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Abstract

We consider the problem of decomposing the credit risk in a portfolio into a sum of
risk contributions associated with individual obligors or transactions. For some standard
measures of risk — including value-at-risk and expected shortfall — the total risk can be
usefully decomposed into a sum of marginal risk contributions from individual obligors. Each
marginal risk contribution is the conditional expected loss from that obligor, conditional on
a large loss for the full portfolio. We develop methods for calculating or approximating
these conditional expectations. Ordinary Monte Carlo estimation is impractical for this
problem because the conditional expectations defining the marginal risk contributions are
conditioned on rare events. We develop three techniques to address this difficulty. First,
we develop importance sampling estimators specifically designed for conditioning on large
losses. Next, we use the analysis underlying the importance sampling technique to develop
a hybrid method that combines an approximation with Monte Carlo. Finally, we take
this approach a step further and develop a rough but fast approximation that dispenses
entirely with Monte Carlo. We develop these methods in the Gaussian copula framework
and illustrate their performance in multifactor models.
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1 Introduction

For purposes of internal risk management, the measurement of portfolio credit risk is often just

a first step in a more extensive process of allocating capital to transactions with counterpar-

ties. This process requires decomposing the total credit risk in a portfolio into individual risk

contributions. Each risk contribution assigns part of the total risk to a particular transaction

or counterparty, and these risk contributions are then used to allocate capital.

For a bank following the internal ratings based approach of the Basel Committee’s New

Capital Accord [2], the credit risk in a portfolio is summarized through its value-at-risk (VaR),

a quantile of the loss distribution. Similar considerations apply if risk (or capital adequacy) is

measured using standard deviation, expected shortfall, or several other candidate measures of

risk. We focus on VaR and expected shortfall.

Many authors (including Denault [5], Garman [6], Kalkbrener [10], Kurth and Tasche [12],

and Litterman [15]) have noted that several commonly used risk measures — including VaR and

expected shortfall — can be usefully decomposed as a sum of sensitivities. In this decomposition,

each risk contribution can be interpreted as a marginal impact on total portfolio risk. The key

property underlying this decomposition is positive homogeneity of the risk measure, a property

that states that the risk (or capital requirement) of a portfolio scales in proportion to the size

of the portfolio.

The marginal risk contributions associated with both VaR and expected shortfall can be

represented as conditional expectations of losses on subportfolios, conditioned on events in the

tail of the loss distribution for the full portfolio. The rarity of these tail events presents an

obstacle to practical calculation of these conditional expectations. Each contribution depends

on the probability of a rare event (a default) conditional on an even rarer event (an extreme

loss for the portfolio).

To address the practical difficulties of calculating marginal risk contributions, we develop

efficient Monte Carlo methods and approximations. The Monte Carlo methods use importance

sampling to address difficulties associated with simulating rare events. This part of the paper

builds on the method developed in Glasserman and Li [8] for estimating the tail of the loss

distribution in credit portfolios. The techniques underlying the importance sampling method

also lead to approximations that can be used together with Monte Carlo or as an alternative.

Throughout this paper, we work in the Gaussian copula model of credit risk (Gupton, Finger,

and Bhatia [9] and Li [13]), widely used both for measuring portfolio credit risk and for pricing

credit derivatives.

2



We review the Gaussian copula model in Section 2 and discuss the representation of marginal

risk contributions as conditional expectations in Section 3. Section 4 analyzes the estimation

of conditional expectations using ordinary Monte Carlo; we use this as a benchmark. Section 6

develops the importance sampling method based on shifting the factor means in the Gaussian

copula and increasing the conditional default probabilities. Section 7 uses related ideas to shrink

the factor variance (as well as shifting the factor mean) in the importance sampling procedure.

Section 8 develops an asymptotic approximation for marginal risk contributions and a hybrid

method that combines Monte Carlo with an approximation. Section 9 takes the approximation

a step further and dispenses with Monte Carlo.

2 Portfolio Credit Risk in the Gaussian Copula Model

A key element of any model of portfolio credit risk is a mechanism for capturing dependence

among obligors. In this section, we describe the widely used Gaussian copula model for portfolio

credit risk. Our description follows that in Glasserman [7].

We focus on the distribution of losses from default over a fixed horizon. The ingredients of

this distribution are as follows:

m = number of obligors to which portfolio is exposed;

Yk = default indicator for kth obligor

= 1 if kth obligor defaults, 0 otherwise;

pk = marginal probability that kth obligor defaults;

ck = loss given default for the kth obligor;

Xk = loss from the kth obligor = ckYk;

L = X1 + · · ·+Xm = total loss from defaults.

We assume the marginal default probabilities pk are known, either from credit ratings or from

the market prices of corporate bonds or credit default swaps. We take the ck to be constants

for simplicity, though it would suffice to know the distribution of the kth loss Xk. This would

allow for random recovery.

The Gaussian copula model provides a mechanism for specifying dependence among the

default indicators Y1, . . . , Ym. Dependence is introduced through a multivariate normal vector

(ξ1, . . . , ξm) of latent variables. Each default indicator is represented as

Yk = 1{ξk > xk}, k = 1, . . . , m,
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with xk chosen to match the marginal default probability pk. The threshold xk is sometimes

interpreted as a default boundary of the type arising in the foundational work of Merton [16].

Without loss of generality, we take each ξk to have a standard normal distribution and set

xk = Φ−1(1 − pk), with Φ the cumulative normal distribution. Thus,

P (Yk = 1) = P (ξk > Φ−1(1− pk)) = 1 − Φ(Φ−1(1− pk)) = pk.

The correlations among the ξk determine the dependence among the Yk . The underlying

correlations are specified through a factor model of the form

ξk = ak1Z1 + · · ·+ akdZd + bkεk , (1)

in which

◦ Z1, . . . , Zd are independent systematic risk factors, each having an N(0, 1) (standard

normal) distribution;

◦ εk is an idiosyncratic risk associated with the kth obligor, also N(0, 1) distributed;

◦ ak1, . . . , akd are the factor loadings for the kth obligor.

◦ bk =
√

1 − (a2
k1 + · · ·+ a2

kd) so that ξk is N(0, 1).

The underlying factors Zj are sometimes derived from economic variables (industry or regional

risk factors, for example).

Write ak for the row vector (ak1, . . . , akd) of factor loadings for the kth obligor. The corre-

lation between ξk and ξ`, ` 6= k, is given by aka>` . The conditional default probability for the

kth obligor given the factor loadings Z = (Z1, . . . , Zd)> is

pk(Z) = P (Yk = 1|Z) = P (ξk > xk|Z) = Φ
(
akZ + Φ−1(pk)

bk

)
. (2)

3 Risk Measures and Marginal Risk Contributions

The distribution of credit losses in a portfolio (i.e., the distribution of L) is typically summarized

through a scalar measure of risk. Two of the most commonly used risk measures are value-

at-risk and expected shortfall. The value-at-risk associated with probability 1 − α (with, e.g.,

α = 1%) is the quantile

VaRα = inf{x : P (L ≥ x) ≤ α}.
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The corresponding expected shortfall is

ESα = E[L|L ≥ VaRα].

