bubbles, (ii) European call options and discounted forward prices can have bubbles, but the magnitude of their bubbles must equal the magnitude of the asset’s price bubble, (iii) with no dividends, American call prices must always equal an otherwise identical European call’s price, regardless of bubbles, (iv) European put-call parity in market prices must always hold, regardless of bubbles, and (v) futures price bubbles can exist and they are independent of bubbles in the underlying asset’s price. These results imply that in a market satisfying NFLVR and no dominance, in the presence of an asset price bubble, risk neutral valuation can not be used to match call option prices. We propose, but do not implement, some new tests for the existence of asset price bubbles using derivative securities.

*Johnson Graduate School of Management, Cornell University, Ithaca, NY, 14853 and Kamakura Corporation.
†School of Operations Research, Cornell University, Ithaca, NY, 14853-3801.
‡Supported in part by NSF grant DMS-0604020 and NSA grant H98230-06-1-0079
This article forms part of the K. Shimbo’s Ph.D. thesis, under the direction of Philip Protter
1 Introduction

Asset price bubbles have fascinated economists for centuries, one of the earliest recorded price bubbles being the Dutch tulipmania in 1634-37 (Garber [28], [29]), followed by the Mississippi bubble in 1719-20 (Garber [29]), the related South Sea bubble of 1720 ((Garber [29], Temin and Voth [61]), up to the 1929 U.S. stock price crash (White [67], DeLong and Shleifer [17], Rappoport and White [54], Donaldson and Kamstra [21]) and the more recent NASDAQ price bubble of 1998-2000 (Ofek and Richardson [50], Brunnermeier and Nagel [6], Cunado, Gil-Alana and Perez de Gracia [12], Pastor and Veronesi [51], Battalio and Schultz [5]). Motivated by these episodes of sharp price increases followed by price collapses, economists have studied questions related to the existence of price bubbles, both theoretically and empirically.

Sufficient conditions for the existence and non-existence of price bubbles in economic equilibrium has been extensively investigated. Bubbles can not exist in finite horizon rational expectation models (Tirole [62], Santos and Woodford [55]). They can arise, however, in markets where traders behave myopically (Tirole [62]), where there are irrational traders (DeLong, Shleifer, Summers, Waldmann [16]), in infinite horizon growing economies with rational traders (see Tirole [63], O’Connell and Zeldes [49], Weil [64]), economies where rational traders have differential beliefs and when arbitrageurs cannot synchronize trades (Abreu and Brunnermeier [1]) or when there are short sale/borrowing constraints (Scheinkman and Xiong [56], Santos and Woodford [55]). For good reviews see Camerer [7] and Scheinkman and Xiong [57]. In these models, albeit for different reasons, arbitrageurs cannot profit from and thereby eliminate price bubbles (via their trades). Equilibriums with bubbles share many of the characteristics of sunspot equilibrium where extrinsic uncertainty can affect the allocation of resources solely because of traders self-confirming beliefs (see Cass and Shell [9], Balasko, Cass and Shell [3]). Indeed, in bubble economies, the self-confirming beliefs often correspond to the expectation that one can resell the asset to another trader at a higher price (see Harrison and Kreps [33], Scheinkman and Xiong [57]).

Equilibrium models impose substantial structure on the economy, in particular, investor optimality and a market clearing mechanism equating aggregate supply to aggregate demand. Price bubbles have also been studied in less restrictive settings, using the insights and tools of mathematical finance. These papers are mainly concerned with the characterization of bubbles and the pricing of derivative securities (see Loewenstein and Willard [44], [45], Cox and Hobson [11], Heston, Loewenstein and Willard [35]). Recently, Jarrow, Protter and Shimbo [40] have extended and refined these insights for complete market economies with infinite trading horizons.

The current paper extends the analysis in Jarrow, Protter and Shimbo [40] to incomplete markets where all traders act as price takers, i.e. a competitive market. Models where bubbles can arise due to non-competitive trader behavior are not explored herein (see Jarrow [39] and Bank and Baum [4] for this class of models). Given in this paper is a stochastic price process $S = (S_t)_{t \geq 0}$ with $S \geq 0$ and a risk free money market account $r = (r_t)_{t \geq 0}$, both defined on a filtered complete probability space $(\Omega, \mathcal{F}, \mathbb{P}, P)$ where $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$. The First Fundamental Theorem of asset pricing states, heuristically, that there are no arbitrage opportunities in such a model if and only if there exists another probability measure Q, equivalent to P, such that under Q the process S is a martingale. This dates back to the fundamental work of Harrison and Kreps [34].
Harrison and Kreps assumed quite strong hypotheses, and under these restrictive hypotheses, S was always a nice (uniformly integrable) L^2 martingale under Q. Modern models are less simple, and the Delbaen - Schachermayer [13] theory states that there is no arbitrage in the technical sense of NFLVR, if and only if Q renders S into a σ martingale. However since S is assumed to be nonnegative, it is bounded below (by zero), and any σ martingale bounded below is a local martingale. So we do not need to consider the more general case of σ martingales here. Indeed, under Q the price process S could be a uniformly integrable martingale, just a martingale, or even a strict local martingale. Which form the price process takes is related to whether or not price bubbles exist.

To develop the concept of a bubble, we need to define the asset’s fundamental price. This is equivalent to the arbitrage free price in the Harrison and Kreps framework. As the subject has evolved, fundamental prices and market prices have often been confused. We define each of these prices carefully, rigorously clarifying the distinction. We re-introduce the notion of no dominance which dates back to Merton’s classic paper [48], but which has largely been forgotten in the mathematical finance literature. Merton’s original definition was not stated in mathematical terms. We do that here, and then use no dominance to show that bubbles can arise only in incomplete markets. (We note in passing that much of the literature concerns the study of bubbles in complete markets (see Loewenstein and Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]), and therefore is, in some cases, studying an object which does not exist.).

As shown by Jarrow, Protter and Shimbo [40] in the continuous time setting, but otherwise well-known in the discrete time economics literature (see Diba and Grossman [19], Weil [64]), a problem with the current theory of bubbles is that bubbles can end, or “burst,” but that they cannot be “born” after the model starts. That is, they must exist at the start of the model, at time 0, or not at all. Of course, this property contradicts economic intuition and historical experience. We solve this problem in a novel way.

First, we show this property is a consequence of there being a unique local martingale measure, or by the Second Fundamental Theorem of asset pricing, a complete market. In an incomplete market, where there are an infinite number of local martingale measures, using the ideas of Jacod and Protter ([37]; see also Schweizer and Wissel [58]), at time 0 we let the market “choose” a risk neutral measure Q_1 which renders S into a uniformly integrable martingale. This is equivalent to there being no bubbles at time 0. Then, at some future random time t_0, the market changes its choice and “chooses” a different measure Q_2 which renders S into a strict local martingale; and a bubble is born. This shock could be due to intrinsic uncertainty ([27]) or extrinsic uncertainty ([9]) - a sunspot. This shift in measures can be thought of as roughly analogous to a phase change in an Ising model, or in a more economic tradition, a structural shift in the economy. This modification requires a non-trivial extension to the standard arbitrage-free pricing theory, which always assumes a fixed local martingale measure for all times.

Our extension also generates an unexpected insight. Traditionally, the study of bubbles has been viewed from two apparently different perspectives, one we call the local martingale approach, which we discussed above, and the other based on finitely additive linear operators (or “charges”), as typified in Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]. We show these two approaches are, in fact, the same in Theorem 8.1 below.

In the popular press, bubbles are conjectured to exist sector wide. Recent examples might
include the NASDAQ price bubble of 1998 - 2000, or the “housing bubble” either here (Case and Shiller [8]) or earlier in Japan (Stone and Ziemba [60]). We show how the theory of bubbles for individual assets is easily extended to bubbles in market indexes and/or market portfolios.

Given the existence of bubbles in asset prices, an interesting set of questions arises as to how this existence impacts the pricing of derivative securities - calls, puts, forwards, futures; whether bubbles can independently exist in the derivative securities themselves; and whether bubbles can, in fact, invalidate the well-known put-call parity relation. Partial answers to these questions were obtained in complete market models using only the NFLVR assumption (see Cox and Hobson [11]). As discussed previously, adding the no dominance assumption to NFLVR, Jarrow, Protter and Shimbo [40] show that bubbles can arise only in incomplete markets. Hence, the previous answers to these questions were not really useful in this regard, and therefore they remain largely unanswered. We answer these questions herein.

First, we extend the definition of an asset’s fundamental price to the fundamental price for a derivative security. This involves one subtlety in that the derivative security’s payoffs are written on the market price, and not the fundamental price, of the underlying asset. Given the proper definition, and under both the NFLVR and no dominance assumptions, we show that European put options can have no bubbles, but that European call options can. In fact, the magnitude of the bubble in a European call option’s price must equal the magnitude of the bubble in the underlying asset’s price. In addition, using Merton’s [48] original argument, but in our context, we show that European put-call parity always holds for both the fundamental and market prices of the relevant derivative securities, independent of the existence of bubbles in the underlying asset’s price. Bubbles in the underlying stock price imply that there exists no local martingale measure such that the expected discounted value of the call option’s payoffs equals the market price. And, the market satisfies NFLVR and no dominance. Thus, risk neutral valuation cannot be used to match call option prices in the presence of an asset pricing bubble.

Next, we study American call option pricing under the standard no dividend assumption, and we show that the market price of a European call option must equal the market price of the American call option, even in the presence of asset price bubbles, extending a previous theorem of Merton’s [48] in this regard. In fact, even more is true. Relative to its fundamental price, American call options themselves can have no bubbles, unlike their European counterparts.

Finally, we study forward and futures prices. We show that the discounted forward price of a risky asset can have a bubble, and if it exists, it must equal the magnitude of the bubble in the asset’s price. With respect to futures, in the existing finance literature, the characterization of a futures price implicitly (and sometimes explicitly) uses the existence of a given local martingale measure Q which makes the futures price a martingale (e.g., see Duffie [22], p. 173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first need to generalize the characterization of a futures price to remove this implicit (or explicit) restriction. Accomplishing this extension, we then show that futures prices can have bubbles, both positive and negative, and unlike discounted forward prices, the magnitude of a futures price bubble need not equal the magnitude of the underlying asset price’s bubble.

Before concluding, we comment on the existing literature testing for asset price bubbles in various markets (e.g. Evans [24], Flood and Garber [26], West [65],[66], Diba and Grossman
As is well known, testing for price bubbles in the asset prices themselves involves the specification of the local martingale measure Q, and hence represents a joint hypothesis. We add no new insights in this regard. However, given our increased understanding of the pricing of derivative securities with asset price bubbles, some new tests using call and put prices are proposed. Empirical implementation of these proposed tests await subsequent research.

An outline for this paper is as follows. Section 2 provides the model setup, while section 3 defines the fundamental price and price bubbles. Section 4 characterizes all possible asset price bubbles. Examples are provided in section 5. Section 6 studies derivatives securities and section 7 clarifies forward and futures price bubbles. Section 8 connects the local martingale approach with the charge approach to price bubbles. Finally, section 9 concludes with a brief discussion of the empirical literature with respect to price bubbles.

2 The Model

Important in studying bubbles is the precise mathematical definition of a bubble. Historically there are two approaches: one we term the local martingale approach (Loewenstein and Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the other we call the charges approach (Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]). In Section 8 we show that these two approaches are the same. Therefore, without loss of generality, we first present the local martingale approach. This section presents the necessary model structure.

2.1 The Traded Assets

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered complete probability space. We assume that the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ satisfies the “usual hypotheses.” (See Protter [53] for the definition of the usual hypotheses and any other undefined terms in this paper.) We assume that our economy contains a traded risky asset and a money market account. We take the money market account as a numéraire. In particular, the price of one unit of the money market account is the constant value 1. Changing the numéraire is standard in this literature, and after the change of numéraire, the spot interest rate is zero. Consequently, all prices and cash flows defined below are relative to the price of the money market account.

Let τ be a stopping time which represents the maturity (or life) of the risky asset. Let $D = (D_t)_{0 \leq t < \tau}$ be a càdlàg semimartingale process adapted to \mathbb{F} and representing the cumulative dividend process of the risky asset. Let $X_\tau \in \mathcal{F}_\tau$ be the time τ terminal payoff or liquidation value of the asset. We assume that $X_\tau, D \geq 0$. Throughout this paper, we use either $(X_t)_{t \geq 0}$ or X to denote a stochastic process and X_t to denote the value of the process sampled at time t. We also adopt a convention that if we give a value of a process at each t in the definition of a process, we define the process by choosing its càdlàg version unless otherwise stated. See for example Protter [52] for a related discussion.

The market price of the risky asset is given by the non-negative càdlàg semimartingale $S = (S_t)_{0 \leq t \leq \tau}$. Note that for t such that $\Delta D_t > 0$, S_t denotes a price ex-dividend, since S is càdlàg.
Let W be the wealth process associated with the market price of the risky asset, i.e.

$$W_t = S_t + \int_0^{t \wedge \tau} dD_u + X_{\tau} \mathbf{1}_{\{\tau \leq t\}}.$$

(1)

The market value of the wealth process is the position in the stock plus all accumulated dividends, and the terminal payoff if $t \geq \tau$. Since the risky asset does not exist after τ, we focus on $[0, \tau]$ by stopping every process at τ, and then $\mathcal{F} = \mathcal{F}_\tau$.

