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Abstract

Information contagion can reduce systemic risk defined as the joint default prob-

ability of banks. This paper examines the effects of ex-post information contagion

on both the banks’ ex-ante optimal portfolio choices and the implied welfare losses

due to joint default. Because of counterparty risk and common exposures, bad news

about one bank reveals valuable information about another bank, thereby triggering

information contagion. We find that information contagion reduces (increases) the

joint default probability when banks are subject to counterparty risk (common expo-

sures). When applied to microfinance, our model also provides a novel explanation

for higher repayment rates in group lending. [100 words.]
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1 Introduction

Systemic risk is defined as the joint default of a substantial part of the financial system

and is associated with large social costs.1 One major source of systemic risk is infor-

mation contagion: when investors are sensitive to news about the health of the financial

system, bad news about one financial institution can adversely spill over to other financial

institutions. For instance, the insolvency of one money market mutual fund with a large

exposure to the investment bank Lehman Brothers spurred investor fears and led to a

wide-spread run on all money market mutual funds in September 2008.2 As information

contagion affects various financial institutions including commercial banks, money market

mutual funds, and shadow banks, we adopt a broad notion of financial institutions and

call them banks for short.

There are at least two reasons for an investor of a bank to find information about another

bank’s profitability valuable. On the one hand, the first bank may have lent to the second

bank in the past, for example to share liquidity risk as in Allen and Gale (2000). Learning

about the debtor bank’s profitability then helps the investor assess the counterparty risk

of the creditor bank. On the other hand, both banks may have some common exposure to

an asset class, such as risky sovereign debt or mortgage-backed securities. Learning about

another bank’s profitability then helps the investor assess the profitability of its bank. For

example, the funding cost of one bank increases after adverse news about another bank

because of correlated loan portfolio returns in Acharya and Yorulmazer (2008b).

We develop a model of systemic risk with information contagion. Our model features

two banks, where systemic risk refers to the ex-ante probability of joint default. Due to

both counterparty risk and common exposures, bad news about one bank can trigger the

1The Bank for International Settlements (1997) compares the cost of systemic bank crises in various
developing and industrialized countries and document the range from about 3% of GDP for the savings
and loan crisis in the United States to about 30% of GDP for the 1981-87 crisis in Chile.

2Lehman Brothers failed on September 15, 2008 and the share price of the Reserve Primary Fund
dropped below the critical value of 1$ on September 16, 2008.
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default of another bank. Information contagion in this setup is the amount of a bank’s

additional financial fragility caused by such bad news. We examine the effects of ex-post

information contagion on the ex-ante optimal portfolio choice of a bank and the implied

level of systemic risk.

Our main result refers to information contagion due to counterparty risk. When an infor-

mation spillover is unanticipated, the ex-ante optimal portfolio is unchanged and systemic

risk increases (Result 1).3 By contrast, the ex-ante optimal portfolio choice is more pru-

dent when the information spillover is anticipated, reducing systemic risk (Result 3) and

the level of expected utility. In short, systemic risk is lower when anticipating informa-

tion contagion, labelled as a resilience effect. The contrast between Result 1 and Result

3 demonstrates the importance of ex-post information contagion for the ex-ante optimal

portfolio choice.

We also analyze information contagion due to common exposures. When information

spillover is unanticipated, systemic risk increases (Result 2), as in Result 1. When in-

formation spillover is anticipated, however, systemic risk and expected utility increases

(Result 4). This is labelled the instability effect. Taking these results together, the conse-

quences of information contagion for the level of systemic risk (via changes of the ex-ante

optimal portfolio choice) depend on the nature of the interbank linkage: financial fragility

increases (decreases) when banks are linked via common exposure (counterparty risk).

Our main contribution is the analysis of information contagion due to counterparty risk

and its effects on the ex-ante optimal portfolio choice and systemic risk. To the best

of our knowledge, counterparty risk as a source of information contagion has not beeen

previously addressed.4 Our counterparty risk mechanism builds on the literature of finan-

3Similar to the aggregate liquidity shock in Allen and Gale (2000), the information spillover is a zero
probability event when unanticipated ex-ante.

4Cooper and Ross (1998) and Ennis and Keister (2006) study the effect of ex-post individual bank
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cial contagion due to balance sheet linkages. Building on Diamond and Dybvig (1983),

Allen and Gale (2000) describe financial contagion as an equilibrium result.5 Interbank

lending insures banks against a non-aggregate liquidity shock and potentially achieves

the first-best outcome. However, a zero-probability aggregate liquidity shock may travel

through the entire financial system. While counterparty risk in our model also arises

from the potential default on interbank obligations, we obtain the ex-ante optimal port-

folio choice given that contagion may occur with positive probability.6

Our results also relate to the literature on information contagion due to common expo-

sures. Information about the solvency of one bank is an informative signal about the

health of other banks with similar exposure in Acharya and Yorulmazer (2008b).7 The

anticipation of ex-post information contagion induces banks to correlate their ex-ante in-

vestment decisions, endogenously creating common exposures. By contrast, we consider

counterparty risk as a principal source of information contagion. We also allow for a larger

set of portfolio choice options.8 Leitner (2005) analyzes the ex-ante beneficial insurance

effects of ex-post financial contagion in the absence of an explicit ex-ante risk sharing

runs on the ex-ante liquidity choice and the design of deposit contracts. By contrast, we analyze how
information contagion due to counterparty risk affects the ex-ante portfolio choice and deposit contract
design of banks and examine the consequences for the joint default probability of banks.

5Freixas et al. (2000) consider spatial instead of intertemporal uncertainty about liquidity needs.
6Postlewaite and Vives (1987) show the uniqueness of equilibrium with positive probability of bank

runs in a Diamond and Dybvig (1983) setup with demand deposit contracts and four periods. By contrast,
we analyse the impact of information contagion from counterparty risk and common exposures on the
ex-ante optimal portfolio choice and the implied level of systemic risk. Dasgupta (2004) also demonstrates
the presence of financial contagion with positive probability in the unique equilibrium of a global game
version of the model described by Allen and Gale (2000), focusing on the coordination failure initiated by
adverse information. By contrast, we analyse the impact of information contagion from counterparty risk
and common exposures on the ex-ante optimal portfolio choice and the implied level of systemic financial
fragility.

7Other models of common exposure include Acharya and Yorulmazer (2008a), who analyze the in-
terplay between government bail-out policies and banks’ incentives to correlate their investments. Chen
(1999) shows that bank runs can be triggered by information about bank defaults when banks have a
common exposure. Uninformed investors use the publicly available signal about the default of another
bank to assess the default probability of their bank. An early model of information-based individual
fragility is Jacklin and Bhattacharya (1988).

8While interconnectedness of banks only arises through the endogenous choice of correlated invest-
ments in Acharya and Yorulmazer (2008b), we maintain the exogenous correlation of the bank’s invest-
ment returns as in Acharya and Yorulmazer (2008a) but endogenize liquidity holdings, interbank liquid-
ity insurance (co-insurance as in Brusco and Castiglionesi (2007)), and insurance of impatient investors
against idiosyncratic liquidity shocks.
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mechanism due to limited commitment. By contrast, we focus on the ex-ante effects of

ex-post information contagion in a model with commitment. Allen et al. (2012) analyze

systemic risk stemming from the interaction of common exposures and funding maturity

through an information channel.9 However, our focus is on the novel analysis of coun-

terparty risk as a source of information contagion and its repercussions for systemic risk.10

Our results on the interaction of information spillovers and counterparty risk are not lim-

ited to systemic risk in banking of advanced economies. Counterparty risk also arises from

joint liability in group lending contracts commonly used by the Grameen bank and other

microfinance institutions in developing economies (see e.g. Stiglitz (1990), Varian (1990),

or Morduch (1999)). The idea behind group borrowing is to employ peer monitoring to

overcome asymmetric information. Thus, borrowers in a group will know each other quite

well (either neighbors from the same village, or even family members) and information

spillover occurs frequently. In particular, our resilience effect predicts that (i) group loans

have a higher repayment rate than individual loans and (ii) group borrowers hold more

liquid assets. As discussed in Section (5), both predictions are verified in the empirical

microfinance literature.

