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Abstract

Standard empirical investigations of jump-dynamics in return and volatility are fairly
complicated due to the presence of multiple latent continuous-time factors. We present
a new discrete-time framework that combines GARCH processes with rich specifica-
tions of jumps in returns and volatility. Our models can be estimated with ease using
standard maximum likelihood techniques. We provide a tractable risk neutralization
framework for this class of models which allows for separate identification of risk premia
for the jump and normal innovations. We anchor our models in the continuous time
literature by providing continuous time limits of the models. The models are evaluated
by return fitting on a long sample of S&P500 index returns as well as by option valua-
tion on a large option data set. We find strong empirical support for time-varying jump
intensities. A model with a jump intensity that is affine in the conditional variance
performs particularly well both in return fitting and option valuation. Our implemen-
tation allows for multiple jumps per day and we find evidence of this most notably on
Black Monday in October 1987. Our results also confirm the importance of jump risk
premia for option valuation: jumps cannot significantly improve the performance of
option pricing models unless sizeable jump risk premia are present.
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1 Introduction

This paper provides a modeling framework that allows for general specifications and easy
maximum likelihood estimation of jump models. Our framework allows for correlated jumps
in returns and volatility, as well as time-varying jump intensities. We provide the risk-neutral
processes for use in option valuation and we develop continuous time limits of our discrete
time models. We allow for multiple jumps each day and we suggest a filtering technique to
identify these jumps. Our models allow for time-varying variance of the normal innovation
as well as time-varying jump intensity of the jump innovation. The implementation of our
framework is facilitated by the fact that we use a discrete-time approach, and by the way in
which we model the time-variation in the jump intensity. As suggested in Fleming and Kirby
(2003) we directly use GARCH processes as filters for the unobservable state variables. As a
result, various specifications of complex jump models can be estimated on return data using
a standard MLE procedure.

Table 1 provides an overview of some of the empirical studies using finite-activity jump
processes. The bottom row of Table 1 indicates that our model (“J-GARCH”) can accom-
modate various complex jump specifications currently used in the literature. Our approach
is perhaps most closely related to the discrete-time approach in Maheu and McCurdy (2004).
They find strong evidence of time-varying jump intensities in individual equity returns. We
find similar evidence using equity index returns and importantly we provide theory and em-
pirics on option valuation using our jump models as well as their continuous time limits. Our
option valuation results also indicate that time-varying jump intensities are needed. Duan,
Ritchken and Sun (2006) also provide risk neutralization of a GARCH model with jumps
but they do not allow for time-varying jump intensities.

As the top part of Table 1 suggests, our work is related to the continuous-time approaches
in Bates (2000, 2006), Andersen, Benzoni and Lund (ABL, 2002), and Eraker (2004), who
estimate models that allow for state-dependent jump intensities. Huang and Wu (2004),
and Pan (2002) also allow for state-dependent jump intensities but they extract the latent
volatility process from options without filtering the underlying return. Recent studies such
as Broadie, Chernov and Johannes (BCJ, 2007), Li, Wells and Yu (2007) assume constant
jump intensities in their models.

Our discrete-time framework arguably has certain advantages. First, because imple-
menting the filtering problem is relatively straightforward, we do not need to model the
compound Poisson process as a Bernoulli process and we therefore allow for the possibility
that there is more than one jump per time period.! We find strong evidence of this par-
ticularly on Black Monday in October 1987. Second, we provide the separate identification
of the risk premia associated with the jump and the normal innovation, which follows from
our risk-neutralization procedure which in this way differs from the existing approach in
Duan, Ritchken and Sun (2006). Third, a potential advantage of our GARCH specification
as compared to a (continuous-time or discrete-time) stochastic volatility specification is that
all parameters needed for option valuation can be obtained from estimation on returns only.

We estimate four different but nested models. The simplest model, which we label J-
GARCH(1), has a constant jump intensity. This model is closely related to the most popular

'Tn estimation, many papers make simplifying assumptions, such as approximating a compound Poisson
process by a Bernoulli process, implying that there is maximum of one jump per time period. See for example
Eraker (2004), Eraker, Johannes, and Polson (2003), Bakshi and Cao (2004), and Li, Wells and Yu (2007).



model in the continuous-time literature, the SVCJ model, which is studied among others by
Eraker, Johannes, and Polson (EJP, 2003), Chernov, Gallant, Ghysels and Tauchen (CGGT,
2003) and Eraker (2004). The J-GARCH(2) has a time-varying jump intensity, but the
normal innovation to the return process is assumed to be homoskedastic. The J-GARCH(4)
model is the most general model we investigate: both the jump and the normal innovation
are time-varying, and the dynamics are separately parameterized. In this case, the jump
intensity carries its own GARCH dynamic. The J-GARCH(3) model is a special case of J-
GARCH(4): both the jump and the normal innovation are time-varying, but parameterized
identically. Our classification of models is inspired by Huang and Wu (2004) who investigate
infinite-activity jump models using time-changed Lévy processes.

Our empirical investigation estimates these four models using a long time series of daily
S&P500 returns going from 1962 through 2005. After estimating these processes using
returns data, we risk-neutralize them and compare their option valuation performance using
ten years of index call option data from 1996 through 2005.

The empirical results on returns and options allow us to address a number of important
questions. (1) How should jump and normal (diffusive) innovations be jointly modeled
in equity index returns? (2) Are jump intensities time-varying for the purpose of option
valuation? (3) Do the data favor a specification that allows for more than one jump per day?
How does this assumption impact on the evidence regarding time-varying jump intensity?
(4) Do we need jump risk premia to model index option prices? (5) Are jumps needed for
option valuation at all times or only in certain regimes? Finally, we also extract the time-
series of conditional variance for jump and normal components. This allows us to address
the following question (6) How large is the jump component and how much does it vary over
time?

With regard to (1), we find that models without heteroskedasticity in the normal innova-
tion are severely misspecified, which is entirely consistent with the continuous-time literature.
Both the return-based and option-based evidence support the presence of jumps in returns
as well as jumps in volatility. Our jump parameter estimates are roughly consistent with the
results of Eraker (2004), EJP (2003), ABL (2002), and CGGT (2003).

With regard to (2), our MLE estimates show strong support for the J-GARCH(3) model,
with time-varying jump intensities and linear dependence on the variance of the normal
innovation. Under this specification, and assuming a dominant jump risk premium, we
obtain up to 30% improvement in dollar root mean squared option pricing errors over the
simple GARCH case. The J-GARCH(3) model is comparable to the continuous-time SVSCJ
model. While to our knowledge time-series based estimation of the SVSCJ model is not
available in the literature, ABL (2002) use a model without volatility jumps and find no
time-series based evidence for a time-varying intensity, while Bates (2006) estimates the same
model using same dataset and find evidence for time-varying jump intensity. Our results are
therefore more supportive of time-varying intensities than the available literature, but it
must be noted that due to the GARCH filter, jumps in return and volatility are perfectly
correlated. Regarding (3), our estimates support the presence of multiple jumps per day
in the October 1987 period. We speculate that not allowing for this possibility has biased
existing studies against detecting time-varying jump intensities.

For (4), we find that in order to produce significant improvements in option valuation,
jump models must allow for jump risk premia. We investigate if risk premia for the jump
and the normal innovation can generate the various shapes and levels of implied volatility
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term structure, and we find that the implied volatility term structure is highly responsive to
the level of the jump risk premium. On the other hand, unrealistically large magnitudes of
risk premia for the normal innovation are required in order to generate levels and slopes of
implied volatility comparable to the data. Therefore, we conclude that jump risk premia are
necessary for realistic modeling of option prices. Regarding question (5), we conclude that
jump models provide superior option pricing performance during high volatility periods, but
jumps do not help when the VIX index is well below its average. Finally, regarding (6),
we find that the contribution of the jump component to the total equity volatility is about
15%, which is consistent with the non-parametric time-series evidence of Huang and Tauchen
(2005).

The remainder of the paper proceeds as follows. Section 2 presents the general J-GARCH
modeling framework and discusses the four nested specifications. Section 3 provides the em-
pirical results from estimating the models on daily returns. Section 4 develops the theoretical
framework for risk-neutralization and option valuation. Sections 5 provides the empirical re-
sults on option valuation. Section 6 develops continuous time limits of our models and
provides a filtration of the jump and normal components. Section 7 concludes.

2 Daily Returns with Jump Intensity Dynamics

In this section, we present the general return dynamic. This dynamic contains two compo-
nents. The first is the jump component. The second is the component which corresponds
to the diffusive term in continuous-time setups. Because we model this component using a
normal innovation, we will henceforth refer to it as the normal component. This section dis-
cusses some aspects of the structure of the jump and normal components, but we postpone
the specifications of the time-variation in their conditional variance until Section 3.

The return process is given by

S,
Ry 1 = log ( ;1) =T+ ()\z - %) horin+ Ay = &) hypr + 2e1 + Yesn,s (2.1)
t

where S;;; denotes the underlying asset price at the close of day ¢ + 1, and r the risk free
rate. Shocks to returns are generated by the normal component z;,; and the pure jump
component y;.1, which are assumed to be contemporaneously independent. The normal
component z; is assumed to be distributed N (0, h,+41), where h, .41 is the conditional
variance. We model the jump component using the compound Poisson process, which is
the standard jump process used in the continuous-time literature. See Merton (1976) for
an early treatment of these processes in finance. We let 3,1 be conditionally distributed as
compound Poisson J (hy,tﬂ, 0, (52), where h,, ;11 denotes the jump intensity (or jump arrival

rate), 6 the mean jump size, and 62 the jump size variance. The convexity adjustment terms

2
% and Ehy 141 = <€9+% - 1) hy+41 in (2.1) act as compensators to the normal and jump

component respectively. Thus, when taking conditional expectations of the gross rate of
return, we get

Et |:S‘tg+1:| _ er+>\zhz,t+1+>\yh’y,t+1’ (22)
t

which shows that v, ; = A h. 441 + Ayhy 41 is the conditional equity premium, with A, and
Ay the market prices of risk for the normal and jump components respectively. Our setup
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allows for the possibility of time-varying equity premia, and the dynamic will depend on the
specification of h, ;1 and hy ;1 1.

Our specification in (2.1) is similar in spirit to the return process of Heston and Nandi
(2000), with the addition of a jump component. Maheu and McCurdy (2004) and Duan,
Ritchken, and Sun (2006, 2007) propose return dynamics similar to (2.1), but with differ-
ent specifications of the equity premium. Maheu and McCurdy (2004) study similar return
processes with jumps but do not provide the risk-neutral process which is necessary for option
valuation. Duan, Ritchken and Sun (2006, 2007) provide risk-neutralization arguments but
for processes without time-varying jump intensities. Our specification of the equity premium
is affine in the state variables. The affine specification is not required but we use it in order
to isolate the jump and diffusive risk premia and because it greatly facilitates the compar-
ison with standard continuous time models that we undertake in Section 6. The structure
also makes for straightforward identification of risk-neutral dynamic, which is important for
option pricing. We develop the risk neutral process in Section 5.

2.1 The Structure of the Jump Innovation

The compound Poisson structure assumes that jump size is independently drawn from a
normal distribution with mean 6 and variance 6. The number of jumps 1, arriving between
times ¢ and ¢ + 1 is a Poisson counting process with intensity A, 1. The jump component
in the period ¢ + 1 returns is therefore given by

T .
_ J
Yey1 = D L1
Jj=1

where xi +1,J = 1,2,..is an ii.d. sequence of normally distributed random variables with
x{ g~ N (9, (52). The conditional expectation of the number of jumps arriving over the
time interval (¢, t 4+ 1) equals the jump intensity E; [ni+1] = hy441. The mean and variance
of the jump component are given by 6h, ;1 and (52 + 92) hy 41 respectively. Intuitively,
hy 1 should be time-varying as the number of jumps occurring at any time period will
depend on market conditions. Unfortunately, jump models with time-varying jump intensity
are difficult to estimate and implement in latent-factor continuous-time models because the
likelihood function typically is not available in closed form. The filtration procedure for the
latent jump and stochastic volatility process is also far from straightforward in continuous
time. Therefore, the literature contains limited evidence on equity returns and option pricing
models with stochastic jump intensity. We will test several specifications for h,;11, ranging
from the simple case of a constant arrival rate to modeling it using a separate GARCH
dynamic.