2.2 No Free Lunch with Vanishing Risk

Key to understanding an arbitrage opportunity is the notion of a trading strategy. A trading strategy is defined to be a pair of adapted processes (π, η) representing the number of units of the risky asset and money market account held at time t with $\pi \in L(W)$.1 The corresponding wealth process V of the trading strategy (π, η) is given by

$$V_t^{\pi, \eta} = \pi_t S_t + \eta_t.$$

(2)

Assume temporarily that π is a semimartingale. Then, a self-financing trading strategy with $V_0^{\pi} = 0$ is a trading strategy (π, η) such that the associated wealth process $V_t^{\pi, \eta}$ is given by

$$V_t^{\pi, \eta} = \int_0^t \pi_u dW_u = \int_0^t \pi_u dS_u + \int_0^{t \wedge \tau} \pi_u dD_u + \pi_\tau X_{\tau} \mathbf{1}_{\{\tau \leq t\}}$$

$$= \left(\pi_t S_t - \int_0^t S_u - d\pi_u - [\pi^c, S^c]_t \right) + \int_0^{t \wedge \tau} \pi_u dD_u + \pi_\tau X_{\tau} \mathbf{1}_{\{\tau \leq t\}}$$

$$= \pi_t S_t + \eta_t$$

(3)

where we have used integration by parts, and where

$$\eta_t = \int_0^{t \wedge \tau} \pi_u dD_u + \pi_\tau X_{\tau} \mathbf{1}_{\{\tau \leq t\}} - \int_0^t S_u - d\pi_u - [\pi^c, S^c]_t.$$

(4)

Discarding the temporary assumption that π is a semimartingale, we can define a self-financing trading strategy (π, η) to be a pair of processes, with π predictable and η optional such that:

$$V_t^{\pi, \eta} = \pi_t S_t + \eta_t = \int_0^t \pi_u dW_u = (\pi \cdot W)_t,$$

where $\pi \in L(W)$ for P. As noted, a self-financing trading strategy starts with zero units of the money market account, $\eta_0 = 0$, and all proceeds from purchases/sales of the risky asset are financed/invested in the money market account. Because equation (4) shows that η is uniquely determined by π if a trading strategy is self-financing, without loss of generality, we represent (π, η) by π.

To avoid doubling strategies (see Harrison and Pliska [32]), we need to restrict the class of self-financing trading strategies further.

1See Protter [53] for the definition of $L(W)$. Here we are still working under the original (objective) measure P.

6
Definition 2.1 (Admissibility). Let V^π be a wealth process given by (3). We say that the trading strategy π is a-admissible if it is self-financing and $V^\pi_t \geq -a$ for all $t \geq 0$ almost surely. We say a trading strategy is admissible if it is self-financing and there exists an $a \in \mathbb{R}_+$ such that $V^\pi_t \geq -a$ for all t almost surely. We denote the collection of admissible strategies by \mathcal{A}.

The notion of admissibility corresponds to a lower bound on the wealth process, an implicit inability to borrow if one’s collateralized debt becomes too large (e.g., see Loewenstein and Willard [44] for a related discussion). The restriction to admissible trading strategies is the reason bubbles can exist in our economy (see Jarrow, Protter and Shimbo [40]).

We can now introduce the meaning of an arbitrage-free market. As shown in the mathematical finance literature (see Delbaen and Schachermayer [13], [14] or Protter [52]), the appropriate notion is that of No Free Lunch with Vanishing Risk (NFLVR). Let

$$K = \{ W^\pi_\infty = (\pi \cdot W)_\infty : \pi \in \mathcal{A} \}$$

$$\mathcal{C} = (K - L^+_0) \cap L^\infty$$

Definition 2.2 (NFLVR). We say that a market satisfies NFLVR if

$$\bar{\mathcal{C}} \cap L^+_\infty = \{ 0 \}$$

where $\bar{\mathcal{C}}$ denotes the closure of \mathcal{C} in the sup-norm topology on L^∞.

Roughly, NFLVR effectively excludes all self financing trading strategies that have zero initial investment, and that generate non-negative cash flows for sure and strictly positive cash flows with positive probability (called, simple arbitrage opportunities), plus sequences of trading strategies that approach these simple arbitrage opportunities. We assume that our market satisfies NFLVR.

Assumption 2.1. The market satisfies NFLVR.

Key to characterizing a market satisfying NFLVR is an equivalent local martingale measure.

Definition 2.3 (Equivalent Local Martingale Measure). Let Q be a probability measure equivalent to P such that the wealth process W is a Q-local martingale. We call Q an Equivalent Local Martingale Measure (ELMM), and we denote the set of ELMMs by $\mathcal{M}_{loc}(W)$.

By the First Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer [14]), this implies that the market admits an equivalent σ-martingale measure. By Proposition 3.3 and Corollary 3.5, Ansel and Stricker [2, pp. 307, 309], a σ-martingale bounded from below is a local martingale. (For the definition and properties of σ-martingales, see Protter [53], Emery [23], Delbaen and Schachermayer [14], Jacod and Shiryaev [38, Section III.6e]). Thus we have the following theorem:

Theorem 2.1 (First Fundamental Theorem). A market satisfies NFLVR if and only if there exists an ELMM.

L^∞ is the set of a.s. bounded random variables and L^+_0 is the set of nonnegative finite-valued random variables.
Theorem 2.1 holds even if the price process is not locally bounded due to the assumption that \(W_t \) is non-negative.\(^3\) In Jarrow, Protter and Shimbo \([40]\) we studied the existence and characterization of bubbles under NFLVR in complete markets. In this paper we discuss market prices and bubbles under NFLVR in incomplete markets. Hence, by the Second Fundamental Theorem of asset pricing (see, e.g., Protter \([53]\)), this implies that the ELMM is not unique in general, that is \(|\mathcal{M}_{\text{loc}}(S)| \geq 2 \), where \(| \cdot |\) denotes cardinality. The next section studies the properties of \(\mathcal{M}_{\text{loc}}(S) \) in an incomplete market.

2.3 The Set of Equivalent Local Martingale Measures

Let \(\mathcal{M}_{\text{UI}}(W) \) be the collection of equivalent measures \(Q \) such that \(W \) is a \(Q \)-uniformly integrable martingale. We call such a measure an Equivalent Uniformly Integrable Martingale Measure (EUIMM). Then, \(\mathcal{M}_{\text{UI}}(W) \) is a subset of \(\mathcal{M}_{\text{loc}}(W) \). Let

\[
\mathcal{M}_{\text{NUI}}(W) = \mathcal{M}_{\text{loc}}(W) \setminus \mathcal{M}_{\text{UI}}(W) \tag{8}
\]

be the subset of \(\mathcal{M}_{\text{loc}}(W) \) such that \(W \) is not a uniformly integrable martingale. In general, both of the sets \(\mathcal{M}_{\text{UI}}(W) \) and \(\mathcal{M}_{\text{NUI}}(W) \) are non-empty. To see this in a particular case, consider the following lemma.

Lemma 2.1. This example is a simplified version of the example in Delbaen and Schachermayer \([15]\). Let \(B^1, B^2 \) be two independent Brownian motions. Fix \(k > 1 \) and let \(\sigma = \inf \{ \mathcal{E}(B^2)_t = k \} \) where \(\mathcal{E}(X) \) is the stochastic exponential of \(X \) given as the solution of the stochastic differential equation \(dY_t = Y_t dX_t, Y_0 = 1 \). (Here we need to assume that \(X \) has no jumps smaller than \(-1\) to ensure that \(X \) is always positive.) Define the processes \(Z \) and \(M \) by

\[
Z_t = \mathcal{E}(B^2)_{t \wedge \sigma}, \quad M_t = \mathcal{E}(B^1)_{t \wedge \sigma}. \tag{9}
\]

Then, \(Z \) is a uniformly integrable martingale, \(M \) is a non-uniformly integrable martingale and the product \(ZM \) is a uniformly integrable martingale.

Proof. Observe that \(M \) and \(Z \) are non-negative local martingales. Since \(B^1 \) and \(B^2 \) are independent, \([B^1, B^2] = 0 \) and

\[
M_tZ_t = \mathcal{E}(B^1 + B^2 + [B^1, B^2])_{t \wedge \sigma} = \mathcal{E}(B^1 + B^2)_{t \wedge \sigma}. \tag{10}
\]

In particular \(MZ \) is a local martingale. \(Z \) is a uniformly integrable martingale since it is bounded.

\[
E[M] = E[M\mathbf{1}_{\{\sigma < \infty\}}] + E[M\mathbf{1}_{\{\sigma = \infty\}}] = E[M\mathbf{1}_{\{\sigma < \infty\}}]
\]

\[
=E \left[\int M_u P(\sigma \in du) \right] = \int E[M_u] P(\sigma \in du) = P(\sigma < \infty), \tag{11}
\]

\(^3\)In Delbaen and Schachermayer \([14]\), the driving semimartingale (price process) takes value in \(\mathbb{R}^d \) and is not locally bounded from below.

8
where the second line of the equations above follows because σ and M are independent. Moreover since the stopping time σ is the hitting time of k, we have

$$0 \leq \mathcal{E}(B^\sigma)_t \leq k$$

which implies that $E[\mathcal{E}(B)_\sigma] = 1$ (since $\mathcal{E}(B^\sigma)$ is bounded). However

$$1 = E[\mathcal{E}(B)_\sigma] = 0P(\sigma = \infty) + kP(\sigma < \infty),$$

which implies that $P(\sigma < \infty) = \frac{1}{k}$, and finally $E[M_\infty] = P(\sigma < \infty) = \frac{1}{k}$. It follows that M is not a uniformly integrable martingale, since $M_0 = 1 \neq \frac{1}{k}$. Similarly we can show that

$$E[M_\infty Z_\infty] = E[M_\infty Z_\infty 1_{\{\sigma < \infty\}}] = kE[M_\sigma 1_{\{\sigma < \infty\}}] = k \cdot \frac{1}{k} = 1 \quad (12)$$

and it follows that MZ is a uniformly integrable martingale.

Corollary 2.1. There exists a NFLVR economy such that both $\mathcal{M}_{UI}(W)$ and $\mathcal{M}_{NUI}(W)$ are non-empty.

Proof. In lemma 2.1, let Q be a probability measure under which B^1, B^2 are independent Brownian motions. Since M is not uniformly integrable under Q, $Q \in \mathcal{M}_{NUI}(M)$. Define a new measure R on \mathcal{F}_∞ by $dR = Z_\infty dQ$. Then by construction $R \in \mathcal{M}_{UI}(M)$. □

2.4 No Dominance

As shown in Jarrow, Protter and Shimbo [40], NFLVR is not sufficient in a complete market to exclude bubbles. Also needed is the additional hypothesis of no dominance (originally used by Merton [48]). This section introduces the necessary structure for the notion of no dominance.

For each admissible trading strategy $\pi \in \mathcal{A}$, its wealth process V is given by

$$V^\pi_t = \int_0^t \pi_u dW_u \quad (13)$$

where V^π_t is a σ-martingale bounded from below. Therefore, it is a local martingale under each $Q \in \mathcal{M}_{loc}(W)$.

For the remainder of the paper, let ν represent some fixed and constant (future) time. Let $\phi = (\Delta, \Xi^\nu)$ denote a payoff of an asset (or admissible trading strategy) where: (i) $\Delta = (\Delta_t)_{0 \leq t \leq \nu}$ is an arbitrary càdlàg non-negative and non-decreasing semi-martingale adapted to \mathbb{F} which represents the asset’s cumulative dividend process, and (ii) $\Xi^\nu \in \mathcal{F}_\nu$ is a non-negative random variable which represents the asset’s terminal payoff at time ν.

Finally, let Φ_0 be the collection of all payoffs available in this form. Unfortunately, this set Φ_0 of asset payoffs is too large and lacks certain desirable properties. We, therefore, need to restrict our attention to the subset Φ of Φ_0 defined by

Definition 2.4 (Set of Super-replicated Cash Flows).

$$\Phi := \{ \phi \in \Phi_0 : \exists \pi \in \mathcal{A}, a \in \mathbb{R}_+ \text{ such that } \Delta_{\nu} + \Xi^\nu \leq a + V^\pi_{\nu} \}. \quad (14)$$
The set Φ represents those asset cash flows that can be super-replicated by trading in the risky asset and money market account. As seen below, it is the relevant set of cash flows for our no dominance assumption. We first show that this subset of asset cash flows is a convex cone.

Lemma 2.2. Φ is closed under addition and multiplication by positive scalars, i.e. it is a convex cone.

Proof. Fix $\phi^1, \phi^2 \in \Phi$ and let $\phi = \phi^1 + \phi^2$ where $\phi^i = (\Delta^i, \Xi^i, \nu^i)$ with maturity ν^i. Without loss of generality, we can take $\nu^1 \leq \nu^2$. There exist π^1, π^2 such that

$$
\Delta^i_{t} + \Xi^i_{\nu^i} 1_{\{\nu^i \leq t\}} \leq a^i + \int_0^t \pi^i_u dW_u, \quad i = 1, 2
$$

Let $\Delta_t = \Delta^1_t + \Delta^2_t + \Xi^1_{\nu^1} 1_{\{\nu^1 = t\}}, \nu = \nu^2$, and $\Xi^\nu = \Xi^2_{\nu^2}$. The proof for multiplication is trivial.

$$
\Delta_t + \Xi^\nu 1_{\{t \leq \nu\}} \leq (a^1 + a^2) + \int_0^t (\pi^1_u + \pi^2_u) dW_u = a + \int_0^t \pi_u dW_u,
$$

where $a = a^1 + a^2$, $\pi = \pi^1 + \pi^2$. □

If $\phi \in \Phi$ then for each $Q \in \mathcal{M}_{loc}(W)$,

$$
E^Q[\Delta_\nu + \Xi^\nu] \leq a + E^Q[V^\pi] \leq a.
$$

The first inequality follows because V^π is a wealth process of admissible trading strategies. The second inequality follows because V^π_0 is a non-negative (because both Δ_ν and Ξ^ν are nonnegative) Q-local martingale bounded below, and hence a Q-supermartingale such that $V^\pi_0 = 0$. Therefore, each asset $\phi \in \Phi$ is integrable under any ELMM. This is the reason for restricting our attention to the set of cash flows $\Phi \subset \Phi_0$.

This set Φ is large enough to contain many of the assets of interest in derivatives pricing. For example:

Example 2.1 (Call Option). Consider a call option on S maturing at time T with strike price K. Assume that the stock does not pay dividends. Then, we can make the identification:

$W = S$, $\Delta \equiv 0$, $\nu = T$ and $\Xi^\nu = (ST - K)^+$.