The remainder of this paper is as follows. The model is described in Section (2) and its

equilibrium is analyzed in Section (3), including a discussion of special cases to provide

further intuition to our model. We present our results in Section (4), which also contains

extensive robustness checks. Our model is applied to microfinance in Section (5), providing

a novel explanation for empirical findings in that literature. Finally, Section (6) concludes.

Derivations, proofs, and tables are found in Appendices (A), (B), and (C).

9Banks swap risky investment projects to diversify, generating different types of portfolio overlaps.
Investors receive a signal about the solvency of all banks at the final date. Upon the arrival of bad news
about aggregate solvency, roll-over of short-term debt occurs less often when assets are clustered, leading
to larger systemic risk.

10Furthermore, we consider an investment allocation between a safe and a risky asset instead of the
choice between several risky assets and the information spillover about solvency is bank-specific in our
model instead of system-wide.
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2 Model

The economy extends over three dates labelled as initial (t = 0), interim (t = 1), and

final (t = 2) and consists of two equally-sized regions k = A,B. There is a single physical

good used for consumption and investment. Each region is inhabited by a bank and

many depositors. Our setup is not limited to the traditional case of retail depositors and

a commercial bank but incorporates, for instance, money market funds and investment

banks.11 This paper analyses systemic risk measured by the ex-ante probability of joint

bank failure.

2.1 Investment opportunities

Two investment opportunities are publicly available in each region at the initial date.

Storage matures after one period and produces one unit per unit invested. A risky long-

term investment project matures after two periods and yields a regional return of Rk that

exceeds unity in expectation (E[Rk] > 1). Premature liquidation of a fraction x ∈ [0, 1] at

the interim date yields a return β ∈ (0, 1).12 As the liquidation value is below par (costly

liquidation) but positive, liquidation is optimal for low realizations of the regional return.

Specifically, regional investment returns Rk are bivariate:

Rk =





R w.p. θk

0 w.p. 1− θk

(1)

where the success probability (regional fundamental) is uniformly distributed (θk ∼

U [0, 1]) and interpreted as a solvency shock to region k. Positive equilibrium invest-

ment is ensured by R > 2. Let corr(θA, θB) denote the correlation between the regional

fundamentals. In particular, banks have a common exposure if corr(θA, θB) = 1. Be-

cause of the individual randomness of each investment project, the realised investment

11In the language of Uhlig (2010), our banks corresponds to core banks, while our depositors correspond
to local banks.

12This captures, for example, an alternative use of resources by a low-value industry outsider as in
Shleifer and Vishny (1992).
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returns may differ even in the presence of common exposures. We abstract from portfolio

diversification motivated by limits to monitoring, for instance.

2.2 Information structure

All prior distributions are common knowledge. Before making their withdrawal decision

at the interim date, depositors may receive independent signals about the success prob-

abilities (θA, θB) with probability (qA, qB). If a signal is received, it perfectly reveals the

regional success probability to the depositor. If no signal is received, nothing is learnt.

Depositors receive their signals independently.

Knowledge about the other bank’s solvency is valuable to a given bank’s depositors for two

reasons. In case of common exposure investment returns are correlated and the knowledge

about the other bank’s investment return helps to predict a given bank’s investment

return. In case of counterparty risk, introduced via interbank lending as in Allen and Gale

(2000), the value of knowledge about the other bank’s investment return is indirect. It

helps to predict whether the debtor bank will repay the creditor bank. In sum, information

contagion occurs if the signal about the investment return in the other region is payoff-

relevant to a given region.

2.3 Depositors and banks

Each region has a unit continuum ex-ante identical depositors with Diamond and Dybvig

(1983) liquidity preferences. A depositor is either early or late, thus wishing to consume at

the interim or final date, respectively. The ex-ante probability of being an early consumer

is identical across consumers and given by λ ∈ (0, 1), which is also the share of early

consumers in that region by the law of large numbers. Depositors do not know their

liquidity preference at the initial date but learn it privately at the beginning of the interim

date. The depositor’s period utility function u(c) is twice continuously differentable,
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strictly increasing, strictly concave and satisfies the Inada conditions, giving rise to the

following depositor utility function:

U(c1, c2) =





u(c1) λ

w.p. ,

u(c2) 1− λ

(2)

E[U(c1, c2)] = λu(c1) + (1− λ)u(c2) (3)

where ct is the depositor’s consumption at date t and E is the expectation operator.

Risk-averse depositors prefer a strictly positive investment in the project as the expected

return exceeds unity. Depositors in each region are endowed with one unit at the initial

date to be invested or deposited at their bank.

There is a role for a bank as provider of liquidity insurance (Diamond and Dybvig (1983)).

This arises from the smaller volatility of regional liquidity demand compared with individ-

ual liquidity demand. The bank offers demand deposit contracts that specify withdrawals

(d1, d2) if funds are withdrawn at the interim or final date. The non-observability of

the idiosyncratic liquidity shock prevents the deposit contract between the bank and

the depositor from being contingent on the depositor’s liquidity shock. Without loss of

generality, we can set d2 ≡ ∞. In case of default, the bank pays an equal amount to

all demanding depositors (pro-rata). There is free entry to the banking sector following

Diamond and Dybvig (1983). Thus, a bank chooses its portfolio and the interim with-

drawal payment to maximize a depositor’s expected utility. All depositors deposit in full

given their interest is fully aligned with the bank.

There are negatively correlated regional liquidity shocks that motivate interbank insurance

as in Allen and Gale (2000). A region can have excess liquidity: λk = λL ≡ λ − η (low

liquidity demand) or a liquidity shortage: λH ≡ λ+ η (high liquidity demand) with equal
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probability, where η > 0 is the size of the regional liquidity shock.13 We study negatively

correlated liquidity shocks of equal size to exclude bank runs merely driven by aggregate

liquidity surplus or shortage. However, we consider aggregate solvency shocks.

probability region A region B

1
2

λA = λ+ η λB = λ− η

1
2

λA = λ− η λB = λ+ η

Banks insure against regional liquidity shocks at the initial date. They agree on mutual

liquidity insurance interpreted as mutual lines of credit or cross-holding of deposits. As

in Dasgupta (2004), the bank with liquidity shortage receives an amount b ≥ 0 from the

bank with liquidity surplus at the beginning of the interim date. If the bank with liquidity

shortage at the interim date is solvent, it repays the loan with interest (φ ≥ 1) at the

final date.14 Since banks are symmetric at the initial date, they wish to exchange the

same amount of deposits. However, banks become asymmetric at the interim date once

the bank in the liquidity shortage region (debtor bank) has withdrawn its funds from the

bank in the excess liquidity region (creditor bank). Because of potential default on the

interbank loan (counterparty risk), it is never optimal to hold more interbank insurance

than compensation for the liquidity shock (b∗ ≤ ηd∗1), where stars denote equilibrium

levels. We make the common assumption of seniority of interbank loans at the final date

only. Non-defaulted interbank claims may be liquidated at rate β.

We focus on essential bank runs as in Allen and Gale (2007). Late depositors are labeled

patient when holding their deposits until the final date and impatient otherwise. Suffi-

cient withdrawals of impatient depositors lead to the illiquidity of the bank and partial

liquidation, where insolvency arises for a sufficiently large proportion of impatient deposi-

tors. Already Diamond and Dybvig (1983) mention the issue of multiple equilibria arising

13Freixas et al. (2000) motivates interbank insurance by allowing for interregional travel of depositors
who learn the location of their liquidity demand at the beginning of the first period.

14We assume the existence of a liquidator for the defaulting bank to which the surviving bank has to
repay its debt at the final date. This assumption is natural as the liquidation of banks destroys value
due to fire sales but not claims on viable institutions.
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from the strategic complementarity in depositors’ withdrawal decisions and the implied

inefficient bank run equilibrium. We focus on unavoidable bank runs. All depositors with-

draw if and only if the expected utility from the stochastic final-date consumption level

falls short of the utility from their share of the liquidated bank portfolio. We denote the

default probability of an individual bank as ak and the joint default probability (systemic

risk) as A ≡ aAaB.