2.2 The Heston and Nandi GARCH(1,1) Benchmark Model

Heston and Nandi (2000) propose a class of GARCH models that allow for a closed-form
solution for European options. The GARCH(1,1) version of this model is given by

Rt+1 = r+ ()\ — %) hz,t+1 + \/ hz,t+1€t+1 (23)
2
hz,t+1 = w,+ bzhz,t +a, <5t — Czy/ hz7t)
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where 7 is the risk free rate, and £, is the innovation term distributed i.i.d. N (0,1). The
variance of the return is h,,+;. The asymmetric variance response or the leverage effect
is captured by the parameter c. This model is based on conditional normality and thus
cannot generate one-period ahead conditional skewness and excess kurtosis. The GARCH
dynamic in (2.3) is different from the more conventional NGARCH model used by Engle
and Ng (1992) and Hentschel (1995), which is used by Duan (1995) to price options. We
choose the GARCH dynamic (2.3) as our benchmark since it ensures the closest possible
correspondence of our jump parameter estimates with the continuous-time literature. Our
objective is to present a general J-GARCH model that can be applied to any dynamics,
and we leave the determination of the preferred GARCH dynamics in the presence of joint
normality and compound Poisson jumps for future research.

Before we extend the Heston-Nandi framework to the returns process in (2.1), we rewrite
the GARCH(1,1) dynamic in (2.3). Letting 2111 = \/hz 1416041, We get

Riyp = r+ ()\ - %) hepv1 + 241

a
hz,t—f—l = w,+ bzhz,t + h_ (Zt - Czhz,t)2 .
z,t

The unconditional variance is given by E [h, 411] = (w, +a,) / (1 — b, — a,c?) , where b, +a,c?
is the variance persistence. We will use the empirical performance of the Heston-Nandi
model as a benchmark for the evaluation of our J-GARCH models. Because we only use the
GARCH(1,1) implementation, we henceforth refer to it simply as the GARCH model.

2.3 Four Nested J-GARCH Models

We now apply the simple Heston-Nandi GARCH dynamic to our return dynamic in (2.1).
We will refer to these two dynamics as the conditional variance (for the normal component)
and the time-varying jump intensity (for the jump component).

For the most general J-GARCH specification, both the jump intensity and the variance
of the normal innovation are governed by a Heston-Nandi type GARCH(1,1) dynamic.

Az

hz7t+1 = w,+ bzhz7t + n (Zt + Yy — Czhz,t>2 (24)
z,t
a

hyir1 = wy+byhy: + h—y (2t +ye — Cyhy,t>2 (2.5)
y,t

The subscripts 2z and y are applied to distinguish the parameters governing the GARCH(1,1)
dynamic of h,,.1 and h,, 1, respectively. In (2.4)-(2.5), the dynamics of h, i1 and hy g
are predictable conditional on information available at time ¢, and it is the total return
innovation, z; + 1;, observable at time ¢ that predicts the variance and jump intensity one
period ahead. The specification therefore includes jumps in volatility, which are supported
by the empirical findings of Eraker (2004) and EJP (2003).

In a continuous-time setting, adding jumps to stochastic volatility models involves an
additional set of latent state variables. The study of option pricing in stochastic volatility
models with jumps therefore relies heavily on econometric methods that can filter the un-
observed state variables. CGGT (2003) use an EMM based method, Pan (2002) uses the
implied-state GMM technique to fit her models to returns and option prices, while EJP



(2003), Eraker (2004) and Li, Wells, and Yu (2007) employ MCMC techniques. In compar-
ison, our use of GARCH models in (2.4)-(2.5) is computationally convenient, because the
GARCH model serves as a simple and convenient filter where the state variables h, 1 and
hy 41 are directly computed from the observed shocks, and therefore all of our models can
be estimated from returns data using standard Maximum Likelihood.

We investigate four nested models based on the general dynamic in (2.4)-(2.5). We
maintain consistency with the continuous-time literature by borrowing the framework of
Huang and Wu (2004). Similar to Huang and Wu (2004), our models generate time-varying
higher moments of returns from the variance of the normal component h, ;1 and/or from
the jump intensity h, ;1. We now present these four specifications.

The J-GARCH(1) Model

The first specification we explore is akin to the most common specification in the continuous-
time affine jump diffusion literature. It is similar in spirit to the stochastic volatility with
correlated jumps (SVCJ) model studied by EJP, CGGT and Eraker (2004). Compared to
our most general specification (2.4)-(2.5), we turn off the time-varying jump intensity dy-
namic while maintaining the normal component’s GARCH dynamic, which amounts to the
restrictions

b, =0 a, =0 cy = 0.

The J-GARCH(1) model contains nine parameters, three more than the Heston-Nandi
GARCH model. In any given period, the J-GARCH(1) model implies that jumps arrive
at a constant rate of w,, regardless of the level of risk in the market. Although this may
seem counter intuitive, it is assumed in most of the existing literature.

The J-GARCH(2) Model

The J-GARCH(2) allows for jump dynamics but dynamic eliminates a source of time-
variation by turning off the dynamic in the conditional variance of the normal component.
It is a special case of the general dynamic in (2.5), with the restrictions

b,=0 a, =0 c, = 0.

In this specification, time-variation in returns is driven by the jump component. The normal
component of returns is homoskedastic, with the variance equal to w,. This is equivalent
to applying stochastic time change only to the pure jump process in Carr, Geman, Madan
and Yor (2003) and Carr and Wu (2004). Given that time variation is restricted to the
jump intensity, we may see an increase in the relative importance of the jump component in
returns for this specification.

The J-GARCH(3) Model

In the J-GARCH(3) specification h, 41 and h, .1 are both time-varying but driven by
the same GARCH dynamic. We specify the jump intensity to be affine in the conditional
variance of the normal component

hy,tJrl - khz7t+1 (26)
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where k is a parameter to be estimated. This affine structure for (2.6) is studied in a
continuous-time setting by Eraker (2004), ABL (2002), Bates (2000), and Pan (2002). Pan
(2002) and Eraker (2004) are the only two papers that find statistically significant estimates
for k. Moreover, these results are obtained by fitting their models to option data, and not
by estimating using the time series of returns. Thus, the evidence on time-varying jump
intensities is still inconclusive.?

The closest continuous-time counterpart of the J-GARCH(3) model is the SVSCJ model,
which stands for stochastic volatility with state-dependent, correlated jumps.> The SVSCJ is
the most general model considered by Eraker (2004), who finds it outperforms other models
when simultaneously fitting option data and S&P500 index returns. The J-GARCH(3)
specification can be written as a special case of the most general J-GARCH(4) specification,
subject to the following restrictions on the GARCH parameters of h, ;41 in (2.5)

2 Cz
wy = wyk by = b, ay = azk Cy = —

k
The J-GARCH(4) Model

We refer to the most general specification, where the conditional variance of the normal
component and the jump intensity are governed by separate GARCH processes, as the J-
GARCH(4) model. Since the two variance components vary separately over time, their
relative contribution to returns will also be time-varying. Independent GARCH dynamics
also allow the variance components to mean-revert at different rates. This is empirically
relevant, because Eraker (2004) and Huang and Wu (2004) provide evidence that shocks from
jump components are more persistent and decay at a slower rate than the shock associated
with the normal innovation.

Huang and Wu (2004) estimate a continuous-time specification similar in spirit to (2.4)-
(2.5) using European options on the S&P500 index, and find that it outperforms other models
both in and out-of-sample. However, their result is based on minimizing option pricing errors
over a short period, and the time series of underlying returns does not enter their objective
function. To the best of our knowledge, the literature does not contain estimates for a
continuous-time model akin to (2.4)-(2.5) based on returns data. This is perhaps due to large
number of latent factors that renders the likelihood function unavailable which in turn makes
the estimation much quite challenging. Our discrete-time setup and the convenient GARCH
filtration allow us to estimate the J-GARCH(4) model using standard MLE techniques.

2These different findings may be due to differences in model specification and/or estimation technique.
Eraker (2004) estimates his model using MCMC and specifies correlated jumps in returns and volatility.
ABL (2002) use EMM to estimate models with jumps in returns only. Bates (2000) and Pan (2002) do not
estimate models with jumps in volatility.

3The J-GARCH(3) model is a special case of the most general SVSCJ, because jumps in returns and
volatility are perfectly correlated due to the GARCH filter.



2.4 Conditional Moments of Returns

Conditional moments of returns can be readily derived using the moment generating function
of the normal and compound Poisson processes. The first four conditional moments are

Ei(Rev1) = pyg =7+ (A = 5) haprn + (A = E+0) by (2.7)
VCLT’t (RtJr]_) == hz,t+l + (62 + 92) hy’tJr]_
0 (36> +6°) hy,,.,
Skewt (Rt+1> = ( 2 )2 ot 3/2 (29)
(P + (05 +67) hyn)
30" +65%0> + 0" hy,,,
Kurtt (Rt+1> = 3+ ( 2 5 ) il 3 (210)
(hair + (B2 +0°) by, )

where Skew; (Ry.1) is the conditional skewness of returns, and Kurt; (R;+1) is the conditional
kurtosis. The sign of the conditional skewness depends on the sign of the mean jump size
6. For positive hy i1, which means in the presence of jumps, the dynamics of conditional
skewness and kurtosis are driven by the conditional variance of the normal component as
well as the jump intensity. In the empirical section we find that h, ., is orders of magnitude
larger than h, ;.i1and that the higher-moment dynamics are trivial in models where h, ;1 is
constant. Thus time-varying jump intensities are crucial for obtaining time-varying higher-
moments. Harvey and Siddique (1999, 2000) document the importance of time-varying
skewness in asset pricing.

The expressions for the persistence and long run variance of all four models are provided
in Appendix A.

2.5 The Likelihood Function

The likelihood function for returns depends on the normal and Poisson distributions. First,
notice that conditional on n;,1 = j jumps occurring in a period, the conditional density of

returns is normal ,
oxp (-Gt

2(hz,t+1+j62)

V27 (e + %)

Because the number of jumps is finite in the compound Poisson process, the conditional
probability density of returns can be derived by integrating out the number of jumps, dis-
tributed as a Poisson counting process

fi (Regalnien = j) = (2.11)

o (hyan)
Pr; (ngp = j) = (y;—'“) exp (—hyit1) - (2.12)
This yields the conditional density in terms of the observables
fe (Ri1) = X0 fi (Regalnesa = J) Pry (negn = Jj) - (2.13)
j=1

and likelihood function can now be constructed easily as the product of the conditional
distributions across the sample.



When implementing the ML estimation the summation (2.13) must be truncated. Jumps
of the Poisson type are large and rare, with on average one to two jumps per year.* However,
we want to allow for the possibility of clustering of several jumps on a day and so we
follow Maheu and McCurdy (2004) by truncating the summation at 25 jumps per day.
In the empirical section we find evidence of up to 10 jumps on a single day. Through
experimentation we have found that our estimation results are robust when the truncation
is set to 25.

3 Daily Return Empirics

3.1 Data and Method

We estimate the models using the time series of S&P 500 returns from June 1, 1962 through
December 31, 2005. The data are obtained from CRSP. The top panel of Figure 1 shows
the daily logarithmic return of the S&P 500 for our sample. Several large or “jump-like”
movements in returns are apparent. The largest price change is the crash of October 1987,
when the index falls by almost 25 percent in a single day. We use a long sample of returns
because it is well-known that it is difficult to estimate GARCH parameters precisely using
relatively short samples. More importantly, jumps are rare events, and given an average
occurrence of one or two jumps per year estimated in the existing literature, it is difficult to
get sensible estimates on jump parameters with daily return data that spans less than ten
to fifteen years. We estimate the models using standard Maximum Likelihood. For GARCH
updating, we use starting values that correspond to the long-run jump intensity and the
long-run variance. That is, we set h,; = O'Z and hy,, = UZ. Our optimization converges
quickly and our estimates are robust to the wide range of starting values that we try.

3.2 Maximum Likelihood Estimates

Table 2 presents Maximum Likelihood estimates (MLE) for the four J-GARCH models, ob-
tained using returns data for 1962-2005. For reference, Table 3 presents MLE estimates for
a number of benchmark models which include the Heston-Nandi GARCH, the Black and
Scholes (1973) model, and the Merton (1976) Jump model. For each model, we divide para-
meter estimates into two columns, one for parameters representing the normal component,
and the other for parameters representing the jump component. For example, the parameter
A in the “Jump” column refers to the ), parameter. Under each parameter estimate, we
report its standard error computed using 100 bootstrapped MLE samples.

The log-likelihood values show that all jump models except the J-GARCH(2) signifi-
cantly improve on the fit of the GARCH model. The relatively poor performance of the
J-GARCH(2) specification is presumably due to the lack of time-variation in the variance
of the normal component, which apparently cannot be compensated by allowing for a time-
varying jump intensity. The jump intensity of the J-GARCH(2) process is highly persistent.