Value-at-risk is in more widespread use, but expected shortfall is coherent (in the sense of

Artzner et al. [1]) whereas VaR is not. In particular, VaR is not in general subadditive, which

means that the sum of the VaRs for two portfolios may be less than the VaR for the combined

portfolio.

The calculation of a portfolio risk measure is often followed by a process of allocating the

risk to elements of the portfolio based on their marginal contribution to the total risk. This type

of decomposition is used for capital allocation and for measuring risk-adjusted performance.

Several authors have shown that the marginal risk contributions associated with VaR and

expected shortfall can be represented as conditional expectations. In more detail, consider

increasing the exposure to the kth obligor by an amount ε. The resulting portfolio loss random

variable Lε is related to the original loss L by

Lε = L+ εXk ,

where Xk is the loss random variable for the kth obligor. Let V aRεα and ESεα denote the value-

at-risk and expected shortfall for Lε. Then, under appropriate conditions (see, e.g., Kalkbrener,

Lotter and Overbeck [11] or Kurth and Tasche [12]) the marginal VaR contribution of the kth

obligor is
∂VaRεα
∂ε

∣∣∣∣
ε=0

= E[Xk|L = VaRα], (3)

provided P (L = VaRα) > 0. The marginal contribution to expected shortfall is

∂ESεα
∂ε

∣∣∣∣
ε=0

= E[Xk|L ≥ VaRα]. (4)

Thus, in both cases, the marginal risk contributions are conditional expectations of the indi-

vidual loss random variables, conditioned on rare values of the portfolio loss L.

We will not present (or verify) conditions under which (3) and (4) are valid. Instead, we

simply note that the expressions on the right do indeed decompose the total risk. In the case

of VaR,
m∑

k=1

E[Xk|L = VaRα] = E[
m∑

k=1

Xk|L = VaRα] = E[L|L = VaRα] = VaRα;

and for expected shortfall,
m∑

k=1

E[Xk|L ≥ VaRα] = E[
m∑

k=1

Xk|L ≥ VaRα] = E[L|L ≥ VaRα] = ESα.
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The calculation of these marginal risk contributions presents practical difficulties precisely

because of the rarity of the conditioning events and because the calculation needs to be repeated

for every obligor k = 1, . . . , m.

4 Monte Carlo Estimates of Conditional Expectations

Estimation of the marginal risk contributions (3) and (4) by Monte Carlo can be thought of as

a two-phase procedure in which one first estimates VaR (and possibly also expected shortfall)

and then estimates the risk contributions using the estimated VaR from the first phase in place

of the true VaR in the conditional expectations (3) and (4).

For the Gaussian copula model, the first-phase problem is addressed by the importance

sampling (IS) procedure developed in Glasserman and Li [8]. That procedure involves shifting

the mean of the common factors Z and then increasing the conditional default probabilities

given the outcome of Z. In the numerical examples reported in Glasserman and Li [8], IS

allows precise estimation of quantiles at probabilities as small as 0.0001 (and even smaller)

from as few as 1000 replications. (Other approaches to IS for credit risk are discussed in

Kalkbrener et al. [11] and Morokoff [17].)

Here we focus on the second-phase problem of estimating, for a given loss level x, E[Xk|L =

x] and E[Xk|L ≥ x]. We can treat the two cases together by considering

vk = E[Xk|L ∈ A]

with A = {x} or A = [x,∞). When we condition on L ∈ A, we assume P (L ∈ A) > 0. If

P (L = x) = 0, we can replace the condition L = x with |L−x| < ε for some ε > 0 large enough

to have P (|L− x| < ε) > 0.

We first consider the estimation of vk , k = 1, . . . , m, using ordinary Monte Carlo simulation.

Each replication of an ordinary simulation proceeds along the following steps:

1. Generate independent N(0, 1) factor levels Z1, . . . , Zd and set Z = (Z1, . . . , Zd)>;

2. For each obligor k = 1, . . . , m, generate an independent N(0, 1) variable εk and set ξk =

ak1Z1 + · · ·+ akdZd + bkεk ;

3. For each obligor k = 1, . . . , m, generate the default indicator Yk = 1{ξk > Φ−1(1 − pk)}
and the loss given default ck. Set Xk = Ykck.

These steps are repeated to generate multiple independent replications.
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Let (X(i)
1 , . . . , X

(i)
m ), i = 1, . . . , n, be n i.i.d. replications of the vector of individual losses

Xk and let

L(i) = X
(i)
1 + · · ·+X(i)

m

denote the total portfolio loss on the ith replication. To estimate the risk contributions vk,

k = 1, . . . , m, we use

v̂k =
∑n

i=1X
(i)
k 1{L(i) ∈ A}∑n

i=1 1{L(i) ∈ A}
. (5)

We take the ratio to be zero whenever the denominator is zero.

Applying the strong law of large numbers to the numerator and denominator in (5), we find

that, with probability 1,

v̂k → vk k = 1, . . . , m,

again assuming P (L ∈ A) > 0. To compare the precision of this estimator with the alternatives

that we propose, we need an appropriate measure of its variability. This is provided by a central

limit theorem and the accompanying confidence intervals. We record these in the following

result. Because v̂k is a ratio estimator, we cannot simply use a sample standard deviation to

measure its precision; we instead apply the method in the following proposition.

Proposition 1 Suppose P (L ∈ A) > 0 and let

σ̂2
k =

n
∑n

i=1(X
(i)
k − v̂k)21{L(i) ∈ A}

(∑n
i=1 1{L(i) ∈ A}

)2 , (6)

taking the ratio to be zero whenever the denominator is zero. Then the distribution of

v̂k − vk
σ̂k/

√
n

converges to the standard normal and

v̂k ± zδ/2
σ̂k√
n

is an asymptotically valid 1 − δ confidence interval for vk, with Φ(zδ/2) = 1 − δ/2.

The limiting distribution in the proposition follows from a general result on the asymptotic

normality of nonlinear functions of sample means (see, e.g., p.122 of Serfling [18]) combined

with the fact that (6) is a consistent estimator of the asymptotic variance of v̂k. In fact, this

univariate central limit theorem extends in a straightforward way to a multivariate central

limit theorem for the vector (v̂1, . . . , v̂m), which could be used to form simultaneous confidence

intervals for multiple estimates.
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5 Importance Sampling for Large Loss Levels

The main difficulty in using the standard Monte Carlo estimators v̂k to calculate marginal risk

contributions is that very few replications produce portfolio losses L with L = x or L ≥ x.

In importance sampling (IS), we try to increase the frequency with which rare events occur

by changing the distribution from which we sample; we then weight each observation by a

likelihood ratio to correct for the change in distribution.

Glasserman and Li [8] develop an importance sampling technique for the estimation of

P (L ≥ x) (which here appears as the denominator in the estimation of expected shortfall

contributions). Their method applies a change of distribution to the vector of factors Z and

then changes the conditional default probabilities given Z.

