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Abstract 

The Basel Committee on Banking Supervision recognizes that one of the 
greatest technical challenges to the implementation of the new Basel II 
Accord lies on the validation of the banks’ internal credit rating models 
(CRMs). This study investigates new proposals of statistical tests for 
validating the PDs (probabilities of default) of CRMs. A greater focus is 
placed on validating calibration although validation of mappings between 
rating scales and of discriminatory power are also considered. The new 
tests recognize the existence of default correlation and, differently to 
previous literature, deal jointly with the default behaviour of all the ratings 
and control the error of validating incorrect models. Power sensitivity 
analysis and strategies for power improvement are discussed, providing 
insights on the trade-offs and limitations pertained to the calibration tests. 
An alternative goal is proposed for the tests of discriminatory power and 
results of power dominance are shown for them with direct practical 
consequences. Finally, as the proposed tests are asymptotic, Monte-Carlo 
simulations investigate the small sample bias for varying scenarios of 
parameters.  
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1. Introduction 
 

The purpose of this paper is to discuss validation issues for credit rating models (CRMs). In this paper, 
CRMs are defined as a set of risk buckets (ratings) to which borrowers are assigned and which 
indicate the likelihood of default (usually through a measure of probability of default – PD) over a fixed 
time horizon (usually one year). Examples include rating models of credit agencies such as Moody’s 
and S&P’s and bank’s internal credit rating models.  

 

CRMs have had their relevance highly increased recently as the new Basel II accord (BCBS(2004)) 
allows the PDs of the internal ratings to enter as inputs for the computation of banks’ regulatory levels 
of capital1. Its goal is not only to make regulatory capital more risk sensitive and therefore to diminish 
the problems of regulatory arbitrage but also to strengthen stability in financial systems through better 
assessment of borrowers’ credit quality.2 However, the great challenge for Basel II, in terms of 
implementation, lies on the validation of CRMs, in particular the validation of the bank estimated rating 
PDs3. 

 

In fact, validation has been considered a difficult job due to two main factors. Firstly, the typically long 
credit time horizon of one year or so results in a few observations available for back testing.4 This 
means, for instance, that if yearly default rates are to be compared with ex-ante yearly PD estimates 
then the risk analyst will, in most practical situations, have to judge the model based solely on 5 to 10 
observations5. Secondly, as borrowers are usually sensitive to a common set of factors in the 
economy (e.g. industry, region), variation of macro-conditions over the time horizon induces 
correlation among defaults. Default correlation, in turn, results in larger uncertainty in the process of 
estimating the true credit quality of borrowers. Both these factors contribute to decreasing the power of 
quantitative methods of validation. 

 

In light of that picture, BCBS(2005b) perceives validation of credit rating models as necessarily 
comprising a whole set of quantitative and qualitative tools rather than a single instrument. This study 
focuses solely, however, on a particular set of quantitative tools, namely the statistical tests.  To the 
extent that the aforementioned difficulties are unavoidable, because they reflect the real world in which 
credit risk assessment is undertaken and validated, this paper addresses which general statistical 
tests can be proposed to examine the issue of validation in a scientifically appropriate manner. The 
study is not aimed at a final formula but at discussing the many trade-offs, strategies and limitations 
involved in the validation task from a statistical perspective. Further, another important characteristic of 
this study’s approach involves taking the rating models as “black boxes”. In other words, the tests 
discussed here examine the appropriateness of the model forecast (i.e. whether ex-post default rates 
are close to ex-ante PD estimates) rather than the model fit (i.e. whether the underlying model behind 
the PD estimation has a good fit). This avoids making the statistical tests model dependent and allows 
the discussions of this paper to assume a general nature. 

 

                                                      
1. The higher the PD, the higher is the regulatory capital. 
2 On top of that, the transparency requirements contained in Basel II can also be seen as an important element aimed at 

enhancing financial stability. 
3 According to Basel (2005b) validation is above all a bank task, whereas the supervisor’s role should be to certificate this 

validation. 
4 Notice that this problem is not present in validating market risk, where the time horizon is typically in the order of days. 
5 For statistical standards a small sample. 
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The performance of credit rating models can be generally judged by calibration, discriminatory power 
and mapping. Calibration is the ability to forecast accurately the ex-post (long-run) default rate of each 
rating (e.g. through an ex-ante estimated PD). Discriminatory power is the ability to ex-ante 
discriminate, based on the rating, between defaulting borrowers and non-defaulting borrowers. Finally, 
the performance of a CRM could also be assured through a mapping established with another CRM 
already recognized as correctly specified. 
 

As Basel II is explicit about the demand for banks’ internal models to possess good calibration, testing 
calibration is the main focus of this paper.6 According to BCBS(2005b), techniques for testing 
calibration are still on the early stages of development. BCBS(2005b) reviews some simple tests, 
namely the Binomial test, the Hosmer-Lemeshow test, a Normal test and the Traffic Lights Approach 
(Blochwitz et. al. (2003)). These techniques have all the disadvantage of being univariate (i.e. 
designed to test a single rating PD per time) and most of them make the unrealistic assumption of 
cross-sectional independency. Further, they do not control for the error of accepting a miscalibrated 
model7. This paper presents a framework in which joint PD testing in a default correlated context is 
possible. The approach is close in spirit to Balthazar (2004), although here the testing problem is 
stated, since the beginning, in an important distinguished way. 

 

Good discriminatory power is also a desirable property of rating models as it allows rating based 
yes/no decisions (e.g. credit granting) to be taken with less error and therefore less cost by the bank 
(see Blochlinger and Leippold (2006) for instance). BCBS(2005b) comprehensively reviews some well 
established techniques for examining discriminatory power, including the area under the ROC curve 
(Engelmann et. al. (2003)), the Accuracy Ratio and the  Kolgomorov-Smirnov statistic.  

 

Although the use of the above mentioned techniques of discriminatory power is widespread in banking 
industry, two constraining points should be noted. First, the pursuit of perfect discrimination is 
inconsistent with the pursuit of perfect calibration in realistic rating models. The reason is that to 
increase discrimination one would be interested in having, over the long run, the ex-post rating 
distributions of the default and non-default groups of borrowers as separate as possible and this 
involves having default rates as low as possible for good-quality ratings (in particular, lower than the 
PDs of these ratings) and as high as possible for bad-quality ratings (in particular, higher than the PDs 
of these ratings). See the appendix A for a graphical example. Second, although not remarked in the 
literature, usual measures of discriminatory power are function of the cross-sectional dependency 
between borrowers. This fact potentially represents an undesired property of the traditional measures 
to the extent that the level and structure of default correlation is mainly a portfolio characteristic rather 
than a property intrinsic to the performance of CRMs8. The framework of this paper leads to theoretical 
tests of “discrimination power” that 1) can be seen as a necessary requisite to perfect calibration and 
2) are not a function of the default dependency structure.  

 

Finally, this paper also briefly discusses tests for mappings between two different rating scales. 
Mappings are usually established between a bank and a rating agency scale and make each rating of 
the bank correspond to a rating of the agency. They are useful at the early stages of development of a 
bank’s internal model when data on default rate time series is scarce so that the bank can hardly 
validate its PD assignments9. In this case, BCBS (2005b) views the validation task as comprised of 
two steps: the validation of the rating agency model and the validation of the mapping itself. As 

                                                      
6 According to BCBS (2004), PDs should resemble long-run default rate averages for each rating. 
7 They control for the error of rejecting correct models. 
8 It is not solely a portfolio characteristic because default correlation among the ratings potentially depends on the design of the 

CRM too. 
9 Mappings can also arise naturally prompted by regulatory classification rules.  For example, Brazilian regulation establishes a 

regulatory rating scale in which banks should classify their exposures for provisioning purposes. In this way a mapping 
between any two Brazilian banks is indirectly established. 
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literature is scarce on the latter, BCBS (2005b) stresses the need for developing mapping validation 
tools. The framework of this paper is shown to accommodate, from a theoretical point of view, 
mapping testing too.  

