Mortgage Market Concentration, Foreclosures and House Prices

Giovanni Favara Federal Reserve Board Mariassunta Giannetti Stockholm School of Economics CEPR and ECGI

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The views in this presentation do not reflect those of the Federal Reserve System or its Board of Governors

- The 2007-2009 U.S. housing crisis was characterized by a
 - sharp decline in house prices
 - steep rise in mortgage defaults
- Most defaults turned into mass foreclosures causing (pecuniary and non-pecuniary) externalities that
 - impaired the housing value of local markets
 - increased losses on lenders balance sheets

イロト イヨト イヨト イヨト

- Much of the policy/academic discussion has focused on the role of:
 - securitization as impediment to renegotiation
 - policy intervention to foster lenders' incentives to renegotiate
- Here we take on the less discussed question of *what market forces may mitigate the negative effects of mortgage defaults on the economy*
 - Which banks are more or less inclined to renegotiate defaulting mortgages?

(日) (同) (三) (三)

- Foreclosures (by "atomistic" lenders) create a pecuniary externality that causes contagious defaults:
 - i.e., liquidity (involuntary) defaults of distressed borrowers are followed by strategic (voluntary) defaults of borrowers with negative equity
- "Large" lenders internalize the pecuniary externality of their liquidation decisions on house prices:
 - i.e., larger exposure to mortgage losses foster incentives to renegotiate liquidity defaults

イロト イポト イヨト イヨト

- Study the interaction of (liquidity and strategic) defaults, lenders' market shares and house prices in a stylized model
 - main prediction: market concentration mitigates the adverse effects of liquidity defaults on house prices because it weakens lenders' incentives to foreclose defaulting loans
- Test the model's predictions on U.S. county data exploiting variation in:
 - lenders' mortgage market concentration (lender balance sheet exposure to local housing markets)
 - house prices
 - foreclosure rates

イロト イポト イヨト イヨト

- House prices fall in response to negative income shocks, but the price decline is muted in areas where lenders hold larger shares of the local mortgage market:
- The link between mortgage market concentration and house prices operates through foreclosure rates

(日) (同) (三) (三)

- Role played by foreclosure laws in the collapse of housing price during the 2007-2009 financial crisis
 - Mian and Sufi and Trebbi (2012), Gerardi, Lambie-Hanson and Willen (2011)

- Spate of papers stressing the role of securitization (and servicers) as impediment to mortgage renegotiation
 - Piskorski, Seru and Vig (JFE, 2010); Agarwal et al. (JFE, 2011);
 Adelino, Gerardi and Willen (2011); Ghent (RFS, 2011)
- Two ways of looking at our work in relation to the literature on securitization:
 - Securitization arrangements can be viewed as an optimal contract for atomistic lenders with no ex post incentives to renegotiate
 - Our results hold even if we focus on just the 30 percent of the market that is not securitized

<ロト <回ト < 回ト < 回ト < 回ト = 三日

- Concentrated banking, bank-firm relationship, credit provision and contract terms
 - Petersen and Rajan (JF, 1995); Garmaise and Moskovitz (JF, 2006)
- Government intervention in the presence of market externalities during bankruptcy
 - Bolton and Rosenthal (JPE, 2002)

イロト イポト イヨト イヨト

Outline

- Model (sketch)
- Emprical Analysis

3

<ロ> (日) (日) (日) (日) (日)

- One period model with two dates t = 0, 1; two groups of agents of mass one, households (indexed by i) and banks
- At t = 0 households are endowed with housing $h_{0i} = 1$, outstanding mortgage debt B secured against the house, and no savings
- At t = 1 (after repaying outstanding debt) households make consumption and housing decisions:

$$U_{1i} = c_{1i} + \gamma_i h_{1i}$$

where, $c_{1i} \geq 0$, $h_{1i} \in \{0, 1\}$, and

$$\gamma_i \sim U \; [0, \overline{\gamma}]$$

• Housing supply is fixed, $\overline{H}<\overline{\gamma}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Assumptions II

- At t = 1 households receive a stochastic income w_{1i} that depends on two states of the world:
 - good state (w.p. q) all receive w_1
 - bad state (w.p. 1-q) a fraction e of households receive $heta w_1$, 0 < heta < 1
- In the bad state of the world

$$\theta w_1 < B \leq w_1$$

households cannot repay B and atomistic banks may renegotiate or seize and sell h_{0i} and p_1 , to be determined