The likelihood ratio that corrects for changing the distribution of Z fromN(0, I) toN(µ,Σ),

with |Σ| > 0, is

|Σ|1/2 exp
(

1
2

[
(Z − µ)>Σ−1(Z − µ) − Z>Z

])
.

If we change only the mean of Z (so Σ = I), this simplifies to

exp
(
−µ>Z + 1

2µ
>µ
)
.

The effectiveness of IS depends critically on the choice of µ (and Σ), to which we will return.

5.1 Twisting the Conditional Default Probabilities

Given Z, the conditional default probability of the kth obligor is pk(Z) in (2). We embed these

conditional probabilities in a parametric family, parameterized by a scalar θ, by setting

pk(θ, Z) =
pk(Z)eθck

1 + pk(Z)(eθck − 1)
. (7)

These “exponentially twisted” probabilities are monotone increasing in θ: at θ = 0, we re-

cover the original probability pk(Z), taking θ > 0 increases the conditional default probability,

and taking θ < 0 decreases the conditional default probability. There are many ways one

might consider increasing or decreasing the conditional default probabilities, but this particular

transformation has several important features that make it effective.

A special feature of (7) is the resulting form of the likelihood ratio. The likelihood ratio

that corrects for changing the conditional default probability pk(Z) to some other probability

qk is (
pk(Z)
qk

)Yk
(

1 − pk(Z)
1 − qk

)(1−Yk)

.
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In the particular case of qk = pk(θ, Z), this becomes
(
pk(Z)
pk(θ, Z)

)Yk
(

1− pk(Z)
1 − pk(θ, Z)

)(1−Yk)

= e−θYk ck(1 + pk(Z)(eθck − 1)).

Because the default indicators Y1, . . . , Ym are conditionally independent given Z, the (con-

ditional) likelihood ratio for changing all the default probabilities is just the product of the

individual (conditional) likelihood ratios, which can be written as
m∏

k=1

e−θYkck (1 + pk(Z)(eθck − 1)) = exp(−θL + ψ(θ, Z)). (8)

Here, we have used the fact that L = Y1c1+· · ·+Ymcm and introduced the conditional cumulant

generating function of L,

ψ(θ, z) = logE[exp(θL)|Z = z] =
m∑

k=1

log
(
1 + pk(Z)(eθck − 1)

)
. (9)

The special form of the likelihood ratio in (8) — depending on the default indicators Y1, . . . , Ym

only through the total loss L — is a consequence of the parametric specification in (7).

Glasserman and Li [8] choose the parameter θ as a function of the factors Z and the loss

threshold x. Let θx(z) be the unique solution to the equation

∂

∂θ
ψ(θ, z) = x; (10)

a unique solution indeed exists because, for all z, the derivative increases from −∞ to ∞ as θ

increases from −∞ to ∞. It follows from (9) and (7) that the derivative on the left side of this

equation can be rewritten using the pk(θ, z) in (7) as

∂

∂θ
ψ(θ, z) =

m∑

k=1

pk(θ, z)ck.

Thus, setting θ = θx(z) in (7) adjusts the conditional default probabilities just enough to make

the conditional expected loss equal to x, in the sense that
m∑

k=1

pk(θx(z), z)ck = x. (11)

If the threshold x is larger than the conditional expected loss E[L|Z = z], then θx(z) > 0 and

the twisted conditional default probabilities pk(θx(z), z) are greater than the original conditional

default probabilities pk(z). If x < E[L|Z = z], then θx(z) < 0 and pk(θx(z), z) < pk(z). In

estimating P (L > x), Glasserman and Li [8] use θ+x (z) = max{0, θx(z)}, because in generating

large values of L there is no advantage to reducing the conditional default probabilities. Negative

values of θx(z) are, however, useful in estimating conditional expectations given L = x.
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5.2 Shifting the Factor Mean

Equation (7) specifies how we apply importance sampling to the default probabilities conditional

on the outcome Z of the factors. The method of Glasserman and Li [8] also applies importance

sampling to the factors themselves.

In estimating a tail probability P (L > x), a particularly effective IS distribution for the

factors Z would be the probability density proportional to the function

z 7→ P (L > x|Z = z) exp(−z>z/2). (12)

If we formulate the calculation of P (L > x) as a problem of integrating over the distribution

of Z, then the first factor on the right is the integrand and the second factor is (up to a

normalization constant) the multivariate normal density of Z. Sampling from this density is

difficult, so we approximate it by a multivariate normal distribution N(µ, I). We would like to

choose µ so that the mode of the multivariate normal coincides with the mode of (12). In other

words, we would like to choose µ as the solution to

max
z
P (L > x|Z = z) exp(−z>z/2). (13)

Even this approximation is not quite feasible because P (L > x|Z = z) is difficult to evaluate,

so we use a further approximation. Define

F ox (z) = max
θ

{ψ(θ, z)− xθ} = ψ(θx(z), z)− xθx(z) (14)

and

Fx(z) = max
θ≥0

{ψ(θ, z)− xθ} = ψ(θ+x (z), z)− xθ+x (z). (15)

These functions are illustrated for a homogeneous, single-factor model (with pk ≡ 0.02, ck ≡ 1,

ak1 ≡ 0.3, m = 100, and x = 10) in Figure 1. As shown in [8], Fx provides an upper bound on

the conditional tail of L in the sense that

P (L > x|Z = z) ≤ exp(Fx(z)).

This upper bound also serves as a rough approximation. Using this approximation in (13) leads

us to choose µ as the solution to

max
z

{Fx(z)− 1
2z

>z}. (16)

Glasserman and Li [8] use the solution µ∗ as the new mean of the factors in their importance

sampling procedure. There is just one maximizer in a single-factor model. In multifactor
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Figure 1: Graphs of the functions Fx(z), F ox(z), and Fx(z) − z2/2 for a single-factor, homo-
geneous portfolio with pk ≡ 0.02, ck ≡ 1, ak1 ≡ 0.3, m = 100, and x = 10. The point µ∗
maximizes Fx(z)− z2/2, and z∗ is the smallest point at Fx(z) = 0.

models, it is possible to have multiple solutions. For simplicity, we will assume a unique µ∗ in

our discussion.

A second point of interest for importance sampling is the solution to

min
z
z>z subject to Fx(z) = 0. (17)

In Figure 1, this is the smallest z at which Fx reaches zero and also the only point at which

F ox (z) = 0. This point is labeled z∗. Because F ox(z∗) = 0, (14) implies that θx(z∗) = 0, which

means that E[L|Z = z∗] = x. Thus, shifting the mean of Z to z∗ is potentially attractive for

importance sampling. In fact, Glasserman and Li [8] show that in a homogeneous, single-factor

model, µ∗/z∗ → 1 as the size of the portfolio increases. In an asymptotic sense, all candidate

means between µ∗ and z∗ are equally effective and, indeed, optimal.

6 Importance Sampling for Conditional Expectations

We now return to the problem of estimating marginal risk contributions of the form E[Xk|L ∈
A], with A = {x} or A = [x,∞). In both cases, we assume P (L ∈ A) > 0 and use the
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representation

rk ≡ E[Xk|L ∈ A] =
E[Xk1{L ∈ A}]
P (L ∈ A)

.