4Existing evidence regarding the jump frequency using S&P500 returns is quite consistent. See for example
EJP (2003), Eraker (2004) and CGGT (2003). Please refer to Broadie, Chernov, and Johannes (2007) for a
summary of these results.
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Figure 2 shows the annualized conditional return variance for the four J-GARCH models.
We plot the total conditional variance define above as

Vary (Rit1) = happ1 + (52 + ‘92) Py 141

from January 1, 1986 through December 31, 2005. To aid the comparison with the conditional
variance path of the GARCH model, we plot the difference between the conditional variance
of each jump model and the Heston-Nandi GARCH in Figure 3. Note that J-GARCH(2)
has its own scale in Figure 3. It is evident that the conditional variance in the J-GARCH(2)
model does not exhibit much variation, which suggests an absence of time variability in
the jump intensity. It is somewhat surprising, since one would expect a more volatile jump
component given the homoskedastic normal innovation. Figure 4 shows the jump intensity
over time in each model, that is Ay, ;4. It confirms that the J-GARCH(2) specification has
a relatively constant jump intensity in comparison with the J-GARCH(3) and J-GARCH(4)
models.

Next we look at the simplest jump structure, which is the J-GARCH(1) specification.
Adding a simple constant jump component to a GARCH dynamic can significantly improve
model fit, despite the fact that the GARCH parameters of the normal component in the
J-GARCH(1) model are similar to those of the GARCH model. Table 3 reports a mean
jump size of 6 = —1.254%, and jump volatility of § = 2.861%. As for the jump intensity
E [hy 141] = wy, the model implies that jumps arrive at a frequency of 252 x w, ~ 2.03 jumps
per year. These values are roughly consistent with estimates for the SVCJ model obtained
by Eraker (2004), CGGT, and EJP. We find a slightly smaller jump mean size and slightly
higher jump intensity rate.

The results for the J-GARCH(3) model indicate that allowing for state-dependent jump
intensities can further improve model performance. The estimate of k is statistically signif-
icant, confirming that the arrival rate of jumps depends on the level of risk in the market.
The mean jump size is smaller than for the J-GARCH(1) model. However, jumps arrive more
frequently, with on average E [h,;+1] = ko? = 0.0384 or 9.6782 jumps per year. Therefore,
we conclude that by allowing for time-varying jump intensities, smaller jumps can occur at a
frequency which depends on the level of risk in the market. The bottom-left panel in Figure
4 indeed shows considerable variation in the jump-intensity over time.

These findings regarding time-varying jump intensities in the J-GARCH(3) model stand
in sharp contrast to our findings for the J-GARCH(2) model. We conjecture that this is
due to the strong misspecification of the J-GARCH(2) model. Our evidence in support of
time-varying jump intensities is in line with Eraker (2004) and Pan (2002), who estimate
their models using joint information from returns and option prices. Bates (2006) also find
support for time-varying jump intensity from returns when estimating the model using his
approximate maximum likelihood method. However, ABL (2002), estimating on returns, and
Bates (2000), estimating on option prices, do not find evidence which support time-varying
intensities.

Note from Table 2 that in almost all models, the market price of risk parameters cannot
be precisely estimated. This is not surprising, as we are estimating the models using the
physical return process. Heston and Nandi (2000), EJP, and Eraker (2004) reach a similar
conclusion. Nevertheless, these parameters critically impact on the volatility term structure
of option prices. We discuss the implications of risk premia in more detail below.
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Surprisingly, the likelihood for the most general specification, J-GARCH(4), offers lit-
tle improvement over J-GARCH(3), despite the fact that it allows for the jump intensity
to be driven by its own independent GARCH dynamic. The persistence of the jump in-
tensity is higher than the variance of the normal component. The MLE estimates of the
J-GARCH(4) model indicate that the average jump intensity is E [hy;41] = 0.0488, which
translates to more than 12 jumps per year. This jump arrival frequency is much higher
than in the J-GARCH(1) and J-GARCH(3) models. Jumps are smaller, with an average
jump size of —0.1622%. The bottom-right panel in Figure 4 shows that the general J-
GARCH(4)model implies more variation in the jump-intensity over time than in the more
restricted J-GARCH(3).

3.3 Variance Decomposition and Conditional Higher Moments

At the bottom of Table 2 we report on the decomposition of total return variance into the
normal and jump components. With the exception of the J-GARCH(2) model, the contri-
bution of return jumps to the overall equity variance is consistent with the non-parametric
time-series evidence of Huang and Tauchen (2005). They find that jumps in prices account
for about 10% to 15% of overall equity volatility. It is not surprising that the results differ
in our J-GARCH(2) model because the variance dynamics are shut down in this model.

Figure 5 plots the conditional one-day-ahead skewness and excess kurtosis from the four
models. We thus plot the expressions in (2.9) and (2.10) during the January 1, 1986 to
December 31, 2005 period. The top row of panels contain the results from J-GARCH(1).
Note that the scale for this model is different than of the other models. The J-GARCH(1)
model which allows for dynamic variance and constant-intensity jumps implies conditional
skewness down to -3 and conditional excess kurtosis as high as 60. The J-GARCH(2) model
which has constant variance implies almost constant conditional skewness and kurtosis. The
J-GARCH(3) and J-GARCH(4) models that allow for dynamic jump intensities imply con-
ditional skewness down to -0.4 and conditional excess kurtosis up to 15 which seems more
reasonable than the J-GARCH(1) moments.

Note that all the model with conditional variance dynamics imply that the conditional
skewness and kurtosis are furthest from zero when conditional variance is low as it was during
the mid-1990s.

4 Option Valuation Theory

We now derive results that allow us to value derivatives using the J-GARCH model. In
our discrete-time framework, the stock price can jump to an infinite set of values in a
single period, and therefore the uniqueness of the equivalent martingale measure cannot
be guaranteed. Although we consequently cannot identify unique option values through the
absence of arbitrage, we can proceed by establishing the existence of a risk-neutral probability
density under which the returns on all assets are equal to the risk-free rate. We start by
explaining our risk-neutralization procedure, with an emphasis on the importance of the
assumption on the equity premium in (2.1). Given our assumptions, the functional form of
the risk-neutral dynamic is identical to that of the physical dynamic. We further discuss the
differences between our setup and the approaches used in existing studies in Appendix B.
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4.1 Risk-Neutralization

We proceed along the lines of Gerber and Shiu (1994), who use the Esscher (1932) transform
on the objective probability density P (x)

e P ()
M(A)

where A is a real number such that the moment generating function M (A) of the stochastic
process x exists under P. The Esscher transform has previously been used in the derivatives
literature, for instance by Carr and Wu (2004) for applications in continuous-time option
pricing and by Ahn, Dai and Singleton (2006) for applications in discrete-time dynamic term
structure modeling. When x is the index return, the assumption of the Esscher transform
corresponds to the assumption of an economy with power utility, and A represents the
coefficient of relative risk aversion (see Bakshi, Kapadia, and Madan (2003)). Buhlmann,
Delbaen, Embrecths, and Shiryaev (1998) propose a discrete-time generalization of (4.1).
For a discrete-time two-dimensional stochastic process, the Esscher transform corresponds
to the following form on the conditional Radon-Nikodym derivative

Q(z;A) = (4.1)

dQe41
de+1 _ &Xp (A,Xt-l—l)

% B M (A; Hypr)

(4.2)

where X;11 = (241,%:11) is a vector of shocks to returns and Hyy =(h, i1,y 1) is a
vector containing the variances of the normal component and the jump intensity. Because
there are two types of shocks in this economy, A = (A.,A,)" is a two dimensional vector
of equivalent martingale measure (EMM) coefficients that produce the wedge between the
physical and the risk-neutral measure. The proof that (4.2) is a proper probability measure
can be obtained by using the fact that the exponential term exp (A’ X;41) is normalized by
its joint moment generating function M (A; Hy,q).?

Proposition 1 If the dynamic of returns under the objective measure P is given by (2.1), the

risk-neutral probability measure Q) defined by the Radon-Nikodym derivative in (4.2) is an
equivalent martingale measure (EMM) if and only if

IOgM (A + 1;Ht+1) - IOgM (A, Ht+1) + ()\z - %) hz,t+1 + ()‘y - 5) hy,t+1 =0 (43)
2
where 1 is a two-dimensional vector of ones, and we recall that & = (e%w — 1) :
Proof. For an EMM to exist, the expected return of S; from time ¢ to t 4+ 1 must equal the
risk-free rate
dQi41
dP;41 St+1

dP;

T

Ey

M (A; Hyyq) is a joint moment generating function, as this function completely determines the dis-
tribution of (z¢41,Ye+1). When A, = Ay, M (A; Hyyq) is the moment generating function of the process
Zt4+1 + Yr41-
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Substituting the Radon-Nikodym derivative in (4.2) and the return dynamic in (2.1), and
taking expectations we have
et (Ae=3 )it Oy lexp (A + 1) Xp11)]
M (A; Hy) B

T

Equating terms yields the required result. m

Proposition 1 provides us with a simple relation (4.3) that can be used to solve for A.
However, this implies that we have to uniquely determine A, and A, from a single equation,
which we can do using the affine structure of the model. First, we note that the logarithms
of the joint moment generating function log M (A;H;,4) is affine in H; ;. Our assumption
underlying the structure of the equity premium implies that the entire relation in (4.3) is
also affine in H; ;. This leads us to the following result.

Lemma 1 For the return dynamic in (2.1), the solution to (4.3) for the J-GARCH model
reduces to solving the following two equations

252

A — <e%+9 -1) - ¢t (1 elmmen) — (4.4)
Acth =0 (4.5)

Proof. See Appendix B. =

Equation (4.5) can be analytically solved for the EMM coefficient A,, which gives —A\,.
This result is identical to the one obtained using Duan’s (1995) LRNVR method which builds
on Brennan (1979). It is not possible to solve for the second EMM coefficient A, in (4.4)
analytically. However, it is well behaved and can easily be solved for numerically. Note
that due to the structure of the equity premium, the market prices of risk A\, and A, enter
separately into the above two equations (4.5) and (4.4). Given estimates of the physical
parameters A\, and Ay, A, is sufficient to determine the EMM coefficient A, and hence the
wedge that links the two measures for the normal innovation. Similarly, A, identifies the
change of measure for the jump innovation. We can therefore identify the two sources of risk
in the economy. An interesting special case is A\, = A, = 0, which means that the normal
and jump risks are not priced in the market. In this case the solutions to A, and A, are zero
and the distribution of returns under the physical and risk-neutral measures is identical. We
will discuss the implications of the two different types of risk premia further below.

Finally, it is also important to note that our method for risk-neutralization of the jump
component is different from several continuous-time studies including Pan (2002), Eraker
(2004), and BCJ. We discuss their choice of risk-neutralization procedure in Section 6.

4.2 The Risk-Neutral J-GARCH Dynamic

We have now completely characterized the specification of the Radon-Nikodym derivative in
(4.2). We can therefore derive the risk-neutral probability measure for the normal and jump
components of returns using a simple change of measure.

Proposition 2 Consider a stochastic process that is the sum of two contemporaneously in-
dependent random variables zi11 + yir1, with each component distributed as

21~ N (0, hz,t+1) Yir1 ~ J (hy,t+170;52)
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under the objective measure P, N () and J () refer to the Normal and Compound Poisson
distribution respectively. According to the Radon-Nikodym derivative in (4.2), under the
risk-neutral measure () the stochastic process can be written as z;,, + y;,,, where

Zi1 ~ N ( Ak, hey) i~ J (B, 07, 52)
with
A252 )
pit1 = My a1 €xp y2 + A0 0* =0+ A6

Proof. See Appendiz B.

The change of measure shifts the mean of the normal component to the left by A, which
amounts to 2z, = 2 — A;h.;q. This result is identical to the one of Duan (1995), who
motivates the risk-neutralization using the power utility function. The compound Poisson
process under the () measure differs from its distribution under the physical measure in
terms of the jump intensity A;,.11 and the mean jump size 6°. This finding is consistent
with available results on the change of measure in the continuous-time jump literature. For
example, Naik and Lee (1990) assume power utility over consumption or wealth in a Lucas
type model, and derive the difference in jump intensity and mean jump size between the two
measures.

We have all the results needed to derive the risk-neutral J-GARCH dynamic. In order
to avoid repetition, and recalling that the other three specifications are nested in the J-
GARCH(4) specification, we show only the detailed result of the J-GARCH(4) model.