Budget constraint at t = 1

$$\begin{cases} \begin{pmatrix} w_{1i} + p_1 h_{0i} = c_{1i} + B + p_1 h_{1i} & \text{no default} \\ w_{1i} = c_{1i} + p_1 h_{1i} & \text{default & liquidation} \\ \end{pmatrix}$$

10/18

12 / 34

Favara & Giannetti (2013)

Equilibrium housing demand and prices

Individual housing demand

$$\gamma_i \geq p_1$$

• Aggregate demand depends on the realization of the shock, and since $\gamma_i {\sim}~U~[0,\overline{\gamma}]$

$$\left\{ \begin{pmatrix} \overline{\gamma} - p_1 \\ (1 - e) (\overline{\gamma} - p_1) \end{pmatrix} \right.$$

no shock, no default shock, default & liquidation

イロト イポト イヨト イヨト

• Given \overline{H} , the equilibrium price is

$$p_1^L = \overline{\gamma} - rac{\overline{H}}{1-e} < p_1 = \overline{\gamma} - \overline{H}$$

Atomistic banks and strategic default

• In the equilibrium with liquidation,

$$p_1^L < B \le p_1$$

and thus even intact households prefer to default (voluntary)This equilibrium exists *iff*:

$$heta w_1 < p_1^L = \overline{\gamma} - rac{\overline{H}}{1-e} < w_1$$

- distressed borrowers cannot participate in the housing market (first <)
- intact households default strategically because they can re-purchase a house from a bank at a lower price (second <)
- **Result 1**: With liquidation, distressed households stay out of the housing market, the equilibrium housing price falls, and intact households default strategically

Renegotiation decisions by atomistic banks

- If all atomistic banks were to renegotiate (with a mark down on loan repayment)
 - housing demand would be the same as without shocks

$$p_1^R = p = \overline{\gamma} - \overline{H}$$

However, since

$$\theta w_1 < \overline{\gamma} - \frac{\overline{H}}{1-e} = p_1^L$$

- the gain from liquidation is always larger than the highest payment a bank can obtain from a distressed household
- **Result 2**: Atomistic lenders never renegotiate a defaulting loan

(日) (同) (三) (三)

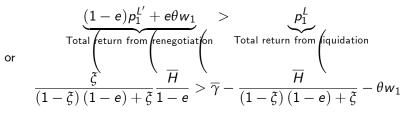
Banking concentration, and house prices

- Suppose one bank holds a large fraction, ξ, of the mortgage market. If this bank renegotiates its loans (while the others liquidate) a fraction ξ of distressed households remains in possession of their houses
- Aggregate housing demand would be:

$$\left(1-\xi
ight)\left(1-e
ight)\left(\overline{\gamma}\!-\!p_{1}
ight)+\xi(\overline{\gamma}\!-\!p_{1})$$

and the equilibrium price

$$p_1^{L'} = \overline{\gamma} - rac{\overline{H}}{\left(1-\xi
ight)\left(1-e
ight)+\xi} > p_1^L \quad ext{and} \quad \partial p_1^{L'}/\partial \xi > 0$$


- **Result 3**: Negative income shocks have a muted effect on house prices when the mortgage provision is concentrated
 - because the large lender internalizes the effect of its liquidation decision on aggregate demand and prices

Favara & Giannetti (2013)

10/18

Renegotiation decision for the concentrated bank

• At the equilibrium price $p_1^{L'}$, a concentrated lender is willing to renegotiate defaulting loans if

Result 4

— As $\xi
ightarrow$ 0 it is never optimal to renegotiate because

$$heta w_1 < \overline{\gamma} - rac{\overline{H}}{1-e} = p_1^L$$

— As $\xi
ightarrow 1$ it is optimal to renegotiate if

$$\overline{H} > p_1^L - \theta w_1$$

• For a large ξ aggregate losses of the banking system fall as:

- large bank obtains

$$(1-e)p_1^{L'}+e heta w_1>p_1^L$$

Total return from renegotiation Total return from liquidation

- small banks liquidate at

$$p_1^{L'} > p_1^L$$

- N.B: When the large bank renegotiates its loans, smaller banks have even more incentives to liquidate as p₁^{L'} > p₁^L
 - a large bank alone cannot prevent strategic defaults, but it can mitigate the effects of negative income shocks on house prices

イロト イポト イヨト イヨト

- Negative income shocks have a smaller effect on house prices if the provision of mortgage credit is concentrated
- Negative income shocks are associated with lower foreclosure rates in markets with concentrated mortgage lending