We apply importance sampling to estimate the numerator and the denominator. To keep the

discussion generic, let P̃ and Ẽ denote probability and expectation under a different probability

measure with the same null sets as P . Write ` for the likelihood ratio dP/dP̃ . Then

rk =
Ẽ[Xk`1{L ∈ A}]
Ẽ[`1{L ∈ A}]

.

Let (X(i)
1 , . . . , X

(i)
m ), i = 1, . . . , n, denote independent replications generated under P̃ and

let L(i) = X
(i)
1 + · · · + X

(i)
m . Let `(i) denote the likelihood ratio on the ith replication. The

estimator

r̂ISk =
∑n

i=1X
(i)
k `(i)1{L(i) ∈ A}∑n

i=1 `
(i)1{L(i) ∈ A}

(18)

converges to rk with probability 1. We can assess the precision of this estimator using confidence

intervals calculated in accordance with the following result:

Proposition 2 Suppose P (L ∈ A) > 0 and

Ẽ[X2
k`

21{L ∈ A}] <∞ and Ẽ[`21{L ∈ A}] <∞.

Let

σ̂ISk =

(
n
∑n

i=1(X
(i)
k `(i) − r̂ISk `(i))21{L(i) ∈ A}

(∑n
i=1 `

(i)1{L(i) ∈ A}
)2

)1/2

, (19)

taking the ratio to be zero whenever the denominator is zero. Then with the X(i)
k sampled under

P̃ , the distribution of
r̂ISk − rk

σ̂ISk /
√
n

converges to the standard normal and

r̂ISk ± zδ/2
σ̂ISk√
n

is an asymptotically valid 1 − δ confidence interval for rk.

6.1 Value-at-Risk Contributions

We now specialize to conditional expectations of the form E[Xk|L = x], as required for VaR con-

tributions. We apply importance sampling to the estimation of both the numerator E[Xk1{L =
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x}] and the denominator P (L = x). We use the general class of IS procedures described in Sec-

tion 5 in which we shift the mean of the factors Z and then exponentially twist the conditional

default probabilities, given Z. To complete the specification of the method, we need to select a

new mean for Z and a conditional twisting parameter θ.

For the conditional twisting parameter we use θx(z) rather than its positive part θ+x (z), used

in [8]. Recall that θx(z) is positive whenever E[L|Z = z] is less than x. Thus, θx(z) and θ+x (z)

differ only when E[L|Z = z] exceeds x. In estimating P (L > x), large values of L are useful,

so there is no need to shrink the conditional expected loss back to x if E[L|Z = z] > x. But

in estimating P (L = x) or expectations conditioned on L = x, we want to force the sampling

procedure to generate more samples in which the loss L exactly equals x. By using θx(z) rather

than θ+x (z), we ensure that the expected loss, given Z, is equal to x regardless of the outcome

of Z. This is simply a restatement of (11).

For the new factor mean, we use µ∗, the optimizer in (16). The resulting estimator of

E[Xk1{L = x}] is the sample mean of independent replications of

Xk`1{L = x} = Xke
−θx(Z)L+ψ(θx(Z),Z)e−µ

>
∗ Z−µ>∗ µ∗/21{L = x};

we estimate the denominator using independent replications of

`1{L = x} = e−θx(Z)L+ψ(θx(Z),Z)e−µ
>
∗ Z−µ>∗ µ∗/21{L = x};

and, as in (18), the IS estimator of E[Xk|L = x] is the ratio of the averages of the two expressions

over multiple replications. We detail the steps in the following:

Algorithm 6.1

1. Find µ∗ by solving (16)

2. Repeat for replications i = 1, . . . , n

(a) Generate Z from N(µ∗, I)

(b) Calculate pk(Z) as in (2), k = 1, . . . , m

(c) Solve for θx(Z) in (11) and calculate pk(θx(Z), Z), k = 1, . . . , m

(d) Set Yk = 1 with probability pk(θx(Z), Z) and Yk = 0 otherwise, k = 1, . . . , m

(e) Calculate total loss L = Y1c1 + · · ·+ Ymcm

(f) Calculate likelihood ratio

` = exp(−θx(Z)L+ ψ(θx(Z), Z)− µ>∗ Z + µ>∗ µ∗/2)
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(g) Set Numk = Numk + Ykck`1{L = x} and Denk = Denk + `1{L = x}

3. Return r̂k = Numk/Denk

6.2 Expected Shortfall Contributions

We now modify the method of Section 6.1 to estimate E[Xk|L ≥ x]. The structure of the

algorithm is the same, except that now we use θ+x (Z) rather than θx(Z): if E[L|Z] < x, we

adjust the default probabilities to increase the conditional expected loss to x, but if E[L|Z] ≥ x,

we do not change the default probabilities. The algorithm is as follows:

Algorithm 6.2

1. Find µ∗ by solving (16)

2. Repeat for replications i = 1, . . . , n

(a) Generate Z from N(µ∗, I)

(b) Calculate pk(Z) as in (2), k = 1, . . . , m

(c) Solve for θx(Z) in (11) and calculate pk(θ+x (Z), Z), k = 1, . . . , m

(d) Set Yk = 1 with probability pk(θ+x (Z), Z) and Yk = 0 otherwise, k = 1, . . . , m

(e) Calculate total loss L = Y1c1 + · · ·+ Ymcm

(f) Calculate likelihood ratio

` = exp(−θ+x (Z)L+ ψ(θ+x (Z), Z)− µ>∗ Z + µ>∗ µ∗/2)

(g) Set Numk = Numk + Ykck`1{L ≥ x} and Denk = Denk + `1{L ≥ x}

3. Return r̂k = Numk/Denk

6.3 Numerical Examples

We now illustrate the performance of Algorithms 6.1 and 6.2 through examples. Each example

is a portfolio of m = 100 obligors; we have obtained nearly identical results with m = 1000, so

the size of the portfolio does not appear to have much effect on the quality of the estimators.

(Indeed, the asymptotic optimality results in Glasserman and Li [8] assume m→ ∞, suggesting

that the method is even more effective in large portfolios.) The effect of varying the default

probabilities pk is similar to the effect of varying the exposures ck, so we keep the default

probabilities fixed at 1%. Generally speaking, the benefit of the IS estimators is greater for

14



rarer events; increasing or decreasing the overall level of the default probabilities has roughly

the same effect as varying the loss level x in the conditional expectations.

Example 1. In our first example, the obligors are independent. The exposures are

ck =





1, k = 1, . . . , 20,
4, k = 21, . . . , 40,
9, k = 41, . . . , 60,
16, k = 61, . . . , 80,
25, k = 81, . . . , 100.

(20)

This is a deliberately lumpy profile that will lead to significant variation in marginal risk

contributions.

A loss level of x = 80 corresponds roughly to a 99.9% VaR because P (L ≥ 80) is about

0.1%. The probability that the loss exactly equals 80 is about 0.03%, so in calculating VaR

contributions (conditional expectations given L = x) we are indeed conditioning on a rare event.

