From: Doshi-Velez, Finale <finale@seas.harvard.edu>

Sent: Thursday, July 01, 2021 9:50 PM

To: Pearson, Nikita

Cc: Decker, Debra A.

Subject: [EXTERNAL MESSAGE] RIN 3064-ZA24 - Response to Request for Information and

Comment on Financial Institutions’ Use of Artificial Intelligence, including Machine
Learning [FR Doc. 2021-06607 Filed 3—-30-21; 8:45 am]

Attachments: pastedlmagebase640.png; Biblio Isaac Lage.docx; Biblio Finale Doshi-Velez.docx; Biblio
Sarah Rathnam.docx; Biblio Weiwei Pan.docx; Cover Letter.pdf; 2021-07-01 DtAK
Response to the Agencies on the RFl.pdf; 2021-07-01 DtAK Response to the Agencies
on the RFl.docx; 2021-05-06 DNP Overview.pptx

Dear Director Pearson,

Thank you for the opportunity to submit comments to the Request for Information ('RFI') on Financial
Institutions’ Use of Artificial Intelligence, including Machine Learning (RIN 3064-ZA24) signed

by Assistant Executive Secretary Sheesley on behalf of the Federal Deposit Insurance Corporation
('Corporation') as part of the collective agencies to the RFI.

Since its establishment in 2011, the Office of Minority and Women Inclusion (OMWI') of the
Corporation and more recently with (a) the FDIC Diversity, Equity, and Inclusion Strategic Plan (2021-
2023) and (b) the yearly data reports to Congress as part of the No Fear Act;2l seems well positioned
to support the Mission-Driven Bank Fund's support of MDIs and CDFls. It seems like a great
opportunity to create data donation framework for individual-level anonymized financial data
donations for research to ensure accountability while measuring and monitoring systemic issues.

More broadly, DtAK commends the work of all the Agencies in proactively pursuing a diversity
of viewpoints. We believe this multi-stakeholder process towards comprehensive Al regulation,
which brings together key stakeholders — including academia — serves as a strong foundation for
OMWI and the FDIC more broadly to lead Agencies to carry out comprehensive efforts to oversee the
financial sector realize the potential of artificial intelligence while identifying and managing risks.

Specifically, to RFI RIN 3064-ZA24, we suggest that the current regulatory framework under review
could benefit from a more practical definition of explainability, while the FDIC could use recent
research to better define standards for the continuous monitoring of Al. We need a way of having an
Al "Check Engine" light.

The work herein does not reflect the official or unofficial viewpoints of Harvard University or its
Harvard John A. Paulson School of Engineering and Applied Sciences (‘SEAS’) and are submitted as

part of a personal effort to support regulatory leadership with insights from our current research
relating to accountability in Al for healthcare.

Respectfully submitted,

Finale Doshi-Velez

Finale Doshi-Velez (she/her/hers)
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July 1st, 2021
To Whom It May Concern:

The Data to Actionable Knowledge (“DtAK”) Lab appreciates the opportunity to provide feedback
on the Agencies’ request for information (“RFI”) concerning the Financial Institutions’ Use of
Artificial Intelligence, including Machine Learning.

DtAK commends the work of the Agencies in proactively pursuing a diversity of
viewpoints. We believe this multi-stakeholder process towards comprehensive A.i. regulation,
which brings together key stakeholders - including academia - serves as a strong foundation for
the Agencies to carry out their efforts to oversee the financial sector realize Artificial Intelligence’s
potential while identifying and managing risks.

Specifically, we suggest that the current regulatory framework under review could benefit from a
more practical definition of explainability, while the FDIC could use recent research to better define
standards for the continuous monitoring of Al. We need a way of having an Al "Check Engine"
light.

The work herein does not reflect the official or unofficial viewpoints of Harvard University or its
Harvard John A. Paulson School of Engineering and Applied Sciences (‘SEAS’) and are submitted as
part of a personal effort to support regulatory leadership with insights from our current research
relating to accountability in Al and healthcare.

Respectfully submitted,

Finale Doshi-Velez (she/her/hers)
Gordon MacKay Full Professor of Engineering and Applied Sciences
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Al accountability and progress are not odds, as long as mechanisms are appropriately chosen. In the
following, we suggest that (1) the current regulatory framework under review could benefit from a more
practical definition of explainability that focuses on what information needs to be provided to answer the
required question, (2) as much or more attention needs to be given to the data that create the models as the
models themselves, and (3) the Agencies could use recent research to better define standards for the
continuous monitoring of Al by all its stakeholders. We suggest having an AI Model "Check Engine"
light to set standards to monitor their negative externalities so that AI models do not “fail silently.”

Request for Information and Comment on Financial
Institutions’ Use of Artificial Intelligence, including
Machine I.earnino™

This is a regulatory comment on Financial Institutions” Use of Artificial Intelligence, including
Machine Learning to (OCC) Mr. Blake J. Paulson, Acting Comptroller of the Currency, Office
of the Comptroller of the Currency [Docket ID OCC-2020-0049] (FRB) Ms. Ann Misback,
Secretary of the Board, Board of Governors of the Federal Reserve System [Docket No. OP-
1743]; (FDIC), Mr. James P. Sheesley, Assistant Executive Secretary, Federal Deposit Insurance
Corporation RIN 3064—72A24, (BCFP) Mr David Uejio, Acting Director, the Bureau of
Consumer Financial Protection [Docket No. CFPB-2021-0004]; (NCUA) Ms. Melane Conyers-
Ausbrooks, Secretary of the Board, National Credit Union Administration [Docket No. NCUA-
2021-0023], henceforth collectively referenced to as “the Agencies,” Dated at Washington, DC,
on or about February 25, 2021. [FR Doc. 2021-06607 Filed 3—-30-21; 8:45 am|, billing codes
4810-33-P; 6210-01-P; 4810-AM-P; 6714-01-P
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Preamble:

Header Note

As per the Agencies Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, including Machine Learning (“RFI”’) Dated at
Washington, DC, on or about February 25, 2021, published in the Federal Registrar on March 31st, 2021 [FR Doc. 2021-06607 Filed 3-30-21; 8:45 am|, by Blake ]. Paulson,
Acting Comptroller of the Currency; By order of the Board of Governors of the Federal Reserve System, Ann Misback, Secretary of the Board; Federal Deposit Insurance
Corporation, James P. Sheesley, Assistant Executive Secretary; David Uejio, Acting Director, Bureau of Consumer Financial Protection. Melane Conyers-Ausbrooks,

Secretary of the Board, National Credit Union Administration, as "Request for Information and Comment on Financial Institutions’ Use of Artificial Intelligence, Including
Machine Learning,"! this comment addresses its 7 of its 17 questions.