Proposition 3 Risk-Neutral J-GARCH(4) dynamic. Under the risk-neutral measure,
the stock return process can be written as

S *7 % *
log < ;1) = r—ghopn — Ehy o+ 2 U (4.6)

with the following GARCH Q-dynamic

Qy

hzt

)

hz,t—|—1 = w;+ bzhz,t + (Zt + y: - Czhz,tf (47)

*

. . N Cly % xpx \2
oirl = wy+byhy,+ hr, (2 + 7 + Ashay — Cyhyvt) '
y?

where we have the following transformation

* _ * _ _S+40*
hy,t+1 - hy,tJrlH ) f =e:z - 1’

* _ 2 * *
a, = I%ay, ;= (c. —A,), =

A2 2
for TI = e~z M Note that superscript * refers to a Q-parameter, and recall that z 1 ~

N(O>hz,t+1> and Yiqr ~J (hZ,t+1a‘9*752) .
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Proof. See Appendix B. =

The discounted stock price process in (4.6) is a martingale where —%hzﬁl and £*hy . are
the compensating terms for the normal and jump components respectively. The risk-neutral
dynamic for the Heston-Nandi GARCH is a special case of (4.6) and (4.7), for A ., = 0.

Unlike in the normal GARCH case, closed-form option valuation results are not available.
This is due to the jump innovation in the GARCH dynamic which does not yield an expo-
nentially affine moment generating function. However, the discrete-time GARCH structure
of the model renders option valuation straightforward via Monte-Carlo simulation.

5 Option Valuation Empirics

Estimating on returns data, the evidence in favor of jumps is overwhelming, and the results
point to the importance of time-varying jump intensities. We now discuss the importance
of jumps for the purpose of option valuation, and investigate how the jumps ought to be
modeled from this perspective.

We evaluate the option pricing performance of our models using a rich sample of S&P
500 call option data for 1996-2005. We retrieve the European call option quotes from Op-
tionMetrics and eliminate quotes that report zero trading volume. Subsequently, we apply
the filters proposed by Bakshi, Cao, and Chen (1997) to the data. We only keep Wednesday
options with maturity ranging from one week to a full calender year. We choose Wednesday
because it is the least likely day to be a holiday and it is less likely to be affected by day-
of-the-week effects. For further discussion of the advantages of Wednesday data, we refer to
Dumas, Fleming and Whaley (1998).

Table 4 presents descriptive statistics for the option quotes by moneyness and maturity.
The shape of the volatility smirk is evident from Panel C across all maturities, with short
term options exhibiting the steepest volatility smirk. The middle panel of Figure 1 plots the
Black-Scholes implied volatility using at-the-money options. The bottom panel of Figure 1
represents a time series for the CBOE-VIX index for the same period. Clearly the data in
our sample are representative of the prevailing market conditions.

5.1 Calibrating The Risk Premia

We use the MLE estimates from Tables 2 and 3, risk-neutralize them, and price Wednesday
call options for 1996-2005. Due to the GARCH structure of the models, all parameters
needed to value options can in theory be identified from MLE estimates of the physical
distribution.

We start by elaborating on the role of the equity premium in option pricing. Recall that
we work with an affine equity premium specification in (2.2), where A, and A, are the market
prices of risk associated with the normal and jump components respectively. The long run
equity premium is found by taking unconditional expectations

E [y44] = Aol + )\yaz

where o2 is the unconditional variance of the normal component and ¢ is the unconditional
jump intensity. Our general model allows for separate identification of the two market prices
of risk, which is evident from (4.4) and (4.5). In models with jumps, the long-run total
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equity premium is therefore equal to the sum of two components, with \,o? referring to the
long-run risk premium associated with the normal innovation, and )\yaz referring to the long
run jump risk premium.

Using the MLE estimates from Tables 2 the long run (unconditional) implied equity pre-
mium ranges from 2.67% (J-GARCH(2)) to 5.06% (J-GARCH(3)) per annum. However,
even with more than forty years of daily S&P500 returns, we do not obtain statistically
significant estimates of the market price of risk parameters A\, and A,. This lack of reliable
estimates creates problems for comparing models because these parameters are the key in-
gredients that drive a wedge between the physical and risk-neutral measures. BCJ (2007)
estimate some of these parameters from option data. Although this approach is very help-
ful to identify risk premia, it complicates model comparison because it is likely to favour
models with greater flexibility in the risk premium specification. Moreover, in their imple-
mentation different models are evaluated with different equity premia, and it is not clear
if all risk-neutral equity premium estimates are economically justifiable. In our empirical
implementation, we value options using historically observed equity premia, and we impose
an identical long run equity premium across models.

The literature on estimates of the equity premium is too large to cite in full here.b Avail-
able estimates differ depending on the concepts, method, and data used in the calculations.
Estimates of the historical equity return as reported in Ibbotson Associates (2006) range
from 4.9 to 8.5%. Welch (2000) conducts two surveys on finance and economics academics’
estimates of the expected equity premium over the next 30 years. He reports an average
arithmetic equity premium of 7% over T-bills. Overall, most estimates in the literature are
between 3% to 10%. For our sample period, our estimate on the realized expected return in
excess of the 3-month Treasury bill is approximately 5.74%.

We first analyze option pricing performance using a long run equity premium of 6% for
all models. This is close to the average available estimate, and consistent with our sample
realized equity premium. Moreover, it is also economically reasonable. In our jump models,
the total equity premium consists of a combination of jump and normal risk premia. Initially,
we investigate two extreme cases, where the entire equity premium results either from the
jump or the normal risk premium. We then proceed by assigning the jump risk to be the
sole source of the equity risk premium. The effect of the risk-premia on the option pricing
properties of the J-GARCH models will be studied further below.

5.2 Model Performance Based on Option Pricing Errors

Table 5 summarizes the models’ option valuation performance. We use the MLE estimates
to compute option prices for 1996-2005, assuming a 6% total equity premium. We report the
pricing errors for two metrics, the dollar root mean squared error (SRMSE) and the implied
volatility root mean squared error (IVRMSE). The computation of the $RMSE is straight-
forward. For the IVRMSE, we invert each computed call price C; from the model using the
Black-Scholes formula to get the implied volatilities IV (C;, K;,7;.5;7). The IVRMSE is

6See Cochrane (1997), Siegel and Thaler (1997), Mehra and Prescott (2003) and Fernandez (2006) for
comprehensive surveys.
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then computed as the square root of
1 X s 2
N 221 (O'j — IV (Cj,Kj,Tj,Sj))
J:

where st is the Black-Scholes implied volatility of the j** observed call price, and N =
21,718 is the total number of option contracts used in the analysis. The parameters K, 7;
and S; are the strike, maturity and the underlying index level associated with each option.
We use $SRMSE and IVRMSE metrics because they are two commonly used loss functions
in the literature. We report the raw $SRMSE and IVRMSE(%) for the benchmark GARCH
model while for jump models, we report their RMSE ratios relative to the GARCH model
for ease of comparison. In addition, we evaluate each jump model in two different ways.
The two left columns contain RMSEs computed for A, = 0, where the equity premium is
imputed to from risk premium on the normal innovation, while the two right columns refer
to RMSEs computed for A\, = 0, where the entire equity premium is imputed to the jump
risk premium.

The most important finding is that without a jump risk premium, jump models provide
little or no improvement for option pricing. However, when jumps are the source of the eq-
uity premium, the J-GARCH(1), J-GARCH(3) and J-GARCH(4) models lead to significant
pricing improvements. These findings are consistent with Pan (2002) and BCJ (2007), who
find significant and dominant jump risk premia in option data. Our findings are also consis-
tent with those studies in a less obvious way. Pan (2002) and BCJ (2007) report statistically
insignificant volatility risk premia. In our setup, this corresponds to insignificant risk premia
associated with the normal innovation. The reason is that the GARCH filter constrains the
return and volatility shocks associated with the normal component to be perfectly correlated.
In the remaining part of this section, we focus on the case where the total equity premium is
entirely due to jump risk. We will revisit the relative performance of different risk premium
specifications in more detail below.

Table 5 indicates that the J-GARCH(3) model performs best. Its option pricing ability
is quite remarkable, especially considering that we do not use option data to estimate the
models. Using the assumption of a jump risk premium (and no risk premium associated
with the normal component), it improves on the GARCH model by 30% and 18% using
the $SRMSE and IVRMSE metrics respectively. Surprisingly, the most flexible model, J-
GARCH(4), only modestly outperforms the constant jump intensity J-GARCH(1) model.
Note that this results is actually consistent with the MLE estimation which found that the
log likelihood value for the J-GARCH(4) model does not differ much from that of the J-
GARCH(3) model. The J-GARCH(2) model performs poorly, with pricing errors similar to
those of the Merton Jump model. This is not surprising, as the MLE estimates for the J-
GARCH(2) model do not indicate much time variation in jump intensities, which means that
the model essentially reduces to the Merton Jump model. The time-varying jump intensity
is not sufficient to make up for the lack of variance dynamics in the J-GARCH(2) model: It
performs poorly both in fitting returns and in pricing options.

The J-GARCH(1) model is a restricted form of the continuous-time SVCJ model. Thus
we can compare our findings on its option pricing performance to the existing literature.
Based on the IVRMSE metric, the J-GARCH(1) outperforms the GARCH by 9%. This is
larger than the improvement of 2.3% in loss function found by Eraker (2004). BCJ (2007)
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conclude that the SVCJ model can improve on the IVRMSE over the Heston (1993) model
by over 50%. However, their implementation is very different from ours. In their setup the
spot volatility is estimated on options rather than filtered on returns and they also estimate
the risk premia by minimizing the option pricing error.

5.3 Pricing Errors by Moneyness, Maturity and Volatility Level

Table 6 provides additional evidence on the option fit of J-GARCH models. We report
option IVRMSE of the simple GARCH model and the IVRMSE ratio of the Jump models
versus the simple GARCH model. In this and the next three subsections we will assume
an equity risk premium of 6% that is all assigned to jump risk. We report the results by
moneyness, maturity, and VIX index level. The performance of the J-GARCH(3) model is
very robust across moneyness and maturity (see panels A-B). Overall, jump models, except
for J-GARCH(2), perform very well for long maturity options. This may seem surprising,
because jump models are well-known for their ability to fit short term options, see Pan (2002).
However, recall that the J-GARCH models allow for jumps in volatility, which generate the
higher persistence needed to price long maturity options.

Panel C of Table 6 reports IVRMSE and IVRMSE ratios sorted by the level of the
VIX index. The J-GARCH(3) and J-GARCH(4) models outperform the GARCH model in
medium and high volatility periods (when VIX >14). However, in low volatility periods,
none of the jump models can improve on the simple GARCH model. This finding indicates
that jumps provide little or no benefit for option pricing in low volatility periods. It may seem
surprising that the J-GARCH(3) model, with a jump intensity specification that depends
on the volatility level, performs so poorly in the low volatility period. However, the jump
intensity in J-GARCH(3) is affine in the variance of the normal component, which is bounded
below. Therefore, the jump intensity in the J-GARCH(3) model is also bounded below, and
therefore jumps can occur even in very low volatility periods. The J-GARCH(4) model, on
the other hand, performs comparably to the GARCH model in the low volatility period. The
reason is that the J-GARCH(4) model has an independent GARCH dynamic for the jump
intensity.

5.4 The Implied Volatility Bias over Time

The option RMSEs favour the J-GARCH(3) model. We now provide more insight behind
this model’s performance. We first look at the ability of the J-GARCH models to match
the time path of average at-the-money implied volatilities. Figure 6 presents the average
weekly at-the-money implied volatility bias (average observed market implied volatility less
average model implied volatility) over the 1996-2005 option sample, using the MLE estimates
from Tables 2 and 3.7 No model can produce implied volatilities that are sufficiently high to
match the data during high-volatility periods. However, the positive bias of the J-GARCH(3)
model is much smaller than for the other models. Note that the time paths of implied
volatility bias are nearly identical for the J-GARCH(1) and J-GARCH(4) models. The
average biases in Figure 6 are as follows: J-GARCH(1): 0.0326, J-GARCH(2): 0.0516, J-
GARCH(3): 0.0261, J-GARCH(4): 0.0363. These numbers can be compared with the simple

"We consider options to be at-the-money if their strike price lies within 2.5% of the underlying index.
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GARCH bias of 0.0392. Thus the J-GARCH(3) has a clearly lower bias than the GARCH
benchmark, whereas the J-GARCH(1) and J-GARCH(4) have only a slightly lower bias. The
J-GARCH(2) performs poorly using this measure as well. The bias is very persistent in all
models suggesting that perhaps richer conditional variance dynamics are needed.