Figure 2 compares the performance of the IS estimators and ordinary Monte Carlo for VaR

contributions (left panel) and expected shortfall contributions (right panel). In each case, the

horizontal axis lists the obligors from 1 to 100 and the vertical axis shows the estimated risk

contribution for each obligor. The two solid lines show 95% confidence intervals for each obligor

using IS; the two dotted lines show 95% confidence intervals using ordinary Monte Carlo. Both

are calculated using 250,000 replications. This rather large number of replications is needed

to get meaningful confidence intervals using ordinary Monte Carlo because we are conditioning

on rare events; far fewer replications would suffice using IS. Indeed, the figures clearly show a

substantial reduction in variability using IS. From the IS estimates, it is evident that the risk

contributions are the same for consecutive blocks of obligors, though this is not at all clear from

the ordinary Monte Carlo estimates.

Example 2. We modify Example 1 by making it a single-factor model in which each obligor’s

latent variable ξk has a correlation of 0.5 with the common factor. This dependence pushes

more mass into the tail of the loss distributions, so we increase the loss threshold to x = 100.

The mean shift for the common factor is µ∗ = 2.00. The results are illustrated in Figure 3. The

average variance reduction ratio in this example, averaged over the 100 obligors, is about 20.

Example 3. To test the effect of changing the exposures, we modify Example 2 by letting the

ck increase linearly from 1 to 100. We set the loss threshold at x = 500 which makes P (L ≥ x)

about 1.1%. The granularity of the ck makes P (L = x) too small to be meaningful, so we

replace the event {L = x} with {|L− x| ≤ 1}. This event has probability 0.02%. The results

are illustrated in Figure 4.
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Figure 2: Comparison of IS (solid) and ordinary Monte Carlo (dotted) estimates for VaR
contributions (left) and expected shortfall contributions (right) in Example 1.
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Figure 3: Comparison of IS (solid) and ordinary Monte Carlo (dotted) estimates for VaR
contributions (left) and expected shortfall contributions (right) in Example 2.
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Figure 4: Comparison of IS (solid) and ordinary Monte Carlo (dotted) estimates for VaR
contributions (left) and expected shortfall contributions (right) in Example 3.

Example 4. We now construct an 11-factor version of Example 2. The exposures are as in (20).

The first factor is a market-wide factor, and each obligor has a coefficient of 0.3 on this factor.

In addition, the first ten obligors have a coefficient of 0.8 on the second factor, the next ten

obligors has a coefficient of 0.8 on the next factor, and so on. Thus, each obligor is sensitive

to the market-wide factor and to one additional factor. The block structure of the dependence

in this example ensures that the model cannot be well-approximated using a small number of

factors. We set the loss threshold at x = 250, for which P (L ≥ x) is about 0.1% (99.9% VaR)

and P (L = x) is about 0.03%.

The mean shift for this example is

µ∗ = (1.6214, 0.0002, 0.0002, 0.0009, 0.0009, 0.0018, 0.0018, 0.0028, 0.0028, 2.1563, 2.1563)>.

Observe that this primarily shifts the mean of the first factor and the last two. To interpret

this solution, think of µ∗ as the least costly outcome of Z leading to large losses (losses near

x) when the cost associated with Z = z is z>z/2. A large outcome of the first factor is cost

effective because the first factor affects all obligors. Large outcomes of the last two factors are

cost effective not because those factor affect more obligors (each of the last 10 factors affects

exactly 10 obligors), but rather because the last two factors affect the obligors with the highest

exposures. Those are the obligors most likely to have defaulted when we condition on a large

loss level. Also, observe that µ∗ correctly detects the symmetry in the effect of consecutive pairs

of factors. The results obtained using µ∗ and 250,000 replications are illustrated Figure 5. The

ordinary Monte Carlo results show not only wider confidence intervals but also a high degree
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Figure 5: Comparison of IS (solid) and ordinary Monte Carlo (dotted) estimates for VaR
contributions (left) and expected shortfall contributions (right) in Example 4.

of sampling variability in the estimated intervals.

7 Shrinking the Factor Variance

In the IS algorithms of the previous section, we shift the mean of the factors Z but otherwise

leave their distribution unchanged. The “optimal” density for Z is the one in (12); we chose

the normal distribution to have the same mode as the optimal one. It is natural to consider

whether changing the covariance matrix of the factors improves the approximation. Changing

the covariance matrix is particularly appealing in estimating a conditional expectation given

L = x: to have more samples fall near a given point, we would like to reduce the variability of

Z.

The optimal density (as in (12)) is the conditional density of Z, conditioned on either L ≥ x

or L = x, depending on the context. One way to select an approximating normal distribution

is to select one that has the same first and second moments as the conditional density. These

conditional moments are generally unknown but could be estimated from a preliminary set of

runs. Using ordinary Monte Carlo, one could estimate these conditional moments by storing

the values of Z on which L = x or L ≥ x and then calculating the sample mean and covariance

of the stored Zs. This would require a large number of replications. A more effective way would

use importance sampling, starting with the distribution N(µ∗, I) used above. The conditional

moments can be estimated using importance sampling, producing estimates µ̃ and Σ̃, say; these

can then be used to update the importance sampling distribution to N(µ̃, Σ̃).

An alternative is to use the relation between the covariance matrix of a normal distribution
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and the Hessian (matrix of second derivatives) of the log density at its mode. The log of the

N(µ,Σ) density (for nonsingular Σ) is

y 7→ −1
2(y − µ)>Σ−1(y − µ) + constant,

from which we see that the Hessian at µ is −Σ−1.

In Figure 1, we select µ∗ as the mode of F ox(z) − z2/2. This corresponds to approximating

exp(F ox(z)−z2/2) by (a multiple of) the normal densityN(µ∗, 1). In approximating this function

by a normal density N(µ∗, σ2), we can use the relation between the second derivative and the

variance and choose σ2 to satisfy

− 1
σ2

=
∂2

∂z2

(
F ox (z) − 1

2z
2
)

=
∂2

∂z2
F ox(z) − 1.

More generally, in the multifactor case this corresponds to setting

Σ = (I −∇2F
o
x(µ∗))

−1 , (21)

assuming the inverse on the right exists and the resulting matrix is positive definite. The

notation ∇2F
o
x (µ∗) indicates the Hessian of F ox (·) at µ∗. Initial numerical experiments reported

in Li [14] indicate that this is an effective choice in estimating P (L = x).

Appendix B of Glasserman [7] shows that the Hessian of F ox(·) is given by

∇2F
o
x(z) = ∇2ψ(θx, z) +

∂

∂θ
∇ψ(θx, z)>∇θx(z).

with

∇θx(z) = −∇ ∂

∂θ
ψ(θx, z)/

∂2

∂θ2
ψ(θx, z).

Thus, the Hessian can be evaluated purely in terms of derivatives of ψ. This is important

because ψ is given explicitly by (9), so its derivatives are easily evaluated. Evaluation of this part

of (21) is thus practical. There is no guarantee that the inverse in (21) exists; we have generally

found that it does exist at sufficiently large values of x. Also, whether Σ actually “shrinks”

variance relative to the identity matrix depends on ∇2F
o
x (µ∗) being negative semidefinite, which

requires that F ox be concave near µ∗. This property is also important in the approximations of

Glasserman [7].