2.4 Timeline

The timeline of the model is given in Table (1).

Date 0 Date 1 Date 2

1. Endowed depositors 1. Regional liquidity 1. Investment projects
invest or deposit shocks are publicly mature
at regional bank observed

2. Banks choose 2. Banks settle date-1 2. Banks settle date-2
portfolio and initiate interbank claims interbank claims
interbank deposits

3. Depositors privately 3. Banks service
observe liquidity remaining
preference withdrawals

4. Depositors observe
regional solvency signals

5. Depositors decide
whether to withdraw

Table 1: Timeline of the model.

2.5 Payoffs

We close the description of the model by determining the depositors’ payoffs. First, con-

sider the high liquidity demand region (H), in which the payoffs are independent of the

behavior in the low liquidity demand region. In the case of a bank run, all funds are

liquidated (essential bank-runs) and the interbank loan is defaulted upon. The impatient

depositor’s payoff is dH ≡ y + (1 − y)β + b. In the absence of a bank run, no liqui-
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dation takes place and the interbank loan is repaid. The patient depositor’s payoffs is

cG2H ≡ (1−y)R+y−λHd1−(φ−1)b
1−λH

in the good state and cB2H ≡ y−λHd1−(φ−1)b
1−λH

in the bad state.

Superscripts (G,B) denote success (good state) and failure (bad state) of the investment

project and occur with probability 1− θH and θH , respectively.

The bank in the low liquidity demand region (L), pays b to the bank in the high liquidity

demand region at the interim date. In the case of a bank run in L, all assets including the

interbank claim are liquidated, yielding a payoff y+(1−y)β− b+βφb̃. The repayment of

the interbank claim b̃ is uncertain: it yields b if H repays and zero otherwise. The resulting

payoffs are dNL ≡ y+(1− y)β+(βφ− 1)b and dDL ≡ y+(1− y)β− b. Superscripts (N,D)

denote survival and default of the bank in H. The liquidation value of the interbank

claim is positive in case of repayment only. Hence, patient depositors receive cGN
2L ≡

(
(1−y)R+(y−λLd1)+(φ−1)b

1−λL

)
and cGD

2L ≡
(

(1−y)R+(y−λLd1)−b

1−λL

)
in the good state as well as cBN

2L ≡
(

(y−λLd1)+(φ−1)b
1−λL

)
and cBD

2L ≡
(

(y−λLd1)−b

1−λL

)
in the bad state.

3 Equilibrium

This section computes the equilibrium allocations, considering the case of both coun-

terparty risk and common exposures. We start by considering unanticipated information

spillovers in each case and study their effect on systemic risk. Then, we obtain the ex-ante

optimal portfolio choice when allowing for anticipated information spillovers. Information

contagion occurs at the interim date with positive probability, causing a response of the

ex-ante optimal portfolio choice and the implied level of systemic risk.

3.1 Counterparty risk

Negatively correlated liquidity shocks (η > 0) induce interbank insurance (b > 0), while

common exposures are absent. We start by abstracting from information spillovers by

assuming that the other region’s signal is unobserved and consider information spillovers
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afterwards.

Interbank loans are transferred from the low liquidity demand region L to the high liq-

uidity demand region H. Since there is no strategic effect of region L on region H, we

determine the optimal withdrawal behaviour of depositors in region H first. If depositors

are informed about their region, which happens with probability qH , they observe the

realisation of the success probability θH . The withdrawal threshold θH in the high liquid-

ity demand region is obtained from the indifference between being patient with expected

utility θHu(c
G
2H) + (1− θH)u(c

B
2H) and impatient with expected utility u(dH):

θH ≡
u(dH)− u(cB2H)

u(cG2H)− u(cB2H)
(4)

An essential bank run, and thus full liquidation, takes place if and only if θH < θH. Given

the uniform distribution of the success probability, the probability of default in region H

when informed is also θH.

If depositors are uninformed about their region, which happens with probability 1− qH ,

they use the prior distribution to compare liquidation with continuation. We assume

throughout that there are no bank runs in the absence of new information at the interim

date. In other words, the prior distribution is sufficiently good to ensure continuation,

assured by a lower bound on the high investment payment in the good state, R ≥ R.

Thus, the probability of the failure of bank H is:

a1,H ≡ qHθH (5)

Regional expected utility in H is denoted by EUH and obtained by integrating the de-
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positors’ respective payoffs over all possible signals (see Appendix A for details):

EUH = (1− qH)

{
λHu(d1) + (1− λH)

1

2
(u(cG2H) + u(cB2H))

}
(6)

+qH

{
θHu(dH) + (1− θH)

(
λHu(d1) + (1− λH)

1

2

[
u(cG2H) + u(dH)

])}

The behaviour in region H determines whether or not the bank in L is repaid at the final

date. This affects both the expected utility from liquidation and the expected utility from

continuation. The withdrawal threshold θ1,L is again determined by the indifference of

late depositors between withdrawal and continuation:

θ1,L ≡
a1,H[u(d

D
L )− u(cBD

2L )] + (1− a1,H)[u(d
N
L )− u(cBN

2L )]

a1,H[u(cGD
2L )− u(cBD

2L )] + (1− a1,H)[u(cGN
2L )− u(cBN

2L )]
(7)

The withdrawal decision of late depositors in region H affects the withdrawal decision

of late depositors in region L, such that θ1,L = θ1,L(θH). That is, the impatience of late

depositors in region H constitutes a negative externality on the payoffs of depositors in

region L (counterparty risk). Early depositors are affected as they receive their share of

the liquidation value dL instead of the higher promised payment d1 for a larger range of

fundamentals. Late depositors are affected as the available resources paid out to them is

smaller. Consequently, the withdrawal threshold of informed depositors in the low liquid-

ity demand region is strictly increasing in the withdrawal threshold in the high liquidity

demand region. Formally, ∂θ1,L/∂θH > 0 arises from equation (7). There are again no

withdrawals from late depositors in the uninformed case, as assured by the appropriate

lower bound on the high investment payment in the good state. The probability of default

of bank L is a1,L ≡ qLθ1,L.

We are now ready to determine the level of systemic risk in the case of pure counterparty

risk ACR given as:

ACR ≡ a1,La1,H = qHqLθHθ1,L (8)
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The expected utility of depositors in region in L is:

EU1L = (1− qL)
{
λLu(d1) + (1− λL)

1

2

(
(1− aH)

(
u(cGN

2L ) + u(cBN
2L )

)
(9)

+ aH
(
u(cGD

2L ) + u(cGN
2L )

) )}

+qL

{
θ1,L

(
(1− aH)u(d

N
L ) + aHu(d

D
L )

)
+ λL(1− θ1,L)u(d1)

+(1− λL)
1

2

(
(1− θ

2

1,L)
(
(1− aH)u(c

GN
2L ) + aHu(c

GD
2L )

)

+(1− θ1,L)
2
(
(1− aH)u(c

BN
2L ) + aHu(c

BD
2L )

) )
}

The payoffs are as in the liquidity shortage region (H) with one exception. As depositors

in L do not observe the signal in the other region, they take expectation over whether or

not H defaults on the bank in L, where a default takes place with probability aH .