 

This text is organized as follows. Section 2 develops a default rate asymptotic model (DRAM) upon 
which validation will be discussed. The model leads to a unified theoretical framework for checking 
calibration, mapping and discriminatory power. Section 3 discusses briefly the statement of the testing 
problem for CRM validation. The application of DRAM for calibration testing is discussed in section 4.  
Some theoretical aspects of the use of the model for mapping and discriminatory power testing are 
discussed in sections 5 and 6, respectively. Section 7 contains a Monte–Carlo analysis of the small 
sample properties of DRAM and their consequences for calibration testing. Section 8 concludes. 

 
2. The default rate asymptotic model 
 

The model of this section provides a default rate probability distribution upon which statistical testing 
will be conducted. It is based on an extension of the Basel II underlying model of capital requirement. 
In fact, this paper generalizes the idea of Balthazar(2004) of using the Basel II model for validation to 
a multi-rating setting10. The reader is referred to BCBS(2005a) for a detailed presentation of Basel II 
underlying model. The extension applied is based on the development of Demey et. al. (2004)11 and 
refers to adding an additional systemic factor for each rating in order to allow joint PD testing. While in 
Basel II the reliance on a single factor is crucial to the derivation of portfolio invariant capital 
requirements (c.f. Gordy (2003)), for validation purposes a richer structure is necessary to allow for 
non-singular variance matrix among the ratings. 

 

The DRAM starts with a decomposition of zin, the normalized return on assets of a borrower n with 
rating i. Close in spirit to Basel II model, I express zin as 

zin = ρB
½ x + (ρW - ρB)½ xi  + (1- ρW )½ εin for each rating i=1…I and each borrower n=1..N. 

where x, xi, εij are independent and jointly normal distributed with mean 0 and variance 1 for each 
i=1...I and j=1…N and ρB and ρW lie in the interval [0 1]. Here, x represents the common systemic 
factor affecting the asset return of all borrowers, xi the systemic factor affecting solely the asset return 
of borrowers with rating i and εin an idiosyncratic shock. Note that Cov(zin,zjm) is equal to ρW  if i=j and 
to ρB otherwise, so that ρW represents the “within-rating” asset correlation and ρB the “between-rating” 
asset correlation.  

 

The model continues by stating that a borrower j with rating i is assumed to default in time T if zin < Φ-

1(PDi) at that time, where Φ denotes the standard normal cumulative distribution. Note that the 
probability of this event is, therefore, by construction PDi

12
. As a consequence, the conditional 

probability of default PDi(x), where x=(x,x1,…,xI)’ denotes the vector of systemic factors, can be 
expressed by: 

 PDi(x) ≡ Prob(zin < Φ-1(PDi)|x) = Φ( (Φ-1(PDi) - ρB
½ x - (ρW - ρB)½ xi )/(1- ρW )½ ). 

 

                                                      
10 This paper’s approach also differs from Balthazar(2004) in reversing the role of the hypothesis, as section 3 explains. 
11 The purpose of Demey et. al. (2004) is however to estimate correlations while the focus here is on developing a minimal non-

degenerate multivariate structure useful for testing. 
12 Without generalization loss, PDi is assumed to increase in i. 



  5/26 
 

Let’s focus now on the asymptotic behaviour of the observable variable default rate. Let DRiN denote 
the default rate computed based on a sample of N borrowers with rating i at the start of the period. It is 
easy to see, as in Gordy (2003), that 

 DRiN – E(DRiN|x) ≡ DRiN – PDi(x) → 0 a.s. when N → ∞ 

Therefore, as Φ-1 is continuous, it is also true that  

Φ-1(DRiN) – Φ-1(PDi(x)) → 0 a.s. when N → ∞ 

so that in DRAM the Φ-1 transformed default rates have asymptotically the same distribution as the Φ-1 
transformed  conditional probabilities, which are normal distributed13,14

.  

More concretely, the limiting joint default rate distribution is as follows: 

Φ-1(DR) ≈ N(µ, ∑) 

where DR = (DR1,DR2,…,DRI)T, µI = Φ-1(PDi)/(1- ρW )½ , ∑ij = ρW /(1- ρW) if i=j and ∑ij =ρB /(1- ρW) 
otherwise. 

 

This is the distribution upon which all the tests of this paper will be derived. A limiting normal 
distribution is convenient because it allows this paper’s approach to build upon the literature of normal 
multivariate statistical testing. The cost is that the approach is asymptotic so that the discussions and 
results of this paper are not suitable for CRM with a small number of borrowers per rating, such for 
example rating models for large corporate exposures. Even for moderate numbers of borrowers, 
section 6 reveals that the departure from the asymptotic limit can be substantial, significantly altering 
the theoretical size and power of the tests, for some ranges of the parameters. Application of the tests 
of the next section should then be extremely careful. 
 

Some comments on the choice of ∑ are warranted15. To the extent that borrowers of each rating 
present similar distributions of economic and geographical sectors of activity that define the default 
dependency, ρB is likely to be very close to ρW, as this situation resembles the one factor case.  By its 
turn, this paper assumes 0 < ρB < ρW, in opposition to ρB = ρW, in order to leave open the possibility of 
some degree of association between PDs and borrowers’ sectors of activity and also technically to 
allow for a non-singular matrix16,17. As a result, borrowers in the same rating behave more dependently 
than borrowers in different ratings possibly because the profile of borrowers’ sectors of activity is more 
homogeneous within than between ratings. Indeed a more realistic modelling is likely to require a 
higher number of asset correlation parameters and to be portfolio dependent; therefore the choice of 
just a pair of correlation parameters is regarded here as a practical compromise for testing purposes.  

 

This paper further assumes that correlation parameters ρW and ρB are known. The typically small 
number of years that banks have at their disposal suggests that the inclusion of correlation estimation 
in the testing procedure is not feasible as it would diminish considerably the power of the tests. 
Instead, this paper relies on Basel II accord to extract some information on correlations18. By matching 
the variances of the non-idiosyncratic parts of the asset returns in Basel II and in the extended DRAM, 

                                                      
13 See the expression for PD(x). 
14 Although the choice of the normal distribution for the systemic factors may seem arbitrary in Basel II, for the testing purposes 

of this paper it is therefore a pragmatic choice. 
15 Note that the structure of ∑ defines DRAM more concretely than the chosen decomposition of the normalized asset return 

because, given ∑, the latter is not unique. 
16 To the best of the author’s knowledge, the empirical literature lacks studies on that association.  
17 Even if the bank or supervisor is convinced of the appropriateness of ρB = ρW, the tests of this paper are still defendable, 
provided the default rates of different ratings are computed based on distinct sectors for instance. 
18 An important distinction to the Basel II model, however, is that this paper does not make correlations dependent on the rating. 

In fact, the empirical literature on asset correlation estimation contains ambiguous results on this aspect.  
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ρW can be seen as the asset correlation parameter present in the Basel II formula19. For corporate 
borrowers for example Basel II accord chooses ρW ∈ [0.12 0.24] 20. Sensitivity analysis of tests results 
on the choices of these parameters is pursued along the text. It should be noted, however, that the 
supervisory authority may have a larger set of information to estimate correlations and/or may even 
desire to set their values publicly for testing purposes. 

 

Finally it is assumed time independency for the default rates of each year. Therefore, the (Φ-1 

transformed) yearly average default rate, used as the test statistic for all the tests of the next sections, 
has the normal distribution above, just with ∑/Y in place of ∑, where Y is the number of years available 
to backtest. According to BCBS(2005b), time independency is less inadmissible than cross-sectional 
independency. 

 

 
3. The statement of testing problem 
 

Any configuration of a statistical test should start with the definitions of the null hypothesis Ho and the 
alternative one H1. In testing a CRM a crucial decision refers to where the hypothesis “the rating model 
is correctly specified” should be placed?21 If the bank/supervisor only wishes to abandon this 
hypothesis if data strongly suggests it is false then the “correctly specified” hypothesis should be 
placed under H0, as in BCBS (2005b) or in Balthazar (2004)22. But if the bank/supervisor wants to 
know if the data provided evidence confirming the CRM is correctly specified, then this hypothesis 
should be placed in H1 and the opposite of it in Ho. The reason is that the result of a statistical test is 
reliable knowledge only when the null hypothesis is rejected, usually at a low significance level. The 
latter approach is pursued throughout this paper so that the probability of accepting an incorrect CRM 
will be the error to be controlled for at the significance level α. To the best of the author’s knowledge 
this paper is first one to state the CRM validation problem in this way. 