The use of the modified variance in importance sampling is illustrated in Figure 6 for

Examples 2–4, where we compare IS based solely on shifting the factor mean with IS based

on shifting the mean and changing the covariance matrix. The figure indicates some modest

further variance reduction from the change in covariance.
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For Figure 6, we have moved the loss threshold to x = 300 for Example 2, where the benefit

of shrinking the factor standard deviation (from 1 to 0.294) should be greater. For Example 3,

(21) gives a standard deviation of 0.3463. The covariance matrix we used for IS with Example 4

is



0.791 0.000 0.000 0.003 0.003 0.006 0.006 0.009 0.009 −0.296 −0.296
0.000 1.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.003 0.000 0.000 1.009 0.000 0.000 0.000 0.000 0.000 −0.001 −0.001
0.003 0.000 0.000 0.000 1.009 0.000 0.000 0.000 0.000 −0.001 −0.001
0.006 0.000 0.000 0.000 0.000 1.020 0.000 0.000 0.000 −0.003 −0.003
0.006 0.000 0.000 0.000 0.000 0.000 1.020 0.000 0.000 −0.003 −0.003
0.009 0.000 0.000 0.000 0.000 0.000 0.000 1.031 0.000 −0.004 −0.004
0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.031 −0.004 −0.004

−0.296 0.000 0.000 −0.001 −0.001 −0.003 −0.003 −0.004 −0.004 1.048 −0.823
−0.296 0.000 0.000 −0.001 −0.001 −0.003 −0.003 −0.004 −0.004 −0.823 1.048




.

This covariance matrix differs from the identity matrix primarily in two ways: it assigns smaller

variance to the first factor, and it introduces negative correlation between the factors whose

means have been substantially increased — the first and the last two. In particular, the rather

large negative covariance of −0.823 between the last two factors suggests that the event {L = x}
(in this case with x = 250) occurs because of a large value of one of the last two factors, but

not both. This phenomenon is also reflected in the pattern of estimated confidence intervals

using ordinary Monte Carlo (the dotted lines) in the left panel of Figure 5.

8 Asymptotic Approximation

In this section, we develop a hybrid method that combines an asymptotic approximation with

Monte Carlo. The asymptotic method approximates conditional risk contributions, given the

factors; we use Monte Carlo solely to integrate the approximation over the distribution of the

factors.

8.1 A General Approximation

We formulate a rigorous result assuming homogeneous obligors and then apply the same tech-

niques to develop approximations for general portfolios. In order to consider asymptotics as the

portfolio size grows, we assume an infinite sequence {Z,X,X1, X2, . . .} with the Xi interpreted

(as before) as loss random variables, though not necessarily of the form ciYi. We impose the

following conditions:

(i) X,X1, X2, . . . are conditionally i.i.d. given Z;

(ii) 0 ≤ X ≤ b for some b > 0, and P (X < ε|Z) and P (X > b − ε|Z) are positive with

probability 1, for all ε > 0.
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Figure 6: IS confidence intervals for VaR contributions using shifted factor mean (dotted) and
both shifted mean and modified factor variance (solid). Left panel shows Example 2 with
x = 300; right panel shows Example 4.
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Define the conditional cumulant generating function of the Xi by setting

ψX(θ, Z) = logE[exp(θX)|Z], −∞ < θ <∞.

The boundedness assumption in (ii) more than suffices to ensure finiteness of ψX(θ, Z). Let

G0(·, z) denote the conditional distribution of X given Z = z,

G0(x, z) = P (X ≤ x|Z = z), for all x.

We embed G0(·, z) in an exponential family of distributions {Gθ(·, z),−∞ < θ <∞} by setting

Gθ(x, z) =
∫ x

−∞
eθu−ψX (θ,z) dG0(u, z).

These have the property (standard for exponential families) that
∫ ∞

∞
x dGθ(x, z) =

∂

∂θ
ψX(θ, z).

For any 0 < q < b, let θq(z) be the unique solution to

∂

∂θ
ψX(θq(z), z) = q; (22)

assumption (ii) ensures that exactly one such solution indeed exists. The parameter θq(z) picks

out the member of the exponential family {Gθ(·, z),−∞ < θ <∞} whose mean is q.

Let Lm = X1 + · · ·+ Xm. We let m increase and consider the conditional distribution of

any fixed set of losses X1, . . . , Xk, conditional on Z and on either Lm = qm or Lm ≥ qm.

A general class of results may be paraphrased as stating that the conditional distribution of,

e.g., X1 converges to the exponentially twisted distribution with mean q. In other words,

conditioning on the sum (in our case, the total loss) changes the distribution of the summands

in a predictable way. We record precise versions of these assertions in the following:

Proposition 3 Suppose (i) and (ii) hold and 0 < q < b. (a) If X has a lattice distribution

given Z = z with P (X = q|Z = z) > 0, then for any fixed k, as m→ ∞,

P (X1 ≤ x1, . . . , Xk ≤ xk |Lm = qm, Z = z) →
k∏

i=1

Gθq(z)(xi, z). (23)

Also, for k ≤ m,

E[Xk|Lm = qm, Z = z] =
∫ ∞

−∞
x dGθq(z)(x, z) = q. (24)

(b) If, given Z = z, X has a lattice distribution or a density, then

P (X1 ≤ x1, . . . , Xk ≤ xk|Lm ≥ qm, Z = z) →
k∏

i=1

Gθ+q (z)(xi, z). (25)
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Also, as m→ ∞,

E[Xk|Lm ≥ qm, Z = z] →
∫ ∞

−∞
x dGθ+q (z)(x, z) = q. (26)

Proof. Once we condition on Z = z, the Xi are conditionally i.i.d. and we can apply results for

i.i.d. sequences. The limit in (23) then follows from Zabell [20]. The limit in (25) in the density

case follows from Van Campenhout and Cover [19] who also cite earlier work of O.E. Lanford.

The lattice case is treated in Cover and Thomas [3]. The equality in (24) follows from the

fact that X1, . . . , Xm are exchangeable, given Lm = qm and Z = z. The limit in (26) follows

from (25) and the boundedness of the Xi: convergence of distributions implies convergence of

expectations for bounded random variables. 2.

If we interpret the limits in the proposition as approximations, then in each case the result

states that in conditioning on a large loss for the whole portfolio (and also the factor outcome),

we may approximate the conditional loss distribution for an individual obligor by exponentially

twisting the original distribution loss distribution for that obligor.

8.2 The Hetereogeneous Case

The limits in Proposition 3 provide approximations for conditional expectations for fixed m. Al-

though the proposition assumes homogeneous obligors, the approximations extend in a natural

way to the heterogeneous case, as we now explain.