As both investment returns are independent, we can obtain the regional expected utilities

separately. This will be invalid once we consider common exposures. A depositor is in a

liquidity shortage region H with expected utility EUH and in a liquidity surplus region

with expected utility EUL with equal probability. Thus, total expected utility in the case

of pure counterparty risk is given by:

EUCR ≡
1

2
(EUH + EU1L) (10)

Counterparty risk and information contagion Depositors now also receive a signal

about the other region’s success probability. The optimal behaviour of depositors in bank

H is unchanged, and so is their expected utility EUH . When the signal is informative,

which occurs with probability qH , depositors in L know whether or not they will be repaid

at the final date if depositors in H are also informed. (Depositors in L then also know

whether the liquidation of the interbank claim yields revenue.) Optimal behaviour in L

is thus characterised by two thresholds: one if H defaults (θ
D

2,L) and one if it does not
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(θ
N

2,L). The comparison of liquidation value dxL with the continuation values cGx
2L and cBx

2L

for x ∈ {D,N} yields the thresholds:

θ
N

2,L ≡
u(dNL )− u(cBN

2L )

u(cGN
2L )− u(cBN

2L )
(11)

θ
D

2,L ≡
qH [u(d

D
L )− u(cBD

2L )] + (1− qH)[u(d
N
L )− u(cBN

2L )]

qH [u(cGD
2L )− u(cBD

2L )] + (1− qH)[u(cGN
2L )− u(cBN

2L )]
(12)

The withdrawal thresholds are ranked:

θ
N

2,L < θ
D

2,L (13)

Systemic risk in the case of counterparty risk and information contagion is:

ACR+IC = qHqLθHθ
D

2,L > ACR (14)

This yields the following result:

Result 1 If information spillovers are unanticipated, information contagion due to coun-

terparty risk unambiguously systemic risk.

As before we obtain the expected utility of a depositor in the liquidity surplus region

(EU2L):

EUCR+IC ≡
1

2
(EUH + EU2L) (15)
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where

EU2L = (1− qL)

{
λLu(d1) + (1− λL)

1

2

[
(1− aH)

(
u(cGN

2L ) + u(cBN
2L )

)
(16)

+aH
(
u(cGD

2L ) + u(cBD
2L )

) ]
}

+qL

{(
θ
N

2,L(1− aH)u(d
N
L ) + θ

D

2,LaHu(d
D
L )

)

+λL

(
aH(1− θ

D

2,L) + (1− aH)(1− θ
N

2,L)
)
u(d1)

+(1− λL)
1

2

(
(1− aH)[(1− (θ

N

2,L)
2)u(cGN

2L ) + (1− θ
N

2,L)
2u(cBN

2L )]

+aH [(1− (θ
D

2,L)
2)u(cGD

2L ) + (1− θ
D

2,L)
2u(cBD

2L )]
)}

and where the interpretation for EU2L is as for EU1L with one change: the bank run

probabilities in L now depend on whether or not there is a run in H as depositors in L

observe the solvency status of the bank in H in case of information spillovers. If there is

a bank run (no bank run), the relevant threshold is θ
D

2,L (θ
N

2,L).

3.2 Pure common exposure

Regions are symmetric in terms of payoffs but depositors are potentially asymmetrically

informed about the common fundamental. In the absence of regional liquidity shocks, final

date consumption levels are cG2 ≡ y−λd1+(1−y)R
1−λ

and cB2 ≡ y−λd1
1−λ

and the liquidation level

is dβ ≡ y + (1− y)β. Essential bank runs are initiated by late depositors if the solvency

shock is sufficiently severe. That is, a depositor withdraws only if withdrawing is strictly

better than continuation even if all depositors do not withdraw. The liquidation decision

of late consumers is summarized by a threshold that is determined by the indifference

between withdrawal and continuation:

θ =
u(dβ)− u(cB2 )

u(cG2 )− u(cB2 )
(17)
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Informed depositors withdraw if and only if the solvency signal is below the threshold

(θ < θ). A sufficiently high final date repayment in the good state again ensures θ ≤ 1
2
.

The level of systemic risk and expected utility are (see Appendix A for details):

ACE = qAqBθ (18)

EUCE =
qA + qB

2

[
θu(dβ) + (1− θ)

(
λu(d1) + (1− λ)

1

2
[u(cG2 ) + u(dβ)]

)]
(19)

+
1− qA + 1− qB

2

[
λu(d1) + (1− λ)

1

2
(u(cG2 ) + u(cB2 ))

]

Common exposures and information contagion Regions are symmetric, both in

terms of payoffs and information about the common fundamental. Payoffs and thresholds

are unchanged, while the probabilities of being informed change and are given as qA+(1−

qA)qB > qA. Naturally, information spillovers increases the probability of being informed.

Therefore, the expected utility EUCE+IC places higher weight on the two terms in which

liquidation may take place (those involving θ) and a smaller weight on the no-information

term:

EUCE+IC ≡ (qA + qB − qAqB)

[
θu(dβ) + (1− θ)

(
λu(d1) + (1− λ)

1

2
[u(cG2 ) + u(dβ)]

)]

+(1− qA)(1− qB)

[
λu(d1) + (1− λ)

1

2
(u(cG2 ) + u(cB2 ))

]
(20)

The level of systemic risk is given by:

ACE+IC = (qA + (1− qA)qB)θ > ACE (21)

which leads to the following proposition:

Result 2 If information spillovers are unanticipated, information contagion due to com-

mon exposures unambiguously increases systemic risk.
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3.3 Optimal portfolio choice and deposit contract design

We solve for the optimal portfolio and the optimal interim payment in this section. Be-

cause of free entry, banks choose their portfolio b, y and the promised interim payment d1

to maximise the ex-ante expected utility of depositors. A bank faces the following con-

straints on its choice variables in case of interbank insurance. When mutually insuring

themselves, banks face a trade-off between liquidity insurance and counterparty risk. As

the marginal insurance benefits beyond b = ηd1 are zero, it is never optimal to hold more

insurance: 0 ≤ b∗ ≤ ηd∗1. Likewise, it is never optimal to face certain liquidation such

that y∗+ b∗ ≥ λHd
∗

1 and y∗− b∗ ≥ λLd
∗

1. Combined with the optimal amount of interbank

insurance, we obatin a lower bound on liquidity: y∗ ≥ y ≡ λHd
∗

1 − b∗ ≥ λ. The non-

negative interim payment is bounded from above by min{R, y
∗+(1−y∗)β+b∗

λH

, y
∗+(1−y∗)β−b∗

λL

},

where it achieves risk sharing between early and late depositors if d∗1 > 0. Let the set of

constraints be denoted by ∆. We use a CRRA utility function in which ρ parameterizes

the coefficient of relative risk aversion. The optimal choice (d∗1, y
∗, b∗) solves:

max
(d1,y,b)∈∆

EU(d1, y, b) (22)

Two issues confound an analytical solution of this problem. First, corner solutions of the

form of no interbank insurance (b∗ = 0) or no investment (y∗ = 1) are optimal for some

parameter constellations, invalidating interior solutions and calling for a global approach.

We solve the model for a range of exogenous parameters and discuss the economic intu-

ition of several limiting cases in the next section.

Second, the response of the thresholds with respect to liquidity is non-monotonic: more

liquidity is valued when the investment project fails, while less liquidity is valued when

the investment project succeeds. More liquidity also raises the liquidation proceeds at the

interim date. The change in the withdrawal threshold with respect to interbank insurance

is in general also ambiguous. In contrast to the previous cases, more insurance against
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the idiosyncratic liquidity risk of a depositor (higher d1) raises payments at the interim

date at the expense of payments at the final date, thus unambiguously increasing the

withdrawal threshold.

We determine the optimal choice variables numerically. That is, we find the global opti-

mum of the expected utility in each variant of our model outlined above. Discretising the

choice variables (d1, y, b) on a three-dimensional grid, the expected utility is evaluated at

each grid point. The grid point where the expected utility takes its global maximum value

yields the optimal choice variables (d∗1, y
∗, b∗). Even though we will incur a numerical error

from discretising, this error will be small for a sufficiently fine grid. We verify the validity

of our numerical solution method by comparing the results for the optimal choice vari-

ables with analytical solutions for a number of extreme parameter values (see Section 3.4).

Our baseline calibration is as follows: β = 0.7, R = 5.0, φ = 1.0, λ = 0.5, η = 0.25,

ρ = 1.0, and qH = qL = 0.7. Alternative specifications are considered in Appendix B and

we vary each parameter within its feasible bounds in Section (4.3) and Appendix (C).

Our results hold across these various specifications.