5.5 The Implied Volatility Term Structure

The J-GARCH(3) performance could also be driven by its ability to better capture the
implied volatility term structure. Thus, we now look at the models’ ability to match average
at-the-money implied volatility across maturity, for three different volatility periods. Figure
7 presents data and model implied volatility across maturities. In order to investigate the
importance of different volatility regimes, we chose three periods each spanning four months.
We chose four-month windows because they are small enough to capture different volatility
regimes, while still containing sufficient data for robust analysis. The high volatility period
(top panel) is from July 1st to October 31st of 1998. The average VIX level in this period
is 31.50. The medium volatility period (middle panel) is from January 1st to April 30th of
2002. The average VIX level here is 21.01. Finally, the low volatility period (bottom panel)
is from January 1st to April 30th of 2002, with an average VIX level of 13.22. To prevent
clutter and due to its subpar performance we do not include the J-GARCH(2) model in this
figure.

Note first that all models underestimate the level of volatility in the high volatility period.
The GARCH is most biased followed by the J-GARCH(1) and J-GARCH(4) models. The
J-GARCH(3) model performs relatively well in the high volatility period; its ability to price
long-term options is presumably related to its higher persistence. For the medium volatility
period, the three jump models outperform the GARCH model at medium to long maturities,
but all are biased at short maturities. One possible explanation is that the 6% assumption
on the equity premium is too low. This explanation is supported by the findings in Pan
(2002), who reports an 18% jump risk premium when fitting jump models to near-the-
money short-dated option prices. Another potential explanation is missing risk factors that
are not attributable to volatility and jump risk premia, see for instance Jones (2006).

For the low volatility period, the GARCH model is clearly the best at matching the
implied volatility term structure across maturities. Jump models produce volatility levels
that are too high and the bias becomes increasingly negative as the maturity increases. The
bias is especially severe for the J-GARCH(3) model at long maturities.

5.6 The Implied Volatility Smirks

Figure 8 presents the implied volatility smirks implied by the models. For each model, we
compute the implied volatility smirk for the three different volatility periods identical to
the ones used in Figure 7. In order to reduce the noise in the data, we pool the implied
volatilities into moneyness and maturity bins. We plot moneyness smirks for four different
maturity ranges (top to bottom): 15 to 30 days, 30 to 60 days, 90 to 120 days, and 250 to
300 days. The left column reports on the low volatility period, while the center and right
columns report on the medium and high volatility periods. Again, to prevent clutter and
due to its subpar performance we do not include the J-GARCH(2) model in this figure.
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In the medium and high volatility periods, we notice that models cannot produce realistic
volatility levels, especially for deep-in-the-money options. The slope of the smirk is fairly flat
for all models, and they cannot capture the shape of the smirk implied by short maturity
options. Nevertheless, J-GARCH(3) performs relatively well compared to GARCH, as it
produces a steeper implied volatility slope across moneyness. As for the low volatility period,
we observe the “hook” effect pointed out by Duffie, Pan, and Singleton (2000) and Pan (2002)
in all models. Jump models once more do not perform well for long maturity options in the
low volatility period, confirming our earlier findings.

5.7 Increasing the Level of the Equity Risk Premium

The option valuation results are based on parameter estimates obtained from physical re-
turns, together with an economically plausible assumption on the equity premium. We now
further explore the implications of different risk premia for option pricing performance. We
first perform a robustness analysis by investigating alternatives to the assumption of the 6%
equity premium. Subsequently we further investigate the different impact of the two risk
premium components.

We start by relaxing the assumption of a 6% equity premium. Specifically, we use MLE
estimates from Tables 2 and 3 and compute option RMSEs for other economically plausible
values of the equity premium, while constraining the equity premium to be equal across
models. For jump models, we allow both risk premia to jointly contribute to the total equity
premium.

Table 7 reports option pricing performance based on the IVRMSE metric for different
levels of the equity premium. Panel A shows the GARCH IVRMSE. Panels B, C, and D
show the IVRMSE ratios for three J-GARCH models relative to the GARCH model. In
each panel, the columns represents various levels of the equity premium ranging from 0%
to 10%. The rows represents various levels of the risk premium associated with the normal
component. Note that for the GARCH case, we only have entries on the diagonal since the
only source of risk is associated with the normal innovation. For example, in Panel C, if the
total equity premium is 6% and the risk premium for the normal innovation is 2%, which
means that the jump risk premium is 4%, the IVRMSE ratio is 0.86. For this combination
of risk premia, the J-GARCH(3) model improves over the GARCH model by 14%.

First, we investigate the case when the equity premium is entirely due to non-jump risk,
which corresponds to the diagonal entries. Regardless of the equity premium, option pricing
improvements are minimal in the absence of jump risk premia; the J-GARCH(3) leads to a
4% improvement, and the J-GARCH(1) actually underperforms the GARCH by 1%. On the
other hand, when the equity premium is entirely due to jump risk, the J-GARCH models
significantly improve on the GARCH model as the total equity premium increases. This
corresponds to the bolded cells in the first rows of panels B-D. The strong dependence of
option pricing performance on the presence of jump risk premia allows us to conclude with
confidence that jump risk premia are a necessary element for option pricing. J-GARCH
models improve option pricing performance through jump risk premia by reconciling the gap
between the physical and the risk-neutral measures. To ensure that our finding is not due
to a specific choice loss function, we repeat this analysis using $SRMSE instead of IVRMSE
(not reported), and identical conclusions obtain. Table 7 also indicates that the superior
performance of the J-GARCH(3) model extends to other equity premium levels.
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Figure 9 presents volatility smirks implied by the J-GARCH(3) model at three different
maturities, for different levels and sources of risk premia. The left column presents results
for zero jump risk premia (A, = 0), with total equity premia of zero, five, ten, and fifteen
percent. The right column presents results for A\, = 0, and the middle column represents the
mixed case where each component delivers half the equity risk premium. The conditional
jump intensity and conditional variance of the normal component are set equal to their long
run mean values.

The importance of the jump risk premia is clearly evident. The shape and particularly
level of the implied volatility smirks are highly sensitive to the jump risk premium, but not to
the risk premium associated with the normal innovation. We therefore conclude that models
based on normal innovations alone cannot match the level of implied volatilities observed in
the data when conventional estimates of the equity risk premium are imposed.

For options with 20 days to maturity, increasing jump risk premia result in steeper slopes.
Interestingly, the location of the “hook” also changes as the jump risk premium increases.
Our findings are consistent with Bakshi, Kapadia, and Madan (2003), who find that the more
negative the risk-neutral skewness (and the higher the risk aversion), the steeper the implied
volatility slopes. For longer maturities, we see that high implied volatilities can be generated
with small jump risk premia. In the absence of jump risk premia this is not possible. Similar
findings can be found in Bakshi, Cao, and Chen (1997) and Bates (2000), who show that
the risk-neutral parameters required to fit stochastic volatility models to options prices are
unrealistic. Our conclusions regarding the impact of jump risk premia are also in line with

BCJ (2007).

6 Further Analysis of the Models

In this section we further investigate the GARCH jump models developed above.

First, recall that our models are designed so that the researcher does not need to sepa-
rately identify the two unobserved shocks z;.; and y;,; neither to estimate the models nor
to use them for option pricing. The likelihood is specified in terms of observed underlying
returns and the variance and jump dynamics are updated using observed returns rather than
using the two unobserved shocks individually. Nevertheless, in order to learn more about
the models’ performance we may want to separate the shocks and we do so below using the
particle filter.

Second, our models are cast in discrete time. This is in line with a large body of work on
equity return modeling using GARCH models. But the option valuation literature mainly
proceeds using continuous time models. In order to anchor our models in the continuous
time literature we therefore provide the continuous time limit of our models later on in this
section.

6.1 Decomposition of Daily Returns by Particle Filtering

The two innovations z;,; and ;. enter jointly into the dynamic (2.4), thus the GARCH
updating procedure is straightforward. However, in order to appreciate the rich dynamics
implied by the J-GARCH specification, we use particle filtering to separately identify both
return components. The use of particle filtering was pioneered in finance by Pitt and Shep-

22



hard (1999). Johannes, Polson, and Stroud (2007) discuss applications to jump-diffusion
models. Using the MLE estimates in Table 2, we apply particle filtering to each J-GARCH
model and back out the time series of three unobservables: the jump time n;,1, the jump
component of the return y,,1, and the normal component of the return 2.

The filtering density for the number of jumps at jump time ¢ + 1, ny,q, is given by

Jt (Reg1 | g1 = J) Pre (myq = )
ft (Rt+1)
o fi (Reg1 | nes1 = J) Pry (ngsr = j)

Priq (ne1 = J) (6.1)

where the expressions on the right hand side of (6.1) are given by (2.11), (2.12), and (2.13).
See Maheu and McCurdy (2004) for a discussion. Pr; i (n;1 = j) represents the ex-post
inference on n;,1, or the probability that j jumps have arrived between time ¢ and t +
1 conditional on the information available at time ¢ + 1.

The filter for y;,1 and 2,41 is given by

Pr1 (241, Y1) o< Pry (2eq1 | gesn) Pre (e41) (6.2)

This represents the ex-post joint inference on z;,; and y;.1, given time ¢ 4+ 1 information.
Note that the first term on the right hand side of (6.2) is conditionally normally distributed.
It can also be written as Pr; (R;11 | ++1). The second term on the right hand side of (6.2)
is distributed as a Compound Poisson process.

Given the filtering densities in (6.1) and (6.2), we use the Sampling Importance Re-
sampling (SIR) algorithm with 5,000 particles to integrate out the unobservables. We refer
interested readers to the work of Pitt (2002) and Johannes, Polson, and Stroud (2007) for a
more extensive discussion of the algorithm’s implementation.

Figure 10 presents the results from applying particle filtering to the J-GARCH models.
The expected ex-post number of jumps occurring in any given day is shown in the top
panels. The filtered jump and normal components are presented in the middle and bottom
panels respectively. We first look at the J-GARCH(1) model, which corresponds to the
restricted case of the SVCJ in the continuous-time literature. The jump components for the
J-GARCH(1) model are overall negative, thus the jumps induce negative skewness in the
return distribution. At most one jump is observed on any given day, with the exception of the
October 19th, 1987 crash, when the model indicates two jumps on the same day. This finding
has important implications for many existing implementations of jump models. Several
papers in the continuous-time literature approximate the jump component by ;11 = €;41G¢11,
with jump sizes retaining their distributional structure according to ;41 ~ N (0, 52), and
jump times ¢;y1 € {0,1} are Bernoulli random variables with Pr (g1 =1) = hy 1 and
Pr(¢4+1 =0) =1—hyt+1. Our findings indicate that this approximation may be inadequate
for the 1987 crash.

When jump intensities are time-varying (in the J-GARCH(2), J-GARCH(3) and J-
GARCH(4) models), jump times are more volatile with smaller jumps arriving at higher
frequencies. The filtered state variables for the J-GARCH(3) and J-GARCH(4) models in-
dicate the importance of time-varying jump intensities with clustering effects. The highest
jump arrival frequencies are observed in 1987 and in the early period of the dot-com collapse.
Interestingly, the crash of October 1987 is captured by the arrival of four or five jumps in one
day for the J-GARCH(3) and J-GARCH(4) models respectively. Because more jumps can
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arrive when the level of risk rises, these models do not require a large negative jump means
in order to produce the 1987 crash and the volatility of the late 1990s. While 6 is slightly
negative, we also observe jumps in the positive direction which represent the arrival of good
news. When allowing only the jump intensity to be time-varying as in the J-GARCH(2)
case, the jump component is very volatile, because jumps are the main shocks that deter-
mine changes in daily returns. It is also interesting to note that the expected number of
jumps arriving in each day for the J-GARCH(2) model is always greater than zero and seems
to be bounded below.

When jumps occur, they are usually the dominating shock to returns. Surprisingly,
the crash of October 19th 1987 is an exception to this. On average (across models), the
jump component only explains only 5% of the total 22.9% loss in the S&P500 index. The
dominating shock for this crash is the normal component part of the return. This finding
is somewhat different from EJP (2003), where the jump component accounts for at least
half of the loss in the index on this date. At first, this may seem puzzling because a crash
is usually associated with a jump in price. However, J-GARCH models contain jumps in
volatility which are perfectly correlated with jumps in returns. Jumps in volatility therefore
drive large shocks in the normally distributed return component, which then dominates in a
period with a very large negative return, such as the 1987 crash.

6.2 Linking Results to the Continuous-Time Literature

Our discrete-time J-GARCH setup has considerable computational advantages. However,
most related empirical results are obtained using a continuous-time setup. Thus, it is inter-
esting to investigate the continuous-time limits of the J-GARCH model. Recall that when
there is no jump in (2.1) and (2.4), hence hy ;1 = 0, the model reduces to a simple Heston-
Nandi (2000) GARCH(1,1). Heston and Nandi (2000, Appendix B) show that their model
weakly converges to a diffusion limit which is the Heston (1993) square-root model. We now
demonstrate that the continuous-time limit of our J-GARCH model falls into the category
of non-affine quadratic jump-diffusion models. An alternative limit is part of the class of
time-changed Lévy processes of Carr and Wu (2004).