Note that the views expressed here are solely our own, and do not necessarily correspond to the official or unofficial
views of Harvard University (or its Harvard John A. Paulson School of Engineering and Applied Sciences).

Executive Summary
Artificial Intelligence accountability does not need to stop Al progress. Demanding

explanations or other forms of evidence and transparency does not imply disclosing trade secrets no
more than asking people to explain themselves implies disclosing how electricity flows through their
neurons. Pragmatically, explanations involve sharing the part of a model’s decision-making logic
that is relevant for adjudicating the question on hand.” Below, we summarize our thoughts relating

to the seven questions addressed from the RFI’s seventeen.

First, as noted above, we suggest that the definition of Al (1) “Explainability” might need to be
more pragmatic and less conceptual: an explanation is the “information about the Al provided to
the user such that they can make the decision they are trying to make.” Different contexts will

require different explanations.

Second, the value of explainability depends on how precisely the need can be quantified.
Explainability can be quite valuable for harder-to-quantify issues such as exposing information,
preventing or rectifying errors, or dispute resolution; it can help check if models are “right” for

the “right” reasons. It may not be needed in contexts where there is a well-understood alternative

! Request for Information and Comment on Financial Institutions' Use of Artificial Intelligence, Including Machine Learning, Vol. 86 No. 60 Fed. Reg.
16837-16842 (March 31st, 2021).

2 See ‘Local Counterfactual Faithfulness,” “as humans we don't expect these explanations to be the same or even consistent what we do expect is that
the explanation holds for similar circumstances” See summary presentation here: https://youtu.be/411r8rgo52E2t=488 ; For a more detailed note see
Finale Doshi-Velez, Sam Gershman, et al (2017) “Accountability of AT Under the Law: The Role of Explanation*“working draft at
https://arxiv.org/pdf/1711.01134 - As part of Harvard’s Berkman Klein Center Working Group on Al Interpretability, a collaborative effort between
legal scholars, computer scientists, and cognitive scientists)
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goal metric available. That said, sometimes both are needed: Although we are not experts in fair-
lending, Al fairness metrics literature discuss how simple aggregates are not substitute for Al

explainability. °

In this way, explainability is one part of a broader accountability toolkit. For example, concerns
about model performance under ‘dynamic updating’ could be remedied with internal &
external Al model audits which look at both metrics and explanations. Regular third-party
oversight is critical so that models do not fail silently -- we need the equivalent of a “‘check that

engine” light to alert users that a model may need further inspection.

More broadly, many concerns come not from the model but from the data used to train the model.
For example, without sufficiently broad data collection, the models will likely overfit; there might
be a need to change data-collection incentives to be more sensitive to diversity and inclusivity.*
More intensive data usage and processing concerns can be mitigated with dataset
documentation, for example the “Data Nutrition Project” at MIT/Harvard Law School produces

“nutrition labels” for the datasets being ingested by AI models.

Finally, as experts in medical data, we note that the MIMIC dataset with anonymized individual-
level hospital health data has provided a foundation for Al for health research. There exists a great
opportunity to ensure the trust of the American people on the fairness of its financial system -- and

democratize improvements -- by creating similar datasets from banking institutions.

3 More concretely, the FDIC could lead the development of Data Donation Frameworks for CDFIs and MDIs under Mission-Driven Bank Fund to
expand academic research to operationalize the regulatory monitoring of systemic discrimination.

4 For example, by reforming the FFIEC to support a MIMIC-type project for finance.
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Abstract

Al accountability and progress are not odds, as long as mechanisms are
appropriately chosen. In the following, we suggest that (1) the current regulatory
framework under review could benefit from a more practical definition of
explainability that focuses on what information needs to be provided to answer
the required question, (2) as much or more attention needs to be given to the
data that create the models as the models themselves, and (3) the Agencies
could use recent research to better define standards for the continuous
monitoring of Al by all its stakeholders. We suggest having an Al Model "Check
Engine" light to set standards to monitor their negative externalities so that
regulators can make sure that Al models do not “fail silently.”

BORGES TORREALBA CARPI, CARLOS

Harvard's Data to Actionable Knowledge lab
Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave, Allston, MA 02134
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1. Introduction

1.1. Background: DtAK Lab
The Harvard’s Data to Actionable Knowledge (DtAK) lab, led by Finale Doshi-Velez, uses probabilistic
machine learning methods to address many decision-making scenarios, with a focus on healthcare

applications

1.1.1. PI: Finale Doshi-Velez (She/Her/Hers), the Gordon MacKay Full Professor of
Engineering and Applied Sciences

Professor Finale Doshi-Velez received her Ph.D. in Computer Science from MIT and an M.Sc.
in Engineering from Cambridge University as a Marshall Fellow. Prior to joining SEAS, she was
postdoc at Harvard Medical School. Doshi-Velez has received an Alfred P. Sloan Research
Fellowship, an NSF CiTRaCS postdoctoral fellowship, an NSF CAREER award, and an AFOSR
Young Investigator award. In 2019, she was awarded the Everett Mendelsohn Excellence in
Mentoring Award by the Graduate Student Council for her mentorship and support of graduate
students.

1.1.2. Major Areas: Modeling, Decision-Making, and Interpretability
Probabilistic modeling and inference:
We focus especially on Bayesian models

e How can we characterize the uncertainty in large, heterogeneous data?
¢ How can we fit models that will be useful for downstream decision-making?

¢ How can we build models and inference techniques that will behave in expected and desired
ways?

Decision-making under uncertainty:
We focus especially on sequential decision-making

e How can we optimize policies given batches of heterogeneous data?
¢ How can we provide useful information, even if we can’t solve for a policy?

e How can we characterize the limits of our ability to provide decision support?

Interpretability and statistical methods for validation:

e How can we estimate the quality of a policy from batch data?

¢ How can we expose key elements of a model or policy for expert inspection?

1.1.3. Expertise

These comments were created via discussion in the Data to Actionable Knowledge Lab, with particularly
engaged suggestions from Weiwei Pan, Isaac Lage, Andrew Ross, Beau Coker, Sarah Rathnam, and Shalmali
Joshi, as well as Eura Shin and Jiayu Yao.
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1.2. Disclaimer

1.2.1. Conflict of Interest Statement

Our principal investigator, Professor Finale Doshi-Velez and the lab often focuses on health-care
applications, therefore we do not recognize any substantial conflicts of interests here, outside of noting that
(1) some of our researchers have substantial experience working on Al in the finance industry, and (2) our
work with a few academic partners,® "Summarizing Agent Behavior to People” was recognized with the JP
Mozgan Faculty AwardS for 2019.7 Finale Doshi-Velez also consults for Ethena.