(日) (同) (三) (三)

Data and Empirical Analysis

Favara & Giannetti (2013)

10/18 20 / 34

3

イロト イヨト イヨト イヨト

Data: mortgage market concentration

- HMDA mortgage data aggregated at the county level from 2001 to 2009
 - mortgages originated (by commercial banks, thrifts, credit union and mortgage companies) for the purchase of single-family owner occupied houses
- County-level Herfindahl-Hirschman index of local mortgage market concentration:

$$HHI_{c,t}^{num} = \sum_{b_i \in B_{c,t}} \frac{\sum_{m} mort_{m,b_i}^{ret}}{\sum_{b_i} \sum_{m} mort_{m,b_i}^{ret} + \sum_{b_i} \sum_{n} mort_{n,b_i}^{sec}} \right)^2$$

- $B_{c,t}$ set of distinct lenders (b_i) originating loans in county c in period $t = \{2001 2003, 2004 2006, 2007 2009\}$
- $mort_{m,b_i}^{ret}$ mortgage m originated by bank b_i and non-securitized
- $mort_{n,b_i}^{sec}$ mortgage *n* originated by bank b_i and securitized within a year to GSEs or private institutions
- Compute also $HHI_{c,t}^{vol}$ (volume of loans originated) and $HHI_{c,t}^{non-sec}$ (securitized mortgages excluded from the computation of market shares)

Favara & Giannetti (2013)

Data: foreclosures, house prices, economic/financial data

- House price data Moody's & CoreLogic
 - median and quality-adjusted house price index of existing single family properties
- Foreclosure data RealtyTrack
 - foreclosures rates computed as the number of foreclosures (NOS, NTS, REO) for single-family properties per homeowner
- Other data:
 - income per capita, population, unemployment rates (BEA);
 - delinquency rates on consumer debt balances (Equifax), delinquency rates on securitized mortgage loans (LPS)
 - single family housing stock (Census), single family housing units sold (NAR)

イロト 不得下 イヨト イヨト 二日

The empirical framework

Mortgage concentration and house prices: 2004-2009

■ Reduced form regression, t = 2004 - 2006, 2007 - 2009

$$\Delta \ln p_{c,t} = \alpha_1 HHI_{c,t-1} + \alpha_2 \mathbf{1}_{\Delta \ln y_{i,t}<0} + \alpha_3 HHI_{c,t-1} \times \mathbf{1}_{\Delta \ln y_{i,t}<0} + \beta X_{c,t} + \gamma_t + \delta_{MSA} + \varepsilon_{c,t},$$

- $-\Delta \ln p_{c,t} \log$ change of house price in each subperiod
- $HHI_{c,t-1}$ lagged index of banking concentration
- $1_{\Delta \ln y_{i,t} < 0}$ indicator variable equal to one if a county experiences a negative income shock from one period to the next
- X_{c,t} time-varying county-specific controls
- δ_{MSA} and γ_t MSA and time fixed effects
- Prediction: $\alpha_2 < 0$ and $\alpha_3 > 0$

イロト 不得下 イヨト イヨト 二日

TABLE 2

Mortgage concentration, income shocks, and house prices: Pooled regression 2004-2009

Dependent Variables: House price growth										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Negative income growth	-0.053***	-0.053***	-0.045***	-0.044***	-0.049***	-0.047***	-0.016	-0.014		
	(0.013)	(0.013)	(0.011)	(0.011)	(0.010)	(0.010)	(0.015)	(0.016)		
HHI-Number	-0.563**		-0.678**		-0.708**		-0.767			
	(0.267)		(0.277)		(0.274)		(1.124)			
HHI-Number*Negative	1.365***		1.438***		1.519***		1.821**			
income growth	(0.363)		(0.384)		(0.330)		(0.788)			
HHI-Volume		-0.653*		-0.746**		-0.751**		-0.179		
		(0.337)		(0.330)		(0.310)		(1.226)		
HHI-Volume*Negative		1.394***		1.314***		1.354***		1.406^{*}		
income growth		(0.437)		(0.465)		(0.372)		(0.777)		
Observations	1847	1847	1835	1835	1835	1835	1835	1835		
N. of counties	1044	1044	1044	1044	1044	1044	1044	1044		
Controls	no	no	yes	yes	yes	yes	yes	yes		
Fixed effects	MSA	MSA	MSA	MSA			County	County		
Standard errors clusters	MSA	MSA	MSA	MSA	MSA	MSA	County	County		
R2	0.667	0.667	0.738	0.737	0.556	0.554	0.854	0.853		