 

Placing the “correctly specified” hypothesis under H1 has immediate consequences. For a statistical 
test to make sense H0 usually needs to be defined by a closed set and H1 therefore by an open set23. 
This implies that the statement that “the model is correctly specified” needs to be translated into some 
statement about the parameters (PDis) lying in an open set, in particular there shouldn’t be equalities 
defining H1 and the inequalities should be strict. It is, for example, statistically inappropriate to try to 
conclude that the PDis are equal to the bank postulated values. In cases like that the solution is to 
enlarge the desired conclusion by means of the concept of an indifference region. The configuration of 
the indifference region should convey the idea that the bank/regulator is satisfied with the eventual 
conclusion that the true PD vector lies there. In the previous case the indifference region could be 
formed for example by open intervals around the postulated PDis. The next sections make use of the 
concept to a great extent. At this point it is desirable only to remark that the feature of an indifference 
region shouldn’t be seen as a disadvantage of the approach of this paper. Rather, it reflects more the 
reality that not necessarily all the borrowers in the same rating i have exactly the same theoretical PDi 
and that it is therefore more realistic to see the ratings as defined by PD intervals.24 

                                                      
19 Note that the Basel II case can also be seen as the particular case of DRAM when ρB  = ρW. 
20 On the other hand Basel II accord doesn’t provide information on ρB because it is based on a single systemic factor. 
21 For this general discussion, one can think of “correctly specified” as meaning either correct calibration or good discriminatory 

power. 
22 Although they do not remark the consequences of their choices. 
23 H0 and H0 U H1 need to be closed sets in order to guarantee that the maximum of the likelihood function is attained.  
24 However, in the context of Basel II, ratings need not be related to PD intervals but merely to single PD values. In light of this 

study’s approach, this represents a gap of information needed for validation.  
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4. Calibration testing 
 

This section distinguishes between one-sided and two-sided tests for calibration. The one-sided test 
(which is only concerned about PDis being greater than certain thresholds) is useful to the supervisor 
authority as it allows the latter to conclude that Basel II capital requirements derived by the approved 
PD estimates are sufficiently conservative in light of the banks’ realized default rates. From a broader 
view, however, not only excess of regulated capital is not desired by banks but also BCBS(2004) 
states that the PD estimates should ideally be used in the banks’ managerial activities such as credit 
granting and credit pricing. To accomplish these goals, PD estimates must undistortly reflect the 
likelihood of default of every rating, something to be verified more effectively only by the two-sided test  
(which is concerned to PDis being within certain ranges). Unfortunately the difficulties of two-sided 
calibration testing are much greater than of one-sided testing, as the section reveals ahead. A 
discussion of the one-sided calibration test starts the analysis. 

 

Based on the arguments of the previous section about the proper roles of Ho and H1, the formulation of 
the one-sided calibration test is stated below. Note that the desired conclusion, configured as an 
intersection of strict inequalities, is placed in H1.  

 

Ho: PDi ≥ ui for some i =1…I 

H1: PDi < ui for all i=1…I 

where  PDi  ≡ Φ-1(PDi) , ui ≡ Φ-1 (ui). (This convention of representing Φ-1 transformed figures in italic is 
followed throughout the rest of the text)25. 

 

Here ui is a fixed known number that defines an indifference acceptable region for PDi. Its value should 
ideally be slightly larger than the value postulated for PDi so that the latter is within the indifference 
region. Also ui should ideally be smaller than the value postulated for PDi+1 so that at least the rejection 
of H0 could conclude that PDi < postulated PDi+1.26,27  

 

According to DRAM and based on the results of Sasabuchi (1980) and Berger (1989), which 
investigate the problem of testing linear homogeneous inequalities concerning normal means, a size α 
critical region can be derived for the test.28 

 

Reject H0 (i.e. validate the model) if 

iDR ≤ ui /(1- ρW )½ - zα (ρW /(Y(1- ρW))) ½  for all i = 1…I  

where 
Y

DR
DR

Y

y
iy

i

∑
== 1  is the yearly average (transformed) default rate of rating i and  zα = Φ(1-α) is the 

1-α percentile of the standard normal distribution.29 

                                                      
25 As Φ-1 is strictly increasing, statements about the italic figures imply equivalent statements about the non-italic figures. 
26 As banks have the incentive to postulate lower PDs one could argue that PDi < postulated PDi+1 also leads to PDi < PDi+1. 
27 Specific configurations of ui are discussed later. 
28 Size of a test is the maximum probability of rejecting H0  when it is true. 
29 This definition of iDR  is used throughout the paper.  
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This test is a particular case of a min test, a general procedure that calls for the rejection of a union of 
individual hypotheses if each one of them is rejected at level α. In general the size of a min test will be 
much smaller than α but the results of Sasabuchi (1980) and Berger (1989) guarantee that the size is 
exactly α for the one-sided calibration test30. This means that the CRM is validated at size α if each 
PDi is validated as such.  

 

A min test has several good properties. First, it is uniformly more powerful (UMP) among monotone 
tests (Laska and Meisner (1989)), which gives a solid theoretical foundation for the procedure since 
monotonicity is generally a desired property.31 Second, as the transformed default rate variables are 
asymptotically normal in DRAM, the min test is also asymptotically the likelihood ratio test (LRT). 
Finally, the achievement of a size α is robust to violation of the assumption of the normal copula for 
the transformed default rates (Wang et. al. (1999)) so that, for size purposes, the assumption of joint 
normal distribution of the systemic factors can be relaxed. 

 

From a practical point of view it should be noted that the critical region does not depend on the 
parameter ρB, which is good in applications since ρB is not present in Basel II framework so that there 
is not much knowledge about its reasonable values. However, there is no free lunch: the power of the 
test, i.e. the probability of validating the CRM when it is correctly specified, does depend on ρB. The 
power is given by the expression below. 

 

Power = ΦI(- zα + (u1 – PD1)/ (ρW /Y) ½,….,-zα + (ui – PDi)/ (ρW /Y) ½ , ….,-zα + (uI – PDI)/ (ρW /Y) ½, ρB /ρW ) 

where ΦI(….,ρB /ρW) is the cumulative distribution of a  I-th multivariate normal of mean 0, variances 
equal to 1 and covariances equal to ρB/ρW. 

 

Berger (1989) remarks that if the ratio ρB /ρW is small then the power of this test can be quite low for 
the PDis only slightly smaller than uis and/or a large number of ratings I. This is intuitive as a low ratio 
ρB/ρW indicates that ex-post information about one rating does not contain much information about 
other ratings and therefore is less helpful to conclude for validation. More generally, it is easy to see 
that the power increases when the PDis decrease, the uis decrease, Y increases, I decreases, ρB 

increases or ρW decreases32. In fact, it is worth examining the trade-off between the configuration of the 
indifference region in the form of the uis and the attained power. If high precision is demanded (uis 
close to postulated PDis) then power must be sacrificed; if high power is demanded then precision 
must be sacrificed (uis far from postulated PDis). I now analyze some numerical examples in order to 
provide some further insights on this trade-off and on reasonable choices for uis. 

 

The case I=1 represents an upper bound to the power expression above. In this case, for a desired 
power of β when the probability of default is exactly equal to the postulated PD, it is true that: 

u – PD = (zα - zβ )× (ρW /Y) ½
  

 

                                                      
30 More formally the description just given is the one of a union-intersection test, of which the min test is a particular case when 

all the individual critical regions are intervals not limited on the same side.  
31 In the context of this paper, a test is monotone if the fact that yearly average default rates are in the critical region implies that 

smaller average default rates are still in the critical region.  Monotonicity is further discussed later in the paper. 
32 Obviously the power also increases when the level α increases. 
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In a base case scenario of Y=5, ρW  = 0.15, α = 15 % and β = 80 % the right hand side of the previous 
equation is approximately equal to 0.32. This scenario is considered here sufficiently conservative with 
a realistic target balance between power and size. It is then true that:  

ui = Φ(0.32 + Φ-1(PDi)) 

 

Table 1 below displays values of ui for varying values of PDi. 