2. Comments on RFI’s Definitions

2.1. Explainability: Need for pragmatic, less conceptual definition: information
about the Al provided to the user such that they can make the decision they
are trying to make.

Currently, the RFI defines Al explainability as

For the purposes of this RFI, explainability refers to how an AI approach uses inputs to produce
outputs. Some Al approaches can exhibit a “lack of explainability” for their overall functioning (sometimes known as
lobal explainability) or how they arrive at an individnal outcome in a given situation (sometimes referred to as local
explainability). Lack of explainability can pose different challenges in different contexts. Lack of explainability can also
inhibit financial institution management's understanding of the conceptnal soundness (6] of an Al approach, which can
increase uncertainty around the Al approach's reliability, and increase risk when used in new contexts. Lack of
explainability can also inhibit independent review and audit and make compliance with laws and regnlations, including
consumer protection requirements, nmore challenging. Jemphasis added)

At DtAK we consider defining explanation more pragmatically:
Explanation is information abont the Al provided to the user such that they can mafke the decision they are trying fo make.

In this sense, explanation is very context dependent: the explanation necessary to determine whether
an Al system will be safe in general may be vastly different than an explanation to assist in
determining whether a specific decision is safe.

3. Explainability: Trade-offs based on how well defined are model
goals

3.1. Question 1: Not answered directly, see Q3

3.2.Question 2: Not answered directly, see Q3

3.3.Question 3: Explainability is needed in cases where metrics are not enough,
such as identifying the overall workings of a model, preventing or rectifying
errors, and resolving disputes.

For which uses of Al is lack of explainability more of a challenge? Please describe those

challenges in detail. How do financial institutions account for and manage the varied challenges

and risks posed by different uses?

> Professor Ofra Amir Technion — Israel Institute of Technology who is part of the Faculty of Industrial Engineering &
Management, and Professor David Sarne Bar-Ilan Uruver31ty, Department of Computer Science and Technology

7 “The J.P. Morgan Al Research Awards 2019 partners with research thinkers across artificial intelligence. The program
is structured as a gift that funds a year of study for a graduate student.”
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At a high level, the lack of explainability is a challenge for tasks that lack a simple, reliable metric.
These include exposing information about the overall workings of a model, preventing or rectifying
errors, and resolving disputes. Below, we expand on these situations. We have also curated sources
in the word document of Human-Computer interactions research as well as Al explainability
research that is more detailed and expansive then this summary.

Explanations may expose information about the AI models to increase transparency.®

e In many applications, it may be possible to build a fully transparent, compact Al model with
high accuracy. In such cases, the Al can be completely inspected for possible
flaws. Especially in high-stakes settings, such models should always be the starting point.

e However, for more complex models, this may not be possible. In this case, the explanation
may provide only a partial view (e.g., how a particular set of inputs affect the output, or
which inputs have the most effect on determining a particular output). This partial view
must be aligned with the reason for seeking an explanation.

Explanations can be used to prevent or rectify etrors and increase trust.’

e In some cases, it may be possible to define exactly how and when a user needs to be alerted
about a situation. For example, the conditions under which a car’s engine light turns on are
well-understood, can be precisely defined in advance, and the appropriate response to the
engine light is also well-understood.

e However, in many other cases, such as fairness, the notion of appropriate behavior may be
more subtle and contextual. Explanations that enable an understanding of an AI’s behaviors
can help ensure that the Al’s behavior aligns with what is desired (or rectify errors).

e That said, as noted above, for a sufficiently complex Al system, this explanation will
necessarily be partial, and thus some amount of ex-ante decision-making will still be
necessary about what parts of the Al to expose to help check for certain kinds of errors
(e.g., errors relating to discriminatory behavior, errors relating to risk, etc.). For example, an
explanation might reveal what features are important for a particular decision, but not how
they interact (unless designed to). Even a partial explanation, however, can provide insights
to augment aggregate statistics.

Explanations can also be used to ascertain whether certain criteria were used appropriately or

inappropriately in case of a dispute. '’

e Aggregate measures cannot tell you whether there was a wrongdoing in this particular case;
explanations that provide information about how factors were used and what would have
happened if the factors changed can be used to determine whether a decision was made
appropriately.

8 See Lage et al (2018) “Human-in-the-Loop Interpretability,” Lage et al (2019), “Human Evaluation of Models Built for Interpretability;” Ustun et al
(2019) “Actionable Recourse in Linear Classification,” For concrete problems related to gender classification for example, see Buolamwini et al (2019),
“Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification;” Keyes (2018) “The Misgendering Machines: Trans/HCI
Implications of Automatic Gender Recognition,”

? Ribeiro et al, (2016) “Why Should I Trust You? Explaining the Predictions of Any Classifier;” Yang et al (2017) “Evaluating Effects of User
Experience and System Transparency on Trust in Automation;” Yin et al (2019) “Understanding the Effect of Accuracy on Trust in Machine Learning
Models.”

10 Mahinpei, A., Clark, J., Lage, I., Doshi-Velez, F., & Pan, W. (June 2021) ”Promises and Pitfalls of Black-Box Concept Learning Models.” See For
concrete examples of unpacking "Blackbox’ models, for example see Koh er al (2017), “Understanding black-box predictions via influence functions®
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e That said, one also needs to look at explanations across a dataset (globally) to check for
issues. For example, it would be important to know that an Al often makes discriminatory
decisions, but not always, without having to adjudicate multiple individual cases first.

Conversely, the lack of explainability is not a challenge when

e The system that the Al is modeling is well-understood. For example, computer assistance
for aircraft collision avoidance follows from well-understood physics. Such as system needs
rigorous testing, but not explanation.

e If the system’s context is not going to change, that is the training data represents the
inputs that will be seen when the system is used, and the outputs of that training data are
curated to be correct. In this case, we may be less worried about whether the system has the
causal factors/correlation may be sufficient.

e There are other metrics that can be used for the desired goal. For example, some
notions of fairness are simply aggregate statistics of the model’s outputs monitored over
time. That said, if the situation is sufficiently high stakes, one may not want to wait to
collect a large amount of data to see whether a system is unsafe, unfair, etc.