3.4 Limiting parameter cases

While our general model admits a numerical solution only, we can obtain analytical re-

sults for several limiting parameter cases discussed in this section. These limiting cases

serve two purposes. First, we build economic intuition for the model. Second, they serve

as a benchmark for the accuracy of our numerical solution.

First, let the payoff of the investment project in the good state fall short of unity (R ≤ 1).

Then, the investment project is dominated by storage such that the optimal portfolio

choice is y∗ = 1. Across all benchmark calibrations listed in Appendix B.1, we obtain the

numerical solution of y∗num = 0.98.
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Second, let depositors be risk-neutral; that is, the coefficient of relative risk aversion in the

CRRA utility specification is zero (ρ = 0). The investment project dominates storage as

the former has a higher expected return and depositors, who do not mind the uncertainty

about the idiosyncratic liquidity shock, wish full investment in the project (d∗1 = 0 = y∗).

This result is confirmed numerically (d∗1,num = 0 = y∗num). Likewise, if depositors are very

risk averse (infinitely risk averse in the limit, ρ → ∞), they are not willing to bear any

of the investment risk associated with the project and any liquidity risk. Consequently,

no investment takes place (y∗ = 1) and there is full insurance (d∗1 = 1). In a numerically

feasible and economically useful implementation we set ρ = 200 and obtain the affirmative

results y∗num = 0.98 and d∗1,num = 0.98.

Third, no risk-averse depositor (ρ > 0) seeks liquidity insurance in the absence of regional

liquidity shocks (η = 0) for any value of repayment (φ ≥ 0). From an ex-ante perspec-

tive, liquidity insurance in this case is a mean-preserving spread to both interim-date and

final-date payoffs and is rejected by any risk averse depositor. We confirm this intuition

numerically (b∗num = 0).

We also consider the related situation of a positive liquidity shock (η > 0) but no repay-

ment (φ = 0). A risk averse depositor would then be partially insured against this risk

b∗ > 0, which is pure ex-ante liquidity insurance. Note that we require φ > 0 in the base-

line calibration and all other calibrations to maintain a counterparty risk mechanism as

in Allen and Gale (2000). Intuitively, the amount of liquidity insurance decreases in the

degree of risk aversion. As depositors become more risk averse, they hold more liquidity as

part of the optimal portfolio composition of late depositors. The available liquidity serves

as self-insurance against regional liquidity shocks at the interim date and is a substitute

for interbank insurance. For example, a CRRA coefficient of risk aversion of ρ = 1.0 in

the baseline calibration yields b∗num = 0.15, while the same calibration with ρ = 2.0 yields
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b∗num = 0.1.

Fourth, if there are no early depositors (λ = 0), there is no need for insurance against

idiosyncratic liquidity shocks. The amount of liquidity held fully reflects the optimal port-

folio allocation of late depositors (0 < y∗ < 1) and increases with the level of risk aversion

(ρ). These predictions are confirmed numerically in the specification of λ = 0.01, where

the amount of liquidity ranges from y∗num = 0.42 in a baseline calibration with ρ = 1.0 to

y∗num = 0.74 in the baseline calibration with ρ = 2.0.

Likewise, if there are only early depositors (λ = 1) it is optimal not to invest into an asset

that only matures at the final date and is costly to liquidate (y∗ = 1). There is no role for

liquidity co-insurance in this specification (b∗ = 0) as there cannot be any liquidity shocks

(η = 0). As all resources are used to service early depositors, the optimal interim payment

must also be one (d∗1 = 1). This intuition is confirmed numerically (d∗1,num = 0.99).

Finally, in our model the prior distribution is (unconsequentially) assumed not to induce

liquidation in case of being uninformed. Hence, we expect no liquidation to take place

(θ1 = θ
N

2,L = . . . = 0) whenever the probability of being informed is zero in both regions

(qA = qB = 0), which is again confirmed numerically.

4 Results

This section summarises our findings. We demonstrate the existence of a resilience effect

that arises when information contagion occurs due to counterparty risk. We also show

the existence of an instability effect that emerges when information contagion occurs due

to common exposures. Section (4.3) provides a global parameter analysis, verifying the

robustness of our results across feasible parameter values.
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4.1 Resilience effect

We study how information spillovers affect systemic risk in the presence of counterparty

risk. We start by considering unanticipated information spillovers, similar to the aggre-

gate liquidity shock in Allen and Gale (2000). In this case the ex-ante optimal portfolio

choice is unaffected and systemic risk strictly increases (see Result 1). This result is also

obtained by comparing the case of pure counterparty risk (entry (1,1)) with the case of

counterparty risk and information contagion evaluated at the optimal portfolio choice of

the pure counterparty risk case (entry (1,2)) in the tables in Appendix (B.2). The default

on the interbank loan is observed with positive probability at the interim date, strength-

ening the counterparty risk channel. This leads to a lower level of expected utility and

higher systemic risk.

Banks alter their ex-ante optimal portfolio choice when information spillovers are an-

ticipated. A bank makes a more prudent portfolio choice at the initial date to insure

risk-averse depositors against potential information contagion at the interim date. In

particular, the bank provides more insurance against idiosyncratic liquidity risk (larger

d1) funded by a larger liquidity holding y. The exposure to counterparty risk is reduced

by holding a smaller amount of interbank insurance (b is reduced). Therefore, the range

of solvency shocks ([θ
N

2,L, θ
D

2,L]) for which counterparty risk materializes is reduced. These

results are obtained by comparing the case of pure counterparty risk (entry (1,1)) with

the case of counterparty risk and information contagion (entry (2,2)) in the tables in Ap-

pendix (B.2). In sum, introducing information contagion lowers the equilibrium level of

systemic risk. As shown by the robustness checks in Section (4.3), the resilience effect

holds across all feasible parameter values.

Result 3 In the setup with counterparty risk, anticipating information contagion reduces

systemic risk and expected utility.
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4.2 Instability effect

We now analyze how information spillovers affect systemic risk in a setup with common

exposures. Again, we start by considering unanticipated information spillovers. As the

portfolio choice is unaffected, the level of systemic risk increases (see Result 2). Taking

Results 1 and 2 together, unanticipated information spillover always leads to larger sys-

temic risk.

When information spillovers are anticipated, the bank adjusts its ex-ante optimal portfolio

choice. Across all baseline cases and feasible parameter choices, the optimal interim-date

payment is unchanged, while the optimal liquidity level is slightly lower (within numerical

accuracy). Hence, the expected utility increases and the equilibrium level of systemic risk

is much larger once an information spillover is introduced. These results are obtained

by comparing the case of pure common exposure (entry (3,3)) with the case of common

exposure and information contagion (entry (4,4)) in the tables in Appendix (B.2). This

effect is again numerically robust, as demonstrated in Section (4.3).

Result 4 In the setup with common exposures, anticipating information contagion in-

creases systemic risk and expected utility.

Additional information allows the late depositors to decide on early withdrawals in more

states of the world and has two consequences. First, liquidation is optimal for late depos-

itors as it only takes place after a bad solvency shock. Second, liquidation is detrimental

to early depositors who only receive their share of the liquidation value and not the

(strictly larger) promised interim payment. Therefore, late depositors impose an exter-

nality on early depositors. As the level of liquidity in case of common exposures is high

to self-insure against investment risk, the second effect is quantitatively small such that

additional liquidation increases overall expected utility.
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Figure 1: Robustness checks for the resilience effect (Result 3) consider a variation of β
(top left), R (top right), λ (bottom left), and qH = qL (bottom right). The figures display
expected utility (dotted line) and systemic risk (dashed line) in the case of counterparty
risk and information contagion as a fraction of their respective levels in case of pure
counterparty risk.

4.3 Robustness checks

This section shows that the resilience effect and the instability effect are robust to ex-

ogenous parameter variations. In particular, this section discusses a global variation of

parameters by considering the entire range of feasible parameters. We discuss the effect

of various parameter values on systemic risk and expected utility. Further analysis, in-

cluding the optimal portfolio choice and withdrawal thresholds, is contained in Figures

(3) - (9) in Appendix (C).