The limits in (25) and (26) suggest the approximation

E[Xk|Lm ≥ qm, Z = z] ≈ E
[
Xk exp

(
θ+q (Z)Lm −mψX(θ+q (Z), Z)

)
|Z = z

]
. (27)

In more detail, the right side becomes

E
[
Xk exp

(
θ+q (Z)Lm −mψX(θ+q (Z), Z)

)∣∣Z = z]

= E
[
Xk exp

(
θ+q (Z)Xk − ψX(θ+q (Z), Z)

)∣∣Z = z]

=
∫ ∞

−∞
x dGθ+q (z)(x, z), (28)

the first equality using the conditional independence of the Xi and the second using the defini-

tion of Gθ. From (28), we see that the approximation in (27) is the limit in (26).

For loss levels Xi that are conditionally identically distributed, mψX is the conditional

cumulant generating function of the total loss L; in generalizing (27) to the heterogeneous case,

we therefore replace mψX with ψ = ψX1 + · · · + ψXm , the conditional cumulant generating
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function of the total loss L. If we set the loss threshold x equal to qm, then equation (22)

defining θq coincides with equation (10) defining θx. With these substitutions, we generalize

(27) to

E[Xk|L ≥ x, Z = z] ≈ E
[
Xk exp

(
θ+x (Z)L− ψ(θ+x (Z), Z)

)
|Z = z

]
, (29)

with θx as in (10). Written this way, the approximation does not rely on the Xi being condi-

tionally identically distributed.

The interpretation of (29) and of Proposition 3 is that conditioning on a large loss for

the whole portfolio changes the distribution of the individual losses in a predictable way. In

particular, conditional on a large loss L ≥ x (and on the factor outcome Z = z), the individual

lossesXk look like they came from the distribution determined by θ+x (z), rather than the original

distribution.

Taking the expectation of both sides of (29), we get the approximation

E[Xk|L ≥ x] ≈ E
[
Xk exp

(
θ+x (Z̃)L− ψ(θ+x (Z̃), Z̃)

)]
. (30)

Here, Z̃ has the distribution of Z conditional on L ≥ x. Comparing (23) and (25), we similarly

get

E[Xk|L = x] ≈ E
[
Xk exp

(
θx(Z̃)L− ψ(θx(Z̃), Z̃)

)]
, (31)

but with Z̃ having the distribution of Z conditional on L = x. The two approximations nearly

coincide when x is large (i.e., when θx(z) > 0) because conditional on L ≥ x, the total loss L is

likely to be very near x if x is large. In applying these ideas, we will introduce an adjustment

that differentiates the two cases.

8.3 A Hybrid Method

We now specialize to the case Xk = Ykck in which Yk is a default indicator and ck is a fixed

loss given default. In this setting, (31) becomes

E[Xk|L = x] = ckE[Yk |L = x] ≈ ckE [pk(θx(Z), Z)] (32)

with pk(θ, z) as in (2). This suggests a hybrid method in which we use Monte Carlo to “integrate

out” the factors Z, but conditional on Z we use the approximation pk(θx(Z), Z), rather than

a ratio estimator like the one in (5). This has the enormous advantage that it allows us to

estimate a conditional expectation given L = x from all replications, not just the few on which

L equals x.

To implement this, we need to generate Z from the correct distribution. In passing from

(29) to (30), we are integrating over the distribution of Z given L ≥ x (or, in the case of (31)
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the distribution of Z given L = x). So, in calculating the expectation on the right side of (32),

we need to generate Z from the appropriate conditional distribution.

Let φ(z) denote the unconditional density of Z and φ(z|L ≥ x) the conditional density given

L ≥ x. The conditional density is given by Bayes’ rule:

φ(z|L ≥ x) ∝ P (L ≥ x|Z = z)φ(z). (33)

In the case of multivariate normal Z, this becomes

φ(z|L ≥ x) ∝ P (L ≥ x|Z = z) exp(−z>z).

Much as in our discussion of importance sampling, we approximate this distribution by a multi-

variate normalN(µ, I) with µ chosen to match the mode of the conditional distribution — more

precisely, we choose µ as in (16). This leads to the following algorithm to estimate E[Ykck|L = x],

combining the approximation pk(θx(Z), Z) with Monte Carlo using the approximate conditional

distribution of Z:

Algorithm 8.1: Approximate VaR Contributions

1. Find µ∗ by solving (16)

2. Repeat for replications i = 1, . . . , n

(a) Generate Z from N(µ∗, I)

(b) Calculate pk(Z) as in (2), k = 1, . . . , m

(c) Solve for θx(Z) in (11) and calculate pk(θx(Z), Z), k = 1, . . . , m

(d) Set v̂k = v̂k + pk(θx(Z), Z)ck

3. Return v̂k = v̂k/n

To approximate E[Ykck|L ≥ x], we make two modifications. The first is to replace θx(Z) with

θ+x (Z) in Step 2c. Recall that θx(z) is negative when the conditional expected loss E[L|Z = z]

exceeds x. Using a negative value of the parameter makes sense in estimating a conditional

expectation given L = x, because doing so pulls large values of L down towards x. But for a

conditional expectation given L ≥ x, large values of L are as useful as samples that land on x,

so we replace θx(z) with zero when it is negative.

The second modification is an optional adjustment at the last step. The asymptotics in

Proposition 3 do not distinguish between conditioning on L = x and L ≥ x. In fact, the
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conditional default probabilities should be larger, on average, in the second case, so we correct

for this.

If the approximation

pk(θ+x (z), z) ≈ P (Yk = 1|Z = z, L ≥ x)

held exactly, then we would have equality between

E

[
m∑

k=1

pk(θ+x (Z̃), Z̃)ck

]
and E[L|L ≥ x].

Let M̄ denote the average value of
∑m

k=1 pk(θ
+
x (Z), Z)ck over n replications, with Z ∼ N(µ∗, I)

or Z ∼ N(µ∗,Σ) to approximate Z̃, which has the distribution of Z conditional on L ≥ x. We

would like to make the adjustment

pk(θ+x (Z), Z) → pk(θ+x (Z), Z)
E[L|L≥ x]

M̄

to the approximate conditional default probabilities. We do not know E[L|L ≥ x], but we

can estimate it from the simulation itself. This is what the optional steps do in the following

algorithm:

Algorithm 8.2: Approximate Shortfall Contributions

1. Find µ∗ by solving (16)

2. Repeat for replications i = 1, . . . , n

(a) Generate Z from N(µ∗, I)

(b) Calculate pk(Z) as in (2), k = 1, . . . , m

(c) Solve for θx(Z) in (11) and calculate pk(θ+x (Z), Z), k = 1, . . . , m

(d) [Optional]

i. Set M̄ = M̄ +
∑m

k=1 pk(θ
+
x (Z), Z)ck

ii. Generate default indicators Y1, . . . , Ym using probabilities pk(θ+x (Z), Z), k =

1, . . . , m

iii. Calculate loss L and likelihood ratio ` and set Num = Num+L1{L ≥ x}` and

Den = Den + 1{L ≥ x}`

(e) Set ŝk = ŝk + pk(θx(Z), Z)ck

3. Return ŝk = ŝk/n
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4. [Optional] Return ŝk = ŝkNum/(Den× M̄)

Remarks

1. The optional adjustment (which we use in all our examples) scales the estimated risk

contributions of all obligors by the same amount.