4. Risks from Broader or More Intensive Data Processing and
Usage: Dataset Documentation, for example Data Nutrition
Project

4.1. Question 4: Data is one of the biggest sources of Al error; transparency about

the data sources is critical for accountability. See also Q8 (AI Model audits)
How do financial institutions using AI manage risks related to data quality and data processing?
How, if at all, have control processes or automated data quality routines changed to address the
data quality needs of AI? How does risk management for alternative data compare to that of
traditional data? Are there any barriers or challenges that data quality and data processing pose
for developing, adopting, and managing AI? If so, please provide details on those bartiers or
challenges.

Data is one of the biggest sources of Al error: while many models may work reasonably well
for a task, all models will fail if the data quality and processing are poor. There is an emerging
consensus in the literature that the data set is absolutely critical with respect to how the model
will perform. Many current concerns revolve around general bias embedded at creation into the
state-of-the-art AI model that can be attributable to the data used during model training, even
when a “universal” dataset (for example, the ‘entire’ internet) is ingested by the model
uncritically — the “universal” dataset still contains the biases of the people who created it.

Regulators might need to consider how to provide guidance to depository institutions
about how to document and supervise the dataset collection, so that financial Al models
are not replicating biases that are subtle and hard to detect without sufficiently detailed data
documentation. For example, lending data might not have gender information; however, this
makes it hard to determine whether the dataset is overwhelmingly male -- and thus leading to a
model biased against non-males. Although there is not yet a consensus on the best ways to
evaluate and document data sets, we point regulators to “Datasheet for
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Datasets” https://arxiv.org/abs/1803.09010 as one approach.'’ A more concrete one is
underway at the Berkman Klein center with the Data Nutrition Project."

Ideally, a model would be “right for the right reasons,” capturing something immutable
about the world. However, this is rarely the case, especially when the data come from human
processes. Because the input data are likely shifting as trends change, models can stop working
as intended. Thus, is important for regulators to consider model audits and related-governance
frameworks. Regulator-created scenarios might be used to “stress-test” the AI models in key
data-input regimes.

4.2.Question 5: As we gather more alternative data, we must also gather data
about sensitive variables to ensure we are not creating proxies for them. See
also Q8 (model audits)

Are there specific uses of Al for which alternative data are particularly effective?

In many cases, it will be necessary to collect data on sensitive variables to ensure that
systems are not building proxies for them based on ever increasingly sophisticated data
streams. Therefore, model audits need sensitive data to make sure prohibited categories (i.e., race
etc.) are not re-created using other variables.

5. Ovetfitting: Better incentives towards broader data collection &
publication i.e. MIMIC for Finance.

5.1. Question 6: Continuous audits are needed to manage overfitting risks; the
biggest risks are overfitting to a specific population used to train the model
rather than the model itself. MIMIC-type project to democratize data.

How do financial institutions manage Al risks relating to overfitting? What barriers or

challenges, if any, does overfitting pose for developing, adopting, and managing AI? How do

financial institutions develop their Al so that it will adapt to new and potentially difterent
populations (outside of the test and training data)?

Artificial Intelligences do an excellent job of interpolating (making predictions within the training
data) and a terrible job of extrapolating. Als will not extrapolate to new populations in robust
and consistent ways; the fact that oftentimes some amount of transfer from an old population to a
new one is possible does not mean that the transfer is guaranteed or even consistent across all
members of the new population. Careful checking and monitoring is necessary for applying Artificial
Intelligence models to new settings. (The rare exception is if a causal model of the system is learned,
e.g., once one has learned the physics of a pendulum, one can extrapolate to pendulums of different
lengths.)

The corollary is that if one expects to apply the Al to a broad population, then the training
data must be similarly broad. Examples: Apple facial recognition working poorly for people with
darker skin. From a regulatory perspective, it may make sense to have requirements that an Al

11 See on a much deeper technical level of analysis emerging from language models, notes on normative
concerns https://dl.acm.org/doi/10.1145/3442188.3445922

12 See https://datanutrition.org/
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perform similarly on diverse groups, or other measures of fairness, to encourage the collection of
appropriately broad datasets.

When it comes to finding effective ways to build robust, anti-discriminatory models, we also
point to the fact that democratizing data exploration can be very helpful. In our field, Project
MIMIC started in (1992-1999) to “build a collection of multi-parameter recordings of ICU
patients.”13 Its latest iteration is MIMIC-VI. “It is a large, publicly-available database comprising de-
identified health-related data associated with approximately sixty thousand admissions of patients..”
(See more details in the Appendix on MIMIC), and now augmented with E-ICU, which contains
data across multiple hospitals. Note as well the PhysioNet14 which collects databases under 3
possible access levels (Open, Restricted & Credentialed) "“in a single place
(https://physionet.org/about/database/). The Al and health community has used these data to
identify effective algorithms for a large variety of clinical tasks, including how to generalize across
hospitals.

Besides general approaches to avoid overfitting, we suggest that such an approach may be valuable
in the financial sector. Federal Financial Institutions Examination Council's (the ‘Council”) is
already the “formal interagency body empowered to prescribe uniform principles, standards, and
report forms for the federal examination of financial institution,”' therefore, its agenda-setting,
coordination and convening power give it a responsibility to make sure systematic bias does not go
unnoticed by the Agencies. In fact, as early as 2009, it was under the auspices of the FFIEC (74 FR
25240) that determinations about added disclosures from foreign banks operating in the US was
done."” It makes sense that this kind of broad convening power can be harnessed to the cause of
making sure the United States financial system does not discriminate against its own people. A
MIMIC-type dataset with anonymized individual-level data has provided a lot to AI
researchers in healthcare, and the Agencies have a great opportunity to enhance the trust of
the American people in its banking institutions by providing the academic community with
similar resources to investigate and measure negative externalities.

6. Cybersecurity Risk: No comments from our lab.

13 See https://archive.physionet.org/physiobank/database/mimicdb/ MIMIC-I

14 Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K,
Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex
Physiologic Signals. Circutation 101(23):¢215-¢220 [Circulation Electronic Pages;
http://circ.ahajournals.org/content/101/23 /e215.full]; 2000 (June 13).