Consider the resilience effect (Result 3) first. Figure (1) displays the expected utility (dot-

ted line) and systemic risk (dashed line) in the case of counterparty risk and information

contagion as a fraction of their respective levels in case of pure counterparty risk. Hence,

the resilience effect is present if relative systemic risk is below unity. We consider param-

eter changes of the key variables of the model: the liquidation value (β), the final-date
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Figure 2: Robustness checks for the instability effect (Result 4) for a variation of β (top
left), R (top right), λ (bottom left), and qH = qL (bottom right). The figures display
expected utility (dotted line) and systemic risk (dashed line) in the case of common
exposures and information contagion as a fraction of their respective levels in case of pure
common exposures.

return to the investment project when successful (R), the proportion of early depositors

(λ), and the level of transparency (q). In all cases, the resilience effect prevails.

Now consider the instability effect (Result 4). Figure (2) displays the expected utility

(dotted line) and systemic risk (dashed line) in the case of common exposure and infor-

mation contagion as a fraction of their respective levels in case of pure common exposure.

Hence, the instability effect is present if the relative systemic risk is aboveunity. We

consider the same parameter changes again. In all cases, the instability effect prevails.

5 An application to microfinance

While our model focuses on systemic risk in the financial system of advanced economies,

it is also applicable to the microfinance industry prevalent in many emerging countries.
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Our model provides a novel theoretical explanation for several findings in the empirical

microfinance literature. In particular, it predicts that (i) the repayment rates of group

loans are higher than those of individual loans and (ii) group borrowers hold more liquid

assets.

According to the Microcredit Summit Campaign (2012), microfinance institutions (MFIs)

served over 205 million customers at the end of 2010, impacting the lives of an estimated

600 million household members. The growth of the microfinance industry is often at-

tributed to group liability that is designed to overcome problems arising from asymmetric

information (see e.g. Morduch (1999), or Armendáriz and Morduch (2010)) and benefi-

cially transfers risks from the microlender to a group of borrowers (see e.g. Stiglitz (1990)

and Varian (1990)). Group liability refers to an arrangement in which a lender grants a

loan to a group of borrowers that monitor each other and jointly guarantee loan repay-

ment. Borrowers are typically entrepreneurs from rural areas in developing countries that

cannot pledge collateral.

The essential ingredients of microfinance are captured by our model. Due to joint liability,

group lending is characterised by institutionalized counterparty risk. In particular, each

group member guarantees the repayment of the entire loan even if another group member

is unable (or unwilling) to repay such that an individual group member is exposed to (a

large amount of) counterparty risk. Further, group members often know each other well

and are in close contact. This implies that news about one group member easily spreads

to other group members, constituting a spillover of information.15 Finally, the close prox-

imity of group members gives rise to common exposures such as natural disasters (e.g. a

flood or an earthquake).

15Since it is more costly for banks to acquire this kind of information about the borrowers, monitoring
is delegated to the group and rewarded with lowered interest rates on group loans. See Stiglitz (1990)
and Varian (1990) for a rationalisation of peer monitoring.
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The application to microfinance can be explicitly translated into our model setup. Con-

sider two entrepreneurs k = A,B that jointly wish to take out a group loan from a

microfinance institution. Each entrepreneur has access to a safe storage technology (cash

or durable goods) and is offered a risky investment opportunity Rk. This investment

opportunity could be the start of a small local business (e.g. buying an ox to plow a field,

or dwelling a well to sell the water) that has a probability to fail. In this interpretation,

a region corresponds most naturally to a sector of the economy. The project pays R with

a regional probability θk and zero with probability (1− θk). An alternative interpretation

is that the investment project will always pay a safe return R but, with some probability

(1 − θk), the entrepreneur has to take this return to cover unexpected expenses such as

an illness of a family member. Liquidation of investment projects is costly due to an al-

ternative use argument similar to the banking case.16 The timeline of our model applied

to microfinance is given in Table (2).

Date 0 Date 1 Date 2

1. Microfinance insti- 1. Group loan 1. Investment projects
tution (MFI) decides on institutionalizes mature
group loan counterparty risk

2. Entrepeneurs choose 2. Entrepeneurs observe 2. Group of entrepreneurs
their portfolio regional solvency signals repays MFI

3. Depositors decide
whether to default

Table 2: Timeline of the model application.

The information structure is equivalent to the banking case. At the interim date, before

the success or failure of the local business projects is determined, entrepreneurs receive a

signal about the regional return of the other entrepreneur in the group.17 Such a signal

can be informative about the business prospects of the group partners or, in the alter-

16In many cases, the MFI might be unable to seize the investment project at all due to its remoteness
from the borrower or due to social pressure (seizing assets from somebody who is already poor).

17We take the probability of receiving an informative signal q as being fixed exogenously. An extension
could consider the extent of group member monitoring, modelled by a change in this probability.
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native interpretation with safe investment projects, information about the health of the

family of a group partner. In either case, this signal contains valuable information since

both entrepreneurs are linked via joint liability. In the banking application, we focus

on the impact of ex-post information contagion on ex-ante systemic risk when banks are

subject to counterparty risk. Translated into the microfinance setting, we focus on the

impact of ex-post information contagion on the ex-ante default probability of a group loan.

Strategic default by group members in the microfinance application is the equivalent of

withdrawals by late depositors in our banking model. Late depositors compare contin-

uation and withdrawal in the banking model and make a privately optimal withdrawal

decision. Likewise, entrepeneurs decide strategically whether to pay loan installments

(interest and principal) to the MFI. The benefits of default (or diversion of funds) for an

entrepreneur is not to repay his share of the group loan. Another benefit is not having to

pay more upon default by other group members. In the alternative interpretation with

safe investment projects, the benefits of default could be saving the life of a family mem-

ber. The cost of default is exclusion from credit via group loans, foregoing future profits

from investment projects. As default increases the burden on other group members, an-

other cost of default is the possibility of facing hostile group loan cosigners.18

Similar to banks in our banking application, entrepreneurs decide about the portfolio

shares of their funds ex-ante. When entrepeneurs decide between investment in their

project and storage, they consider the possibility of a solvency shock, their business risk,

and its effect on potential future exclusion from credit. The profits from future investment

opportunities induce a precautionary motive for entrepeneurs. Hence, entrepreneurs try

to avoid default by holding more of the safe asset (either cash or durable goods that have

a high liquidation value). In our banking application, banks offer deposit contracts that

18There are news reports about large numbers of suicides that were caused by peer pressure after
defaulting on a micro loan (see e.g. BBC News, "India’s micro-finance suicide epidemic", 16 December
2010).
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may be accepted by depositors. Likewise, in the microfinance application, entrepreneurs

offer interest payments to a microfinance institution.

In the banking application, withdrawing late depositors at the debtor bank exert an ex-

ternality on late depositors at the creditor bank. This correponds to the externality that

one entrepreneur exerts on other members of the group loan when defaulting on its obliga-

tion. When making their ex-ante optimal portfolio choice, banks take this externality into

account by holding more liquidity. This leads to reduced systemic risk. Translating this

resilience effect (Result 3) into the microfinance application, our model predicts that (i)

group loans have a higher repayment rate than individual loans and (ii) group borrowers

hold more liquid assets.

The empirical microfinance literature supports these predictions. For example, Giné et al.

(2009) constructs a series of "microfinance games" conducted in an urban market in Peru.

They show that loan repayment rates are higher in joint-liability games (0.88) than in

individual-liability games (0.68). Wydick (1999) analyzes group lending in Guatemala and

shows that group repayment rates are determined by the ability to monitor one another

in the presence of asymmetric information. In particular, group loan repayment rates are

higher when group members live in close geographic proximity or have knowledge about

weekly sales of their peers. The resilience effect also implies that entrepreneurs will hold

more liquidity (either in the form of cash or durable goods). This has been analyzed

empirically by Banerjee et al. (2010) who show in a randomized experiment in India that

households with an existing business at the time of the program invest more in durable

goods.