First re-write the return dynamic in (2.1) using a new time-dependent parameterization,
as follows

log Spsn —log Sy =rA+ (A —3) h. (t+A)+ (N\y = hy (t+A) +1'X 0
where the shocks to the return process are part of a two-dimensional vector X;, a
Xea=(2(t+2) yt+A)).

Using vector notation, we can also write (2.4)-(2.5) using time-dependent parameterization.
This gives

(i) = (o) rans(ir ) o) (o)
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where

> (1)

and diag (2) represents a 2 x 2 diagonal matrix with first and second element given by &, and
&, respectively. Define v, (t) = h, (t) /A and v, (t) = h, (t) /A as the diffusive variance and
jump intensity per unit time. Now, consider letting the time interval shrink with parameter
specifications

U)j (A) = CUjAQ Clj (A) = CYjA2
¢i(A) = AT b (A) =1—(a7] - 5) A
for j =y, z. In the limit as At — dt, we get the process

v, (t)

dlog Sy = (r+ M\wv, (t) + N\uy (t)) dt + 1'd X, — Tdt — vy (t) dt (6.3)
(32; Eg) - [W +B ij Eim dt + CdX, + A <Z; Eg) dX/SdX, (6.4)

where

_ W, [ —2a., 0
W= (Wy) C_< 0 _20@71/)
B B, 0 [, O
5= (G 5) a=(%a)

In the limit At — dt, the normal and jump shocks to the return converge to

X (t) = ( dZ (v- (1)) ) _ (\/de (t)>‘

dY (vy (t),k,0) Q (t)dN (t)

The diffusion term can be written as the product of the Brownian motion W (¢) and the
square root of the stochastic variance v, (). The jump term has a jump-size component
@ (t) and a component given by a Poisson counting process N (¢) with instantaneous arrival
rate of v, (t). The continuous-time limit of the return in (6.3) is nested within the jump
diffusive specification of Duffie, Pan, and Singleton (2000). However, the stochastic variance
and jump intensity in (6.4) are clearly non-affine, with quadratic dependence on d.Xj.

Next we show how the above continuous time limit can be interpreted as a time-changed
Lévy process. Consider the vector of potential stochastic time changes T; = [Ttd, th ] applied
to two Lévy components Z; and Y;. By definition, the time change T; is an increasing, right
continuous process with left limits satisfying the usual conditions, for all t > 0 and T; — oo
as t — oo. At any time ¢, the dynamic of the random time is characterized by

¢ , t
T = / v, (s)ds and T] = / vy (s) ds,
0 0

where v, (s) and v, (s) are usually referred to as the instantaneous activity rates, with
v, (0) = v, (0) = 0. Following Carr and Wu (2004), we can intuitively think of ¢ as the
calender time and of T; as business activity on calender day ¢. Days with higher volatility
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represent active business days with higher instantaneous activity rates. Using (6.3), we can
integrate and write the price process at any given calender time ¢ as

t
S; = Spexp (/ d (log Ss) ds>
0
= Spexp(rt+ (N =T+ (N, —OT/ +Z, +Y)). (6.5)

The first of the two Lévy shocks to the stock price is a Brownian process Z; evaluated at
a stochastic time change T¢. Thus, it is normally distributed with with mean zero and
variance T. The second Lévy shock is a pure jump process, which we model as compound
Poisson. Jumps in Y; arrive over the interval [¢,¢ + dt] at a stochastic instantaneous rate of
vy (t). Therefore, the expected number of jumps occurring between times 0 and ¢ is th , with
each jump normally distributed with mean 6 and variance 6°. The stochastic time change
T; that determines the distribution of Z; and Y; is governed by the dynamics in (6.4). Note
that the stock price process in (6.5) is very similar to the MJDSV4 process in Huang and
Wu (2004), with a somewhat different specification of the stochastic time change process.

The special case of the J-GARCH(3) model which performed so well empirically has the
continuous-time limit

dSy = (r+,) Sidt + /v, (t)S:dW; + dY; — £Sikv. (t) dt
2
dv, (1) = (W, + B, (1)) dt — 20y,\/0n DdW; + —2 (mczwt + dYt>

v, (t)

where v, (t) = h, (t) /A can be thought as the stochastic variance process in the conven-
tional continuous-time models. The pure jump component in the model has the limit of
dY; = @Q (t) dN (t) where jumps arrive according to a Poisson counting process dN (¢) at an
instantaneous rate of v, (¢) and the size of each jump @ (¢) is log-normally distributed with
mean @ and variance 0°. A quick look at the continuous-time limits of J-GARCH(3) show
that it has great resemblance with the SVSCJ model in the continuous-time jump-diffusion
literature but with a non-affine stochastic variance process.

6.3 Risk-Neutralization in Continuous-Time Jump Models

Bates (1988, 2000) and Naik and Lee (1990) provide a general equilibrium treatment of
jumps in a continuous-time setup. They assume that the jump in the Compound Poisson
process is normally distributed. Under the risk-neutral measure, the Compound Poisson
process undergoes changes in the jump intensity h, ;.1 and mean jump size §. That is, the
change of measure will result in

{hy, 0} = {h;tﬂ, 9*} '

Most empirical implementations of jump models are inspired by this general equilibrium
setup, in the sense that they adopt a stochastic discount factor (SDF) which allows for jump
intensity and jump mean size to differ across the two measures. However, these implementa-
tions do not impose the full structure in Bates (1988, 2000) and Naik and Lee (1990). The
most popular choice of SDF in the continuous-time jump-diffusion literature is L; = LPL]
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where the SDF for the diffusive part LP is specified as

1 —ew([0waws -3 [loIFas).

and the SDF component associated with the jump is given by

s (S5 ) [ [ sremian)a) on

where ) is the jump intensity and f (s, X) is the distribution of each jump X. This choice of
SDF has both advantages and disadvantages. The main advantage is that it is very flexible.
The risk neutral process is also Compound Poisson with jump intensity A; ,.; and each jump
size distributed according to f% (s, X), but the risk-neutral jump size distribution can be
different from the physical one. The same flexibility applies to the jump intensity.

This choice of SDF therefore allows for a highly flexible Compound Poisson jump struc-
ture in the risk-neutral measure. The disadvantage of this SDF specification is that it is not
possible to identify the risk neutral measure h; , ., and 19 (s,X) from a given level of jump
risk premium. To see this, we will set the diffusion component equal to zero, so that only
jump risk premium matters, and focus on a simple geometric compound Poisson process.

dS(t)=S(t)(re+v, —aN) dt+ S (t—)d (% [e*n — 1]) (6.7)

n=1

where X,, ~ N (9, (52) is the distribution of each jump and 7w = exp (9 + %) — 1 is the jump

compensator. Using the change of measure according to L] above, the stock price under the
() measure will be

dS? (t) = S (t) (. — p9\?) dt + S (t—) d (Nf ) [ (@) — 1]) . (6.8)

The above process is a martingale under the () measure. Comparing (6.7) and (6.8), we see
that the instantaneous total equity premium -, is given by

T =FA = ONY,

This illustrates the weakness of this SDF specification. Given an equity premium <, and
known P measure jump parameters i\, one can only identify the () measure compensator
TI9A\?. Therefore, it is not clear how a given level of equity premium is split up between
7l — 719 and A — A¥. The solution in many empirical implementations is to assume \¢ = ),
which means that all of the jump risk premium is absorbed through the i — 1% factor. See
Pan (2002), EJP (2003), and Eraker (2004) for examples of this approach. Broadie, Chernov
and Johannes (2007) use a different approach, and allow for additional flexibility by assuming
§ # 69. They note that prior studies constrain § = 6 because of an underlying equilibrium
model that assumes power utility over consumption or wealth, as in Bates (1988) and Naik
and Lee (1990), and argue that when valuing options based on the absence of arbitrage, there
is therefore no need to restrict § = 69. However, it is worth noting that the pricing kernel
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used to risk-neutralize the diffusion component in most jump-diffusion models, including in
Broadie, Chernov and Johannes (2007), is based on power utility. Therefore, there seems
to be an internal inconsistency in this approach, in the sense that the pricing kernels for
the diffusion and jump components are possibly supported by two different utility functions.
In the approach we use, this is not the case. Moreover, this is not due to the use of a
discrete- versus a continuous-time framework. Our risk-neutralization can be implemented
in continuous-time, and the conventional continuous-time approach described above can be
implemented in discrete time.

7 Conclusion and Directions for Future Work

This paper presents a new framework for modeling and estimating jumps in returns and
volatility. The specification of the jump models is inspired by a popular class of jump-
diffusion models in the continuous-time literature. However, we specify the models using
a discrete-time GARCH setting, and as a result models with time-varying jump intensities
and jumps in volatility can be easily estimated from long time series of return data us-
ing a standard MLE procedure. This enables us to analyze complex jump models that in
a continuous-time setup are difficult to study because of their computational complexity.
Our general model, which we refer to as J-GARCH, builds on the framework of Huang and
Wu (2004) and studies four nested specifications which exhaust all possible sources of het-
eroskedasticity in the general model. The time-varying properties of the J-GARCH model
are driven by the dynamics of the variance of the normal shock and the dynamics of the
jump intensity. Our model shares some similarities with the models of Maheu and McCurdy
(2004) who study individual equity returns but not options, and Duan, Ritchken, and Sun
(2006) who study option pricing. However, our model has different implications for option
valuation, because our assumptions enable us to characterize the risk-neutral dynamic sys-
tematically with separate identification of the jump and diffusion (normal) risk premia. We
also provide continuous time limits of our models which allow us the anchor our framework
in the continuous time literature.

Our empirical analysis on S&P 500 index return data and option prices leads to impor-
tant conclusions regarding the implication of jumps for asset pricing and option valuation.
We conclude that jump models should allow for heteroskedasticity both in the conditional
variance of the normal innovation and the jump intensity. Although jumps can complement a
heteroskedastic normal innovation by improving the modeling of the tails of the distribution,
they cannot replace the normal innovations. In fact, models without time-varying conditional
variances for the conditional normal innovation are severely misspecified, as evident from the
evidence on the J-GARCH(2) model.

Our option valuation results also demonstrate that without jump risk premia, jump
models cannot improve model fit. For a reasonable range of equity premia, we find that
jump models lead to smaller errors in fitting options when the jump risk premium is the
dominant factor in the equity premium. We also find that the risk premium associated with
the conditional normal innovation has little impact on the implied volatility term structure,
and that realistic shapes of the implied volatility term structure can only be generated with
sizeable jump risk premia. This finding is in line with Pan (2002) and Broadie, Chernov,
and Johannes (2007), but contradicts the results in Eraker (2004).
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We also include that the frequency of jump arrivals should be time-varying and dependent
on the level of risk in the market. This finding contributes to the current debate on the
specification of jump intensities. Contrary to the findings of ABL (2002), we find evidence
for time-varying jump intensities when estimating the model using a long time series of
returns. Our option pricing results favor a model with jump intensities that are affine in the
variance of the normal component. We also find that jumps are not useful in low volatility
regimes. Therefore, future specifications should allow for frequent jump arrivals in high
volatility regimes, and little or no possibility of jump arrivals in the low volatility regimes.

Our results can be extended in a number of ways. First, the models in this paper can be
estimated using a long time series of cross-sections of options data, and the results can be
compared with the parameter estimates and the option valuation results in this paper. Joint
estimation on returns and options as in Chernov and Ghysels (2000) would be interesting
as well. Second, we analyze jumps of finite activity and finite variation, but the framework
can be extended to incorporate the infinite activity Lévy processes of Huang and Wu (2004).
Third, it would be interesting to investigate the marginal contribution of jumps to the
return process when the variance of the normal innovation follows a non-affine dynamic as
in Christoffersen and Jacobs (2004), or a richer GARCH dynamic such as the component
GARCH model of Christoffersen, Jacobs, Ornthanalai and Wang (2008).

8 Appendix A: Long run properties and persistence
J-GARCH(1)
Without time-varying jump intensity, the long run variance of the normal innovation is

s G+ w, —2a.cow,l + VT
2 2(1 =0, —a,c?)

o

where
C=(a,+w,— QaZcZwa)2 —4a, (—1 +b, + azcz) wy (62 + (1 4+ wy) 92)
and the persistence is p, = b, + a,c?.