15 Open Access: Accessible by all users, with minimal restrictions on reuse.

Restricted Access: Accessible by registered users who sign a Data Use Agreement. Credentialed Access: Accessible by
registered users who complete the credentialing process and sign a Data Use Agreement

16 See https://www.ffiec.gov

17 Namely, it extended the comment period on the “currently approved information collection, the Country Exposure
Report for U.S. Branches and Agencies of Foreign Banks (FFIEC 019).” See

https://www.ffiec.gov/PDEF/FFIEC forms/FFIEC019 20090812 ffr.pdf
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7. Dynamic Updating: Internal & External Audits in AT Model
lifecycle with revisions to SR Letter 11-7 Al on invariances &
fallback models

7.1. Question 8: Continuous monitoring is needed to mitigate the risks of dynamic
updating. SR Letter 11-7 Al could benefit from guidance on ‘invariances,’ not
just ‘anomalies.’ Fall-back models might be important, as well as clarity on
penalty mechanisms.

How do financial institutions manage Al risks relating to dynamic updating? Describe any

barriers or challenges that may impede the use of Al that involve dynamic updating. How do

financial institutions gain an understanding of whether AI approaches producing different
outputs over time based on the same inputs are operating as intended?

Dynamic updating poses significant risks. While continuous internal auditing should be part of an
Al model’s maintenance, AI models will also likely need to externally audit to ensure that outcomes
remain as desired. If undesirable outcomes are observed, then an internal group would be required
to fix them, which may involve temporarily falling back to another, perhaps simpler, model. In
cases where the outcomes are clear, this approach reduces the need for full technical transparency.
More specifically:

Al Model auditing and related governance structure. Broadly, Al performance will change over
time not only because the Al may be updated but also because the data streams will change

(e.g., Google flu trends, Netflix prize). Whether it is an expected change, that one can do rigorous
testing in advance, or whether it is a change due to shifts in data properties, continuous monitoring
is essential, as suggested in SR-Letter 11-7 from April 2011."® The guidance expressly requires that
there should be internal mechanisms within an organization to perform regular audits, and the need
for regular external audits to ensure rigor, consistency, and keep everyone honest.

However, the SR-Letter 11-7 might benefit from further clarification on invariances. These
audits should look for “invariances” e.g. performance that should be met such as a safety level and
not just for “anomalies” e.g. any cases that are outside the norm for that model or data, or as the
guidance suggests pure “conceptual soundness.” More importantly, SR-Letter 11-7 guidance
does not suggest any penalty mechanisms or even what an infraction of these audit
principles could entail. There should be an escalation in penalties where organizations initially
have some time to fix an issue—as issues will happen—but issues are not allowed to remain. More
concretely, we recommend that regulators look at Professor Watcher’s work on using counter-
factual explanations that can avoid opening the Al model’s black box."

Another piece missing from SR-Letter 11-7 is the need for Fall-back AI Models. In most
cases, in case of violation, there will likely be a quick fix that is not ideal — e.g., rolling back to an
older version of the Al or replacing the Al with a much simpler algorithm that provides basic
functionality — and then the organization will be able to take steps to rectify the problem in a way

18 As per Board of Governors of the Federal Reserve System & Office of the Comptroller of the Currency, April 4%
2011, ”Supervisory Guidance on Model Risk Management,” SR Letter 11-7 and particularly the related appendix
attachment A1, sections V and VI.

19 See https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-
Box-Sandra-Wachter-et-al.pdf
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that gives the extra functionality (e.g., by collecting more data). Finally, this does not imply that
regulators should be overly prescriptive on AI model remedies. It is important that audit processes
focus on the outcomes and leave the fixes to the organization.

Use and collect outcome data has proved foundational, for example. in health AI
improvements, without an emphasis on specific technologies. Finally, we note that it is
important to keep focus on the outcomes that are acceptable and unacceptable, rather than specific
models or data collection technologies. The latter change very quickly; a regulation made prior to
Fitbits and Apple watches, for example, may not have imagined the kind of personal data that is
suddenly easy to collect, but one can and should foresee those certain types of decisions should be
made independently of a person’s comorbidities (regardless of how those health variables might be
detected), independently of their race, etc. In many cases this will mean, 7t will be necessary to
collect data on sensitive variables to ensure that systems are not building proxies for them based
on ever increasingly sophisticated data streams.

8. Al Use by Community Institutions: No answer
9. Oversight of Third Parties: Need for Al “Check Engine” Light

9.1. Question 10: Third Parties need to provide significant information about the
training data, metrics, and other audit mechanisms. Current research could be
leveraged to create Al model’s on-board diagnostics, or an AI mode “Check
Engine light,” so AI models do not “fail silently.”

Please describe any particular challenges or impediments financial institutions face in using AI

developed or provided by third parties and a description of how financial institutions manage the

associated risks. Please provide detail on any challenges or impediments. How do those
challenges or impediments vary by financial institution size and complexity?

Especially in safety-critical domains, such as our work in health, models failing silently is a
major danger. Whether bought by a third-party or not, we need (a) the same level of transparency
e.g. what data sheets on how the model was trained as one might give to an external auditor, (b) a set
of diagnostic suites akin to an version of an Al “Check Engine” light. These would include
dashboards for pre-specified outcomes to monitor, the ability to add more items to monitor, and an
agreement on how to adjudicate undesired performance. We note that there is ample precedent for
federal regulation of “on-board diagnostics,” or Malfunction-indicator lamps MIL.*

Al “Check Engine” light regulatory framework. We understand that regulators are likely already
aware of recent regulatory capture research® that suggests that overly complex regulatory
frameworks can create perverse incentive. This would make any additional regulatory requirements
favor larger institutions over smaller ones who cannot afford the additional compliance. Therefore,
we understand the focus of FDIC’s applicability of the Fed/OCC SR Letter 11-7, ”Supervisory

20 See EPA 2003, On-Board Diagnostic (OBD) Regulations and Requirements: Questions and Answer see
https://nepis.epa.gov/Exe/ZyPURI..cgi?Dockey=P100L.WIG.txt for shotrt overview, and factsheet EPA 1997

Prosperity," on broad anti-trust regulatory reform theoretical proposals for technology companies; See Tim Wu (2018) "The Curse of Bigness:
Antitrust in the New Gilded Age," section on "The Rise of the Tech Trust on the side-effect.”
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Guidance on Model Risk Management” from 2011,% that emphasizes a cut-off for depository
institutions above USD $1bi AUM.*

However, this makes FDIC’s regulation of A.i. model’s "check engine light" from third
parties providing software to smaller depository institutions particularly important. These
smaller institutions might be hard pressed to build any alternative internal solutions that would be
compliant to these regulations. Therefore, making sure model users understand their models enough
to make sense of its disparate or systemic negative impact will fall to how effective are explainability
regulation of 3rd party A.i. model providers. By comparison, we do not expect car drivers to have a
deep understanding of how their car works, but it would be negligent to not take their car in for
repairs if the "check engine light" came on.**

10.Fair Lending: Aggregates are not substitute for explainability.
The FDIC could lead the development of Data Donation
Frameworks for CDFIs and MDIs under Mission-Driven Bank
Fund.