It is easily seen that this claim is super-replicated by the trading strategy $\pi = (1_{\{t \leq T\}})_{t \geq 0}$ with $a = S_0$. Therefore, the payoff to this call option is in Φ.

To motivate the definition of no dominance, suppose that there are two different ways of obtaining a cash flow $\phi \in \Phi$. Assume that we can either buy an asset A which produces the cash flow ϕ, or that we can create an admissible trading strategy, a portfolio B, that also produces the cash flow ϕ. Further, suppose that the price of A is higher than the construction cost of B. In this illustration, portfolio B dominates asset A, because it has the same cash flows but a lower price.

At first glance, this situation would seem to generate a simple arbitrage trading strategy (i.e. violate NFLVR). Indeed, one would like to short asset A and long the trading strategy B. However, for many market economies, this combined trading strategy would not be admissible.
because of the short position in asset A. Hence, not all such "mispricings" are excluded by the NFLVR assumption (for an example, see Jarrow, Protter and Shimbo [40]). To exclude such "mispricings," we need an additional assumption.

We note that if traders prefer more wealth to less, then no rational agent would ever buy A to hold in their optimal portfolio. If a trader wanted the cash flow \(\phi \), then they would hold the trading strategy B instead. This implies that a necessary condition for an economic equilibrium is that the price of A and the construction cost of B must coincide. Consequently, we would not expect to see any dominated assets or portfolios in a well-functioning market.

To formalize this idea, let us denote the market price of \(\phi \) at time \(t \) by \(\Lambda_t(\phi) \). Fix \(\phi = (\Delta, \Xi) \in \Phi \). For a pair of stopping times \(\sigma < \mu \leq \nu \), define the net gain \(G_{\sigma,\mu}(\phi) \), by purchasing \(\sigma \) and selling at \(\mu \leq \nu \), by

\[
G_{\sigma,\mu}(\phi) = \Lambda_\mu(\phi) + \int_{\sigma}^{\mu} d\Delta_s + \Xi_\nu \mathbf{1}_{\{\nu = \mu\}} - \Lambda_\sigma(\phi).
\]

(18)

Definition 2.5 (Dominance). Let \(\phi^1, \phi^2 \in \Phi \) be two assets. If there exists a stopping time \(\sigma < \nu \) such that:

\[
G_{\sigma,u}(\phi^2) \geq G_{\sigma,u}(\phi^1), \quad \forall u > \sigma
\]

almost surely, and if there exists a stopping time \(\sigma \leq \mu \leq \nu \) such that \(\mathbb{E}[\mathbf{1}_{\{G_{\sigma,\mu}^2 > G_{\sigma,\mu}^1\}} | \mathcal{F}_\sigma] > 0 \) almost surely, then we say that asset 1 is dominated by asset 2 at time \(\sigma \).

Finally, we impose the following assumption.

Assumption 2.2 (No Dominance). Let the market price be represented by a function \(\Lambda_t : \Phi \to \mathbb{R}_+ \) such that there are no dominated assets in the market.

This is Merton’s [48] no dominance assumption in modern mathematical terms. Note that this assumption consists of two parts. One, the fact that the market price is a function, implies that for each asset cash flow there is a unique market price. And, two, it implies that the market price must satisfy no dominance. In essence, it codifies the intuitively obvious idea that, all things being equal, financial agents prefer more to less. Note that this also excludes suicide strategies (see Harrison and Pliska [32] for a definition and related discussion). Different from assumption 2.1, it does not require an admissible trading strategy to exploit any deviations. It is in fact true that the no dominance assumption is stronger than NFLVR, as the following lemma asserts.

Lemma 2.3. No Dominance implies NFLVR; however the converse is false.

For an example which is consistent with NFLVR, but excluded by No Dominance, as well as a proof of Lemma 2.3, see Jarrow, Protter and Shimbo [40].

3 The Fundamental Price and Bubbles

In the classical theory of mathematical finance, for a primary\(^4\) asset trading in an arbitrage-free market, there is no difference between the market price, the arbitrage-free price, and the

\(^4\)By primary we mean not a derivative security on the asset.
fundamental price, even if the market is incomplete (see Harrison and Kreps [34], Harrison and Pliska [32]). This is true because the classical theory only considers finite horizon models with value processes that, under no-arbitrage, are Q-martingales for all EMM’s Q. So, the traded asset’s market price equals its arbitrage-free price which equals the conditional expectation of the asset’s payoffs under any Q. Here (and to be made subsequently precise), the conditional expectation of the stock’s payoffs is interpreted as the present value of the asset’s future cash flows, called its fundamental value. Intuitively, defining a bubble as the difference between the asset’s market and fundamental prices, we see that (by fiat) classical mathematical finance theory has no price bubbles!

In contrast, in the modern theory of mathematical finance (post Delbaen and Schachermayer [13], [14]), bubbles can exist. This is the local martingale approach for bubbles due to Loewenstein and Willard [44], [45] and Cox and Hobson [11]. For a primary asset trading in a NFLVR market, although there is still no difference between the market and arbitrage-free prices, these need not be equal to the conditional expectation of the asset’s payoffs - the fundamental price. Indeed, if for a given $Q \in \mathcal{M}_{loc}(W)$ the asset’s price is a strict Q - local martingale, then a bubble exists. As is well known from the empirical literature (Diba and Grossman [19], Weil [64]) and as shown below, bubbles must be non-negative and they either exist at the start of the model, or they do not exist at all. This is an unsatisfactory implication of the existing model structure.

In addition, as shown by Jarrow, Protter and Shimbo [40], adding the assumption of no dominance in a complete market precludes the existence of bubbles. Therefore, to study bubbles using the local martingale approach, one must really investigate an incomplete market. Using the same model structure, in conjunction with an arbitrary rule to choose a unique $Q \in \mathcal{M}_{loc}(W)$ making the asset’s price a strict Q - local martingale, generates a market with bubbles. But, unfortunately, this straightforward extension still retains the implication that bubbles cannot arise after the model starts. To obtain a theory that incorporates bubble "birth" in an incomplete market, we need to extend the standard local martingale approach as presented in section 2. This is the purpose of the next section.

3.1 The Extended Economy

This section extends the economy of section 2 to allow for the possibility of bubble "birth" after the model starts. For pedagogical reasons we choose the simplest and most intuitive structure consistent with this extension. As indicated below, our extension could be easily generalized, but at a significant cost in terms of its mathematical complexity. We leave this generalization to future research.

To begin this extension, we let $(\sigma_i)_{i \geq 0}$ denote an increasing sequence of random times with $\sigma_0 = 0$. And, we let $(Y^i)_{i \geq 0}$ be a sequence of random variables such that $(Y^i)_{i \geq 0}$ and $(\sigma)_{i \geq 0}$ are independent each other. Moreover, we further assume that both $(Y^i)_{i \geq 0}$ and $(\sigma)_{i \geq 0}$ are also independent of the underlying filtration \mathbb{F} to which the price process S is adapted. The random times $(\sigma_i)_{i \geq 0}$ should be interpreted as representing the times of structural/regime shifts in the economy; and $(Y^i)_{i \geq 0}$ should be interpreted as the relevant variable(s) characterizing the state of the economy (e.g. unemployment, inflation, technological advances, etc.) at those times.
Let the two stochastic processes \((N_t)_{t \geq 0}\) and \((Y_t)_{t \geq 0}\) be defined by
\[
N_t = \sum_{i \geq 0} 1_{\{t \geq \sigma_i\}} \quad \text{and} \quad Y_t = \sum_{i \geq 0} Y^i_1_{\{\sigma_i \leq t < \sigma_{i+1}\}}.
\]

Let \(\mathbb{H}\) be a natural filtration generated by \(N\) and \(Y\) and define the enlarged filtration \(G = \mathbb{F} \vee \mathbb{H}\) (seeProtter [53] for a discussion of some of the general theory of filtration enlargement). By the definition of \(G\), \((\sigma_i)_{i \geq 0}\) is an increasing sequence of \(G\) stopping times.

Since \(N\) and \(Y\) are independent of \(\mathbb{F}\), every \((Q, \mathbb{F})\)-local martingale is also a \((Q, G)\)-local martingale. By this independence, changing the distribution of \(N\) and/or \(Y\) does not affect the martingale property of the wealth process \(W\). Therefore, the set of ELMMs defined on \(G_\infty\) is priori larger than the set of ELMMs defined on \(\mathbb{F}_\infty\). We are not concerned with this enlarged set of ELMMs. We will, instead, focus our attention on the later and sometimes write \(\mathcal{M}_{loc}^G(W)\) to explicitly recognize this restriction. With respect to this restricted set, given the Radon Nikodym derivative \(Z_\infty = \frac{dQ}{dP} |_{\mathbb{F}_\infty}\), we define its density process by \(Z_t = E[Z_\infty | \mathcal{F}_t]\). Of course, \(Z\) is an \(\mathbb{F}\)-adapted process. Note that this construction implies that the distribution of \(Y\) and \(N\) is invariant with respect to a change of ELMMs in \(\mathcal{M}_{loc}^G(W)\).

The independence of the filtration \(\mathbb{H}\) from \(\mathbb{F}\) gives this increased randomness in our economy the interpretation of being extrinsic uncertainty. It is well known that extrinsic uncertainty can affect economic equilibrium as in the sunspot equilibrium of Cass and Shell [9]. This form of our information enlargement, however, is not essential to our arguments. It could be relaxed, making both \(N\) and \(Y\) pairwise dependent, and dependent on the original filtration \(\mathbb{F}\) as well.

This generalization would allow bubble birth to depend on intrinsic uncertainty (see Froot and Obstfeld [27] for a related discussion of intrinsic uncertainty). However, this generalization requires a significant extension in the mathematical complexity of the notation and proofs, so it is not emphasized in the text.

3.2 The Fundamental Price

This section makes precise our definition of the fundamental price. The fundamental price in our extended economy depends on the state of the economy at time \(t\) as represented by the original filtration \((\mathcal{F}_t)_{t \geq 0}\), the state variable(s) \(Y_t\), and the number of regime shifts \(N_t\) that have occurred. Suppose \(N_t = i\). Let \(Q^i \in \mathcal{M}_{loc}(W)\) be the ELLM "selected by the market" at time \(t\) given \(Y^i\). Of course, in an incomplete market, the set of ELMMs \(\mathcal{M}_{loc}(W)\) is infinite. To uniquely choose the ELLM \(Q^i\), i.e. to fix the \(Q^i\) "selected by the market," we use the insights of Schweizer and Wissel [58] and Jacod and Protter [37] who show that if enough derivative securities trade (of a certain type), then the market’s choice of \(Q^i\) can in theory be uniquely determined. These traded derivative securities effectively complete the market, enabling the unique determination of \(Q^i\). We assume the Jacod and Protter [37] conditions hold for the remainder of the paper.

As in the earlier literature on bubbles, the fundamental price of an asset (or portfolio) should represent the present value of its future cash flows. Our definition captures this idea.

Definition 3.1 (Fundamental Price). Let \(\phi \in \Phi\) be an asset with maturity \(\nu\) and payoff \((\Delta, \Xi^\nu)\). We define the fundamental price \(\Lambda^\nu_t(\phi)\) of asset \(\phi\) by
\[
\Lambda^\nu_t(\phi) = \sum_{i=0}^{\infty} \mathbb{E} Q^i \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\{\nu < \infty\}} \right| \mathcal{F}_t] \ 1_{\{t < \nu\} \cap \{t \in [\sigma_i, \sigma_{i+1})\}}
\]

(20)
∀t ∈ [0, ∞) where Λ^∗_∞(ϕ) = 0.

In particular the fundamental price of the risky asset S^*_t is given by

\[
S^*_t = \sum_{i=0}^{\infty} E_{Q^i} \left[\int_t^\tau dD_u + X_\tau 1_{\{\tau < \infty\}} \bigg| \mathcal{F}_t \right] 1_{\{t < \tau\} \cap \{t \in [\sigma_i, \sigma_{i+1})\}}. \tag{21}
\]

To understand this definition, let us focus on the risky asset’s fundamental price. At any time t < τ, given that we are in the set \{σ_i ≤ t < σ_{i+1}\}, the right side of expression (21) simplifies to:

\[
S^*_t = E_{Q^i} \left[\int_t^\tau dD_u + X_\tau 1_{\{\tau < \infty\}} \bigg| \mathcal{F}_t \right].
\]

Given the market’s choice of the ELMM is Q^i ∈ \mathcal{M}_{loc}(W) at time t, we see that the fundamental price equals the present value of its future cash flows. Note that the payoff of the asset at infinity, X_\tau 1_{\{\tau = \infty\}}, does not contribute to the fundamental price. This reflects the fact that agents cannot consume the payoff X_\tau 1_{\{\tau = \infty\}}. Furthermore note that at time τ, the fundamental price S^*_\tau = 0. We emphasize that a fundamental price is not necessarily the same as the market price S_t. Under NFLVR and no dominance, the market price S_t equals the arbitrage-free price, but again we emphasize that these need not equal the fundamental price S^*_t.

We can alternatively rewrite the fundamental price in terms of an equivalent probability measure, indexed by time t. Note however, that this measure will not be in the set \mathcal{M}_{loc}(W).