J-GARCH(2)

Without time-varying variance in the normal component, we only need to solve for the
expression for the long run jump intensity. It is given by

02_1wy+ay(92+52)+\/6
Y2 (1_by_ay(cy_‘9)2)

where C' is given by
C = (wy+a, (0* + 52))2 +4a,w, (1 —b, —a, (¢, — 0)%)

We can then easily see that the persistence is given by p, = b, + a, (¢, — 9)2 :
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J-GARCH(3)

The long run variance of the normal innovation is

, lw —a (-1— (2 +6°) k) +VC
z 5(1_bz_azcg—azek‘ (—2c. +0k))

g

where C' is given by
C = (a +w, +a, (0° + 6°) k)z.

It can then be seen that the persistence h 11 is given by p, = b, + azcg + a0k (—2c, + 0k) .
The long run jump intensity can be derived using the affine structure of the variance of the
normal component as o, = ko?.

J-GARCH(4)

The derivation of the unconditional variance and persistence implied by the J-GARCH(4)
dynamic requires some elaboration. We derive the long run mean of h,:y1 and hy41 by
taking the unconditional expectation of (2.5) and applying the law of iterated expectations,
0'2 :E[ Et I:hz,t+2:| ] and 0'2 :E[ Et [hz,t+2] ] . (81)

z Y

The expressions on the right hand side are nonlinear functions of 02 and 02. Solving the
system of two equations, we get

0 = a.+w., —wy+ (1 —by+ayc, (20 —c,) — 20a.c.) o) + (8.2)

(b: + a.c? =1 — ayeydy — ayd, (¢, — 20) — ay0,?) o2

Notice that (8.2) does not imply a unique solution for 02 and o?. We therefore define
o’ =Var (R) =02+ (0> +6°) o, (8.3)

where o2 is the unconditional variance of the returns which can be estimated outside the
model by simply using the sample second moment. This relation amounts to variance tar-
geting, where the model’s implied second moment is matched to the variance of the estima-
tion sample. Applying (8.3) to (8.2), we can solve for 02 and o2 analytically. The long run
variance and persistence for the other three models are derived in a similar fashion.

For the long rung jump intensity, the solution is

E [hy,tJrl] = 0'2 = y

)

where p, is the persistence of the jump intensity and is given by
p,=1- (> +0%) a,—a. — o (=1 +b. + a.c?) + w, —w, —VC
where C' is given by

C = 4o, (1 + 6% 467 — b, — (52 + 92) b, — aycy (—20 +¢,) — ac, (29 + ((52 + 92) cz)) +
(—o? + (8 + %) ay + 0%, + a. (1 +02¢2) —w, +w.)”.
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The long run variance of the normal innovation is

Eh ]202_D0+\/—((52+92)2D1
T 2(1-p.)

where
Dy = —200%, (0 + (8 + 02)2) + (024 6%) " w,
Dy = 4% (0+ (62 +6%) )" — (8% + 6%) " w? +
10%a. (02 +0%)" +0%2) (b = 1)+ 0 (0 + (5 +0%) ) w. )
The persistence of the variance of the normal component is given by

p,=—0"— 0> +b,+ (0°+6%) b, + ayc, (¢, — 20) + a.c. (20 + (6> +6%) c.) .

9 Appendix B: risk-neutralization

Proof of Lemma 1

First, we need to find the joint moment generating function (MGF) of the return innova-
tion. Because the normal and jump components are contemporaneously independent, the
conditional joint MGF of z;,1 4+ y;11 can be written as a simple product of their moment
generating functions

E; [exp (¢zzt+1 + gbyyt-‘rl)] = exp( V(¢ Hiya) ) (9.1)
= €Xxp (qu (Qsza hz7t+1> + \Ily (st; hy,t+1))

The expression ¥, (¢,;h,+11) = %gbihmﬂ is the exponent of the Normal MGF with mean
zero and variance N, ;1. For the compound Poisson process with jump intensity A, +y1, jump
mean size 6, and jump variance 82, the exponent of its MGF is given by

Wy (by; hyerr) = by (exp (9,0 + 56,0%) — 1)

Substituting (9.1) for log M (A;Hiy1) = Y (A; Hipq) in the EMM restriction (4.3) gives,
after simplification and collecting terms

24 L (3+Ay)5%+0
hy 41 )\y—(ez —1)—@2 v (1_62 g ) +hepi1 (A +A,) =0.

This is solved by equating the coefficients of h, ;11 and h, ;1 to zero, which gives (4.5) and
(4.4).

Proof of Proposition 2

We will prove this through the moment generating function. Our procedure is as follows.
First, we find the MGF of z; 4+ y; under the risk-neutral measure (),

Ef [exp (¢ (2141 + 1111))] = exp (U9 (¢ Hyp1) ) (9.2)
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where we let U? (¢; H; 1) be the exponent of the Q measure MGF . Next, we apply the change
of measure through the Radon-Nikodym derivative in (4.2). Subsequently, we retrieve the
stochastic process that will yield such form of MGF. Using the notation in (9.1), the change
of measure to (9.2) gives

EtQ [exp (¢ (241 + Yer1))] = exp (¢ (241 + yt+1))]

_ leXp (p+A.) zepr + (9 +Ay) yt+1)]
t M (A; Hir) ’

where the conditional expectation on the right hand side is now under the objective measure.
Noting that M (A; Hypq1) = exp (Y, (A hepi1) + Wy (Ay; hyytn)) is predictable at time ¢,
and that z; and y,; are conditionally independent, this gives

EP [exp (¢ (2011 + Yig1))] = exp (A, + Ay)

where

Az - \I’z (Qb + Az; hz,t+1) - \I]z (AZa hz,t—f—l)
Ay = Uy (d+ Ay hyia) — Wy (Ays hyisn)

It turns out that A, is the exponent of the Normal MGF with mean —A, and variance h, ;41
Az = _Az¢ + %¢2hz,t+1-

We denote this risk-neutral measure normal component z;,,; ~ N (=A., h.;41). Similarly,
rearranging the expression in A, yields

A2s2

y_+A 9) 5 62¢2

2 g 0+A,62)+22°
Ay:hy,tﬂe( G Dk | :

which is the exponent of the Compound Poisson MGF with jump mean size 0* = 0 + Ay(52,
252

and jump intensity h;,.; = hy.1€xp (% + AyH) . Again, we denote this risk-neutral

measure jump component as y; ~ J (h;;t 1 9*,52) . The proof is complete as we have

shown that EX [exp (¢ (241 + y¢+1))] is the moment generating function of the stochastic
process z;, 1 + ¥ii ;-

Proof of Proposition 3

Using the result from Proposition 2, we see that under the risk-neutral ) measure, the
returns process in (2.1) can be written as

S 1
log ( gj) = r+ <)‘z - 5) hoprn+ Ay = &) hyprr — Ohyea + 2500 + Ui (9:3)

The change of measure affects only the return innovations. Therefore, other parameters will
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remain the same after the measure change. The risk-neutral GARCH dynamics in (2.4) can
be written as

a
hopyr = w.+b.ho, + h— (2 +y — cohay)’ (9.4)
2.t
a * *
hyi1 = wy+byhy, + h_y (2f +yi — Cyhy,t)2 .
y,t

Note that the risk-neutral distributions of the two shocks are 2}, ~ N (A., h.;41) and y;,; ~
J ( v 0% (52). The convention in the GARCH literature is to express the normal shock
as a mean zero innovation. We therefore use the simple transformation 2}, ; = 2z — A h. 441.
Recalling that the analytical solution to A, is —\,, we can write (9.4)) as

S, "
log ( ;+1> = Tr—= %hznﬁ—s—l + (/\y —§) hyti1+ 201 + Yeq1-
t

Because the ) measure is constructed such that discounted price process of S; is martingale,
and we already know that F [exp (zt+1 — %hzﬁl)] is martingale, we must have

exp ((A\y = &) hyeer) = B [exp (=ui)] = 7 (Ayihy00)
= €xp (_ (Q%M* - 1)) hyie1 = €Xp (_f*h*,tﬂ)

and thus £ = (€§+9* — 1). Additionally, we apply the following GARCH parametrization

w, = w,lI, a, = IT*a,, ¢, =(c.—A;),
* C *
Cy = ﬁy, hy,t = hy,tH
for TT = exp <A§262 + Ay9> . Substituting them into (4.7) and (4.6) will yield the expressions

in (9.3) and (9.4).
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Figure 1: Daily Return and Implied Volatility on the S&P500.
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Notes to Figures: The top panel plots the daily S&P500 return from 1962 through 2005. The
middle panel plots the average weekly implied Black-Scholes volatility for the at-the-money
S&P500 call options in our sample which goes from 1996 through 2005. The bottom panel
plots the VIX index from the CBOE for comparison.
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Figure 2: Conditional Variance Paths (Annualized)
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Notes to Figure: We plot the conditional variance from each of the four J-GARCH models.
The values are expressed in annualized terms. The parameter values are obtained from the
MLE estimates on returns in Table 2.
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Figure 3: Conditional Variance: J-GARCH less Benchmark GARCH (Annualized)
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Notes to Figure: We plot the difference between the conditional variance of the J-GARCH
models and that of the benchmark conditionally normal GARCH model from. All values are
expressed in annualized term. The underlying parameter estimates are from Tables 2 and 3.
Note that the scale is differerent for the J-GARCH(2) model in the top-right panel.
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Figure 4: Conditional Jump Intensities
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Notes to Figure: Using the parameter estimates in Table 2 we plot the daily conditional
jump intensity, h, ;41 for each of the J-GARCH models. The plot covers the January 1, 1986
to December 31, 2005 period.
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Figure 5: Conditional Skewness and Kurtosis
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Notes to Figure: Using the parameter estimates in Table 2 we plot the daily conditional
skewness and excess kurtosis from the four J-GARCH models. The plot starts on January 1,
1986 and ends on December 31, 2005. Note that the scale is different for the J-GARCH(1)

model in the top row of panels.
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Figure 6: Weekly Implied Volatility Bias for At-the-Money Options
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Notes to Figure: We plot the weekly average difference between the market and model
implied volatility for options with moneyness (index value over strike price) between 0.975
and 1.025. We assume the long run total equity premium of 6% across all models. For
models with jumps, we assume that the total equity premium comes from jump risk.
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Figure 7: Implied Volatility Term Structures
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Notes to figure: We compare the average implied Black-Scholes volatility term structure

from the GARCH and selected J-GARCH models in three volatility regimes.

The dots

mark the average implied volatility from the data. The high volatility period is 1998/07/01
- 1998/10/31, where the average VIX level is 31.50. The medium volatility period is
2002/01/01 - 2002/04/31, where the average VIX level is 21.01. The low volatility period is

2005/01/01 - 2005/04/31, where the average VIX level is 13.22.
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Figure 8: Implied Volatility Smirks for Various Maturities
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Notes to Figure: We compare the average implied Black-Scholes volatility smirks from
the GARCH and selected J-GARCH models in three volatility regimes. The dots mark
the average implied volatility from the data. The high volatility period is 1998/07/01
- 1998/10/31, where the average VIX level is 31.50. The medium volatility period is
2002/01/01 - 2002/04/31, where the average VIX level is 21.01. The low volatility period is
2005/01/01 - 2005/04/31, where the average VIX level is 13.22.
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Figure 9: The Impact of Risk Premia on the IV Smirk in the J-GARCH(3) Model
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Notes to Figure: We plot the volatility smirks at different maturities and according to
different levels and sources of risk premia. In the left column the equity premium is entirely
from the normal risk. In the middle column jump and normal risk premia provide equal
contribution. In the right column the equity premium is entirely from jump risk. The
conditional variance of the normal component and the conditional jump intensity are set to
their model’s implied long run mean.
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Figure 10: Decomposition of Daily Returns using the Particle Filter
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Notes to figure: We filter the ex-post expected number of jumps (left), the jump variable
(middle), and the normal variable (right) using 5,000 particles. We use the MLE estimates
in Table 2. The top to bottom panels show the results for J-GARCH (1), J-GARCH (2),
J-GARCH(3), and J-GARCH(4) respectively.
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Table 1: Selected Summary of the Literature on Finite-Activity Jump-Diffusion Estimation

Jump Specification Estimated from

Jumps Correlated Return ~ State Dependent Stochastic Returns Options Joint Returns
Continuous Time Models in Volatility and Volatility Jumps Jump Intensity  Jump Intensity only only and Options
Merton (1976) v
Bakshi, Cao, Chen (1997) v
Bates (1996) v v v
Bates (2000) v v
Pan (2002) v v
Andersen, Benzoni, Lund (2002) v v
Chernov, Gallant, Ghysels, Tauchen (2003) 4 v v
Eraker, Johannes, Polson (2003) v v v
Eraker (2004) v v v v v
Huang, Wu (2004) v v v
Bates (20006) 4 v
Li, Wells, Yu (2007) v v v
Broadie, Chernov, Johannes (2007) v v
Discrete Time Models
Maheu, McCurdy (2004) v 4 v v v
Duan, Ritchken, Sun (2006) v v v
J-GARCH v v v v v

Notes to Table: For each study we choose its most flexible specification and categorized it according to: (1) The presence of jumps in volatility (2) Are jumps in
returns and volatility correlated? (3) Is the jump intensity a function of a state variable such as volatility? “State Dependent Jump intensity”, (4) Is the jump intensity
modeled as a separate stochastic process (not as a function of other state variable)? “Stochastic Jump intensity”. We also include information on how the model is
estimated in each paper in the three right hand columns. Note that all models considered here have jumps in returns. We include our J-GARCH in the final row for
comparison.