10.1. Question 11: Not answered.

What techniques are available to facilitate or evaluate the compliance of AI-based credit
determination approaches with fair lending laws or mitigate risks of non-compliance? Please
explain these techniques and their objectives, limitations of those techniques, and how those
techniques relate to fair lending legal requirements.

10.2. Question 12: Continuous monitoring and regular external audits are
essential for identifying bias; internally both quantitative and explanation-
based tools will be needed to identify and rectify issues.

What are the risks that AI can be biased and/or result in disctimination on prohibited bases? Are

there eftective ways to reduce risk of discrimination, whether during development, validation,

revision, and/or use? What are some of the bartiers to or limitations of those methods?

Continuously monitored metrics are key to check for bias in AI models. We also need
explainability at the global level of the model overall and at the local level of the individual decision.
Especially when trying to reduce the risk of discrimination during development and revision both
are essential. Aggregate statistics can give raise red flags, but they do not point to solutions nor can
they adjudicate individual cases. More broadly, research and best practices for building fair models
could benefit from FDIC supporting the development of a CDFI and MDI data donation
framework and documentation under the Mission-Driven Bank Fund.

Aggregate statistics give a useful summary for a certain concern about, for example, lending
patterns to a category of individuals that could be labeled as victims of an Al-driven biased
decision-making. That said, the design of these aggregates and alarms is tricky:

22 As per Board of Governors of the Federal Reserve System & Office of the Comptroller of the Currency, April 4 2011, ”Supervisory Guidance on
Model Risk Management,” SR Letter 11-7 and related appendix Al.

23 Per FDIC’s Financial Institution Letter FI1.-22-2017 from June 7th, 2017; ”Adoption of Supervisory Guidance on Model Risk Management”

24 \X/e note how slmllar governance structures are already in place for VCthlC emlsslons and how gammg such a system could pose slgmﬁcant costs to
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L] What are the attributes that constitute a threshold for bias overall? In a given lending
decision?

L] Once the labeling is done, where is the threshold of the aggregate of enough instances to
provide causal evidence?

Ll How sensitive are the alarms to the definitions of the aggregates?

Because Al models and the metrics to evaluate them are so complex, decisions about what statistics
to monitor must be broad and with the understanding that one is seeking trends that may cause
concern rather than meeting some simple threshold.

More concretely, systematic bias in decision making has already been proven ex-post to
disproportionally impact minority communities, as recent research on racial discrimination in
auto-lending” and access to credit vis-a-vi Minority Depositary Institutions® have shown. We urge
regulators to not allow decades to pass before many local explanations for bias are aggregated to
create a global systematic concern over disparate impact on marginalized communities. Here,
inspections of the model globally and locally — in addition to the aggregates — may help identify
concerns before the model is even deployed.

Finally, we advocate for ways for the community to build best practices as a whole. We understand
the FDIC’s new diversity strategic plan outlining five “C”s — Culture, Career,
Communication, Consistency, and Community”’ and for its efforts with the Mission-Driven
Bank Fund,” and as it builds its operations, it might be important to consider how to
provide technical and legal support for how minority depository institutions (MDIs) and
Community Development Financial Institutions (CDFIs) can document and donate their
data. Given the FDIC’s extensive data tools and API already in place, it puts itself in an ideal
position to support this process.”

In particular, many entities are willing to undergo research in this essential issue, however
these are sensitive data that might need to be anonymized among other various related legal
issues given regulatory concerns. * In fact, it provides the FDIC with an opportunity to possibly
support the expansion of its current data offerings to include diversity-related financial data.” This
dataset could build a solid foundation for Al fairness research dedicated to remedy these gaps in the
current academic understanding of the role MDIs and CDFIs play in combating systemic bias. In
fact, allied with data donation documentation frameworks, it could set the financial industry
standard for decades to come.

10.3. Question 13: Not answered.

10.4. Question 14: Not answered directly, see Q8 (AI model audits).

10.5. Question 15: Not answered directly, see Q3 (Al explainability in dispute
resolution)

25 See https://bef.princeton.edu/wp-content/uploads/2020/11/Racial-Discrimination-in-the-Auto-Market-9-10-2020.pdf
26 For their technological challenges see https://bcf.princeton.edu/wp-content/uploads/2020/11/MIDI-9-10-2020.pd f

27 See https://www.fdic.gov/news/press-releases/2021/pt21016.html
28 See https://www.fdic.gov/news/press-releases/2020/pt20125.html

2 See https://www.fdic.gov/resources/data-tools/
30 For a brief overview of data donations in healthcare https://blogs.ischool.berkeley.edu/w231/blog/

3U“MIMIC-IIT is a large, freely-available database comprising deidentified health-related data associated with over 40,000 patients...” See
https://physionet.org/content/mimiciii-demo
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11.Additional Considerations: Broader & Better Data Collection,
see Q6 and “Overfitting” section 5.

12.Conclusion & Action Agenda

We have made many comments in this document. Most importantly, we suggest that the current regulatory
framework under review could benefit from a more practical definition of explainability, while the Agencies
could use recent research to better define standards for the continuous monitoring of Al. Leveraging the
current research, a useful regulatory framework to consider would be defining standards for Al
model’s on-board diagnostics, or an ATl model’s "Check Engine" light

Explainability: Trade-offs based on how well defined are model goals

Q3: Explainability is needed in cases where metrics are not enough, such as identifying the overall workings
of a model, preventing or rectifying errors, and resolving disputes

Risks from Broader or More Intensive Data Processing and Usage: Dataset Documentation, for
example Data Nutrition Project

Q4: Data is one of the biggest sources of Al error; transparency about the data sources is critical for
accountability. See also Q8 (Al Model audits)

Q5: As we gather more alternative data, we must also gather data about sensitive variables to ensure we are
not creating proxies for them. See also Q8 (model audits)

Overfitting: Better incentives towards broader data collection & publication i.e. MIMIC for Finance.

Q0: Continuous audits are needed to manage overfitting risks; the biggest risks are overfitting to a specific
population used to train the model rather than the model itself. MIMIC-type project to democratize data.