 

Table 1: ui X PDi. 
PDi(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ui (%) 2 4 6 8 9 11 12 14 15 17 18 20 21 22 24 25 26 28 29 30 

 

As, in a multi-rating context, any reasonable choice of ui must satisfy ui ≤ PDi+1, table 1 illustrates, for 
the numbers in the base case scenario, an approximate lower bound for PDi+1 in terms of PDi

33. More 
generally, table 1 provides examples of whole rating scales that conform to the restriction PDi+1 ≥ ui, 
e.g. PD1=1%, PD2=2%, PD3=4%, PD4=8%, PD5=14%, PD6=22%, PD7=36%. Note that such 
conforming rating scales must posses increasing PD differences between consecutive ratings PDi+1 - 
PDi, a characteristic found indeed in the design of many real-world CRMs. Therefore DRAM provides 
a validation argument explaining that configuration choice. Notice that this feature of increasing PDi+1 – 
PDi is directly related to the non-linearity of Φ, which in turn is a consequence of the asymmetry and 
heavy tails of the distribution of the untransformed default rate. 
 

To further investigate the feature of increasing PD differences I now analyse explicitly the case I=3. 
Two CRMs are considered: CRM 1 has equally spaced PDs and CRM 2 has increasing PD 
differences. Two strategies of configuration of the indifference region are considered: a liberal one with 
ui = PDi+1 and a more precise one with ui = (PDi+1 + PDi)/234. The choices for the values of ρW and Y are 
made considering three feasible scenarios: a favourable one characterized by 10 years of data and a 
low within-rating correlation of 0.15, a unfavourable one characterized by the minimum number of 5 
years prescribed by Basel II (c.f.Basel (2004)) and a high ρW at 0.20 and an in-between scenario35. 
The power figures of the one-sided calibration test at the postulated PDs are shown in table 2.  

 

Table 2: Power comparison among CRMs and ui choices 
CRM 1: PD1=4%, PD2=6%, PD3 = 8%; CRM 2: PD1=4%, PD2=8%, PD3 = 16%; α = 15%; ρB /ρW =2/3 

CRM 1 with equally spaced PDs CRM 2 with increasing PDi+1 - PDi  

ui = PDi+1 ui = (PDi+1 + PDi)/2 ui = PDi+1 ui = (PDi+1 + PDi)/2 

ρW = 0.15, Y=10 0.38 0.18 0.96 0.65 

In-between  0.27 0.14 0.84 0.46 

ρW =0.20, Y=5 0.20 0.11 0.70 0.35 

 

The table shows that only model 2 achieves reasonable levels of power so that the feature of 
increasing PDi+1 - PDi seems to be really necessary for realistic validation attempts. Therefore, the 
attention is focused on CRMs of this type to the remainder of this text. Table 2 also reveals that, even 

                                                      
33 Approximate because the computation was based on I=1. In fact the true attained power in a multi rating setup is smaller. 
34 The choice of a arithmetic mean makes sense as if the true PD cannot be shown to be smaller than the midpoint of the 

interval [PDi PDi+1], then validation should be denied. 
35 As ρB /ρW is fixed in table 2 what matters for the power calculation is just the ratio (ρW /Y). Therefore the in-between scenario 

can be thought as characterized by adjusting both Y and ρW  or just one of them. In table 2 it is given by ρW/Y = 0.0256. 
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when solely focusing on model 2, more demanding requirements for ui (c.f. last column) may produce 
overly conservative tests, with power on the level of only 35%. Further, the power is found to be very 
sensitive to the within-rating correlation ρW and to the number of years Y. In most cases, it almost 
doubles from the worst to the best scenario.  

 

While in table 2 the between-rating correlation parameter is hold fixed, table 3 examines its effect on 
the power of the test. Power is computed at postulated PDs of CRM 2 of table 2 for the worst scenario 
and ui = PDi+1. Table 3 shows just a minor effect of ρB, regardless of the size of the test. Results not 
shown reveal that a minor effect is also the case for the average PD configuration for ui.  

 

Table 3: Effect of ρB 
CRM: PD1=4%, PD2=8%, PD3=16%; ρW = 0.15, Y=10, ui = PDi+1 

 α=5% α=10% α=15%

ρB/ρW =1/3 0.37 0.54 0.65 

ρB/ρW =1/2 0.41 0.57 0.67 

ρB/ρW = 2/3 0.44 0.60 0.70 

 

Table 4 below gives insights on the relative role played by the different ratings on the power. Power is 
computed at postulated PDis for a sequence of three embedded CRMs starting with CRM 2. Each 
CRM is built from its antecedent by dropping the riskier rating. Power is computed at postulated PDs 
for the in-between scenario and ui = PDi+1. Table 4 reveals that, as the number of ratings diminishes, 
the power increases just to a minor extent, provided the less risky rating is always kept in the model. 
Therefore it can be said that the lower PD drives the power of the test. This is partly intuitive because 
the smallest PDi corresponds to the smallest difference ui - PDi and because distinct PDis contribute to 
the power differently just to the degree their differences ui - PDi vary36. The surprising part of the result 
refers to the degree of relative low importance of the other PDs: the variation of power between I=1 
and I=3 could be just 5%. It’s important to remark that this result is strongly dependent on the feature 
of increasing PDi+1 - PDi: results not shown indicate that the largest PDi drives the power for CRMs 
with equally spaced PDis.  

 

Table 4: PDis drivers of power 
ρB/ρW = 1/3; (ρW /Y) ½ = 0.16; ui = PDi+1 

PDis α=5% α=10% α=15%

4%, 8%, 16% 0.59 0.74 0.82 

4%, 8% 0.61 0.75 0.83 

4% 0.70 0.81 0.87 

 

 

An underlying message present in the analysis of the previous tables is that the one-sided calibration 
test can have substantially low power. Another related problem refers to the test not being similar on 
the boundary between the hypotheses and therefore biased (reference ?)37. To cope with these 

                                                      
36 For the CRM of table 3 it’s true, by construction, that uj – PDi increases in i. But it’s also true that the greater the PDis, the 

smaller are equal differences in the Φ-1 scale. It’s not difficult to verify for table 3 that the net effect is of increasing uj – PDi. 
37  A test is α similar on a set A if the probability of rejection is equal to α everywhere there. A test is unbiased at level α if the 

probability of rejection is smaller than α everywhere in H0 and greater than α everywhere in H1.  Every unbiased test at level 
α with continuous power function is α-similar in the boundary between H0 and H1.  
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deficiencies, the statistical literature contains some proposals of non-monotone uniformly more 
powerful tests for the same problem, such as in Liu and Berger (1995) and Dermott and Wang (2002). 
The new tests are constructed by carefully enlarging the rejection region in order to preserve the size 
α. The enlargement trivially implies power dominance. The new tests have two main disadvantages 
though.  First, from a supervisory standpoint, non-monotone rejection regions are harder to defend on 
an intuitive basis because they imply that a bank could pass from a state of validated CRM to a state 
of not-validated CRM if default rates for some of the ratings decrease. Second, from a theoretical point 
of view, Perlman and Wu (1999) note that the new tests are not dominated in the decision theoretic 
sense because the probability of rejection under H0 (i.e. when the CRM is incorrect) is also higher for 
them38. The authors conclude that UMP tests should not be persecuted at any cost, particularly at the 
cost of intuition. This is the view adopted in this study so that I don’t explore the new tests further.  

 

I now examine yet a different approach to improve the power of the one-sided calibration test. Notice, 
first, that the size α of the test is attained when all but one of the PDis go to 0 while the remaining one 
is set fixed at ui

39,40. This is probably a very unrealistic scenario against which the bank or the 
supervisor would like to be protected. One may alternatively remove by assumption this unrealistic 
case from the space of PD possibilities and rather consider that part of the information postulated or 
believed by the bank is true. Notably, one can assume that PDi-1, not 0, represents a lower bound for 
PDi, for every rating i. Following Sasabuchi (1980) strategy, it’s not difficult to show that, in that altered 
parameter space, the probability of rejection assumes a similar form to the original one, with the only 
difference being that now a constant c > 0 plays the role of zα. 