Parameters

Properties

Persistence

Percent of Annual Variance
Avg Annual Vol
LogLikelihood

Table 2: MLE Estimates of I-GARCH models on S&P500 Returns, 1962-2005

J-GARCH (1)
Normal Jump
1.968E+00 -4.369E-03
(1.312E+00)  (5.495E-03)
-1.210E-06 8.053E-03
(1.458E-07)  (2.002E-03)
9.549E-01
(5.023E-03)
2.144E-06
(1.536E-07)
1.154E+02
(1.048E+01)

-1.254E-02
(4.511E-03)
2.861E-02
(3.260E-03)
0.98345
90.24 9.76
0.1362
37554

J-GARCH (2)

Normal

8.638E+01
(6.668E+01)

2.612E-05
(1.180E-06)

31.75

Jump

-3.930E-03
(3.390E-03)

5.472E-06
(2.457E-06)

9.355E-01
(2.991E-06)

1.987E-06
(6.886E-10)

1.802E+02
(2.880E-02)

-4.211E-04
(1.501E-08)

1.012E-02
(3.318E-04)

0.99999
68.25

0.1440
36581

J-GARCH (3)
Normal Jump
2.774E+00 -8.788E-05
(2.643E+00) (1.385E-04)

-1.073E-06
(1.647E-07)
9.539E-01
(5.751E-03)
1.976E-06
(1.714E-07)
1.190E+02
(1.424E+01)
-2.628E-03
(1.411E-03)
1.924E-02
(1.583E-03)
5.209E+02
(1.21E+02)
0.98168
83.57 16.43
0.1354
37573

J-GARCH (4)
Normal Jump
2211E+00  -1.686E-04
(1.155E+00) (2.385E-05)
-1.005E-06  7.549E-09
(1.252E-07) (4.905E-09)
9.652E-01 4.625E-01
(4.467E-03) (8.376E-02)
1.654E-06 1.317E+00
(1.405E-07) (1.591E-01)
1.085E+02 6.119E-01
(1.327E+01) (4.820E-02)
-1.662E-03
(8.355E-04)
1.613E-02
(8.355E-04)
0.95826 0.99524
81.28 18.72
0.1352
37576

Notes to Table: We apply MLE to the daily return series of the S&P500 index from June 1962 to December 2005. Values under “Normal” columns refer to
estimates of parameters governing the normal component. Similarly, the estimates of parameters governing the jump component are reported in the “Jump”
columns. Reported in the bracket are the bootstrap standard error computed using 100 bootstrapped samples. Under Properties we report “Persistence” which
refers to variance and jump intensity persistence respectively, “Percent of Annual Variance” which refers to the contribution to overall return variation arising
from the normal and jump components respectively, as well as the average annualized volatility (standard deviation). The last row contains the log-likelihood

values.



Table 3: MLE Estimates of benchmark models on S&P 500 Returns, 1962-2005

BSM Merton GARCH
Parameters Normal Jump Normal Jump Normal
A 1.16E+00 1.79E+01 -6.06E-04 1.336E+00
(8.71E-01) (5.03E+00) (1.46E-04) (1.17E+00)
w 8.83E-05 2.61E-05 5.49E-01 -1.296E-06
(1.46E-06) (1.50E-06) (4.88E-02) (1.93E-07)
b 9.495E-01
(5.33E-03)
a 2.792E-06
(2.32E-07)
C 1.065E+02
(9.48E+00)
0 -3.67E-04
(1.95E-04)
) 1.01E-02
(3.50E-04)
Properties
Persistence 0.9812
Percent of Annual Variance 100.00 - 31.69 68.31 100.00
Avg Annual Vol 0.14913 0.14397 0.1340
LogLikelihood 35573 36580 37342

Notes to Table: We apply MLE to the daily return series of the S&P500 index from June 1962 to December 2005. Values

under “Normal” columns refer to estimates of parameters governing the normal component. Similarly, estimates of

parameters governing the jump component are reported under the “Jump” columns. Reported in the bracket are the bootstrap
standard error computed using 100 bootstrapped samples. “BSM” refers to the standard Black-Scholes model, while “Merton’
refers to the pure jump model of Merton (1976). “GARCH” is the Heston-Nandi (2000) GARCH(1,1) model which serves as
our benchmark. Under Properties we report “Persistence” which refers to variance persistence, “Percent of Annual Variance”
which refers to the contribution to overall return variation arising from the normal and jump components respectively, as well

as the average annualized volatility (standard deviation). The last row contains the log-likelihood values.



Table 4. S&P 500 Index Call Option Data (1996-2005)

Panel A. Number of Call Option Contracts

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 123 1,841 2,078 2,293 6,416
0.975<S/X<1.00 554 2,557 1,076 645 4,851
1.00<S/X<1.025 867 2,282 717 366 4,236
1.025<S/X<1.05 571 1,337 413 191 2,516
1.05<S/X<1.075 257 839 263 139 1,501
1.075<S/X 298 1,190 466 237 2,198
All 2,670 10,046 5,013 3,871 21,718

Panel B. Average Call Option Price

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 5.39 13.96 26.29 43.56 28.95
0.975<S/X<1.00 11.82 24.12 4431 77.13 34.58
1.00<S/X<1.025 23.86 36.25 60.76 92.19 42.77
1.025<S/X<1.05 43.30 55.37 79.43 110.79 60.90
1.05<S/X<1.075 66.65 76.40 99.07 127.03 83.53
1.075<S/X 111.08 120.90 135.19 169.19 127.98
All 38.52 45.00 53.41 67.76 50.40

Panel C. Average Implied Volatility from Call Options

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.2075 0.1876 0.1875 0.1831 0.1863
0.975<S/X<1.00 0.1768 0.1768 0.1831 0.1865 0.1796
1.00<S/X<1.025 0.1785 0.1813 0.1948 0.1955 0.1842
1.025<S/X<1.05 0.2034 0.1983 0.2040 0.2041 0.2009
1.05<S/X<1.075 0.2554 0.2187 0.2122 0.2056 0.2227
1.075<S/X 0.3561 0.2691 0.2379 0.2266 0.2695
All 0.2120 0.1971 0.1950 0.1893 0.1970

Notes to Table: We use European call options on the S&P500 index. The data are obtained from
OptionMetrics. The prices are taken from non-zero trading volume quotes on each Wednesday
during the January 1, 1996 to December 31, 2005 period. We apply the moneyness and maturity
filters used by Bakshi, Cao and Chen (1997) to the data. The implied volatilities are calculated
using the Black-Scholes formula.



Table 5: Option Pricing Performance for Jump Models relative to GARCH

All Normal Risk All Jump Risk
Model Specification SRMSE ratio IVRMSE ratio SRMSE ratio IVRMSE ratio

BSM 1.1912 1.2974 1.1912 1.2974

Merton 1.25 1.32 1.24 1.32
J-GARCH(1) 1.00 1.03 0.87 0.91
J-GARCH(2) 1.24 1.33 1.23 1.32
J-GARCH(3) 0.91 0.98 0.70 0.82
J-GARCH(4) 0.96 0.99 0.88 0.92

Notes to Figure: We use the MLE estimates from Table 2 amd 3 to compute the Black-Scholes
Implied Volatility RMSE (IVRMSE) (%) and dollar pricing RMSE ($RMSE) on the S&P500
Wednesday call options from 1996-2005. For comparisons across models, we set the long run equity
premium of each model equal to six percent. For the jump models, we assume two extreme cases: first
is when the long run equity premium is purely from normal risk (two left columns), and second is
when the long run equity premium is purely from jump risk (two right columns). We only report
$SRMSE/ITVRMSE ratios of the selected model relative to the benchmark GARCH model. The raw
$RMSE of the GARCH model is 11.16, and the raw IVRMSE (%) of the GARCH model is 6.03.



Table 6. IVRMSE and Ratio IVRMSE by Moneyness, Maturity, and VIX level

Panel A: Sorting by Moneyness
GARCH  J-GARCH(1) J-GARCH(2) J-GARCH(3) J-GARCH(4)
Moneyness IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio

S/X<0.975 4.934 0.898 1.311 0.742 0.946
0.975<S/X<1.00 4.595 0.950 1.419 0.850 0.968
1.00<S/X<1.025 5.012 0.951 1.423 0.866 0.956
1.025<S/X<1.05 6.170 0.905 1.347 0.848 0.919
1.05<S/X<1.075 7.591 0.877 1.295 0.826 0.891

1.075<S/X 10.493 0.909 1.216 0.809 0.880

All 6.028 0.914 1.316 0.816 0.921

Panel B: Sorting by Maturity
GARCH J-GARCH(1) J-GARCH(2) J-GARCH(3) J-GARCH(4)

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
DTM<20 7.719 0.943 1.270 0.988 0.981
20<DTM<80 5.894 0.934 1.379 0.841 0.925
80<DTM<180 5.559 0.915 1.329 0.683 0.928
DTM>180 5.624 0.813 1.172 0.638 0.820
All 6.028 0.914 1.316 0.816 0.921

Panel C: Sorting by VIX level
GARCH  J-GARCH(1) J-GARCH(2) J-GARCH(3) J-GARCH(4)

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
VIX<14 2.610 1.241 1.341 1.450 1.064
14<VIX<18 3.838 0.727 0.869 0.929 0.860
18<VIX<22 5.412 0.798 1.059 0.762 0.875
22<VIX<26 6.519 0.875 1.248 0.728 0.910
26<VIX<30 7.748 0.955 1.418 0.787 0.940
30<VIX 10.013 1.011 1.566 0.831 0.956
All 6.028 0.914 1.316 0.816 0.921

Notes to Table: We use the MLE estimates from Tables 2 and 3 to compute the implied volatility root
mean squared error (IVRMSE) for various moneyness, maturity, and VIX level bins. The IVRMSE is
reported in levels for the GARCH model and for the J-GARCH models we report the [IVRMSE ratio
with the GARCH model. The equity premia is assumed to consist only of the jump risk premium.



Table 7: The Risk Premia Effects on IVRMSE Option Pricing Performance

Panel A: GARCH IVRMSE (%) Panel B: J-GARCH (1) over GARCH IVRMSE ratio
Normal Risk Total Equity Premium (%) Normal Risk Total Equity Premium (%)
Premium (%) 00 20 40 60 80 100 Premium (%) 0.0 2.0 4.0 6.0 8.0 10.0
0.0 6.42 0.0 1.02 099 09 091 0.89 0.87
2.0 6.26 2.0 1.02 099 096 092 0.89
4.0 6.15 4.0 1.03 099 097 093
6.0 6.03 6.0 1.03 1.00 0.97
8.0 5.90 8.0 1.03  1.00
10.0 5.78 10.0 1.04
Panel C: J-GARCH (3) over GARCH IVRMSE ratio Panel D: J-GARCH (4) over GARCH IVRMSE ratio
Normal Risk Total Equity Premium (%) Normal Risk Total Equity Premium (%)
Premium (%) 00 20 40 60 80 100 Premium (%) 0.0 2.0 4.0 6.0 8.0  10.0
0.0 097 092 086 082 081 0.88 0.0 098 097 094 092 089 0.86
2.0 097 092 086 082 0.83 2.0 098 097 095 092 090
4.0 098 092 087 0.83 4.0 099 097 095 093
6.0 098 092 0.87 6.0 099 098 0.96
8.0 0.98 0.93 8.0 099 098
10.0 0.98 10.0 1.00

Notes to Table: We compute S&P500 Wednesday call option prices for 1996-2005 using MLE estimates from Table 2 and 3 together
with various assumption for the long-run equity risk premium. Reported here are the IVRMSEs of the benchmark GARCH model of
Heston-Nandi (2000) and IVRMSE ratios of selected jump models relative to the simple GARCH model. The columns represent pricing
errors as the total equity premium increases, and the rows represent the pricing errors as the normal risk premium increases. For
example, when the total equity premium is 6% and the normal risk premium is 2%, this implies a jump risk premium of 4%, etc. The top
and bottom cells in each non-shaded region (also bolded) represent the case where the total equity premium consist purely of either the
jump or normal risk premium.



