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On pricing derivatives

o Consider a very general derivatives portfolio: interest rate swaps,
Treasury futures, equity options, default swaps, CDO tranches, etc.

@ In many or even most cases, preferred pricing model requires
simulation.

e Models with analytical solution typically impose restrictive assumptions
(Black-Scholes, most famously).

e Simulation almost unavoidable for many path-dependent and basket
derivatives.

@ For trading applications, simulation often too slow for use in real
time.
o Endless variety of short-cut approaches, but in practice many are
calibrated to “deltas” from a simulation run overnight.
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Risk-management adds a new wrinkle

@ Talking here about risk-measurement of portfolio at some chosen
horizon.

o Large loss exceedance probabilities.
o Quantiles of the loss distribution (value-at-risk).
@ Simulation-based algorithm is nested:
Outer step: Draw paths for underlying prices to horizon and
calculate implied cashflows during this period.
Inner step:  Re-price each position at horizon conditional on drawn
paths.

o Computational task perceived as burdensome because inner step
simulation must be executed once for each outer step simulation.

@ Practitioners invariably use rough pricing tools in the inner step in
order to avoid nested simulation.

@ We show the convention view is wrong — inner step simulation need
not be burdensome.
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Model framework

@ The present time is normalized to 0 and the model horizon is H.

@ Let X; be a vector of m state variables that govern underlying prices
referenced by derivatives.

e interest rates, default intensities, commodity prices, equity prices, etc.
o Let £ be the information generated by {X:} on t = (0, H].
@ The portfolio consists of K + 1 positions.

@ The price of position k at horizon depends on t, &, and the
contractual terms of the instrument.

e For some exotic options, the price at H will depend on the entire path
of X; on t = (0, H], so we need the filtration £ and not just Xp.

@ Position 0 represents the sub-portfolio of instruments for which there
exist analytical pricing functions.

@ Positions 1 through K must be priced by simulation.
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Portfolio loss

@ “Loss” is defined on a mark-to-market basis

o Current value less discounted horizon value, less PDV of interim
cashflows.

o Let W be the loss on position k; Y =", Wj is the portfolio loss.
o Valuations are expressed in currency units, may be positive or negative.
e Conditional on &, W (&) is non-stochastic.

@ Except for position 0, we do not observe Wj(¢), but rather obtain
noisy simulation estimates W, (&) and Y(¢).
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Simulation framework

Let L be number of outer step trials. For each trial £=1,...,L:
@ Draw a single path X; for t = (0, H] under the physical measure.
o Let & represent the relevant information for this path.
@ Evaluate the value of each position at horizon.

@ Accrue interim cashflows to H.

o Closed-form price at H for instrument 0.

e Simulation with N “inner step” trials to price each remaining positions
k=1,...,K. Here we use the risk-neutral measure.

© Discount back to time 0, subtract from current value, get our position
losses Wy (&), WA(E), ..., Wk(E).

@ Portfolio loss Y (&) = Wo(€) + WA () + ... 4+ Wk(E).
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Dependence in inner and outer steps

@ Full dependence structure across the portfolio is captured in the
period up to the model horizon.
@ Inner step simulations are run independently across positions.
e Value of position k at time H is simply a conditional expectation of its
own subsequent cashflows.
e Does not depend on future cashflows of other positions.
@ Independent inner steps imply that pricing errors are independent
across positions, and so tend to diversify away at portfolio level.
@ Also reduces memory footprint of inner step: For position k, need
only draw joint paths for the elements of X; upon which instrument k
depends.
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Overview of our contribution

o Key insight of paper is that mean-zero pricing errors have minimal
effect on estimation. Can set N small!

@ For finite N, estimators of exceedance probabilities, VaR and ES are
biased (typically upwards).

We obtain bias and variance of these estimators.

@ Can allocate fixed computational budget between L, N to minimize
mean square error of estimator.

e Large portfolio asymptotics (K — o).
@ Jackknife method for bias reduction.

@ Dynamic allocation scheme for greater efficiency.
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Estimating probability of large losses

o Goal is efficient estimation of a = P(Y/(§) > u) via simulation for a
given u (typically large).

o If analytical pricing formulae were available, then for each generated
&, Y(&) would be observable.

@ In this case, outer step simulation would generate iid samples
Yi(&1), Y2(&2), ..., Yi(&L), and we would take average

Lk
Zzl[yi(fi) > u]

as an estimator of a.
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Pricing errors in inner step

When analytical pricing formulae unavailable, we estimate Y () via
inner step simulation.