Dynamic Updating: Internal & External Audits in Al Model lifecycle with revisions to SR Letter 11-7
Al on invariances & fallback models

Q8: Continuous monitoring is needed to mitigate the risks of dynamic updating. SR Letter 11-7 Al could
benefit from guidance on ‘invariances,” not just ‘anomalies.” FFall-back models might be important, as well as
clarity on penalty mechanisms.

Oversight of Third Parties: Need for Al “Check Engine” Light, so AI models do not “fail silently.”

Q10: Third Parties need to provide significant information about the training data, metrics, and other audit
mechanisms. Current research could be leveraged to create Al model’s on-board diagnostics, or an Al mode
“Check Engine light,” so Al models do not “fail silently.”

Fair Lending: Aggregates ate not substitute for explainability. The FDIC could lead the
development of Data Donation Frameworks for CDFIs and MDIs under Mission-Driven Bank
Fund.

Q12: Continuous monitoring and regular external audits are essential for identifying bias; internally both
quantitative and explanation-based tools will be needed to identify and rectify issues.
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Various sources contributed by the Harvard community and the broader work in human computer
interactions, Al explainability and related fields. Their work supports these efforts, but do not necessarily
reflect theirs or their institutions official or unofficial views and opinions.
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Appendix

Data Nutrition Project
Various efforts look to document dataset and label them, a recent example that might merit greater
consideration would be the Data Nutrition Project from the MIT Media lab (https://datanutrition.org/).

Given the need for equity and responsible usage for data, their work emphasizes a “belief that technology
should help us move forward without mirroring existing systemic injustice.” The work founded in 2018 (
https://www.berkmankleinassembly.org/ ) aims to create “standard labels for interrogating datasets.””?2 This
would help put in place data governance structures to allow for data-sharing without greater demands for
centralization on the part of Treasury.

Interrogating data quality
& generating “nutrition label”

DATASET MODEL
Dataset Preprocessing Development Deployment

) «»—) — @)e
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Data Pipeline

MIMIC

What is MIMIC”

MIMIC-III is a large, publicly-available database comprising de-identified health-related data
associated with approximately sixty thousand admissions of patients who stayed in critical care units
of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes
information such as demographics, vital sigh measurements made at the bedside (~1 data point per
hour), laboratory test results, procedures, medications, nurse and physician notes, imaging reports,
and out-of-hospital mortality. MIMIC supports a diverse range of analytic studies spanning
epidemiology, clinical decision-rule improvement, and electronic tool development. It is notable for
three factors:

e it is publicly and freely available.
e it encompasses a diverse and very large population of ICU patients.

e it contains high temporal resolution data including lab results, electronic documentation, and
bedside monitor trends and waveforms.

Recent Updates
MIMIC-III is an update to MIMIC-1I v2.6 and contains the following new classes of data:

e approximately 20,000 additional ICU admissions
e physician progress notes

e medication administration records

32 See their white paper here: http://securedata.lol/camera readv/26.pdf See prototype here:

https://ahmedhosny.github.io/datanutrition
33 See https://archive.physionet.org/physiobank/database /mimic3cdb
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e more complete demographic information

e current procedural terminology (CPT) codes and Diagnosis-Related Group (DRG) codes

The MIMIC-III Clinical Database, although de-identified, still contains detailed information
regarding the clinical care of patients, and must be treated with appropriate care and respect.
Researchers seeking to use the full Clinical Database must formally request access to the MIMIC-T11
Database.

More information
For more information about the MIMIC-III Clinical Database, please visit

http://mimic.physionet.org/.
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DNP’s Mission
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The Problem Artificial intelligence (Al) systems built on incomplete or

biased data will often exhibit problematic outcomes.

L1 oay Suicide Risk Prediction Models Could
Review Perpetuate Racial Disparities Amazon Created a Hiring Tool
- Two suicide risk prediction models are less accurate for some Using A.L It Immediate]y Started
ArtincialinteNigence minority groups, which could exacerbate ethnic and racial o : o . &
. . . . disparites. Discriminating Against Women.
Predictive policing
algorlthms are racist. \ A e
They needtobe RALL
dismantled. » (LI
Lack of transparency and biased training data mean these tools are \ }‘ . "t g

not fit for purpose. If we can't fix them, we should ditch them.

by Will Douglas Heaven July 17,2020
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Model Development

Interrogating data quality
& generating “nutrition label”

There is an opportunity to

DATASET MODEL
interrogate data quality Dataset Preprocessing Development Deployment
for bias before building the o =
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It’s a total free for all. When there isn't a best
practice that translates well, it takes some time to

discover you might need one.

— Survey Respondent




The Importance People and practitioners can make informed decisions
of Transparency

& Choice

when they know what'’s inside

Nutrition Facts
Serving Size 1 Cup (240mL)

Serving Per Container 8
— Should | eat
Calorles 60 Calories from Fat 15 . 1
% Dally Value* th IS ?

Total Fat 2g 3% From reviewing 60

Saturated Fat Og 0% intervention studies, food

Trans Fat Og labeling reduces consumer

Polyunsaturated Fat 19 dietary intake of selected
cm;mmd Fat0.50 0% putrients and {nfluences
Sodium 115mg - industry practices to reduce
Potassium 340mg product contents of sodium
Total Carbohydrate 5¢ and artificial trans fat.

Dietary Fiber 1g

Sugars 39 5
Protein 69

I —
Vitamin A10% e Vitamin C 0%
Calcium 45% = Iron 6%

Vitamin D 30% « Riboflavin 30%
Folate 10% e Vitamin B12 50%

-  American Journal of Preventive
Medicine

-~ne
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A Nutritional Label
for Datasets (2018)

The Dataset Nutrition Label:

A Framework To Drive Higher Data Quality Standards

Sarah Holland'*, Ahmed Hosny**, Sarah Newman’, Joshua Joseph®, and Kasia Chmielinski'"

Dataset Fact Sheet
Metadata Probabilistic Modeling

. —

Title COMPAS Recidivism Risk Score Data

Author Broward County Clerk’s Office, Broward County
Sherrif's Office, Florida

Email browardcounty @florida.usa

Description Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.

DOI 10.5281/zenodo. 1164791
Time Feb 2013 - Dec 2014

Keywords risk assessment, parole, jail, recidivism, law

Records 7214

Variables 25

priors_count: Ut enim ad minim veniam, quis
nostrud exercitation numerical

two_year_recid: Lorem ipsum dolor sit amet, consec-
tetur adipiscing elit, sed do eiusmod tempor incidi-
dunt ut labore et dolore magna aliqua.

nominal
Missing Units ’ 15452 (8%)
This dataset contains variables named “age’ “race

and “sex.