▲ロト ▲聞 ト ▲ 語 ト ▲ 語 ト 二 語 … の

10/18

24 / 34

TABLE 3

Robustness: Other market concentration indexes, securitization and delinquency rate

	Dependent Variables: House price growth							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Negative Income Growth	-0.042	-0.043***	-0.045	-0.043	-0.063	-0.060	-0.038	-0.037
	(0.010)	(0.010)	(0.011)	(0.011)	(0.017)	(0.017)	(0.010)	(0.010)
HHI-Number (current)	-0.221							
	(0.173)							
HHI-Number (current) *	0.773***							
Negative Income Growth	(0.226)							
HHI-Volume (current)		-0.306						
		(0.224)						
HHI-Volume (current)*		0.939***						
Negative Income Growth		(0.300)						
HHI-Number			-0.653**				-1.377***	
			(0.295)				(0.464)	
HHI-Number*Negative Income			1.448***				1.277**	
Growth			(0.387)				(0.536)	
HHI-Volume				-0.757**				-1.224
				(0.353)				(0.509
HHI-Volume *Negative Income				1.311***				1.028
Growth				(0.466)				(0.523
HHI -Number-No Securitized					0.018			
					(0.134)			
HHI -Number-No Securitized					0.428***			
*Negative Income Growth					(0.164)			
HHI -Volume-No Securitized						0.075		
						(0.118)		
HHI -Volume-No Securitized						0.351**		
*Negative Income Growth						(0.150)		
Securitized Loans			0.012	-0.005	0.055	0.045	-0.043	-0.035
			(0.066)	(0.064)	(0.064)	(0.061)	(0.077)	(0.073
Securitized Loans- 60days							-0.136**	-0.132
delinquency rate							(0.062)	(0.062
Consumer Credit 60 days-							-0.149***	-0.151*
delinquency rate							(0.028)	(0.028
A C:								10/1
a & Giannetti (2013)								10/1

25 / 34

Further robustness

- Did counties with concentrated mortgage lending experience smaller price appreciations before the crisis?
 - The controls for delinquency rates and house turnover should pick it up
 - Results robust to controlling for previous price appreciations
 - Results also robust to using propensity scores matching counties on 'Housing units sold', 'Income per capita', and 'Unemployment rate'
- Were counties with concentrated mortgage lending more indebted?
 - Results are robust if we control for mortgage per capita
- Did banks in countries with concentrated mortgage lenders differ along any other dimension?
 - Instrumental variable methodology exploting variation in concentration due to "exogenous" mergers
 - Results are robust to the inclusion of controls for bank profitability and size
- Is the county the right geographical using for price spillovers?
 - Results are robust at the census tract level

Judicial vs. Power of sale states

- Lending concentration should have a smaller effect in areas where foreclosures are less likely (or renegotiations more likely)
- Compare judicial vs. power of sale states:
 - the court involvement in auctioning a distressed property slows down the foreclosure process relative to power of sale states where lenders have the automatic right to carry out a foreclosure action in the event of default (Pence, 2006; Mian, Sufi, Trebbi, 2012)
 - foreclosures are less likely in judicial states because they are more costly

イロト 人間ト イヨト イヨト

Robustness — empirical framework

Judicial vs. Power of sale states

• Reduced form regression:

$$\Delta \ln p_{c,t} = \alpha_1 HHI_{c,t-1} + \alpha_2 \mathbf{1}_{\Delta \ln y_{i,t} < 0} + \alpha_3 HHI_{c,t-1} \times \mathbf{1}_{\Delta \ln y_{i,t} < 0} + \alpha_4 HHI_{c,t-1} \times \mathbf{1}_{\Delta \ln y_{i,t} < 0} \times \mathbf{1}_{Jud=1} + \beta_5 X_{c,t} + \varepsilon_{c,t},$$

where $\mathbf{1}_{\textit{Jud}=1}$ is indicator function for judicial foreclosure states