 

Power =  ΦI(-c + (u1 – PD1)/ (ρW /Y)½,...,-c + (ui – PDi)/ (ρW /Y) ½ , ….,-c + (uI – PDI)/ (ρW /Y) ½ ; ρB /ρW ) 

 

The constant c is defined by the requirement that the maximum of the expression above over the 
intersection of H0 and the modified PD parameter space is α (so that the size of the modified test is α). 
Similarly to Sasabuchi (1980), the determination of c needs the examination in H0 of only the PD 
vectors with all but one of their coordinates PDis equal to their lower bounds (the postulated PDi-1s), 
and the remaining one, say PDj, set at uj, for j varying in 1…I. The j that maximizes power corresponds 
to the smaller difference uj – PDj-1 and, therefore will, generally depend on the value postulated for PD 
and the choice of u41. Suppose j=1 for the sake of exposition. Then the requirement of size α takes the 
form below. 

 

Power = ΦI(-c,-c + (u2 – PD1)/ (ρW /Y) ½ , ….,-c + (ui – PDi-1)/ (ρW /Y) ½ , …,-c + (uI – PDI-1)/ (ρW /Y) ½ ; ρB /ρW ) = α 

from which the value of c can be derived.  

 

From that equation, it’s possible to show that c < zα42. The replacement of zα by a smaller constant 
enlarges the critical region, when compared to the original test, and trivially produces, therefore, an 
aimed more powerful test43. From a methodological point of view, the drawbacks of the modified test 

                                                      
38 More specifically, it is higher at every PD parameter in H0.  
39 This limiting PD vector is in H0 and therefore, ideally, should not be validated. It has a probability of validation equal to α.  
40 Note PDi → 0 ⇒ PDi → -∞ 
41 If ui is a non-decreasing function of PDi+1, it’s reasonable to assume that uj – PDj-1 will increase in i in realistic CRMs because 

the low quality part of the rating scale tends to be sparser, as already mentioned. But it’s also true that the greater the PDis, 
the smaller are equal differences in the Φ-1 scale, reducing the effect on the transformed difference uj – PDj-1. Besides, there 
is the point that the first difference u1 – PDo ≡ u1   may not be so small. 

42 As the components of the power function cannot go to infinity as before, the first component must increase for the size to be 
achieved. 

43 See the definition of the critical region in the beginning of the section. 
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lie, however, on the dependence of the new critical region on ρB and on the fact that the calculation of 
c needs some computational effort. From a performance perspective, preliminary produced results 
suggest that the power increase of the modified one-sided calibration test is relevant only in the region 
of small (possibly unrealistic) ratio ρB/ρW or for ambitious choices of ui (i.e. close to PDi). In that latter 
case the increase is not sufficient, however, to the achievement of reasonable levels of power 
because the original levels are already too low (c.f. table 1 for example). 
 

Tables to be included 

 

I now comment on the two-sided calibration test. Similarly to the one-sided version, its hypotheses are 
stated as follows. 

Ho: PDi ≥ ui or  PDi ≤ li for some i =1.. I 

H1:  li < PDi < ui for all i=1…I 

 

Now the indifference acceptable region is defined by two parameters ui and li for each rating i, with 
ideally li ≥ postulated PDi-1 and ui ≤ postulated PDi+1. Under that formulation the test becomes an 
example of the class of multivariate equivalence tests, which are tests designed to show similarity 
rather than difference and which widely employed in the pharmaceutical industry to demonstrate that 
drugs are equivalent.44 Berger and Hsu (1996) comprehensively review the recent development of 
equivalence tests in the univariate case (I=1). The standard procedure to test univariate equivalence is 
the TOST test (two one sided test - called this way because the procedure is equivalent to performing 
two size-α one sided tests and to conclude equivalence only if both reject). Wang et.al. (1999) discuss 
the extension of TOST to the multivariate case, making use of the intersection-union method. That 
extension, when applied to the DRAM distribution, results in the following critical region for the two-
sided calibration test45. 

 

Reject Ho (i.e. validate the model) if  

li /(1- ρW )½ + zα (ρW /(Y(1- ρW))) ½   ≤ iDR  ≤ ui /(1- ρW )½ - zα (ρW /(Y(1- ρW))) ½  for all i = 1…I 

 

As the maximum power of the test occurs in the middle point of the cube [li  ui]I, it is reasonable to 
make the cube symmetric around the postulated PD (in other words, to make ui - PDi = PDi - li for all i), 
so that the highest probability of validating the CRM occurs exactly at the postulated PD. Additional 
configurations of the indifference region may include, as in the one-sided test, choosing ui = PDi+1 or 
li=PDi-1 (but not both).  

 

Similarly to the one-sided test, the previous test has similar problems of lack of power and bias (the 
latter if I > 1)46. Indeed, the statistical literature contains some proposals of improvement for the TOST 
(Berger and Hsu(1996), Brown et. al.(1997)), which are again subject to criticism from an intuitive point 
of view by Perlman and Wu (1999)47. Furthermore, an additional drawback of the two-sided test, in 
contrast to the original TOST, is its excess of conservatism because the test is only level α (Berger 

                                                      
44 More specifically, these tests are referred as bioequivalent tests in the pharmaceutical industry. 
45 The standard TOST is framed assuming unknown variance while the two-sided calibration test of this paper assumes known 

variance. Therefore the reference to the term TOST represents here some freedom of notation. 
46 It is not similar on the boundary between the hypotheses and therefore biased. 
47 However, in the case of calibration testing with known variance, the bias is not as pronounced as in the case of TOST with 

unknown variance. 
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and Hsu (1996)) while its size may be much smaller.48,49 These observations indicate the magnified 
difficulty in performing the two-sided calibration testing.  

 

Tables to be included 

 

Two yet different approaches to testing multivariate equivalence deserve comments. The first one is 
developed by Brown et. al.(1995). Applied to the problem of PD calibration, it consists of accepting an 
alternative hypothesis H1 (i.e. validating the model) if the Brown confidence set for the PD vector is 
entirely contained in H1. The approach would allow the bank or supervisor to separate the execution of 
the test from the task of defining an indifference region. In fact, the confidence set can be seen as the 
smallest indifference region so that it is still possible to validate the calibration and, therefore, H1 
configuration could be discussed at a later stage, after the knowledge of the form of the set. Brown 
et.al. (1995) propose an optimal confidence set in the sense that, if the true PD vector is the 
postulated one, then the expected volume of the set is minimal, which means that, in average terms, 
maximal precision is achieved when the calibration is exactly right50. The cost of this optimality is 
larger set volumes for PDs different from the postulated one. Munk and Pfluger (1999) show in 
simulation exercises that the power of Brown’s procedure can be substantially lower than those of 
more standard tests, like the TOST, for a wide range of PDs close to the postulated one. Therefore, in 
light of the view of this paper that ratings should more realistically be seen as PD intervals, the benefit 
of the optimality at a single point is doubtful at a minimum. Consequently, Brown’s approach is 
regarded here as of more theoretical than practical interest to calibration testing.51,52 

 

The second different approach to testing multivariate equivalence is developed by Munk and Pfluger 
(1999). So far, this paper has just considered rectangular sets in the alternative hypotheses 
statements of the calibration tests. The goal has been to show that the true PD lies in a rectangle or in 
quadrant of the space |RI. The referred authors analyze the use of ellipsoidal alternatives for the 
problem of multi-equivalence testing, which, for purposes of calibration testing, can be exemplified as 
follows. 

 

Ho: etDe ≥ ∆ 

H1: etDe < ∆ 

where e = PD – postulated PD, D is a positive definite matrix that conceives a notion of distance in the 
|RI space and ∆ denotes a fixed tolerance bound. D and  ∆ define an indifference region.  

 

Munk and Pfluger (1999) advocate this formulation in order to allow for the notion of equivalence to be 
interpreted as a combined measure of several parameters (e.g. a combination of the PDis, i=1…I). As 
a consequence, this implies in the calibration problem that very good marginal equivalence (e.g. the 
postulated PD1 is very close to the postulated PD1) should allow larger indifference regions for other 
PDis. Conceptually, I believe this point is hard to justify in the validation of CRMs. If miscalibration 

                                                      
48  It can be shown that the degree of conservatism depends on ρB. 
49 The reason for the discrepancy with the TOST relates to the impossibility of making the variance go to 0 as in Berger and Hsu 

(1996). 
50 The form of the set is not an ellipse, commonly found in multivariate analysis, but rather a figure known as the Limaçon of 

Pascal. 
51 Note also that the DRAM  should be seen just an approximation to reality, so that, even if all borrowers in a rating can be seen 

as having the same PD, small deviations from the asymptotic model assumptions may in practice force the true PD to 
depart from the theoretical one. 