Missing Units
Clustering Variable Missing Variable
race » r_days_from_arrest -
x o
S T E VO P L
Se 2 BeBZb £5c8 3 B2
EEfERIIR 1285 0, fiy)
E88ems R 6385853
PERERaRERRIERARE a0Etes
EEEECECECCCCECECECEECECEECEEECECEEC
EEEEEEEEEEEEEEEEEEEEEEE

b and Berkman Klein Center at Harvard University, *“Dana-Farber Cancer Institute, Harvard Medical
rvard, Berkman Klein Center for Internet & Society, Harvard University, *33x.ai
*authors contributed equally
"nutrition@media.mit.edu

ABSTRACT

telligence (AI) systems built on incomplete or biased data will often exhibit
>s. Current methods of data analysis, particularly before model development, are
ardized. The Dataset Nutrition Label' (the Label) is a diagnostic framework that
standardized data analysis by providing a distilled yet comprehensive overview of
before Al model development. Building a Label that can be applied across domains
ires that the framework itself be flexible and adaptable; as such, the Label is
e qualitative and quantitative modules generated through multiple statistical and
ng backends, but displayed in a standardized format. To demonstrate and advance
erated and published an open source prototype* with seven sample modules on the
'or Docs dataset. The benefits of the Label are manyfold. For data specialists, the
e robust data analysis practices, provide an efficient way to select the best dataset for
ncrease the overall quality of Al models as a result of more robust training datasets
eck for issues at the time of model development. For those building and publishing
reates an expectation of explanation, which will drive better data collection practices.
limitations of the Label, including the challenges of generalizing across diverse
< of using “ground truth” data as a comparison dataset. We discuss ways to move
mitations identified. Lastly, we lay out future directions for the Dataset Nutrition

ding research and public policy agendas to further advance consideration of the
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Nutritional Label
for Datasets (2020)

https://datanutrition.org/labels/
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Dataset Nutrition Label

2020 SIIM-ISIC Melanoma Classification Challenge Dataset

About

The 2020 SIIM-ISIC Melanoma Classification challenge dataset was created for
the purpose of conducting a machine learning competition to identify melanoma
in lesion images. As the leading healthcare organization for informatics in medical
imaging. the Society for Imaging Informatics in Medicine (SIIM)'s mission is to
advance medical imaging informatics through education, research, and
innovation in a multi-disciplinary community. SIIM is joined by the International
Skin Imaging Collaboration (ISIC), an international effort to improve melanoma
diagnosis. The ISIC Archive contains the largest publicly available collection of
quality-controlled dermoscopic images of skin lesions.

Data Creation Range: 1598 - 2019

Created By: International Skin Imaging Collaboration (ISIC)

Content: The 2020 SIIM-ISIC Melanoma Classification challenge dataset was
created for the purpose of conducting a machine learning competition to identify
melanoma in lesion images. As the leading healthcare organization for
informatics in medical imaging, the Society for Imaging Informatics in Medicine
(SIIM)'s mission is to advance medical imaging informatics through education,
research, and innovation in a multi-disciplinary community. SIM is joined by the
International Skin Imaging Collaboration (ISIC), an international effort to improve
melanoma diagnosis. The ISIC Archive contains the largest publicly available
collection of quality-controlled dermoscopic images of skin lesions.

Source: hitps.//challengez2020.isic-archive.com/

Alert Count
Completeness
Racial Bias

Socioeconomic Bias

_...lm.hl""-

Gender Bias

Provenance

Collection

Description

»lololO

Composition

(=Y

Racial Bias
|

" Please refer to the Objectives and Alerts section for more details

Use Cases

Potential real-world applications of the dataset

1 Identify melanoma in lesion images
2 Predict incidence of melanoma in a population

Badges

Includes
Suibpoplatinns
Quality
Review
Alert Count by Calegory
0 1 2

I Ccrolcteness
Composition

Description

Alert Count by Potential Harm

Q 1 2

_ Gender Bias

L]
N
Single-source
Data

Alert Count by Mitigation Potential
0 1 2 3

Yes
Maybe

I o

N Racial Bias

I socioecenomic Bias



https://datanutrition.org/labels/

Nutritional Label The tool is dynamic and built for data practitioners and those
for Datasets (2020)

https://datanutrition.org/labels/

who are selecting datasets for advanced stats / Al purposes

MITIGATION POSSIBLE: Il 2 No 2 Maybe 1VYes

FILTER: All v
Il Dataset is not representative with respect to darker skin types »

Ill Dataset is a convenience sample and is not representative of general incidence of melanoma »

Usage Restrictions »

Inconsistent lighting in images may alter skin type v

Mitigation Possible: Maybe
Category: Composition
Potential for Harm: Racial Bias

Because lighting in inconsistent in the images, strong caution against manually adding
[abels to dataset to capture skin tvpe
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https://datanutrition.org/labels/

... While | know that the primary mission of the
DNP is to improve the understanding, searching,
and consumption of datasets by users of datasets,
It has also been key to improving my dataset

design moving forward.

— Dataset Partner




Impact of the approach, methodology, and
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RAI Certification
Beta

The world’s first independent, accredited certification program of its kind.

Developed under the Global Al Action Alliance for the World Economic
Forum (WEF), along with a diverse community of leading experts, RAI
certification is based on objective assessments of fairness, bias,
explainability, and other concrete metrics of responsibly built Al
systems. The Schwartz Reisman Institute for Technology and Society
(SRI) at University of Toronto is serving as a business partner on the
development phase of the initiative. =

standard

NeurlPS | 2021

Thirty-fifth Conference on Neural
Information Processing Systems

* Submission introducing new datasets must include the following in the supplementary materials:

o Dataset documentation and intended uses. Recommended documentation frameworks include
datasheets for datasets| dataset nutrition labels| data statements for NLP, and accountability
frameworks.

o URL to website/platform where the dataset/benchmark can be viewed and downloaded by the
reviewers.

o Author statement that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license.




The Vision We believe that Nutritional Labels on Datasets will:

1. Drive robust data analysis practices by making it
easier and faster for data scientists to interrogate and
select datasets.

2. Increase overall quality of models by driving the use
of better and more appropriate datasets for those
models

3. Enable the creation and publishing of responsible
datasets by those who collect, clean and publish data
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Thank You!

Contact: info@datanutrition.org
Twitter: @makedatahealthy
Website: datanutrition.org
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