Theorem 3.1. There exists an equivalent probability measure Q^*_t such that

\[
\Lambda^*_t(ϕ) = E_{Q^*_t} \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\{\nu < \infty\}} \bigg| \mathcal{F}_t \right] 1_{\{t < \nu\}}. \tag{22}
\]

Proof. Let Z^i_t ∈ \mathcal{F}_\infty be a Radon Nykodim derivative of Q^i with respect to P and Z^i_t = E[Z^i_t | \mathcal{F}_t]. Define

\[
Z^{i*}_\infty = \sum_{i=0}^{\infty} Z^i_t 1_{\{t \in [\sigma_i, \sigma_{i+1})\}} \tag{23}
\]

Then Z^{i*}_\infty > 0 almost surely and

\[
EZ^{i*}_\infty = E \left[\sum_{i=0}^{\infty} Z^i_t 1_{\{t \in [\sigma_i, \sigma_{i+1})\}} \right] = \sum_{i=0}^{\infty} E[Z^i_t 1_{\{t \in [\sigma_i, \sigma_{i+1})\}}]
\]

\[
= \sum_{i=0}^{\infty} E[Z^i_t] E[1_{\{t \in [\sigma_i, \sigma_{i+1})\}}]
\]

\[
= \sum_{i=0}^{\infty} P(\sigma_i \leq t < \sigma_{i+1})
\]

\[
= 1 \tag{24}
\]

5This convention is nonetheless somewhat arbitrary. The alternative convention is to include X_\tau 1_{\{\tau = \infty\}} in the asset’s cash flows. The consequence would be that there are no type 1 bubbles (as defined subsequently).
Let ϕ be an equivalent probability measure such that for each $\phi \in \Phi$ the fundamental price is given by
\[
\Lambda^*_t(\phi) = E_{Q^*} \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right]_{F_t} 1_{\{t<\nu\}} = E \left[\left(\sum_{i=0}^{\infty} Z^i_t 1_{\{t \in [\tau_i, \tau_{i+1})\}} \right) \left(\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right) \right]_{G_t} 1_{\{t<\nu\}}
\]
and observing that
\[
\frac{Z^i_t}{Z^i_t} 1_{\{t \in [\tau_i, \tau_{i+1})\}} = \frac{Z^i_t 1_{\{t \in [\tau_i, \tau_{i+1})\}}}{\sum_{i=0}^{\infty} Z^i_t 1_{\{t \in [\tau_i, \tau_{i+1})\}}},
\]
we can continue:
\[
= E \left[\left(\sum_{i=0}^{\infty} Z^i_t 1_{\{t \in [\tau_i, \tau_{i+1})\}} \right) \left(\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right) \right]_{G_t} 1_{\{t<\nu\}}
\]
\[
= E_{Q^*} \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right]_{G_t} 1_{\{t<\nu\}}
\]
\[
= E_{Q^*} \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right]_{F_t} 1_{\{t<\nu\}}
\]

\[
\square
\]

Definition 3.2 (Valuation Measure, Static and Dynamic Markets). Let Q^*_t be an equivalent probability measure such that for each $\phi \in \Phi$ the fundamental price is given by
\[
\Lambda^*_t(\phi) = E_{Q^*_t} \left[\int_t^\nu d\Delta_u + \Xi^\nu 1_{\nu<\infty} \right]_{F_t} 1_{\{t<\nu\}}.
\]

Then, Q^*_t is called the valuation measure at t.

We call the collection of valuation measures $(Q^*_t)_{t\geq0}$ the valuation system.

If $N_t = 1$ for all t, then
\[
Q^*_t(A) = Q^0_t(A) \quad \forall A \in \mathcal{F}_\infty, t \geq 0.
\]

In this case, we say the valuation system is static. By construction, in a static market, such a $Q^*_t \in \mathcal{M}_{loc}(W)$. If the market is not static, we say that it is dynamic.
The * superscript is used to emphasize that \(Q^* \) is the measure determined by the market, and the superscript \(t \) is used to indicate that it is chosen at time \(t \). On \(\{ \sigma_i \leq t < \sigma_{i+1} \} \), the valuation measure coincides with \(Q^i \in M_{loc}(W) \). As noted before, \(Q^* \notin M_{loc}(W) \) in general unless the system is static.\(^6\) Given the definition of an asset’s fundamental price, we can now define the fundamental wealth process.

Definition 3.3 (Fundamental Wealth Process). We define the fundamental wealth process of the risky price by

\[
W^*_t = S^*_t + \int_0^{\tau \wedge t} dD_u + X_t \mathbf{1}_{\{\tau \leq t\}}.
\]

(30)

Then,

\[
W^*_t = \sum_{i=0}^{\infty} E_{Q^i} \left[\int_0^{\tau} dD_u + X_{\tau} \mathbf{1}_{\{\tau < \infty\}} \right] |\mathcal{F}_t| \mathbf{1}_{\{t \in [\sigma_i, \sigma_{i+1})\}}
\]

(31)

\(\forall t \in [0, \infty) \) and \(W^*_\infty = \int_0^{\tau} dD_u + X_{\tau} \mathbf{1}_{\{\tau < \infty\}} \).

Alternatively, we can rewrite \(W^*_t \) by

\[
W^*_t = \sum_{i=0}^{\infty} E_{Q^i} \left[W^*_\infty |\mathcal{F}_t\right] \mathbf{1}_{\{t \in [\sigma_i, \sigma_{i+1})\}} \quad \forall t \in [0, \infty).
\]

(32)

In general, the choice of a particular ELMM affects fundamental values. But, for a certain class of ELMMs, when \(\tau < \infty \) the fundamental values are invariant. This invariant class is characterized in the following lemma.

Lemma 3.1. Suppose \(\tau < \infty \) almost surely. On the set \(\{ \sigma_i \leq t < \sigma_{i+1} \} \), if the market chooses \(Q^i \in M_{UI}(W) \), then the fundamental price of the risky asset \(S^*_t \) and fundamental wealth \(W^*_t \) do not depend on the choice of the measure \(Q^i \) almost surely.

Proof. Fix \(Q^*, R^* \in M_{UI}(W) \). \(\tau < \infty \) implies that \(W^*_\infty = W^*_\infty \). Let \(W^i_t \) and \(W^R_t \) be the fundamental prices on \(\{ \sigma_i \leq t < \sigma_{i+1} \} \) when \(Q^i = Q^* \) and \(R^* \) respectively. Since \(W \) is uniformly integrable martingale under \(Q^* \) and \(R^* \),

\[
W^i_t = E_{Q^*} [W^*_\infty |\mathcal{F}_t] = E_{R^*} [W^*_\infty |\mathcal{F}_t]
\]

\[
= W^*_t = E_{R^*} [W^*_\infty |\mathcal{F}_t]
\]

\[
= W^R_t \quad \text{a.s. on } \{ \sigma_i \leq t < \sigma_{i+1} \}
\]

(33)

The difference of \(W^i_t \) and \(S^i_t \) does not depend on the choice of measure. Therefore \(W^i_t = W^R_t \) implies \(S^i_t = S^R_t \) on \(\{ \sigma_i \leq t < \sigma_{i+1} \} \).

\(^6\) Although the definition of the fundamental price as given depends on the construction of the extended economy, one could have alternatively used expression (28) as the initial definition. This alternative approach relaxes the extrinsic uncertainty restriction explicit in our extended economy.
This lemma applies to the risky asset only. If the measure shifts from $Q^i \in \mathcal{M}_{UI}(W)$ to $R^i \in \mathcal{M}_{UI}(W)$, then the fundamental price of other assets can in fact change.

The next lemma describes the relationship between the fundamental prices of the risky asset when two measures are involved, one being a measure $R^* \in \mathcal{M}_{NUI}(W)$.

Lemma 3.2. Suppose $\tau < \infty$. On $\{ \sigma_i \leq t < \sigma_{i+1} \}$, consider the case where $Q^i \in \mathcal{M}_{UI}(W)$ and $R^i \in \mathcal{M}_{NUI}(W)$. Then,

$$W_{t}^{R^*} \leq W_{t}^{Q^*}, \quad \text{a.s. on} \quad \{ \sigma_i \leq t < \sigma_{i+1} \}. \quad (34)$$

That is, the fundamental price based on a uniformly integrable martingale measure is greater than that based on a non-uniformly integrable martingale measure.

Proof. Pick $Q^* \in \mathcal{M}_{UI}(W)$ and $R^* \in \mathcal{M}_{NUI}(W)$. Since $\tau < \infty$ almost surely, $W_\infty = W^*_\infty$. Under R^*, W is not a uniformly integrable non-negative martingale and $W_t \geq E_{R^*}[W_\infty | \mathcal{F}_t]$.

Therefore

$$W_t^{Q^*} - W_t^{R^*} = E_{Q^*}[W_\infty^* | \mathcal{F}_t] - E_{R^*}[W_\infty^* | \mathcal{F}_t]$$

$$= E_{Q^*}[W_\infty | \mathcal{F}_t] - E_{R^*}[W_\infty | \mathcal{F}_t]$$

$$= W_t - E_{R^*}[W_\infty | \mathcal{F}_t]$$

$$\geq 0. \quad (35)$$

We can now finally define what we mean by a price bubble.

3.3 Bubbles

As is standard in the literature,

Definition 3.4 (Bubble). We define the asset price bubble β for S by

$$\beta = S - S^*. \quad (36)$$

Recall that S_t is the market price and S^*_t is the fundamental value of the asset. Hence, a price bubble is defined as the difference in these quantities.

4 A Characterization of Bubbles

This section characterizes all possible price bubbles in both static and dynamic models.

4.1 Static Markets

Static markets are the first natural generalization of a complete market. In a complete market, there is only one ELMM. In a static market, there is also only one ELMM, although it is possible that not all derivative securities can be replicated by an admissible trading strategy.
The complete market case was studied in Jarrow, Protter and Shimbo [40]. Since the analysis is very similar, the reader is referred to the original paper for the relevant proofs.

By definition, in a static market, there exist a $Q^* \in \mathcal{M}_{loc}(W)$ such that $Q^*(A) = Q^*(A)$ for all $t \geq 0$. Then, the fundamental wealth process W^*_t is given by

$$W^*_t = E_{Q^*} \left[\int_t^\tau dD_u + X_\tau 1_{\{\tau < \infty}\} F_t \right] 1_{\{t < \tau\}} + \int_0^{t \wedge \tau} dD_u + X_\tau 1_{\{\tau \leq t\}},$$

which is a Q^*-uniformly integrable martingale. Since W is Q^*-local martingale, this implies that the price bubble β is a Q^*-local martingale.

Recall that the stopping time τ represents the maturity of our risky asset.

Theorem 4.1. If there exists a non-trivial bubble $\beta \neq 0$, then we have three and only three possibilities:

1. β is a local martingale (which could be a uniformly integrable martingale) if $P(\tau = \infty) > 0$.

2. β is a local martingale but not a uniformly integrable martingale if is unbounded, but with $P(\tau < \infty) = 1$.

3. β is a strict Q-local martingale, if τ is a bounded stopping time.

As indicated, there are three types of bubbles that can be present in an asset’s price. Type 1 bubbles occur when the asset has an infinite life with a payoff at $\{\tau = \infty\}$. Type 2 bubbles occur when the asset’s life is finite, but unbounded. Type 3 bubbles are for assets whose lives are bounded.

The first question one considers when discussing bubbles is why arbitrage doesn’t exclude bubbles in a NFLVR economy. To answer this question, let us consider the obvious candidate trading strategy for an arbitrage opportunity. This trading strategy is to short the risky asset during the bubble, and to cover the short after the bubble crashes. For type 1 and type 2 bubbles, this trading strategy fails to be an arbitrage because all trading strategies must terminate in finite time, and the bubble may outlast this trading strategy with positive probability. For type 3 bubbles this trading strategy fails because of the admissibility condition. Admissibility requires the trading strategy’s wealth to exceed some fixed lower bound almost surely. Unfortunately, with positive probability, a type 3 bubble can increase such that the short position’s losses violate the lower bound. The admissibility condition is a type of short sale restriction, and these are well known to generate bubbles in equilibrium models (see Scheinkman and Xiong [56], Santos and Woodford [55]). For examples of bubbles in a NFLVR market we refer the reader to Jarrow, Protter and Shimbo [40].

In a complete market, the addition of no dominance assumption excludes these bubbles due to the ability of an admissible trading strategy to generate a long position in the asset at a lower

\[\text{A strict local martingale is a local martingale that is not a martingale.}\]
cost than purchasing the asset directly (due to the bubble). Note that synthetically creating a long position in the asset does not violate the NFLVR admissibility restriction. However, a static market need not be complete, so the theory of bubbles we discuss herein is not vacuous.

We can refine Theorem 4.1 to obtain a unique decomposition of an asset price bubble that yields some additional insights.

Theorem 4.2. S admits a unique (up to an evanescent set) decomposition

$$S = S^* + \beta = S^* + (\beta^1 + \beta^2 + \beta^3),$$

where $\beta = (\beta_t)_{t \geq 0}$ is a càdlàg local martingale and

1. β^1 is a càdlàg non-negative uniformly integrable martingale with $\beta^1_t \to X_\infty$ almost surely,
2. β^2 is a càdlàg non-negative non-uniformly integrable martingale with $\beta^2_t \to 0$ almost surely,
3. β^3 is a càdlàg non-negative supermartingale (and strict local martingale) such that $E\beta^3_t \to 0$ and $\beta^3_t \to 0$ almost surely. That is, β^3 is a potential.

Furthermore, $(S^* + \beta^1 + \beta^2)$ is the greatest submartingale bounded above by W.

As in the previous Theorem 4.1, $\beta^1, \beta^2, \beta^3$ give type 1, 2 and 3 bubbles, respectively. First, for type 1 bubbles with infinite maturity, we see that a type 1 bubble component converges to the asset’s value at time ∞, X_∞. This time ∞ value X_∞ can be thought of as analogous to fiat money, embedded as part of the asset’s price process. Indeed, it is a residual value to an asset that pays zero dividends for all finite times. Second, this decomposition also shows that for finite maturity assets, $\tau < \infty$, the critical threshold is that of uniform integrability. This is due to the fact that when $\tau < \infty$, the type 2 and 3 bubble components of $\beta = (\beta_t)_{t \geq 0}$ converge to 0 almost surely, while they need not converge in L^1. Finally, type 3 bubbles are strict local martingales, and not martingales.

As a direct consequence of this theorem, we obtain the following corollary.

Corollary 4.1. Any asset price bubble β has the following properties:

1. $\beta \geq 0$,
2. $\beta_\tau 1_{\{\tau < \infty\}} = 0$, and
3. if $\beta_t = 0$ then $\beta_u = 0$ for all $u \geq t$.