Let 4i(€) be zero-mean pricing error associated with i*" “inner step”
trial for position k.

Let Zi(&) be the zero-mean portfolio pricing error associated with this
inner step trial, i.e., Z;(¢) = 2K, Cui(€).

Average portfolio error across trials is ZV(¢) = & ZIN:I Zi(&).

Instead of Y(&), we take as surrogate Y (&) = Y(€) + ZN(¢).

By the law of large numbers,

ZN(E) -0 as. as N — oo

i.e., pricing error vanishes as N grows large.

Gordy/Juneja (FRB/TIFR) Nested Simulation April 2008



Mean square error in nested simulation

o We generate iid samples (Y1(£1), ..., Yi(€L)) via outer and inner step
simulation, and take average

L
R TN
G =7 D 1UVel&) > ul.
(=1
o Let ay = P(Y (&) > u) = E[Au].
@ Mean square error decomposes as
E[é\lLN — a]2 = E[é\ZLN - OéN"‘OZN —Oé]2 = E[&LN —Oé/\/]2 + (OéN — Oé)z.
@ (yy has binomial distribution, so variance term is

an(l — ay)
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Approximation for bias

Proposition:
ay = a+0/N+ O(1/N3?)
where
-1d
2 du
and where ag = V[Z;1]€] is the conditional variance of the portfolio pricing
error, and f(u) is density of Y.

0 = f(u)EloZ|Y = u],

@ Our approach follows Gouriéroux, Laurent and Scaillet (JEF, 2000)
and Martin and Wilde (Risk, 2002) on sensitivity of VaR to portfolio
allocation.

@ Independently derived by Lee (PhD thesis, 1998).

o Y is mean-preserving spread of Y. Bias is upwards for large enough
u, except under pathological cases.

@ Similar approximations for bias in VaR and ES.

Gordy/Juneja (FRB/TIFR) Nested Simulation April 2008 12 /28



Example: Gaussian loss and pricing errors

Highly stylized example for which RMSE has analytical expression.
Homogeneous portfolio of K positions.

Let X ~ N(0,1) be a market risk factor.
Loss on position k is Wy = (X + €)/K per unit exposure where the
ek are iid N(0,22).

o Scale exposures by 1/K to ensure that portfolio loss distribution

converges to N(0,1) as K — o0.

o Implies portfolio loss Y ~ N(0,1 + 2/K).
@ Assume pricing errors (x. iid N'(0,71?), so portfolio pricing error has
variance 02 = /K for each inner step trial.

o Implies Y = Y + ZN ~ N(0,1+ 12 /K + 62/N).
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Density of the loss distribution
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Exact and approximate bias in Gaussian example

o Variance of Y is s = 1 4 v2/K, variance of Y is 32 = 52 + 02 /N.
o Exact bias is

ay—a=o(—u/s)—d(—u/s)
@ Apply Proposition to approximate ay — o = /N where

2
0= qb(—u/s);l%.
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Bias in Gaussian example
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Parameters: v =3, n =10, K = 100, u = F~1(0.99).
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Optimal allocation of workload

e Total computational effort is L(N~y;1 + o) where

e 7y is average cost to sample £ (outer step).
e 71 is average cost per inner step sample.

Fix overall computational budget I'.

Minimize mean square error subject to ' = L(N~1 + o).

o For I large, get
2 /3
N* =~ (20 > ri/s3
ol —a)n
1/3
5 A ol —«a) / r2/3
27262

Similar results in Lee (1998).
Analysis for VaR and ES proceeds similarly, also find N* oc /3.
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RMSE in Gaussian example
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Approximate I' oc N - L. Parameters: v =3, n = 10, K = 100, u = F~(0.99).
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Optimal N in Gaussian example
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Approximate I' oc N - L. Parameters: v =3, n = 10, K = 100, u = F~(0.99).
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Large portfolio asymptotics

o Consider an infinite sequence of exchangeable positions.

o Let YK be average loss per position on a portfolio consisting of the

first K positions, i.e.,
1 K
oK
Y — R kg_l Wk

e Assume budget is yK? for y > 0 and 5 > 1.
@ Assume fixed cost per outer step is 1)(m, K), so budget constraint is

L(KN~1 + 1(m, K)) < xK”

Proposition: For 3 <3, N* —1as K — oo.
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Optimal allocation as portfolio size varies

RMSE (bp)

Budget is ' oc N - L for K = 100 and grows linearly with K.
Parameters: v =3, n =10, I = 2 u = F~1(0.99).
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Jackknife estimators for bias correction

@ In simplest version, divide inner step sample into two subsamples of
N /2 each.