52 Other confidence set approaches to calibration testing are also possible. Some of them are, however, dominated by the 
multivariate TOST. (Munk and Pflunger (1999)) 
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were necessarily derived from a systematic erroneous estimation of all the PDis, that indeed could be 
the case. Nevertheless, the view of this paper is that miscalibration could be rather very much rating 
specific. Furthermore, note that the rectangular alternatives already permit a lot of flexibility in allowing 
different indifference interval lengths for different ratings. Consequently, for the purposes of calibration 
testing, ellipsoidal alternatives are seen here more as a practical complication.53  

  
5. The mapping test 
 

As noted in the introduction, BCBS(2005b) stresses the need for the development of tests on the 
adequacy of a mapping established between two different rating scales. Usually one rating scale (say 
A) is already assumed to be correctly calibrated and the appropriateness of the calibration of the other 
scale (say B) remains to be checked. A mapping test should then test whether mapped ratings 
between the two scales possess similar PDs. As a consequence of this study’s approach to place the 
desired conclusion in the alternative hypothesis, the bank or supervisor should thus be satisfied that 
the mapped PDs are sufficiently close but not necessarily equal.  

 

The results of the previous section can be easily adapted to focus on the mapping test. The easiest 
way to accomplish this is to define appropriate values for uis and lis based on the PDis of the assumed 
correctly calibrated scale A. More concretely, under this view, a mapping test for the rating scale B is 
merely a calibration test with choices uis and lis that respect PDA

i ≤ ui ≤ PDA
i+1 and PDA

i-1 ≤ li ≤ PDA
i, for 

every rating i=1…I. Similarly to the calibration case, both a one-sided and two-sided versions of the 
mapping test are possible. The same power concerns and limitations of the calibration tests apply 
here as well. 

 

The previous approach assumes information on PDA
 is known. This may not always be the case as 

the latest updated PDA may not have been validated yet at the time the mapping test is to be 
conducted. Also, in more general contexts than of in Basel II, ratings may not have explicit PDs 
associated to them. A mapping test can still be conducted based on data on rating default rates of 
both scales A and B. The approach is similar in spirit to the tests of the next section. The cost is that 
larger variances have to be considered due to the additional uncertainty on PDA. 

 

6. Tests of rating discriminatory power 
 

One of the most traditional measures of discriminatory power is the area under the ROC curve 
(AUROC). Let n and m be two distinct random borrowers with probabilities of default PDn and PDm, 
respectively. Following Bamber(1975), AUROC is defined as: 

 

AUROC= Prob(PDn > PDm | n defaults and m doesn’t) + ½ Prob(PDn = PDm | n defaults and m doesn’t) 

 

High values of AUROC (close to 1) are typically interpreted as evidence of good CRM discriminatory 
performance. However, the definition of AUROC as the probability of an event makes it a function not 
only of the PD vector but also of the default correlation structure54. To the extent that the CRM should 
not be held accountable for the effect of default dependency between borrowers, the traditional 

                                                      
53 However, for purposes of power improvement, it might be still useful to investigate ellipsoidal alternatives inscribed or 

approximating rectangular alternatives. This investigation is not addressed at this paper. 
54 It is a function of the distribution of borrowers along the ratings too. 
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measure of discrimination becomes distorted.55 The next proposition shows explicitly the dependency 
of AUROC on the asset correlation parameters. 

 

Proposition: Given a CreditMetrics (Gupton et. al. (1997)) style model (of which Basel II model and 
DRAM are particular versions) endowed with a matrix of asset correlations (ρij) between borrowers of 
ratings i and j, i,j =1…I. Let P(i,j) and P(i) be the probability of two random borrowers having ratings i 
and j and one random borrower having rating i, respectively.  Then: 
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Proof: Appendix B. 

 

The remainder of this section describes alternative proposals of tests of rating discriminatory power 
built upon the DRAM distribution. The qualifying term rating is added purposely to the traditional 
expression discriminatory power to emphasize that the property desired to be concluded or measured 
here is different from that embedded in traditional measures of discriminatory power. Rather than 
verifying that the ex-post rating distributions of the default and non-default groups of borrowers are as 
separate as possible, the proposed tests of rating discriminatory power aim at showing that PDi is a 
strictly increasing function of i. In other words, the discriminatory power should be present at the rating 
level or, more concretely, low quality ratings should have larger PDis. Note that this is a less stringent 
requirement than correct two-sided calibration and the alternative hypothesis here will be, therefore, a 
strict subset of the H1 of the two-sided calibration test. In this sense, the fulfilment of good rating 
discriminatory power is consistent with the pursuit of correct calibration. Furthermore, as the proposed 
tests are based on hypotheses involving solely the PD vector, they are not function of default 
correlations; consequently they address the two pitfalls of traditional measures of discriminatory power 
that were discussed in the introduction. Finally, showing PD monotony along the rating dimension is 
also useful to corroborate the assumptions of some methods of PDs inference on low default portfolios 
(e.g. Pluto & Tasche (2005)). 

 

This section distinguishes between a test of general rating discriminatory power and a test of focal 
rating discriminatory power. The former addresses a situation where the bank or supervisor is 
uncertain about the increasing PD behaviour along the whole rating scale whereas the latter focuses 
on a pair of consecutive ratings. 

 

The formulation of the general test is stated below. 

Ho: PDi ≥ PDi+1 for some i =1…I-1 

H1: PDi < PDi+1 for all i=1…I-1 

 

Viewing PDi+1 - PDi as the unknown parameter to be estimated by DRi+1  - DRi for every rating i, the 
previous test can be seen as one involving testing homogeneous inequalities about normal means56.  
So, similarly to the one-sided calibration test, a size-α likelihood-ratio critical region can be derived. 

                                                      
55 Note that, in contrast, the definition of good calibration is always purely linked to the good quality of the PD vector, although 

the way to empirically conclude that will typically depend on the default correlation values, as shown in section 4. 



  16/26 
 

 

Reject H0 (i.e. validate the model) if 

ii DRDR −+1 > zα (2(ρW-ρB)/(Y(1- ρW))) ½  for all i = 1…I-1 

 

It is worth noting above that, opposed to the calibration tests, there is no need for the configuration of 
an indifference region, as the desired H1 conclusion is already defined by strict inequalities. On the 
other hand, here the critical region and therefore the decision itself to validate the model does depend 
on the unknown parameter ρB. The Basel II case (ρB  = ρW) represents the extreme liberal situation 
where just an observed increasing behaviour of the yearly average default rates along the rating 
dimension is sufficient to validate the model (regardless of the confidence level α) whereas the case 
ρB  = 0 places the strongest requirement in terms of the incremental increase of the default rate 
averages along the rating dimension57. In practical situations the bank or supervisor may want to find 
what is highest value of ρB such that the general test still validates the model and then check whether 
this value conforms to his beliefs about reality. 

 

When compared to the power of the one-sided calibration test, the power of the general test is notably 
affected by a trade-off of two factors58. First, the fact that now the underlying normal variables may 
have smaller variances ( Var(DRi+1-DRi)=2(ρW-ρB)/(1- ρW) < Var(DRi)=ρW/(1- ρW), if ρB/ρW > 1/2) 
contributes to an increase in power in that case. On the other hand, the now not positive underlying 
correlations ( Corr(DRi+1-DRi, DRj-DRj-1)= -1/2 if i=j and 0 otherwise, compared to Corr(DRi,DRj)=ρB/ρW 
> 0 for i≠j ) contributes to a decrease in power59. The resulting dominating force is to be determined by 
the particular choices of ρB and ρW. In general, the same comments on possible strategies for power 
improvement and their limitations apply here as well.60  

 

It is also worthwhile to discuss the situation where the bank or supervisor is satisfied by the general 
level of rating discrimination except for a particular pair of consecutive ratings. Suppose the supervisor 
or the bank wants to find evidence that two consecutive ratings (say ratings 1 and 2 without loss of 
generality) indeed distinguish the borrowers in terms of their creditworthiness61. From a supervisory 
standpoint, a suspicion of regulatory arbitrage may for instance motivate the concern. I denote a test 
to examine this issue as a focal test of rating discriminatory power, whose hypotheses are stated as 
follows.62,63 