Condition (1) states that bubbles are always non-negative, i.e. the market price can never be less than the fundamental value. Condition (2) states that if the bubble’s maturity is finite $\tau < \infty$, then the bubble must burst on or before τ. Finally, Condition (3) states that if the bubble ever bursts before the asset’s maturity, then it can never start again. Alternatively stated, Condition (3) states that in the context of our model, bubbles must either exist at the start of the model, or they never will exist. And, if they exist and burst, then they cannot start again (this corollary is well known in the empirical literature for discrete time economies, see e.g. Diba and Grossman [19], Weil [64]).
4.2 Dynamic Markets

In a dynamic market, there is no single ELMM generating fundamental values across time. The valuation measures Q^{ss} and Q^{ts} at times $s < t$ are usually two different measures, and neither is an ELMM. It follows, therefore, that the local martingale property of a bubble β in a static market is no longer preserved.

The following is a trivial but important observation generalizing Corollary 4.1 to dynamic markets.

Theorem 4.3. Bubbles are nonnegative. That is, if β denotes a bubble, then $\beta_t \geq 0$ for all $t \geq 0$.

Proof. Fix $t \geq 0$. On $\{\sigma_i \leq t < \sigma_{i+1}\}$, the market chooses Q^i as a valuation measure and the fundamental price S^*_t is given by

$$S^*_t \mathbf{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}} = E_{Q^i} \left[\int_t^\tau dD_u + X_\tau \mathbf{1}_{\{\tau < \infty\}} \mid \mathcal{F}_t \right] \mathbf{1}_{\{t < \tau\}} \mathbf{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}}$$

(38)

where S^*_i denotes a fundamental price with valuation measure $Q^i \in \mathcal{M}_{loc}(W)$ and

$$S_t^* = \sum_i S^*_i \mathbf{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}}$$

(39)

and

$$\beta_t^* = \sum_i \beta^*_i \mathbf{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}}$$

(40)

By Corollary 4.1, $\beta_i^* = S^*_i - S^*_i \geq 0$ for each i and hence $\beta^* \geq 0$.

Negative bubbles do not exist even in a dynamic market.

As shown in the previous section, bubble birth is not possible in a static market. In contrast, in a dynamic market, bubble birth is possible as the next example shows.

Example 4.1. Suppose that the measure chosen by the market shifts at time σ_0 from $Q \in \mathcal{M}_{UI}(W)$ to $R \in \mathcal{M}_{NUI}(W)$. To avoid ambiguity, we denote a fundamental price based on valuation measures Q and R by W^{Q*} and W^{R*}, respectively. By Lemma 3.2, we can choose Q, R and σ such that the difference of fundamental prices based on these two measures,

$$W^{Q*}_{\sigma_0} - W^{R*}_{\sigma_0} \geq 0,$$

(41)

is strictly positive with positive probability. Then, the fundamental price and the bubble are given by

$$W^*_t = W^{Q*}_t \mathbf{1}_{\{t < \sigma_0\}} + W^*_u \mathbf{1}_{\{\sigma_0 \leq t\}}$$

(42)

$$\beta_t = \beta^*_t \mathbf{1}_{\{\sigma_0 \leq t\}}.$$

(43)

And, a bubble is born at time σ_0.

As shown in Lemma 3.1, a switch from one measure Q to another measure Q' such that $Q, Q' \in \mathcal{M}_{UI}(W)$ does not change the value of W^*. Therefore, if a bubble does not exist under Q, it also does not exist under Q'. Bubble birth occurs only when a valuation measure changes from $Q \in \mathcal{M}_{UI}(W)$ to an $R \in \mathcal{M}_{NUI}(W)$.

20
5 Examples

In this section, we discuss several examples. Since Type 1 bubbles are simple and few assets have infinite lifetimes, we focus on assets with finite (but possibly unbounded) maturities.

5.1 Assets with Bounded Payoffs

We first consider those risky assets that have bounded payoffs.

Theorem 5.1. If $\int_0^\tau dD_u + X_\tau$ is bounded, then $S_t = S_t^*$ and the asset price does not have bubbles.

Proof. By hypothesis, there exists $a \in \mathbb{R}_+$ such that $\int_0^\tau dD_u + X_\tau < a$. Then holding a units of the money market account dominates holding the risky asset. By No Dominance (Assumption 2.2)

$$S_t = \Lambda_t((D, X^\tau)) \leq a.$$ \hfill (44)

Since a bounded local martingale is a uniformly integrable martingale, all ELMMs are in $\mathcal{M}_{UI}(W)$ and bubbles do not exist in S.

Theorem 5.1 also holds for any arbitrary asset $\phi \in \Phi$ with bounded payoffs. We now provide some useful examples of assets with bounded payoffs.

Example 5.1 (Arrow-Debreu Securities).

Let ν be an \mathcal{F}-stopping time such that $\nu \leq \tau$ almost surely and $A \in \mathcal{F}_\nu$. Consider an Arrow-Debreu security paying 1 at ν for $\nu \leq \tau$ if event A happens, denoted by $\phi_A = (0, 1_{\{\nu\leq \tau\}})$. Then, the market price of ϕ_A does not have a bubble, i.e.

$$\Lambda_t(\phi_A) = \Lambda_t^*(\phi_A) = \sum_i E^{Q_i}[1_A|\mathcal{F}_t]1_{\{t<\tau\}}1_{\{\sigma_i \leq t < \sigma_{i+1}\}}.$$ \hfill (45)

The market price of Arrow-Debreu securities equal the conditional valuation probability of $A \in \mathcal{F}_\nu$ implied by the market.

Example 5.2 (Fixed Income Securities).

Consider a default free coupon bond with coupons of C paid at times $t_1, \ldots, t_n = \nu \leq \tau$ and a principal payment of P at time τ, where τ is the maturity date of the bond. Then, letting $\Delta_t \equiv \sum_{i=1}^n C_1\{t_i \leq t\}$ and $\Xi^\nu = P$, we have $\phi = (\Delta, \Xi^\nu)$ with $\Delta + \Xi^\nu$ bounded by the sum

8 Recall that we are using the money market account as the numeraire. A transformed analysis applies in the original (dollar) economy. Here, however, the payoff to the Arrow-Debreu security needs to be redefined to be 1 dollar at time ν. Letting D_ν denote the time ν market price of the money market account, the payoff to the Arrow-Debreu security in the numéraire is then $1/D_\nu$ units at time ν, and not 1 unit. This change has no affect on our analysis, because if the spot rate of interest $r \geq 0$ almost surely, with $D_0 = 1$, then $1/D_\nu \leq 1$ almost surely.

9 As with the Arrow-Debreu securities, these payoffs are in units of the money market account and they need to be appropriately transformed to get dollar prices in the original economy.
of all the coupons and principal payments. Then, by Theorem 5.1, the default free bond price has no bubbles, i.e.

\[\Lambda_t(\phi) = \Lambda_t^*(\phi) \]

\[= \sum_i E_Q^i \left[\sum_{i=1}^\infty C_{1\{t_{i+1} \leq t\}} P_{1\{\tau > t\}} |F_t| 1_{\{t < \tau\}} \right] 1_{\{\sigma_i \leq t < \sigma_{i+1}\}}. \]

Although this example applies to default free bonds, the same logic can be used to show that credit risky bonds, interest rate swaps, credit default swaps, and collateralized default obligations (CDOs) exhibit no bubbles. This is because all of these fixed income securities’ payoffs are bounded. For example, in the case of credit risky bonds, the cash flows are bounded by the sum of the promised payments. In the case of credit default swaps and CDOs, the maximum possible payments can be computed at origination of these contracts (see Lando [43] for a description of these different instruments).

5.2 Black-Scholes Type Economies

It is interesting to study the standard Black-Scholes economy in both static and dynamic markets, yielding perhaps some unexpected, but new insights.

Example 5.3 (Static Market, Finite Horizon).

Fix \(T \in \mathbb{R}_+ \) and let \(S_t \) be a non-dividend paying stock following a geometric Brownian motion, i.e.

\[S_t = \exp \left\{ \left(\mu - \frac{\sigma^2}{2} \right) t + \sigma B_t \right\} \quad \forall t \in [0, T], \]

where \(\mu, \sigma \in \mathbb{R}_+ \), and \(B \) is a standard Brownian motion. Then, \(S \) is a \(Q \)-martingale, where \(Q \) is the probability measure on \(F_T \) defined by the Radon-Nikodym derivative \(\frac{dQ}{dP} = \mathcal{E}(\mu/\sigma)B_T \).

This is the standard Black Scholes model, and we see by construction that there are no stock price bubbles.

Example 5.4 (Static Market, Infinite Horizon).

If we simply extend formula (47) from \([0, T]\) to \([0, \infty)\), then the situation changes dramatically. On an infinite horizon, \(S_t \) converges to 0 almost surely. Thus, the fundamental value of the stock (recall that it pays no dividends over \([0, \infty)\)), is \(S_t^* = 0 \). By definition, therefore,

\[\beta_t = S_t - S_t^* = S_t, \]

and the entire stock price is a bubble!

In this case, \(Q \) is not an EMM on \(F_\infty \). Indeed, \(P \) and \(Q \) are singular on \(F_\infty \). Hence, \(S \) is not a uniformly integrable martingale nor a (regular) martingale under the \(Q \) given above, but only a \(Q \) strict local martingale.

Although this example is plausible under NFLVR, when we also introduce the no dominance assumption 2.2, this example becomes problematic. Note that if the stock pays no
dividends on \([0, \infty)\), then no dominance implies that the asset has zero value, i.e. \(S_t \equiv 0\). In this case, the model trivializes and becomes useless.

Therefore, if we want to use the Black-Scholes model in a static market, we need to restrict it to the finite horizon case. And, then one needs to interpret \(S_T\) as either: (i) a liquidating dividend (final cash flow), or (ii) the resale value at time \(T\). In either case, because the Black-Scholes economy as given by expression (47) implies a complete market, we know that under both NFLVR and no dominance, there cannot be bubbles.

Example 5.5 (Dynamic Market, Infinite Horizon).

This example can be considered as an extension of the Black Scholes formula which is well defined on \([0, \infty)\). It is also an example of a dynamic market in which bubble birth occurs.

Let \(B_1, B^2\) be two independent \(Q\)-Brownian motions. Fix \(k > 1\). Let

\[
\sigma = \inf\{E(B^2)_t = k\}.
\]

Define the processes \(Z\) and \(S\) by

\[
Z_t = E(B^2)_{t \wedge \sigma}, \quad S_t = E(B^1)_{t \wedge \sigma}.
\]

We regard \(S\) as a stock process that pays no dividends \(D \equiv 0\), and where the stock can default at time \(\tau = \sigma\). If it defaults, it pays a final cash flow at the default time equal to \(X_\tau = S_\sigma\).

The key difference of this example from the standard Black-Scholes model is the explicit introduction of a default time \(\tau = \sigma\), so that \(S\) does not converge to 0 almost surely as \(t \to \infty\). However, as in lemma 2.1

\[
E_Q[S_\infty] = E_Q[E(B^1)_\sigma 1_{\{\sigma < \infty\}}] = Q(\sigma < \infty) = \frac{1}{k},
\]

so \(S\) is a non-uniformly integrable martingale.

Let \(R \in \mathcal{M}_{loc}(W)\) be the probability measure defined by \(dR/dQ|_{\mathcal{F}_t} = Z_t\). As shown in Lemma 2.1, \(SZ\) is a \(Q\)-uniformly integrable martingale. It follows that \(S\) is an \(R\)-uniformly integrable martingale, since

\[
E_R[S_\infty|\mathcal{F}_t] = \frac{E_Q[S_\infty Z_\infty|\mathcal{F}_t]}{Z_t} = \frac{Z_t S_t}{Z_t} = S_t \quad \text{a.s.}
\]

Observe that \(S\) is a geometric Brownian motion stopped by \(\sigma\) under \(Q\) and \(R\). Thus, \(S\) coincides with standard Black Scholes model on \(\{t < \sigma\}\).

Let us now introduce the regime shifting times \(\sigma_i\), and suppose that at each of these times the market shifts from \(Q\) to \(R\) or vice-versa. Then when shifting from \(R\) to \(Q\), a bubble is born. This is a Black-Scholes like economy that is infinite horizon, but where the stock price process, prior to default, exhibits bubble birth and bubble disappearance.

5.3 Market Indices

Although the previous discussion concentrates on a single risky asset \(S\), the theory remains unchanged if there are multiple risky assets and \(S\) represents a vector of risky asset price processes. It also applies to market indices. Let \(M\) denote the market price of an asset defined
as an (weighted) average of (finitely many) individual risky assets trading in the market (e.g. Dow Jones Industrials, S&P 500 Index, etc.). Of course, the future cash flows associated with this portfolio are also a weighted average of the cash flows from the individual assets. As before, we can define the fundamental price of this index. If any asset in the market index has a bubble, then the market and the fundamental prices of this index differ, and a bubble exists.

Example 5.6 (Bubbles in an Index Model)

In portfolio theory, the return on an individual asset R_t is often modeled using an index model:

$$R_t = b \cdot R^M_t + \varepsilon_t,$$

where b is constant, R^M_t denotes the return on the index, and ε_t is a idiosyncratic return that is independent of R^M_t.

Taking the stochastic exponential of both sides of this expression, we obtain the stock price process S_t, i.e.

$$S_t = \mathcal{E}(R)_t = \mathcal{E}(b \cdot R^M)_t \mathcal{E}(\varepsilon)_t.$$

If we assume, as is standard in the literature, that idiosyncratic risk earns no risk premium, then ε is a local martingale under both the physical and the valuation measure.

Let us consider a static market with the valuation measure $Q \in \mathcal{M}_{loc}(S)$. Since $\mathcal{E}(b \cdot R^M)$ and $\mathcal{E}(\varepsilon)$ are independent and b is a constant, the stock price process, S, is a Q-uniformly integrable martingale if and only if both $\mathcal{E}(R^M)$ and $\mathcal{E}(\varepsilon)$ are Q-uniformly integrable martingales. This implies that under the index model bubbles can exist in a stock because the bubble exists in a market index, or because it exists within the stock’s idiosyncratic component itself.