2. Rather than solve for θx(z) and then take the positive part, one can first check if

m∑

k=1

pk(z)ck > x

and solve for θx(z) only if this holds. If this inequality fails, θx(z) is in (−∞, 0] and

θ+x (z) = 0.

3. In the algorithms above, the v̂k are sample means of i.i.d. replications, so supplementing

them with confidence intervals is straightforward using their sample standard deviations.

The estimator of Algorithm 8.2 is slightly more complicated because of the multiplica-

tive adjustment, but a central limit theorem for it can be established along the lines of

Propositions 1 and 2.

8.4 Numerical Examples

We illustrate the performance of the asymptotic approximation using the example portfolios of

Section 6.3. Figure 7 shows results for Example 1 (which has independent obligors); Figure 8

applies to the single-factor model in Example 2; Figure 9 shows results for Example 3; and

results for the 11-factor model of Example 4 appear in Figure 10. Each figure compares the

approximation with a 95% confidence interval estimated using importance sample. In each case,

the approximation is sufficiently accurate to be useful.

The figures suggest that the asymptotic approximation is more accurate for VaR contribu-

tions (conditioned on L = x) than for expected shortfall contributions (conditioned on L ≥ x).

This makes sense, because the asymptotics in Proposition 3 implicitly approximate condition-

ing on L ≥ x by conditioning on L = x. The approximations in the figure distinguish between

the two primarily by a scale factor: the final (optional) step in Algorithm 8.2 scales the risk

contributions so they sum (approximately) to E[L|L ≥ x].

An alternative way to approximate shortfall contributions E[Xk|L ≥ x] would be to take a

weighted average of approximate VaR contributions E[Xk|L = xi] at several thresholds xi. The

weight for E[Xk|L = xi] should approximate the probability that L is closest to that xi given

that L ≥ x. These probabilities can be estimated using importance sampling.
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Figure 7: The dotted line shows the hybrid approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 1.
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Figure 8: The dotted line shows the hybrid approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 2.
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Figure 9: The dotted line shows the hybrid approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 2.
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Figure 10: The dotted line shows the hybrid approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 4.
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9 Approximation Without Monte Carlo

The methods of Section 8 approximate the conditional default probability of each obligor (given

a large loss level and the factor outcome), but use Monte Carlo to integrate out the distribu-

tion of the factors. In this section, we take the approximations one step further and dispense

entirely with Monte Carlo. Rather than integrate over the distribution of factors, we evaluate

the approximations of Section 8 at a single outcome of the factors — namely, the “most likely”

outcome µ∗ leading to large losses. Related ideas are investigated in Glasserman [7] as a means

of approximating the overall risk in a portfolio (as opposed to the individual risk contributions).

As explained there, this may be viewed as a simplified application of the classical Laplace ap-

proximation for integrals. The full Laplace approximation could be applied using the candidate

covariance matrix in (21), provided this matrix is indeed positive definite.

By evaluating the steps in Algorithm 8.1 at just the single outcome Z = µ∗, we arrive at

the following approximation:

Algorithm 9.1: Approximate VaR Contributions

1. Find µ∗ by solving (16); set z = µ∗

2. Calculate pk(z) as in (2), k = 1, . . . , m

3. Solve for θx(z) in (11) and calculate pk(θx(z), z), k = 1, . . . , m

4. Return pk(θx(Z), Z)ck, k = 1, . . . , m

In Algorithm 8.2, one of the ways we distinguished between VaR contributions and expected

shortfall contributions involved scaling the approximate contributions to set their sum approxi-

mately equal to E[L|L ≥ x], or rather an estimate of this ratio. This is the optional adjustment

in Algorithm 8.2, calculated from the simulated losses themselves. Once we dispense entirely

with Monte Carlo, we have no obvious mechanism for applying a similar adjustment. In the

algorithm that follows, we adopt as a crude approximation

E[L|L ≥ x] ≈ x+ E[L] = x +
m∑

k=1

pkck.

We then approximate expected shortfall contributions as VaR contributions at this shifted

threshold x.

Algorithm 9.2: Approximate Shortfall Contributions

1. Find µ∗ by solving (16) at x+
∑

k pkck; set z = µ∗
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Figure 11: The dashed line shows the approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 2.

2. Calculate pk(z) as in (2), k = 1, . . . , m

3. Solve for θx(z) in (11) and calculate pk(θ+x (z), z), k = 1, . . . , m

4. Return pk(θ+x (Z), Z)ck, k = 1, . . . , m

In this algorithm, we evaluate the twisted default probabilities at θ+x (z) to be consistent

with Algorithm 8.2. But it is not hard to see that θx(z) is positive at z = µ∗ (as reflected in

the fact that Fx(µ∗) < 0 in Figure 1), so in this case θx = θ+x .

We illustrate these approximations through examples. For Example 1, the approximations

of this section coincide with those of Section 8 because there is no dependence on Z; thus,

Figure 2 applies to Algorithms 8.1–8.2. Results for Examples 2–4 are shown in Figures 11–13.

The approximations are very good for the VaR contributions, particularly keeping in mind that

they are extremely fast.

The approximations are less accurate for expected shortfall contributions (the right panel in

each figure) than for VaR contributions. This is at least in part due to the fact that we do not

know the conditional mean E[L|L ≥ x], to which the expected shortfall contributions should

sum.

The improvement in the approximation that could result from a better estimate of the

conditional mean is illustrated for Example 3 in Figure 14. In this example, we have x = 500

and E[L] = 50.5, so Algorithm 9.2 evaluates approximate shortfall contributions at 550.5. Using

simulation, we estimate that E[L|L ≥ 500] is about 713. Evaluating the approximation at this
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Figure 12: The dashed line shows the approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 3.
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Figure 13: The dashed line shows the approximation. IS confidence intervals (solid lines)
are included for reference. The graphs shows VaR contributions (left) and expected shortfall
contributions (right) in Example 4.
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Figure 14: The dotted line shows approximate shortfall contributions for Example 3 calculated
using x = 713, the estimated value of E[L|L ≥ 500]. The dashed line shows the approximation
at x = 550.5. The solid lines are IS confidence intervals.

threshold produces the dotted line in the figure, which is nearly indistinguishable from the

Monte Carlo results.

10 Summary

We have developed importance sampling methods and approximations for calculating the

marginal risk contributions used to allocated portfolio credit risk to individual obligors. We

have developed these methods for VaR and expected shortfall in the setting of the Gaussian

copula model of portfolio credit risk. We summarize the application of these methods as follows:

◦ The importance sampling methods are very effective in improving precision in estimating

marginal risk contributions. They are particularly effective at high loss quantiles.

◦ Combining importance sampling with an asymptotic approximation to conditional default

probabilities leads to smoother estimates of the marginal risk contributions. These are

quite effective both for VaR and shortfall contributions.

◦ Similar ideas can be used to approximate marginal risk contributions without Monte Carlo.

These approximations are very fast and quite accurate for marginal VaR contributions.

They are somewhat less accurate for marginal shortfall contributions.
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