 

Ho: PD1 = PD2 ≤ PD3 ≤….≤ PDI  

H1: PD1 < PD2  ≤ PD3 ≤….≤ PDI 

                                                                                                                                                                      
56 The key observable variables are now default rate differences between consecutive ratings, rather than the default rates 

themselves as in the one-sided calibration test. 
57 This is again intuitive as low values of ρB  mean that  ex-post information about one rating  does not contain much information 

about others ratings. 
58 Similarly to the calibration case, the power expression can be easily derived. 
59 Therefore, not necessarily validating rating discriminatory power is easier than validating (one-sided) calibration, as one could 

think a priori because of the less stringent nature of H1 in the former. In fact it may indeed be harder if ρB/ρW  < ½. 
60 In particular, similarly to the calibration case, restricting the space of parameters based on ordinal information about the PDis 

can be similarly tried, although now the way to do that is not so straightforward. 
61 Suspicion of regulatory arbitrage may derive from a situation where large credit risk exposures are apparently rated with 

slightly better rating so that the resulting capital charge of Basel II is diminished. 
62 This discussion of this section is easily generalized to the situation where a set larger than two ratings is to have its rating 

discriminatory power verified. 
63 It can be shown that replacing PD1 = PD2 by PD1 ≥ PD2 leads to the same test. 
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From a mathematical point of view, the development of such a test is much more complex than the 
tests considered so far in this paper because now the union of the null and the alternative hypotheses 
do not span the full |RI. This implies that the null distribution of the likelihood ratio (LR) statistic is 
complicated and depends on the structure of the cone C = Ho U H1, whether it is obtuse or acute with 
respect to norm induced by ∑-1.64,65 In the first case, the LR statistic follows a χ2 bar distribution under 
H0 (Menendez et. al.  (1992a)).66 In the second case, the distribution of the LR statistic is unknown but 
the test is dominated in power by a reduced test comprised of testing just the different parts of the 
hypotheses Ho and H1 (Menendez and Salvador (1991), Menendez et. al. (1992b)). It can be shown 
that the structure of ∑ adopted in this paper makes the cone C acute so that the second case is the 
relevant one.67 The reduced dominating test takes the form below. 

 

Ho: PD1 = PD2   

H1: PD1 < PD2   

 

The above test is just a particular case of the general rating discriminatory power test with I=2. 
Accordingly, its rejection rule is given as follows. 

Reject H0 (i.e. validate the model) 

 if ∑(DR2-DR1)/Y > zα (2(ρW-ρB)/(Y(1- ρW))) ½  

 

The dominance of the focal test by a reduced test is a surprising result and was long considered an 
anomaly of the LRT (see e.g. Warrack and Robertson (1984)). In the context of CRMs this means that, 
in order to judge the discriminatory performance of a particular pair of consecutive ratings, the bank or 
supervisor would be in a better position if it simply disregards the prior knowledge of the performance 
of the other ratings. But how can less information be better? Only most recently Perlman and Wu 
(1999) showed indeed that the overall picture was not so much in favour of the dominating test, 
arguing that the latter presents controversial properties. For example, it rejects PDs closer to H0 than 
to H1

68. Nevertheless, the practitioner does not have other choice besides using the power dominating 
test, because, as just mentioned, the null distribution of the LRT statistic for the focal test is unknown. 
Having that in mind, the analysis of this section provides the theoretical foundation to an easy-to-
implement and only procedure available: restrict the attention to the referred pair of ratings. More 
interestingly however, a generalization of the results discussed in this section suggests a uniform 
procedure to check rating discriminatory power: select the ratings whose discriminatory capacity are at 
stake and apply the general test to them. 

 

 7. Small sample properties 
 

                                                      
64 See ?? for the definition of these forms of cones. 
65 xxx T 1

1
−

Σ
Σ=−

 

66 Although χ2 bar distributions are common in the theory of order-restricted inference (Robertson et. al. (1988)), application of 
the focal test in this circumstance is not very practical as both the determination of the LRT statistic and the p-values are 
computer intensive. 
67 This is true because ai’Σaj ≤ 0 where the ai’s  (ai = (0,…,-1,1,…,0)’ ) generate the linear restrictions defining the cone C.  More 
specifically, it is true that ai’Σaj = (ρB - ρW)/(1 - ρW) if  |i-j| = 1 or 0 if |i-j| ≥ 2. See the mentioned references for further details. May 
more general but still realistic variance structures Σ  lead to a different conclusion is an interesting question not addressed in this 
paper. 
68 Perlman and Wu (1999) conclude once again that UMP size-α tests should not be pursued at any cost. 
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All the tests discussed in this paper are based on an asymptotic distribution of the DRAM, which 
assumes an infinite number of borrowers for each rating. This section analyses the implications to the 
performance of the one-sided calibration test of a finite but still large number of borrowers (N=100 is 
chosen as the base case)69. Due to the strong reliance of the test on the asymptotic marginal normal 
distributions of the DRAM, it is important to verify how the real marginals compare to the asymptotic 
ones70. The focus on a particular marginal allows then to restrict the attention to the case I=171. Hence 
this section conducts Monte-Carlo simulations of the Basel II model at the stage in which idiosyncratic 
risk is not yet diversified away and for I=1, N=100 and Y=5, unless stated otherwise.72 Based on a 
large set of simulated yearly average default rates, the effective significance level is computed as a 
function of nominal significance level α, for varying scenarios of parameters73. 
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where DR  is simulated a number of times and the estimated probability is computed as the empirical 
frequency of the event.  

 

The effective level measures the real size of the asymptotic size-α one-sided test. Alternatively, since 
it is expressed in the form of a probability of rejection, the effective level can also be seen as the real 
power, when the asymptotic power at postulated PD is equal to α, of an asymptotic size δ one-sided 
test, δ < α74. From both interpretations, effective levels lower than nominal levels means that the test is 
more conservative, with a smaller probability of validation in general, than what is suggested by the 
analysis of section 4 based on DRAM. Effective levels higher than nominal levels indicate the 
opposite: a small sample liberal bias. 

 

A general important finding of the performed simulations is that the convergence of the lower tails of 
the (Φ-1 transformed) average default rate distributions to their normal asymptotic limits is much less 
smooth than in the case of the upper tails, for realistic values of PDs75. The situation is illustrated by 
the following pair of graphs calculated based on the scenario PD=3%, ρW=0.20, N=100 and Y=5. The 
blue line represents the effective confidence level for each nominal level at the x-axes while the green 
line is the identity function merely denoting the nominal level to facilitate comparison. Note that the 
effective level is much farther from the nominal value in the lower tail of the distribution (depicted on 
the right-hand graph) than in the upper tail (depicted on the left-hand graph). In particular, if the one-
sided calibration test is employed at the nominal level of 10%, the test will be much more conservative 
in reality, as the effective size is approximately only 4%76.  

                                                      
69  The analysis is restricted to the one-sided calibration test not only because it is the main focus of this paper but also because 

the small sample properties of discriminatory tests are more complex to analyse as distributions of default rate differences 
are involved. Also, as perceived later in the section, the issues of most concern related to the small-sample properties of the 
two-sided calibration test derive from the analysis of the one-sided case. 

70 Review the form of the critical region in section 4. 
71 The issue of how the normal copula is distorted by the reality of a finite number of borrowers is not addressed in this version 

of the paper. 
72 Recently developed credit risk analytical methods to approximate distribution tails, such as the granularity adjustment, are not 

applicable here, as this paper deals with non-linear (Φ-1) transformed default rate distributions. 
73 In general 200000 simulations are run for each scenario. 
74 More specifically, it is easy to see that δ = Φ(-zα - (u – PD)/(1-ρW )½) 
75 The intuitive reason for this being that Φ-1(PD) → -∞  when PD → 0. 
76 There is less mass in the simulated lower tail than in the DRAM distribution. 
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Graph 1: Lower and upper tails,  
PD=3%, ρW=0.20 N=100,Y=5 

 

The fact that the lower tail is less well behaved is strongly relevant to the discussion of this paper. 
Under the approach of placing the undesired conclusion in H0 (e.g. PD ≥ u), rejection of the null or, 
equivalently, validation, is obtained if average default rates are small, so that the one-sided test is 
based indeed on the lower tail of the distribution. On the contrary, the upper tail would have been the 
relevant part of the distribution had the approach of placing the “correctly specified” hypothesis in H0 
been adopted, as in BCBS(2005b). As convergence of the upper tail is more well behaved, the small 
sample departure from the normal limit would be smaller in this case. In the view of this paper this 
would be, however, a misleading property of the latter approach77.  