Let &; be the estimator of o based on subsample j.
Observe that the bias in &; is §/(N/2) plus terms of order O(1/N3/2).

o We define the jackknife estimator a,y as

Jackknife estimator requires no additional simulation work.

Can generalize by dividing the inner step sample into / overlapping
subsamples of N — N// trials each.
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The bias in a;y is

Elapw] —a =20y —ay, —«
=2(a +0/N+ O(1/N*/?)) — (a +6/(N/2) + O(1/N*?)) —a
2 1

=0 </v - N/2> + O(1/N%/2) = O(1/N3/?).

@ First-order term in the bias is eliminated.

@ Variance of a;y depends on covariances among &, &1, G2.
Tedious but tractable. Find Var[a,] > Var[d.].
@ Optimal choice of N* and L* changes because bias is a lesser
consideration and variance a greater consideration.
o Find N* oc I'Y/* (versus 1/3 for uncorrected estimator) and
L* oc I3/% (versus 2/3).
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Jackknife estimator for Gaussian example

@ Both bias and variance have analytical expressions in this example.
e Variance involves bivariate normal cdfs.
e Example with N =8, v =3, n =10, K = 100, u = F~1(0.99):
Bias (bp) Std Dev (pct)
Uncorrected &y 37.8 11.7/VL
Jackknife a,y -3.8 14.5/VL

e Optimizing for fixed budget N - L = 21°;
N*  Bias (bp) RMSE (bp)
Uncorrected &,y 22.6 12.9 23.5
Jackknife a;y 6.0 -6.2 17.7
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Dynamic allocation

e For given &, say we estimate Y'(£) with a small number n; of inner
step trials.

o If |[Y™(€) — u| > 0, then 1[Y™(£) > u] is a good estimator of
1[Y(€) > u], even though Y™ (&) not a good estimator of Y (£).
=- No need to do more inner step trials for this ¢!

@ To implement this intuition in algorithm, fix ni, n; and bandwidth e.
For each outer step draw &:

@ Simulate ny inner step trials to get Y™ (¢).

Q If )N’”l(f) > u — €, generate another n, inner step trials, set
Vo) = Yo (e).

© Otherwise, we stop and set \7"*‘(5) = \7"1(5).

@ Dynamic allocation estimator is

1 o
6% =7 ; 1[YPA(&) > u].
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Lower bias, lower effort

e Average effort proportional to ny + ny - P(Y™(€) > u —€) < ny + ny, so
reduced relative to static estimator with N = ny + n».
@ Bias under DA is

P(Y?" > u, Y™ > u—e)— P(Y > u)
=P(Y"H™2 > 4) — P(Y > u) — P(Y™ 2 > 4, Y™ <y —¢)
=(ay—a) = P(Y"Tm >y Y <u—€) < ay—a
so DA introduces negative increment to bias, relative to static estimator.

@ In typical application, ay — a > 0. In this case, by choosing large enough

€ can always reduce absolute bias relative to static estimator with
N = ny + no.

e Even when a,, — a cannot be signed, we can bound the increase in bias

relative to static scheme, so can trade off increase in bias vs reduction in
effort.

@ Variance is dominated by a(1 — «)/L, so insensitive to DA.
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Dynamic allocation in Gaussian example

e E[A&™] has analytical expression as a bivariate normal cdf.
e Fixv=3,17=10, K =100, u = F~1(0.99) as in baseline examples.
@ Static scheme with N = 32 has bias of 9.0 bp.

o DA with ny =1, mp =31, € = /Var[Y] has bias of -0.4 bp and
NPA = 6.24.

o Effort reduced by 80%, absolute bias by 95%.
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Conclusion

@ Large errors in pricing individual position can be tolerated so long as
they can be diversified away.
o Inner step gives errors that are zero mean and independent. Ideal for
diversification!
o In practice, large banks have many thousands of positions, so might
have N* ~ 1.
@ Results suggest current practice is misguided.
e Use of short-cut pricing methods introduces model misspecification.
e Errors hard to bound and do not diversify away at portfolio level.
e Practitioners should retain best pricing models that are available, run
inner step with few trials.
@ Dynamic allocation is robust and easily implemented in a setting with
many state prices and both long and short exposures.

e Stands in contrast to importance sampling, control variates, and other
variance reduction methods.
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