6 Derivative Securities

This section considers bubbles in derivative securities written on the risky asset. We focus on the standard derivatives: forward contracts, European and American call and put options. We first need to formalize the definition of the fundamental price of a derivative security.

To simplify the notation, we assume that the risky asset S pays no dividends over the time interval $(0, T]$, where $\tau > T$ almost surely. We define an arbitrary (European type) derivative security on the risky asset S to be a financial contract that has a random payoff at time T, where T is called the maturity date. The payoff is given by $H_T(S)$ where H_T is a functional on $(S_u)_{u \leq T}$. As is true in practice, our definition of a derivative security reflects the fact that the financial contract’s payoffs are written on the market price of the risky asset, and not its fundamental value. This is a small, but important observation.

We denote the time t market price of a derivative security H by Λ^H_t. We study derivative pricing in a dynamic market (hence a static market is a special case). Therefore we assume that the market chooses a collection of ELMMs $(Q^i)_{i \geq 0} \in \mathcal{M}_{loc}(W)$ such that the derivative security’s market price Λ^H_t is a Q^i-local martingale over the time interval $\{\sigma_i \leq t < \sigma_{i+1}\}$.

Then, analogous to the risky asset, the fundamental price of the derivative security is defined to be the conditional expectation of the derivative’s time T payoff using the valuation measure Q^{i*} determined by $(Q^i)_{i \geq 0} \in \mathcal{M}_{loc}(W)$, i.e. $\mathbb{E}_{Q^{i*}}[H_T(S) | \mathcal{F}_t]$.

24
The derivative security’s price bubble δ_t is defined as the difference between its market price and fundamental value,

$$\delta_t = \Lambda_t^H - E_{Q^*}[H_T(S)|\mathcal{F}_t].$$

The following lemma will prove useful in the subsequent analysis:

Lemma 6.1. Let H_T, H'_T be the payoffs of two derivative securities with the same maturity date.

Let $\Lambda_t(H')$ have no bubble, i.e.

$$\Lambda_t^H = E_{Q^*}[H'_T(S)|\mathcal{F}_t].$$ \(\text{(54)}\)

If $H_T(S) \leq H'_T(S)$ almost surely, then

$$\Lambda_t^H = E_{Q^*}[H_T(S)|\mathcal{F}_t].$$ \(\text{(55)}\)

Proof. Since derivative securities have bounded maturities, we only need to consider type 3 bubbles. Let \mathcal{L} be a collection of stopping times on $[0, T]$. Then for all $L \in \mathcal{L}$, $\Lambda_L(H) \leq \Lambda_L(H')$ by No Dominance (Assumption 2.2). Since $\Lambda(H')$ is a martingale on $[0, T]$, it is a uniformly integrable martingale and is in class (D) on $[0, T]$. Then $\Lambda(H)$ is also in class (D) and is a uniformly integrable martingale on $[0, T]$. (See Jacod and Shiryaev [38, Definition 1.46, Proposition 1.47]). Therefore type 3 bubbles do not exist for this derivative security. \(\square\)

This lemma states that if there is a derivative security with no bubble and whose payoff dominates another derivative security’s payoff, then the dominated derivative security’s market price will have no bubble. This, of course, is an extension of Theorem 5.1 to derivative securities.

6.1 European Call and Put Options

In this section we consider three standard derivative securities: a forward contract, a European put option, and a European call option; all on the same risky asset. Each of these derivative securities are defined by their payoffs at their maturity dates. A *forward contract* on the risky asset with strike price K and maturity date T has a payoff $[S_t - K]$. We denote its time t market price as $V^f_t(K)$. A *European call option* on the risky asset with strike price K and maturity T has a payoff $[S_t - K]^+$, with time t market price denoted as $C_t(K)$. Finally, a *European put option* on the risky asset with strike price K and maturity T has a payoff $[K - S_t]^+$, with time t market price denoted as $P_t(K)$.

To be precise, we note that the strike price is quoted in units of the numeraire for all of these derivative securities.

Theorem 6.1 (Put-Call Parity for Fundamental Prices).

$$C^*_t(K) - P^*_t(K) = V^f_t(K).$$ \(\text{(56)}\)

Finally, let $V^f_t(K)^*, C_t(K)^*,$ and $P_t(K)^*$ be the fundamental prices of the forward contract, call option and a put option, respectively.

A straightforward implication of the definitions is the following theorem.

Theorem 6.1 (Put-Call Parity for Fundamental Prices).

$$C^*_t(K) - P^*_t(K) = V^f_t(K).$$ \(\text{(56)}\)
Proof. At maturity T,

$$
(S_T - K)^+ - (K - S_T)^+ = S_T - K \quad \forall K \geq 0 \quad (57)
$$

Since a fundamental price of a contingent claim with payoff function H is $E_{Q^*}[H(S_T)|\mathcal{F}_t]$ with the valuation measure Q^*, we have

$$
C_t^*(K) - P_t^*(K) = E_{Q^*}[(S_T - K)^+|\mathcal{F}_t] - E_{Q^*}[(K - S_T)^+|\mathcal{F}_t]
$$

$$
= E_{Q^*}[S_T - K|\mathcal{F}_t]
$$

$$
= V^{f^*}_t(K) \quad (58)
$$

Note that put-call parity for the fundamental price does not require the no dominance assumption 2.2. It only requires that the asset’s market price process satisfies NFLVR. Furthermore, put-call parity for the fundamental prices holds regardless of whether or not there are bubbles in the asset’s market price.

Perhaps surprisingly, put-call parity also holds for market prices, regardless of whether or not the underlying asset price has a bubble.

Theorem 6.2 (Put-Call Parity for Market Prices).

$$
C_t(K) - P_t(K) = V_t^f(K) = S_t - K. \quad (59)
$$

Proof. This is a direct consequence of no dominance (Assumption 2.2). See the proof of Theorem 6.4. \qed

This theorem and proof are identical to that originally contained in Merton [48]. It depends crucially on the no dominance assumption. If only NFLVR holds, then put-call parity in market prices need not hold. For an example see Jarrow, Protter and Shimbo [40]. For related discussions of the economy without no dominance (Assumption 2.2), see also Cox and Hobson [11], and Heston Loewenstein and Willard [35]. Note that this theorem also values the forward contract.

Theorem 6.3 (European Put Price). For all $K \geq 0$,

$$
P_t(K) = P_t^*(K). \quad (60)
$$

The proof of this theorem is trivial. Note that the payoff to the put option is bounded by K, hence by Theorem 5.1 the result follows. Hence, European put options always equal their fundamental values, regardless of whether or not the underlying asset’s price has a bubble. We will revisit this observation when we discuss the empirical testing of bubbles in the paper’s conclusion.

Theorem 6.4 (European Call Price). For all $K \geq 0$,

$$
C_t(K) - C_t^*(K) = S_t - E_{Q^*}[S_T|\mathcal{F}_t] = \beta_t. \quad (61)
$$
Proof. Let $V_t^{f^*}(K)$ denote the fundamental wealth process of the portfolio consisting of a unit forward contract with forward price K and maturity T. Then

$$V_t^{f^*}(K) = E_{Q^*}[S_T | \mathcal{F}_t] - K \leq S_t - K. \quad (62)$$

By applying no dominance (Assumption 2.2) to a unit forward contract and portfolio with a unit long risky asset and $-K$ money market account,

$$V_t^{f^*}(K) = (S_t - E_{Q^*}[S_T | \mathcal{F}_t]) + (E_{Q^*}[S_T | \mathcal{F}_t] - K) \quad (63)$$

This implies that a forward contract has a type 3 bubble of size $\delta^3_t = S_t - E_{Q^*}[S_T | \mathcal{F}_t]$.

Take the conditional expectation with respect to the valuation measure Q^* on the identity:

$$(S_T - K)^+ - (K - S_T)^+ = S_T - K. \quad (64)$$

Applying no dominance (Assumption 2.2) to the portfolio consisting of a unit long call and a unit short put against a unit forward contract,

$$C_t(K) - P_t(K) = V_t^{f^*}(K) = S_t - K. \quad (65)$$

This is put-call parity. By subtracting (64) from (65),

$$[C_t(K) - C_t^*(K)] - [P_t(K) - P_t^*(K)] = (S_t - K) - V_t^{f^*}(K) = (S_t - K) - (E_{Q^*}[S_T | \mathcal{F}_t] - K) = S_t - E_{Q^*}[S_T | \mathcal{F}_t] = \delta^3_t, \quad (66)$$

since the put option has a bounded payoff, $P_t(K) = P_t^*(K)$ and $C_t(K) - C_t^*(K) = \delta^3_t$. \square

Since call options have finite maturity, call option bubbles must be of type 3, if they exist. The magnitude of such a bubble is independent of the strike price and it equals the magnitude of the asset’s price bubble. We see that even if the market satisfies NFLVR and no dominance, an asset price bubble implies that there exists no valuation measure Q^* such that the expected discounted value of the call option’s payoffs equals its market price. Risk neutral valuation is not able to match market prices in the presence of asset price bubbles.

6.2 American Options

This section investigates the pricing of American options in a static market. Because the time value of money plays an important role in analyzing the early exercise decision of American options, we need to modify the notation to make explicit the numéraire. In this regard, we denote the time t value of a money market account as

$$D_t = \exp\left(\int_0^t r_udu\right) \quad (67)$$

27
where \(r \) is the non-negative adapted process representing the default-free spot rate of interest. To simplify comparison with the previous sections, we still let \(S_t \) denote the risky asset’s price in units of the numéraire.

Definition 6.1 (The Fundamental Price of an American Option). The fundamental price \(V_t^A(H) \) of an American option with payoff function \(H \) and maturity \(T \) is given by

\[
V_t^A(H) = \sup_{\eta \in [t,T]} E_Q[H(S_\eta)|\mathcal{F}_t]
\]

where \(\eta \) is a stopping time and the market selected \(Q \in \mathcal{M}_{loc}(S) \).

This definition is a straightforward extension of the standard formula for the valuation of American options in the classical literature. It is also equivalent to the fair price as defined by Cox and Hobson [11] when the market is complete.

We apply this definition to a call option with strike price \(K \) and maturity \(T \). Letting \(C_t^A(K) \) denote the American call’s fundamental value, the definition yields

\[
C_t^A(K) = \sup_{\eta \in [t,T]} E_Q[(S_\eta - K/D_\eta)^+|\mathcal{F}_t].
\]

Let \(C_t^A(K) \) be the market price of this same option, and \(C_t^E(K) \) the market price of an otherwise identical European call. Then, the following theorem is provable using standard techniques.

Theorem 6.5. Assume that the jump process of the asset’s price, \(\Delta S := (\Delta S_t)_{t \geq 0} \), where \(\Delta S_t = S_t - S_{t-} \), satisfies the regularity conditions of Lemma 10.1. Then, for all \(K \)

\[
C_t^E(K) = C_t^A(K) = C_t^{A*}(K).
\]

Proof. (i) By Theorem 10.1 with \(G(x, u) = [x - K/D_u]^+ \),

\[
C_t^{A*}(K) = \sup_{t \leq \tau \leq T} E[(S_\tau - K/D_\tau)^+|\mathcal{F}_t]
= E[(S_T - K/D_T)^+|\mathcal{F}_t] + (S_t - E[S_T|\mathcal{F}_t])
= C_t^E(K) + \beta_t^3
= C_t^E(K).
\]

The last equality is by Theorem 6.4.

(ii) A unit of an American call option with arbitrary strike \(K \) is dominated by a unit of an underlying asset. Therefore by No Dominance (Assumption 2.2),

\[
C_t^A(K) \leq S_t.
\]

Let \(\gamma_t := C_t^A(K) - C_t^{A*}(K) \) be a bubble of an American call option with strike \(K \). Since American options have finite maturity, \(\gamma_t \) is of type 3 and is a strict local martingale. Then by (i) and a decomposition of \(S_t \),

\[
C_t^{E*}(K) + \beta_t^3 + \gamma_t = C_t^{A*}(K) + \gamma_t
= C_t^A(K) \leq S_t
= S_t^* + \beta_t^1 + \beta_t^2 + \beta_t^3.
\]
and therefore
\[\gamma_t \leq [S^*_{t} - C^{E*}_{t}(K) + \beta^1_t] + \beta^2_t. \] (74)

The right side of (74) is a uniformly integrable martingale on \([0, T]\). Hence \(\gamma_t\) is a non-negative local martingale dominated by a uniformly integrable martingale. Therefore \(\gamma_t \equiv 0. \)

This theorem is the generalization of Merton’s [48] famous no early exercise theorem (i.e., given the underlying stock pays no dividends, otherwise identical American and European call options have identical prices). This extension is the first equality in expression (70), applied to the options’ market prices. The second equality implies that American call option prices exhibit no bubbles, even if there is an asset price bubble! However, By Theorem 6.4, an asset price bubble does create a difference between an American and European calls’ fundamental prices, i.e.
\[C^{A*}_{t}(K) - C^{E*}_{t}(K) = \beta_t. \]

7 Forward and Futures Prices

This section studies both forward and futures prices trading in a static market. In the classical theory, differences between these two prices can only arise in a stochastic interest rate economy. Consequently, we need to make explicit the money market account numéraire in the notation for the asset’s price process. In this regard, we let \(S\) denote the dollar price of the risky asset, and \(S/D\) the price in units of the numéraire. Then, \(Q \in M_{loc}(S)\) implies that \(S/D\) is a \(Q\)-local martingale. To simplify the presentation, we also assume that the risky asset pays no dividends over the time interval \((0, T]\), where \(\tau > T\) almost surely.

For some key results, we need to introduce trading in default free zero-coupon bonds. In this regard, we let \(p(t, T)\) be the time \(t\) market price of a sure dollar paid at time \(T\). Since zero coupon bonds have bounded payoffs, by Theorem 5.1, we know that zero-coupon bonds have no bubbles, hence this market price also represents the fundamental price. However, this distinction will not be used below.