The usefulness of our results for microfinance is highlighted by the empirical confirmation

of our predictions. This relates to both the ex-ante portfolio choices of entrepeneurs and

the repayment rates for group loans.
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6 Conclusion

The aftermath of the Lehmann bankruptcy in September 2008 demonstrated that infor-

mation contagion can be a major source of systemic risk, defined as the probability of

joint bank default. One bank’s investors find information about another bank’s solvency

valuable for two reasons. First, and established in the literature, both banks might have

invested into the same asset class like risky sovereign debt or mortgage backed securities.

Learning about another bank’s profitability then helps the investor assess the profitability

of its bank. Second, and not previously analyzed as a source of information contagion,

one bank might have lent to the other, for instance as part of a risk-sharing agreement.

Learning about the debtor bank’s profitability then helps investors assess the counter-

party risk of the creditor bank.

This paper presents a model of systemic risk with information contagion. Information

about the health of one bank is valuable for the investors of other banks because of com-

mon exposures and counterparty risk. In each case, bad news about one bank adversely

spills over to other banks and causes information contagion. We examine the effects of

ex-post information contagion on the bank’s ex-ante optimal portfolio choice and the im-

plied level of systemic risk.

We demonstrate that information contagion can reduce systemic risk. When banks are

subject to counterparty risk, investors of one bank may receive a negative signal about

the health of another bank. Given the exposure of the creditor bank to the debtor bank,

adverse information about the debtor bank can cause a run on the creditor bank. Such

information contagion ex-post induces the bank to hold a more prudent portfolio ex-ante.

Overall, the level of systemic risk is reduced once information contagion is present.

Our model is also applicable to microfinance prevalent in many emerging countries. Group
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loans with joint liability agreements induce counterparty risk among the group members.

Since group loan borrowers typically have a common bond (e.g. living in the same village),

peer monitoring helps to overcome problems of asymmetric information. The common

bond implies that group members receive information about their peers, constituting in-

formation contagion. We show that counterparty risk and information contagion lead

to reduced default rates of group loans and increased holdings of liquid assets by group

borrowers. These predictions are verified in the empirical literature on microfinance, high-

lighting the applicability of our model to the microfinance setting.

We also show that the effects of information contagion on systemic risk depend on the

source of the revealed information. In case of common exposures, ex-post information con-

tagion increases systemic risk - similar to Acharya and Yorulmazer (2008a). This leads

to the natural question about the overall effect of information contagion in a model that

features both common exposures and counterparty risk. A unified model of contagion

would be suited to identify the parameter regions characterized by higher (lower) levels

of systemic risk and thus a less (more) stable financial system. Such a unified model of

contagion would also contribute to our understanding of microfinance. While allowing for

information spillover, the close geographic proximity between group lenders implies that

they are subject to common exposures. Analysing joint liability agreements in the pres-

ence of informational spillovers and common exposure is an interesting research question.

However, such a unified model of contagion is beyond the scope of the present paper and

left for future research.
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A Derivations

A.1 Counterparty risk

If no signal is received, early depositors, of mass λH , receive the promised payment d1

and late depositors, of mass 1− λH , receive high and low consumption levels with equal

probability. If a signal below the threshold θH is received, depositors receive a share of

the liquidation proceeds and obtain dH . If a signal above the threshold θH is received,

late houesholds obtain a weighted average of the high payoff cG2H and the low payoff cB2H ,

where the weights depend on the threshold and early depositors again receive the promised

payment.19 Expected utility in the high liquidity demand region is given as:

EUH = (1− qH)

{
λHu(d1) + (1− λH)

∫ 1

0

[
θu(cG2H) + (1− θ)u(cB2H)

]
dθ

}
(23)

+qH

{∫ θH

0

u(dH)dθ +

∫ 1

θH

λHu(d1) + (1− λH)
[
θu(cG2H) + (1− θ)u(cB2H)

]
dθ

}

which yields the expression in the text.

We proceed in the same way for the low liquidity demand region L. The behaviour in

region H determines whether or not the bank in L is repaid at the final date. This affects

both the expected utility from liquidation and the expected utility from continuation. As

the interbank loan is repaid with probability a1,H, the expected utility from liquidation is

a1,Hu(d
D
L )+ (1− a1,H)u(d

N
L ). In the informed case, which happens with probability qL, θL

is known. Taking expectations over all possible fundamentals in region H, the expected

utility from continuation is the sum of two terms: (i) with probability a1,H the bank in

region H defaults and patient depositors in region L receive θLu(c
GD
2L ) + (1− θL)u(c

BD
2L )];

(ii) with probability (1 − a1,H) the bank in region H survives and patient depositors in

region L receive θLu(c
GN
2L )+(1−θL)u(c

BN
2L ). The withdrawal threshold is given in equation

19Note that in case of no bank run, the weights are equal because of the symmetry of the investent
probabilities θ and 1−θ when integrated between zero and unity. This symmetry vanishes once the lower
integration bound is above zero.
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(7) and yields the expected utility of depositors in region L to be:

EU1L = (1− qL)

{
λLu(d1) + (1− λL)

∫ 1

0

[
θ
(
aHu(c

GD
2L ) + (1− aH)u(c

GN
2L )

)
(24)

+ (1− θ)
(
aHu(c

BD
2L ) + (1− aH)u(c

BN
2L )

)]
dθ

}

+qL

{∫ θ1,L

0

(
aHu(d

D
L ) + (1− aH)u(d

N
L )

)
dθ

+

∫ 1

θ1,L

λLu(d1) + (1− λL)
[
θ
(
aHu(c

GD
2L ) + (1− aH)u(c

GN
2L )

)

+(1− θ)
(
aHu(c

BD
2L ) + (1− aH)u(c

BN
2L )

)
] dθ

}

which yields the expression in the text.

A.2 Common exposures

Turning to expected utility, using the short-hand notation for the continuation payoff:

Γ ≡ λu(d1) + (1− λ)[θuG
2 + (1− θ)uB

2 ], we find:

EUCE ≡
1− qA + 1− qB

2

∫ 1

0

Γdθ +
qA + qB

2

∫ θ

0

u(dβ)dθ +
qA + qB

2

∫ 1

θ

Γdθ (25)

≡
qA + qB

2

[
θu(dβ) + (1− θ)

(
λu(d1) + (1− λ)

1

2
[u(cG2 ) + u(dβ)]

)]

+
1− qA + 1− qB

2
[λu(d1) + (1− λ)

1

2
(u(cG2 ) + u(cB2 ))] (26)
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B Tables

Section (B.1) contains the extreme parameter value benchmarks discussed in Section (3.4)

of the main text for additional baseline cases to show the robustness of our numerical

implementation. Section (B.2) contains the results of Section (4) of the main text.

B.1 Extreme parameter value benchmarks

Baseline 1 Baseline 2 Baseline 3 Baseline 4

R = 1.0 y∗ = 0.98 y∗ = 0.98 y∗ = 0.98 y∗ = 0.98
ρ = 0.0 d∗1 = 0.0 d∗1 = 0.0 d∗1 = 0.0 d∗1 = 0.0

y∗ = 0.0 y∗ = 0.0 y∗ = 0.0 y∗ = 0.0
ρ = 200.0 d∗1 = 0.98 d∗1 = 0.98 d∗1 = 0.98 d∗1 = 0.98

y∗ = 0.98 y∗ = 0.98 y∗ = 0.98 y∗ = 0.98
η = 0.0 b∗ = 0.0 b∗ = 0.0 b∗ = 0.0 b∗ = 0.0
φ = 0.0 b∗ = 0.15 b∗ = 0.15 b∗ = 0.15 b∗ = 0.1
λ = 0.01 d∗1 = 1.06 d∗1 = 1.0 d∗1 = 1.1 d∗1 = 1.16

y∗ = 0.42 y∗ = 0.36 y∗ = 0.48 y∗ = 0.74
λ = 0.99 d∗1 = 0.98 d∗1 = 0.98 d∗1 = 0.98 d∗1 = 0.98

y∗ = 0.98 y∗ = 0.98 y∗ = 0.98 y∗ = 0.98
qH = 0.0 A1, . . . , A6 = 0.0 A1, . . . , A6 = 0.0 A1, . . . , A6 = 0.0 A1, . . . , A6 = 0.0