• Prediction: $\alpha_2 < 0$, $\alpha_3 > 0$ and $\alpha_4 < 0$

Judicial vs. Power of sale states - Cross-county regression: 2007-2009

	Dependent Variable: House price growth					
	Full Sample	Bordering	Full Sample	Bordering		
	(1)	(2)	(3)	(4)		
Negative income growth	-0.019	-0.037*	-0.004	-0.039**		
	(0.016)	(0.019)	(0.016)	(0.015)		
HHI-Number	-0.415	-0.156	-0.627*	0.043		
	(0.356)	(0.330)	(0.379)	(0.306)		
HHI-Number*Negative income	1.318***	0.984*	1.321***	0.993**		
growth	(0.374)	(0.492)	(0.392)	(0.402)		
HHI-Number*Negative income	-1.503**	-1.668				
growth*Judicial foreclosure	(0.686)	(1.188)				
HHI-Number*Negative income			-1.437**	-1.960*		
growth*Days dummy			(0.711)	(1.045)		
Judicial foreclosure	0.029	0.001				
	(0.021)	(0.021)				
Days dummy			0.038^{*}	0.013		
			(0.020)	(0.026)		
Observations	1044	232	1044	232		
Controls	yes	yes	yes	yes		
Standard errors clusters	MSA	MSA	MSA	MSA		
R2	.492	.449	.485	.485		

Mechanism

Mortgage concentration, income shocks and foreclosure rates

- Mortgage concentration mitigates the effects of negative shocks on house prices because it weakens lenders' incentives to foreclose defaulting loans
- Are foreclosure rates lower in concentrated markets?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TABLE 5

Cross-county regression: 2007-2009

	Dependent variable: foreclosure rates				
	Full sample	Bordering	Full sample	Bordering	
	(1)	(2)	(3)	(4)	
Negative income growth	0.019***	0.026***	0.020***	0.026**	
	(0.006)	(0.008)	(0.006)	(0.010)	
HHI-Number	0.517**	0.906	0.454^{**}	0.589	
	(0.202)	(0.609)	(0.205)	(0.726)	
HHI-Number*Negative	-0.896***	-1.298**	-0.911***	-1.057	
income growth	(0.200)	(0.626)	(0.292)	(0.932)	
Securitized Loans 60days			0.013	-0.045	
delinquency			(0.031)	(0.051)	
Observations	774	157	756	154	
Controls	yes	yes	yes	yes	
Standard errors clusters	MSA	MSA	MSA	MSA	
R2	0.371	0.114	0.378	0.122	

10/18 31 / 34

Judicial vs. non-judicial states - Cross-county regression 2007-2009

	Dependent variable: foreclosure rates					
	Full sample	Bordering	Full sample	Bordering		
	(1)	(2)	(3)	(4)		
Negative income growth	0.028***	0.044***	0.037***	0.041***		
	(0.010)	(0.014)	(0.009)	(0.013)		
HHI-Number	0.465**	2.168***	0.609***	1.844^{***}		
	(0.221)	(0.472)	(0.207)	(0.522)		
HHI-Number*Negative	-1.616***	-3.064***	-1.802***	-2.765***		
income growth	(0.490)	(0.679)	(0.441)	(0.702)		
HHI-Number*Negative	1.241*	4.379**				
income growth*Judicial	(0.722)	(1.963)				
foreclosure						
HHI-Number*Negative			2.276***	3.993**		
income growth*Days			(0.807)	(1.877)		
dummy						
Securitized Loans 60days	0.028	-0.022	0.021	-0.021		
delinquency	(0.031)	(0.049)	(0.030)	(0.049)		
Observations	756	154	756	154		
Controls	yes	yes	yes	yes		
Standard errors clusters	MSA	MSA	MSA	MSA		
R2	0.399	0.151	0.4	0.148		

10/18 32 / 34

(日) (四) (三) (三) (三)

- In mortgage markets with a dispersed lending structure lenders foreclose defaulting loans more often because they do not internalize the effects of foreclosures decisions on house prices
- We provide evidence supporting this mechanism for US counties (and census tracts) during the recent housing market collapse
- We find that after a negative income shock
 - house prices drop less in markets with more mortgage lending concentration
 - mortgage markets with high concentration experience fewer foreclosures

イロト イポト イヨト イヨト

Conclusion

- Policy implications:
 - consolidation of mortgage lenders with similar geographical exposure strengthen their incentives to renegotiate defaulting loans, limiting lenders' losses and stabilizing house prices
 - rational for restructuring strategy involving a bad bank
 - the model may also explain why large banks have an icentive to offer refinancing in certain neighbors during financial crisis
- The mechanism highlighted here has bearings beyond the housing market
 - it has implications for the price volatility of any collateralized market with dispersed lending structure