7.1 Forward Prices

Forward contracts were defined in section 6. Recall that a forward contract on the risky asset \(S\) with strike price \(K\) and maturity \(T\) is defined by its time \(T\) payoff \([S_T - K]\). The time \(t\) forward price for this contract, denoted \(f_{t,T}\), is defined to be that strike price \(K\) that gives the \(T\) - maturity forward contract zero market value at time \(t\). Given these definitions, it is easy to prove the following theorem.

Theorem 7.1.
\[f_{t,T} \cdot p(t, T) = S_t. \]

Proof. By the No Dominance (Assumption 2.2), any two trading strategies yielding the same payoff have the same market price. Let Portfolio A be a unit of a long forward contract and
$f_{t,T}$ units of a zero coupon bond maturity at time T. Let Portfolio B be a unit of the underlying asset. Let Λ^A and Λ^B denote market prices of each portfolio. Then

$$0 + f_{t,T}p(t, T) = \Lambda^A_t = \Lambda^B_t = S_t$$

(75)

since both portfolios have the same payoff S_T at maturity.

This is an intuitive and well known result which follows directly from the no dominance assumption 2.2.

Corollary 7.1. (Forward Price Bubbles)

1. $f_{t,T} \geq 0$.
2. $f_{t,T} \cdot p(t, T)$ is a Q-local martingale for each $Q \in \mathcal{M}_{loc}(W)$.
3. $f_{t,T} \cdot p(t, T) = \mathbb{E}_Q[S_T|\mathcal{F}_t] + \beta_t$ where $\beta_t = S_t - S_t^*$.

Proof. The proof follows trivially because the risky asset’s price has these properties and $p(t,T)e=0$.

Thus, we see that discounted forward prices inherit the properties of the risky asset’s price bubble. In fact, any bubble present in the discounted forward price for a risky asset must be equal to the bubble in the risky asset’s market price.

7.2 Futures Prices

A futures contract is similar to a forward contract. It is a financial contract, written on the risky asset S, with a fixed maturity T. It represents the purchase of the risky asset at time T via a prearranged payment procedure. The prearranged payment procedure is called marking-to-market. Marking-to-market obligates the purchaser (long position) to accept a continuous cash flow stream\(^{11}\) equal to the continuous changes in the futures prices for this contract. The time t futures prices, denoted $F_{t,T}$, are set (by market convention) such that newly issued futures contracts (at time t) on the same risky asset with the same maturity date T, have zero market value. Hence, futures contracts (by construction) have zero market value at all times, and a continuous cash flow stream equal to $dF_{t,T}$. At maturity, the last futures price must equal the asset’s price $F_{T,T} = S_T$ (see Duffie [22] or Shreve [59] for further clarification).

With respect to futures contracts, in the existing finance literature, the characterization of a futures price implicitly (and sometimes explicitly) uses the existence of a given local martingale measure Q which makes the futures price a martingale (e.g., see Duffie [22], p. 173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first need to generalize the characterization of a futures price to remove this implicit (or explicit) restriction.

Let us construct a portfolio long one futures contract. The wealth process of this portfolio, denoted V_t^F, is then given by

$$V_t^F = \int_0^t 1 \frac{dF_{u,T}}{D_u} = \left(\frac{F_{t,T}}{D_t} - F_{0,T} \right) + \int_0^t \frac{F_{u,T}}{D_u} r_u du$$

(76)

\(^{11}\)For simplicity, we assume that futures contracts are marked-to-market continuously.
where the second equality is due to an integration by parts.

If \((V^F_t)_{t \geq 0}\) is not locally bounded from below, then buying a futures contract is not an admissible trading strategy. In the context of our model, this implies that futures contracts cannot trade. To avoid this contradiction, given that we already assume futures contracts trade, we assume that \(V^F_t\) is locally bounded.

Let \((T_n)_{n \geq 1}\) be a sequence of stopping times such that \((V^F_{t \wedge T_n})_{t \geq 0}\) is bounded from below for each \(n\). Then, there exists a \(Q \in \mathcal{M}_{loc}(W)\) such that \(V^F\) is a local martingale by applying the First Fundamental Theorem of asset pricing to the market with the assets \((D_t, V^F_t)_{t \geq 0}\), stopped at \(T_n\), each \(n\). Note that by stopping, \(V^F\) is locally a \(Q\)-local martingale, and hence a \(Q\)-local martingale.

Definition 7.1. Semimartingales \((F_{t,T})_{0 \leq t \leq T}\) satisfying the following properties are called NFLVR futures price processes.

1. \(V^F_t\) is locally bounded from below.
2. There exists a \(Q \in \mathcal{M}_{loc}(W)\) such that \((V^F_{t \wedge T_n})_{t \geq 0}\) is a \(Q\)-local martingale where \((T_n)_{n \geq 1}\) is a sequence of stopping times such that \((V^F_{t \wedge T_n})_{t \geq 0}\) is bounded from below for each \(n\).
3. \(F_{T,T} = S_T\).

Let \(\Phi^F\) denotes the class of all NFLVR futures price processes. We also note that since futures contracts are not replicable using an admissible trading strategy which uses only the risky asset, then any NFLVR futures price process also satisfies the no dominance assumption.

Note that we do not require futures prices \((F_{t,T})_{t \geq 0}\) to be non-negative.

With this definition, the following theorem immediately follows.

Theorem 7.2. Fix a \(Q \in \mathcal{M}_{loc}(W)\).

Define \((F'_{t,T})_{t \geq 0} = (E_Q[S_T|\mathcal{F}_t])_{t \geq 0}\). Then, \((F'_{t,T})_{t \geq 0} \in \Phi^F\).

Proof. Since \(S_t\) is non-negative, \(F'_{t,T} = E_Q[S_T|\mathcal{F}_t] \geq 0\). By equation (76),

\[
V^F_t = \left(\frac{F'_{t,T}}{D_t} - F'_{0,T}\right) + \int_0^t \frac{F'_{u,T}}{D_u} r_u du \geq -F'_{0,T}\]

and \(V^F_t\) is admissible. \(F'_{T,T} = S_T\) is trivial. Since \((F'_{t,T})_{t \geq 0}\) is a martingale and \(1/D\) is continuous, \(V^F\) is a local martingale.

As expected, the classical definition of a futures price (Duffie [22], p. 173 or Shreve [59], p. 244) gives an acceptable NFLVR futures price process. The classical futures price is a uniformly integrable martingale, and hence exhibits no bubbles. However, this is not the only possible NFLVR futures price process.

Theorem 7.3. (Futures Price Bubbles)

Let \(\beta\) be a local \(Q\)-martingale, locally bounded from below\(^{12}\), with \(\beta_T = 0\).

Define \((F_{t,T})_{t \geq 0}\) by

\[
F_{t,T} = E_Q[S_T|\mathcal{F}_t] + \beta_t.
\]

Then, \((F_{t,T})_{t \geq 0} \in \Phi^F\).

\(^{12}\)We note that \(\beta\) is not restricted to being non-negative.
Proof. Observe that \(E_Q[S_T|\mathcal{F}_t] \geq 0 \) for each \(t \) by the non-negativity of \(S_T \). Since \(\beta_t \) is locally bounded from below, \((F_{t,T})_{t \geq 0} \) is also locally bounded from below. Without loss of generality (by stopping) we assume that \((F_{t,T})_{t \geq 0} \) is bounded from below by \(-K \) for some \(K \geq 0 \). Then

\[
V_t^F \geq -F_{0,T} - K \frac{1}{D_t} + K \left(\frac{1}{D_t} - 1 \right) \geq -F_{0,T} - K
\]

Therefore \(F_{t,T} \in \Phi^F \). \(\square \)

We see that futures price bubbles are consistent with futures contracts trading in a market satisfying NFLVR and no dominance.

In the classical approach, futures prices are given by \(F_{t,T} = E_Q[S_T|\mathcal{F}_t] \), which is a uniformly integrable martingale under \(Q \). Since \(S_T \) is non-negative, \(F_{t,T} \) is non-negative. However, in an economy which allows bubbles, as Theorem 7.2 shows, a bubble can be negative if

\[
-\beta_t > E_Q[S_T|\mathcal{F}_t].
\]

The reason for this possibility is that if the underlying asset \(S \) and the spot rate \(r \) exhibit a large negative correlation under \(Q \), then the holder of a long futures contract has to borrow money when the spot rate is high and invest when the spot rate is low. If futures prices are expected (under \(Q \)) to dramatically decline, then in units of the numéraire, this generates a cash flow stream so negative (in expectation), that negative futures prices are necessary to produce futures contracts with zero value.

8 Charges

This section shows the equivalence between the local martingale approach (Loewenstein and Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the charges approach (Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]) to bubbles. This correspondence is obtained via a generalization of the arbitrage free price system used by Harrison and Kreps [34] and Harrison and Pliska [32].

8.1 Price Operators

This section introduces the concept of a price operator. We start with the price function \(\Lambda_t : \Phi \to \mathbb{R}_+ \) introduced in the no dominance assumption 2.2 that gives for each \(\phi \in \Phi \), its time \(t \) price \(\Lambda_t(\phi) \). Let \(\Phi_m \subset \Phi \) represent the set of traded assets. For our economy \(\Phi_m = \{1, S\} \).

The no dominance assumption implies the following lemma.

Lemma 8.1. (Positivity and Linearity on \(\Phi \)) Let "\(\succsim_1 \)" denote dominance in the sense of Assumption 2.2 at time \(t \).

1. Let \(\phi', \phi \in \Phi \). If \(\phi' \succsim_1 \phi \) for all \(t \), then \(\Lambda_t(\phi') > \Lambda_t(\phi) \) for all \(t \) almost surely.
2. Let \(a, b \in \mathbb{R}_+ \) and \(\phi', \phi \in \Phi \). Then, \(a\Lambda_t(\phi') + b\Lambda_t(\phi) = \Lambda_t(a\phi' + b\phi) \) for all \(t \) almost surely.

Proof: Condition (1) is the definition of no dominance restated, and condition (2) follows by assuming strict inequality (for each direction in turn), and obtaining a contradiction using condition (1). \(\square \)
In particular, if \(\int_{(t,\nu]} d\Delta u + \Xi^\nu = 0 \) almost surely for \(\phi = (\Delta, \Xi^\nu) \), then \(\Lambda_t(\phi) = 0 \) almost surely. Linearity excludes liquidity impacts as in Çetin, Jarrow and Protter [10], and it implies that \(\Lambda_t \) is finitely additive on \(\Phi \).

By lemma 2.3, we know that the market prices of the traded assets satisfy NFLVR. Thus, for each traded asset \(\phi \in \Phi_m \), \(\Lambda(\phi) \) is a \(Q^i \)-local martingale on the set \(\{ \sigma^i \leq t < \sigma_{i+1} \} \) for each \(i \). This implies by Theorem 4.2 that for \(\phi \in \Phi_m \),

\[
\Lambda_t(\phi) = \Lambda_t^*(\phi) + \delta_t(\phi)
\]

where \(\delta_t(\phi) \) is a non-negative \(Q^i \)-local martingale. Of course, \(\delta_t(\phi) \) is the traded asset’s price bubble. To extend this property of \(\Lambda_t \) on the set \(\Phi_m \) to all of \(\Phi \), we add the following assumption.

Assumption 8.1. Let \(\Lambda_t : \Phi \to \mathbb{R}_+ \) be such that for each \(\phi \in \Phi \), there exists a \(\delta \) such that

\[
\Lambda_t(\phi) = 1_{\{t<\nu\}} \sum_{i \geq 0} \left(E_{Q^i} \left[\int_t^\nu d\Delta u + \Xi^\nu \big| \mathcal{F}_t \right] + \delta^i_t(\phi) \right) 1_{\{t \in [\sigma_i, \sigma_{i+1})\}}
\]

\[
= \left(E_{Q^\nu} \left[\int_t^\nu d\Delta u + \Xi^\nu \big| \mathcal{F}_t \right] + \delta_t(\phi) \right) 1_{\{t<\nu\}}
\]

\[
= \Lambda_t^*(\phi) + \delta_t(\phi)
\]

(80)

where \(Q^\nu \) is a valuation measure, \(\delta^i(\phi) \) is a non-negative \(Q^i \)-local martingale such that \(\delta_\nu(\phi) = 0 \) and

\[
\delta_t(\phi) = \sum_{i \geq 0} \delta^i_t(\phi) 1_{\{t \in [\sigma_i, \sigma_{i+1})\}}.
\]

(81)

We call any \(\Lambda_t \) satisfying this assumption a *market price operator* and denote the collection \((\Lambda_t)_{t \geq 0} \) by \(\Lambda \). We call \((\Lambda, \Phi) \) a *price system*.

The notion of a price system was proposed in the seminal papers of Harrison and Kreps [34] and Harrison and Pliska [32]. In Harrison and Kreps [34], the price system is first defined on a collection of securities in \(L^2 \), replicable by self-financing simple trading strategies and then extended to \(L^2(\Omega, \mathcal{F}, P) \). More importantly, the model has a finite time horizon and every local martingale in their framework is a uniformly integrable martingale. One of the their key conclusions (Theorem 2) is that the market admits no simple free lunches if and only if the market price operator is given by an expectation with respect to an equivalent martingale measure.

This theorem characterizes the existence of equivalent martingale measures, and it is now known as the First Fundamental Theorem of asset pricing. As shown by Delbaen and Schachermayer (e.g. [13], [14]), this is true in a much more general setting, properly interpreted. Since every martingale on a finite time horizon is a uniformly integrable martingale and closable, once an EMM is identified, the price of the asset before maturity is given as a conditional expectation, which leads to their characterization of the market price operator. In a more general setting, when the market price process of \(\phi \) is a strict \(Q^i \)-local martingale or if the maturity \(\nu \) is unbounded and \(\Lambda(\phi) \) is a non-uniformly integrable martingale, market prices can differ from the conditional expectation. The bubble component \(\delta(\phi) \) in (80) represents this difference.
8.2 Bubbles

In the literature, an alternative approach to explain bubbles is to introduce charges (see Jarrow and Madan [41], Gilles [30], Gilles and Leroy [31]). The following theorem shows that the local martingale characterization of market prices has a finitely additive market price operator if and only if bubbles exist.