Table 3: Exterme parameter values for four baseline cases. Baseline 1: β = 0.7, R = 5.0
φ = 1.0, λ = 0.5, η = 0.25, ρ = 1.0, qH = 0.7. Baseline 2: β = 0.7, R = 5.0 φ = 1.0,
λ = 0.5, η = 0.25, ρ = 0.9, qH = 0.7. Baseline 3: β = 0.7, R = 5.0 φ = 1.0, λ = 0.5,
η = 0.25, ρ = 1.1, qH = 0.7. Baseline 4: β = 0.3, R = 5.0 φ = 1.0, λ = 0.5, η = 0.25,
ρ = 1.1, qH = 0.7.
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B.2 Results

cr cr + ic ce ce + ic
(EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗) (EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗)

(θH, θ1,L , Acr) (θH, θ
N

2,L , θ
D

2,L, Acr+ic) (θ, Ace) (θ, Ace+ic)

cr (0.172,0.88,0.73,0.08) (0.096,0.88,0.73,0.08)
(0.423,0.23,0.048) (0.423,0.212,0.252,0.052)

cr + (0.107,0.94,0.8,0.02)
ic (0.379,0.211,0.222,0.041)

ce (0.13,1.0,0.77,0.0) (0.137,1.0,0.77,0.0)
(0.328,0.161) (0.328,0.161)

ce + (0.137,1.01,0.76,0.0)
ic (0.344,0.168)

Table 4: Equilibrium allocation for different forms of financial fragility for calibration
β=0.7, R=5.0, φ=1.0, λ=0.5, η=0.25, ρ=1.0, qH=0.7. Expected utility (EU), portfo-

lio choice variables (d1, y, b), withdrawal thresholds (θH , θ1,L, θ
N

2,L, θ
D

2,L, θ), and systemic
financial fragility (Acr, Acr+ic, Ace, Ace+ic) in the different model variants (cr: counterparty
risk, ic: information contagion, ce: common exposure).
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cr cr + ic ce ce + ic
(EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗) (EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗)

(θH, θ1,L , Acr) (θH, θ
N

2,L , θ
D

2,L, Acr+ic) (θ, Ace) (θ, Ace+ic)

cr (0.188,0.86,0.7,0.13) (0.105,0.86,0.7,0.13)
(0.482,0.304,0.072) (0.482,0.278,0.329,0.078)

cr + (0.117,0.93,0.78,0.06)
ic (0.43,0.26,0.283,0.06)

ce (0.142,1.0,0.75,0.0) (0.154,1.0,0.75,0.0)
(0.373,0.183) (0.373,0.183)

ce + (0.158,1.32,0.73,0.0)
ic (0.5,0.245)

Table 5: Equilibrium allocation for different forms of financial fragility for calibration
β=0.9, R=5.0, φ=1.0, λ=0.5, η=0.25, ρ=1.0, qH=0.7. Expected utility (EU), portfo-

lio choice variables (d1, y, b), withdrawal thresholds (θH , θ1,L, θ
N

2,L, θ
D

2,L, θ), and systemic
financial fragility (Acr, Acr+ic, Ace, Ace+ic) in the different model variants (cr: counterparty
risk, ic: information contagion, ce: common exposure).
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cr cr + ic ce ce + ic
(EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗) (EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗)

(θH, θ1,L , Acr) (θH, θ
N

2,L , θ
D

2,L, Acr+ic) (θ, Ace) (θ, Ace+ic)

cr (0.343,0.84,0.69,0.14) (0.221,0.84,0.69,0.14)
(0.372,0.172,0.031) (0.372,0.15,0.206,0.038)

cr + (0.238,0.91,0.77,0.07)
ic (0.318,0.139,0.166,0.026)

ce (0.274,1.0,0.75,0.0) (0.28,1.0,0.75,0.0)
(0.257,0.126) (0.257,0.126)

ce + (0.28,1.01,0.74,0.0)
ic (0.271,0.133)

Table 6: Equilibrium allocation for different forms of financial fragility for calibration
β=0.7, R=10.0, φ=1.0, λ=0.5, η=0.25, ρ=1.0, qH=0.7. Expected utility (EU), portfo-

lio choice variables (d1, y, b), withdrawal thresholds (θH , θ1,L, θ
N

2,L, θ
D

2,L, θ), and systemic
financial fragility (Acr, Acr+ic, Ace, Ace+ic) in the different model variants (cr: counterparty
risk, ic: information contagion, ce: common exposure).
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cr cr + ic ce ce + ic
(EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗) (EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗)

(θH, θ1,L , Acr) (θH, θ
N

2,L , θ
D

2,L, Acr+ic) (θ, Ace) (θ, Ace+ic)

cr (0.262,0.83,0.6,0.07) (0.151,0.83,0.6,0.07)
(0.404,0.258,0.051) (0.404,0.249,0.271,0.054)

cr + (0.166,0.92,0.7,0.01)
ic (0.35,0.231,0.234,0.04)

ce (0.182,1.01,0.68,0.0) (0.192,1.01,0.68,0.0)
(0.313,0.153) (0.313,0.153)

ce + (0.192,1.02,0.66,0.0)
ic (0.327,0.16)

Table 7: Equilibrium allocation for different forms of financial fragility for calibration
β=0.7, R=5.0, φ=1.0, λ=0.3, η=0.25, ρ=1.0, qH=0.7. Expected utility (EU), portfo-

lio choice variables (d1, y, b), withdrawal thresholds (θH , θ1,L, θ
N

2,L, θ
D

2,L, θ), and systemic
financial fragility (Acr, Acr+ic, Ace, Ace+ic) in the different model variants (cr: counterparty
risk, ic: information contagion, ce: common exposure).
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cr cr + ic ce ce + ic
(EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗) (EU , d∗1, y

∗, b∗) (EU , d∗1, y
∗, b∗)

(θH, θ1,L , Acr) (θH, θ
N

2,L , θ
D

2,L, Acr+ic) (θ, Ace) (θ, Ace+ic)

cr (0.232,0.82,0.69,0.0) (0.071,0.82,0.69,0.0)
(0.36,0.236,0.014) (0.36,0.236,0.236,0.014)

cr + (0.099,0.94,0.82,0.0)
ic (0.331,0.207,0.207,0.011)

ce (0.121,1.0,0.79,0.0) (0.128,1.0,0.79,0.0)
(0.313,0.05) (0.313,0.05)

ce + (0.128,1.0,0.78,0.0)
ic (0.321,0.051)

Table 8: Equilibrium allocation for different forms of financial fragility for calibration
β=0.7, R=5.0, φ=1.0, λ=0.5, η=0.25, ρ=1.0, qH=0.4. Expected utility (EU), portfo-

lio choice variables (d1, y, b), withdrawal thresholds (θH , θ1,L, θ
N

2,L, θ
D

2,L, θ), and systemic
financial fragility (Acr, Acr+ic, Ace, Ace+ic) in the different model variants (cr: counterparty
risk, ic: information contagion, ce: common exposure).
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C Details for robustness checks

This section provides further details about the robustness checks performed in Section

(4.3). In particular, we show the evolution of the portfolio choice variables and withdrawal

thresholds when varying the exogenous parameters of the model.
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Figure 3: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of β. The baseline calibration is used for the non-varying parameters.
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Figure 4: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of R. The baseline calibration is used for the non-varying parameters.
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Figure 5: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of φ. The baseline calibration is used for the non-varying parameters.
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Figure 6: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of λ. The baseline calibration is used for the non-varying parameters.
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Figure 7: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of η. The baseline calibration is used for the non-varying parameters.
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Figure 8: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of ρ. The baseline calibration is used for the non-varying parameters.
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Figure 9: Details of portfolio choice: d1, y (top), b and θH (middle), and various θL values
for a variation of qH . The baseline calibration is used for the non-varying parameters.
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