 

The main numerical findings regarding the small sample power performance of the one-sided 
calibration test are described in the sequence, based on the analysis of the simulated lower tails. The 
investigation starts with the of the effect of the true PD on the effective confidence level, for two 
different values of ρW, 0.15 and 0.20. Graphs 2 and 3 reveal that, in the region of 0%<PD<10% and 
0.15<ρW<0.20, as PD increases, the test evolves from having a conservative bias (true power smaller 
than the asymptotic one) to having a liberal bias (true power larger than the asymptotic one). At 
PD=4% for ρW = 0.20 or at PD=3% for ρW = 0.15 the bias is approximately null as the test matches its 
theoretical limiting values. On the other hand, in the region 10%<PD<15%, as PD increases, the blue 
line comes a bit closer back to the green one, i.e. the test diminishes its liberal bias (but not sufficiently 
so as to become conservative). 
 

Graph 2: Effect of PD,  
ρW=0.20 N=100,Y=5 

                                                      
77 Because the worse relative behaviour of the lower tail would not be revealed. 
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Graph 3: Effect of PD,  
ρW=0.15, N=100,Y=5 

 

 

As the asymptotic one-sided test based on DRAM already suffers from problems of lack of power, this 
section suggests, as possible general recommendations, to consider a real (unmodified) application of 
the test solely in the cases where the small sample analysis indicate a liberal bias. Indeed, if otherwise 
an additional layer of conservatism is added to the already conservative asymptotic test, the resulting 
procedure test may hardly validate at all. The restriction to the small sample liberal cases rules out, for 
example, according to graphs 2 and 3, validation of low PDs (e.g. PD ≤ 3%). As a result, a possible 
practical advice is to apply the test only to the remainder of the postulated PD vector (e.g. ratings 3 to 
7 in the example related to table 1). Alternatively, a higher nominal level α could be applied to the low 
PDs. 

 

The effects of varying values of correlation and of the number of years under the base case of N=100 
are also analyzed in graphs 4 and 5. As the within-rating asset correlation ρW increases, the test 
evolves from a liberal bias to a small conservative one. Note that this represents the second channel, 
now through the small sample properties, by which ρW diminishes the power of the test. The effect of 
an increase in the number of years, in the region of 1 to 10 years, is to smooth considerably the 
distribution of the lower tail although the direction of the convergence is not clearly established. 
Results not shown also indicate that as N increases beyond 100, the blue and green lines come closer 
at every graph, as expected. 

 

Graph 4: Effect of ρW  
PPDD==55%%, Y=5, N=100 
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Graph 5: Effect of Y 
PD=5%, ρW=0.20 N=100 

 

Finally it is important to observe that, even if the one-sided test is based totally in the simulated 
average default rate distribution of this section, there are some extreme cases where validation is 
virtually impossible at traditional low confidence levels. When Y=1 (c.f. graph 6) or true PD=1% for 
example, the lower tail of distribution is quite discrete and presents significant probability of zero 
defaults. As a result, the effective confidence level jumps several times and assumes only a small 
finite number of values in the lower tail. When Y=1 the first non-zero effective level is already 
approximately 15%; after that, the next value is approximately 30%. Therefore, validation at 5% or 
10% significance level is not possible. Hence Basel II prescription of a minimum of 5 years of data is 
important not only to increase the asymptotic power of the test, according to section 4, but also to 
remove the quite problematic small sample behaviour of the lower tail.  

 

 

8. Conclusion 
 

This study contributes to the CRM validation literature in presenting several new ways of addressing 
the PD validation issue.  Firstly, it proposes new statements by which H0 and H1 can be formulated in 
order to control the error of accepting an incorrect model. Secondly, it provides an integrated 
treatment of all ratings at a time. Finally, it develops a default rate distribution model that leads to a 
unified framework for testing calibration, mapping and rating discriminatory power. Important practical 
consequences derive from these proposals as outlined in the following paragraphs. 

 

On calibration testing, some insights on the drivers of power are uncovered for the one-sided version. 
The feature of increasing differences between consecutive ratings is shown to be generally necessary 
for the achievement of reasonable levels of power. On the other hand, the effect of the correlation 
between the ratings, whose calibration is not present in Basel II, is shown to have only a minor effect 
on power. Also the lower PDs along the rating scale contribute more to the power final figure than 
higher PDs.  A general message of the analysis is, however, that the power can be substantially low in 
some cases. Regarding this issue, strategies of power improvement are examined suggesting limited 
efficacy. Additionally, the paper discusses the conceptual problems of applying modern ideas in 
multivariate equivalence to the two-sided calibration test.  
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As far as discrimination is concerned, a new goal of rating discriminatory power is established for 
CRMs. In contrast to traditional measures of discrimination, the new aimed property is dependent on 
cardinal information of PDs, is less stringent than the requirement of perfect calibration and 
incorporates the assumption of default correlation. Results of uniform power dominance provide a 
theoretical foundation for restricting the investigation of the desired property just to the pairs of 
consecutive ratings whose discriminatory capacity are at stake and, therefore, lead to an easy-to-
implement procedure. 

 

All the tests discussed in this paper are based on the DRAM distribution. While DRAM is convenient 
for testing because it results in a non-degenerate multivariate normal distribution (thanks to the 
inclusion of additional rating-specific systemic factors), it has one main disadvantage: it is an 
asymptotic model whose small sample properties may introduce a significant additional layer of test 
conservatism besides the asymptotic one. Monte Carlo simulations show that this is likely to be the 
case, for example, for small PDs (e.g. PD ≤ 3%) and small number of years (e.g. Y ≤ 5) in the one-
sided calibration test. A possible recommendation is to rule out real unmodified applications of the 
proposed test in those cases. On the other hand, when a liberal small sample bias is present, it may 
counterbalance the nominal conservatism, but caution should always be exercised.  

 

Above all, the bank or the regulator should not demand much from statistical testing of CRMs. Even 
under the simplifying assumptions of DRAM, the power of these tests is negatively affected by the 
unavoidable presence of default correlation and by the small length of default rate time series 
available in banks’ databases. Possibly due to this reason, BCBS(2005b) perceives validation as 
comprising not only quantitative but also somewhat qualitative tools. It is likely for example that the 
investigation of the continuous internal use of PDs/ratings by the bank may uncover further evidence, 
although subjective, supporting or not the CRM validation.  Nonetheless, it is the view of this paper 
that the possibility of reliance on qualitative aspects opened by the Basel Committee should not be 
seen as an excuse for not trying to get as much quantitative feedback as possible from statistical 
testing, including a quantitative sense of its uncertainty. 
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10. Appendix 
 

Appendix A 

 

The figure below should be interpreted as a result over the long run and displays a rating model with 
perfect discrimination but not perfect calibration. The bars’ heights represent the magnitude of the ex-
post default rate for each rating. All borrowers classified as C to E defaulted whereas all borrowers 
classified as A to B survived. If this is the regular behaviour of this CRM, knowing beforehand the 
rating of the obligor allows one to predict default or not default with certainty (perfect discriminatory 
power). The red line indicates the ex-ante PD estimate for each rating. Ratings A and B had 0% 
default rate, thus lower than the ex-ante prediction. Ratings C to E had 100% default rate, thus higher 
than the ex-ante prediction. The CRM is therefore not correctly calibrated. Obviously this example 
represents an extreme case (because realistic CRMs don’t have perfect discriminatory power) but it is 
useful to illustrate that, although both characteristics are desirable, they may well be inconsistent as 
they are pushed their best. 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 

 

Proof of proposition. 

 

The fist parcel of the AUROC definition can be expressed as follows. 
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where the last equality derives from the expression for a joint probability of default and non-default implicit in a 

CreditMetrics style model (c.f. Gordy(2000)). Similarly, the second parcel of the Auroc definition can be expressed 

as 
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and the proposition is proved. 

 