Theorem 8.1. Fix \(t \in \mathbb{R}_+ \). The market price operator \(\Lambda_t \) is countably additive if and only if bubbles do not exist.

Proof. Fix \(\phi \in \Phi \) where \(\phi = (\Delta, \Xi'') \). If \(\nu \leq t \), then \(S_t = S_t^* = 0 \). Therefore it suffices to consider the case when \(t < \nu \). Define a sequence of stopping times \((\tau_n)_{n \geq 0}\) by

\[
\tau_n = \inf \left\{ s \geq t : \int_t^s d\Delta_u + \Xi'' \geq n \right\} \wedge \nu, \quad n \geq 1
\]

and define \(\phi^n \in \Phi \) by

\[
\phi^n = (\Delta_{\tau^n}, \Xi'\mathbf{1}_{\{\nu < \tau_n\}}) - (\Delta_{\tau^n-1}, \Xi'\mathbf{1}_{\{\nu < \tau_n-1\}}) \quad \forall n \geq 1
\]

where \(\Delta_{\tau^n-} \) is a process such that \(\Delta_{\tau^n-} = \Delta_{\tau^n \wedge u} - \Delta \Delta_{\tau_n} \mathbf{1}_{\{\tau_n = u\}} \). Then for each \(n \), \(\phi^n \) is bounded by \(n \) and

\[
\phi = \sum_{n=0}^{\infty} \phi_n.
\]

Since \(\phi_n \) is bounded,

\[
\Lambda_t(\phi_n) = \Lambda_t^*(\phi_n) = E_{Q^*}[\Delta_{\tau^n-} - \Delta_{\tau^n-1} + \Xi'' \mathbf{1}_{\{\nu \in [\tau_n-1, \tau_n)\}} | F_t] \mathbf{1}_{\{t < \nu\}}
\]

Assume that \(\Lambda_t \) is countably additive. Then

\[
\Lambda_t(\phi) = \Lambda_t(\sum_n \phi_n) = \sum_n \Lambda_t(\phi_n)
\]

\[
= \sum_n E_{Q^*}[\Delta_{\tau^n-} - \Delta_{\tau^n-1} + \Xi'' \mathbf{1}_{\{\nu \in [\tau_n-1, \tau_n)\}} | F_t] \mathbf{1}_{\{t < \nu\}}
\]

\[
= E_{Q^*}\left[\int_t^\nu d\Delta_u + \Xi'' | F_t \right] \mathbf{1}_{\{t < \nu\}},
\]

since \(\Delta_{\nu-} = \Delta_\nu \). This implies that bubbles do not exist in the market price of \(\phi \). Since this is true for all \(\phi \in \Phi \), bubbles do not exist. Conversely if bubble do not exist then the market price operator is given by a conditional expectation and countable additivity holds.

This theorem shows that the characterization of bubbles as charges is an alternative perspective of our model based on the characterization of local martingales, but in essence is not different.
9 Conclusion

This section concludes the paper with a brief discussion of the existing empirical literature testing for bubbles, followed by some suggestions for future research. As mentioned in the introduction, there is a vast empirical literature with respect to bubbles, studying different markets over different time periods, including:

(1) the Dutch tulipmania 1634-37 (see Garber [28], [29]),
(2) the Mississippi bubble 1719-20 (Garber [29]),
(3) the South Sea bubble of 1720 (Garber [29], Temin and Voth [61]),
(4) foreign currency exchange rates (Evans [24], Meese [47]),
(5) with respect to German hyperinflation in the early 1920s (Flood and Garber [26]),
(6) U.S. stock prices over the 20th century (West [65],[66], Diba and Grossman [20], Dehnbakhsh and Demirguc-Kunt [18], Froot and Obstfeld [27], McQueen and Thorley [46], Koustas and Serletis [42]),
(7) the 1929 US stock price crash (White [67], DeLong and Shleifer [17], Rappoport and White [54], Donaldson and Kamstra [21]),
(8) land and stock prices in Japan 1980 - 1992 (Stone and Ziemba [60]),
(9) US housing prices 2000 - 2003 (Case and Shiller [8]), and finally
(10) the NASDAQ 1998-2000 internet stock price peak (Ofek and Richardson [50], Brunnermeier and Nagel [6], and, Cunado, Gil-Alana and Perez de Gracia [12], Pastor and Veronesi [51], and Battalio and Schultz [5]).

The majority of these empirical studies are based on models in discrete time with infinite horizons where there exists a martingale measure Q, and the traded assets have no terminal payoffs at $\tau = \infty$. By our Theorem 4.2, this last observation excludes type 1 bubbles. In discrete time models, when the current stock price is known, there are no local martingales. Hence, by construction these models exclude type 3 bubbles as well. Hence, the models in the existing literature have really only investigated the existence of type 2 bubbles (i.e. Is Q a uniformly integrable martingale measure or not?). As one might expect from such a vast literature, the evidence is inconclusive.

This empirical indeterminacy is due to the fact that to test

$$\beta_t = S_t - E_Q \left[\int_t^\infty dD_u \mid \mathcal{F}_t \right] \neq 0,$$

one must assume a particular model for $E_Q \left[\int_t^\infty dD_u \mid \mathcal{F}_t \right]$. As such, these empirical tests involve a joint hypothesis: the assumed model and the null hypothesis $\beta_t \neq 0$. Different studies use different models with different conclusions obtained.

To our knowledge (as just mentioned) there appears to be no empirical study testing for type 3 bubbles. This is an open empirical question. Theorems 6.3 and 6.4 provide a plausible procedure for implementing such a test, assuming the market is incomplete, of course. Using the insights from Jacod and Protter [37], if enough European put options trade, then we can infer the market selected ELMM Q from the put option market prices. Next, given Q, we can
compute the fundamental prices of the traded European call options, and compare them to the
calls’ market prices. If they differ, a type 3 bubble exists. And, the magnitude of the bubble
must match the magnitude of the type 3 bubble in the asset’s market price - providing the test
for a type 3 asset price bubble.

This proposed testing procedure, however, does not test for either type 1 or type 2 asset
price bubbles. To do this, it seems as if there is no choice other than to assume a particular
model for the stock’s fundamental price. We look forward to the continued empirical search
for bubbles, and we hope that some of the theorems we’ve generated herein will be useful in
that regard.

References

(1), 173 - 204.
(5), 2017 - 2102.
(1), 3 - 41.
(2), 193 - 227.
Finance and Stochastics, 9 (4), 477 - 492.
the NASDAQ stock index: a fractionally integrated approach, *Journal of Banking and
Finance*, 29, 2633 - 2654.

38

10 Appendix:

This appendix proves some lemmas and theorems used in the American option pricing section of the text.

Lemma 10.1. Let M_u be a non-negative càdlàg local martingale. Assume that there exists some function f and a uniformly integrable martingale X such that

$$
\triangle M_u \leq f(\sup_{t \leq r < u} M_r)(1 + X_u),
$$

(87)

where $\triangle M_u = M_u - M_u^-$. Then for $S_m = \inf\{u > t : M_u \geq x_m\}$,

$$
\lim_{m \to \infty} E_Q\left[M_{S_m}1\{S_m \in (t,T)\}\right] = M_t - E_Q[M_T|\mathcal{F}_t]
$$

(88)

Proof. To simplify the notation, we omit the Q subscript on the expectations operator. Let T_n be a fundamental sequence of M_t. Then

$$
M_{T_n} = E\left[M_{T_n1\{S_m \in (t,T)\}|\mathcal{F}_t}\right] + E\left[M_{T_n1\{S_m = T\}|\mathcal{F}_t}\right]
$$

(89)

By hypothesis $M_{T_n} \leq x_m + f(x_m)(1 + X_{S_m})$ and $M_{T_n} \leq x_m + f(x_m)(1 + X_T)$. By the bounded convergence theorem,

$$
M_t = \lim_{n \to \infty} M_{T_n} = M_t1\{S_m = t\} + E\left[M_{S_m1\{S_m \in (t,T)\}|\mathcal{F}_t}\right] + E\left[M_{T_n1\{S_m = T\}|\mathcal{F}_t}\right]
$$

(90)

Since X is a uniformly integrable martingale, it is in class D and $\{X^\tau\}_{\tau: \text{stopping times}}$ is uniformly integrable. Fix m. Then M_{T_n} and M_{S_m} are bounded by a sequence of uniformly integrable martingales. Therefore taking the limit with respect to n and interchanging the limit with the expectation yields:

$$
M_t = \lim_{m \to \infty} E\left[M_{S_m1\{S_m \in (t,T)\}|\mathcal{F}_t}\right] + E[M_T|\mathcal{F}_t].
$$

(91)

Theorem 10.1. Let M be a non negative local martingale with respect to \mathbb{F} such that $\triangle M$ satisfies a condition specified in Lemma 10.1. Let $G(x, t) : \mathbb{R}_+ \times [0, T] \to \mathbb{R}_+$ be a function such that

- $G(x, s) \leq G(x, t)$ for all $0 \leq s \leq t \leq T$
- For all $t \in [0, T]$, $G(x, t)$ is convex with respect to x.
- $\lim_{x \to \infty} \frac{G(x, t)}{x} = c$ for all $t \in [0, T]$.

then

$$
\sup_{\tau \in [t, T]} E_Q[G(M_{\tau}, \tau)|\mathcal{F}_t] = E_Q[G(M_T, T)|\mathcal{F}_t] + (c \wedge 0)(M_t - E_Q[M_T|\mathcal{F}_t])
$$

(92)
Proof. To simplify the notation, we omit the Q subscript on the expectations operator. Suppose \(c \leq 0 \). Then by monotonicity with respect to \(t \) and Jensen’s inequality applied to a convex function \(G \) and a non-negative local martingale \(M_t \),

\[
\sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t] \leq \sup_{\tau \in [t,T]} E[G(M_t, T)|\mathcal{F}_t] \leq E[G(M_t, T)|\mathcal{F}_t] \leq \sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t]
\]

and

\[
\sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t] = E[G(M_T, T)|\mathcal{F}_t].
\]

Suppose \(c > 0 \). Fix \(\varepsilon > 0 \). Then there exists \(\xi > 0 \) such that \(\varepsilon > 0 \exists \xi > 0 \) such that \(\forall x > \xi \), \(\frac{G(x,0)}{x} > c - \varepsilon \) and hence \(\frac{G(x, u)}{x} > c - \varepsilon \) for all \(u \in [0, T] \). Let \(\{x_n\}_{n \geq 1} \) be a sequence in \((\xi, \infty)\) such that \(x_n \uparrow \infty \). Let

\[
S_n = \inf\{u > t : M_u \geq x_n\} \wedge T.
\]

Without loss of generality we can assume that \(M_t < x_n \). Since \(G(\cdot, t) \) is increasing in \(t \),

\[
\sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t] \geq E[G(M_{S_n}, S_n)|\mathcal{F}_t]
\]

\[
= E[G(M_T, T)1_{\{S_n=T\}}|\mathcal{F}_t] + E[G(M_{S_n}, S_n)1_{\{S_n<T\}}|\mathcal{F}_t] + E[G(M_{S_n}, 0)1_{\{S_n<T\}}|\mathcal{F}_t]
\]

Since \(M_{S_n} \geq x_n > \xi \), \(G(M_{S_n}, 0) \geq (c - \varepsilon)M_{S_n} \). Next, let’s take a limit of \(n \to \infty \). By Lemma 10.1 applied with \(\{S_n\} \) and the monotone convergence theorem,

\[
\lim_{n \to \infty} \sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t] \geq \lim_{n \to \infty} \left\{ E[G(M_T, T)1_{\{S_n=T\}}|\mathcal{F}_t] + (c - \varepsilon)E[M_{S_n}1_{\{S_n<T\}}|\mathcal{F}_t]\right\}
\]

\[
\geq E[(G(M_T, T)|\mathcal{F}_t] + (c - \varepsilon)(M_t - E[M_T|\mathcal{F}_t]).
\]

Letting \(\varepsilon \to 0 \),

\[
\sup_{\tau \in [t,T]} E[G(M_t, \tau)|\mathcal{F}_t] \geq E[G(M_T, T)|\mathcal{F}_t] + c\beta_t
\]

To show the other direction, let \(G^c(x, u) = cx - G(x, u) \). \(G^c(x, \cdot) \) is a non-positive increasing concave function w.r.t \(x \) such that

\[
\lim_{x \to \infty} \frac{G^c(x, x)}{x} = 0
\]

By Jensen’s inequality,

\[
E[G^c(M_T, u)|\mathcal{F}_u] \leq G^c(E[M_T|\mathcal{F}_u], u) \leq G^c(M_u, u)
\]
Therefore
\[
G(M_u, u) \leq c(M_u - E[G^c(M_T, u)|\mathcal{F}_u]) \\
= c\beta_u + E[G(M_T, u)|\mathcal{F}_u] \\
\leq c\beta_u + E[G(M_T, T)|\mathcal{F}_u] \tag{101}
\]
Since this is true for all \(u \in [t, T]\), \(G(M_\tau, \tau) \leq c\beta_\tau + E[G(M_T, T)|\mathcal{F}_\tau]\) for all \(\tau \in [t, T]\). By the tower property of martingales, and a supermartingale property,
\[
E[G(M_\tau, \tau)|\mathcal{F}_t] \leq E[c\beta_\tau + E[G(M_T, T)|\mathcal{F}_\tau]|\mathcal{F}_t] \leq E[G(M_T, T)|\mathcal{F}_t] + c\beta_t. \tag{102}
\]
Therefore
\[
\sup_{\tau \in [t, T]} E[G(M_\tau, \tau)|\mathcal{F}_t] = E[G(M_T, T)|\mathcal{F}_t] + c\beta_t \tag{103}
\]
This theorem is an extension of Theorem B.2 in Cox and Hobson in two important ways. First, we relax the assumption that a martingale \(M_t\) be continuous. Second, the payoff function \(G(\cdot, x)\) allows a more general form and, in particular, it allows an analysis of an American option in an economy with a non-zero interest rate.