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Bayesian Inference for Issuer Heterogeneity in

Credit Ratings Migration

Abstract

We explore sources of heterogeneity in rating migration behavior using a continuous

time Markov chain. Working in continuous time circumvents the embedding problem,

mitigates the censoring effect and facilitates term structure modelling with arbitrary

prediction horizons. By adopting a Bayesian estimation procedure we are able to esti-

mate for each issuer profile its own continuous time Markov chain generator. Using the

Moodys corporate bond default database we identify significant country and industry

effects on the determination of default intensity and conditional transition probabilities

in general. We tabulate and compare these quantities for different issuer profiles to

assess the heterogeneity in the sample. Using the Jafry-Schuermann mobility metric

we show how distant the transition probability matrices are for different issuer profiles.

Using the CreditRisk+ framework, and a sample credit portfolio, we find that ignoring

heterogeneity can give erroneous estimates of VAR and a misleading picture of the risk

capital.
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1 Introduction

A time-homogenous, discrete-time Markov chain has been extensively used to model

the ratings migration process for corporate bonds and bond issuers1. Such modelling

has often further assumed that the rated entities are homogeneous with respect to

their rating migration behavior. Deviation from this added assumption has been the

subject of several studies that highlight sources of heterogeneity such as the issuer’s age,

country of domicile, stage in the business cycle etc2. Independent of this deviation, the

ratings migration literature has witnessed departures from the discrete time framework

as well3. In this paper we combine these two parallel developments in the rating

migration literature, while using Bayesian techniques to estimate a flexible ratings

based model of default risk.

We explore sources of heterogeneity in rating migration behavior using a continuous

time Markov chain based model. In that sense our modelling framework is similar

to Frydman and Kadam (2004) and Frydman and Schuermann (June 2005). Both

of these apply Markov chain based mixture models to ratings data.4 However, they

use Maximum Likelihood Estimation to obtain the relevant Markov chain generators

for sub-populations of rated entities. By adopting a Bayesian estimation procedure

1Having accepted this model, the actual reported transition probability matrices can vary a lot depending
on the actual data and estimation methodology used, see Altman (1998) for a detailed discussion on the
popular methods used in practice.

2See for instance Asquith, Mullins, and Wolff (1989), Nickell, Perraudin, and Varotto (2000), Frydman
and Kadam (2004), Frydman and Schuermann (June 2005), Bangia, Diebold, Kronimus, Schagen, and
Schuermann (2002), Lucas and Lonski (1992) and research summary reports published by rating agencies
such as Moody’s KMV, Standard & Poor’s and Fitch on their web-sites.

3Jarrow, Lando, and Turnbull (1997) were among the first to fit a continuous time Markov chain model
to observed bond prices.

4See Norris (1997) for an elaborate treatment of Markov Chains.
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we are able to estimate for each issuer its own individual continuous time Markov

chain generator. Bayesian techniques are particularly suitable for situations such as

this where we have very sparse data for several rating categories and issuer types.5

We condition the generator of the Markov chain on a joint event that can incorporate

the issuer’s country of domicile, industry type (sector) and potentially several other

qualifiers. Since there are many possible issuer attributes and many possible values that

each of these attributes take the total number of issuer profiles can be quite large. The

methods we propose permit an estimate for each such profile, and in principle one can

think of this as if each issuer had its own generator. Being able to explicitly recognize

the heterogeneity in the issuer pool gives us a clearer picture of both Value at Risk

and risk capital, as we illustrate with a hypothetical credit portfolio. It is noteworthy

that we provide estimates for an arbitrary profile even if data on that profile may be

a very small part of the sample we use for estimation.6

Our empirical results build upon the work of Nickell, Perraudin, and Varotto (2000).

They offer, for each qualifier of interest (e.g. country of domicile), a conditional tran-

sition matrix (over a given time period) estimated by conditioning on values taken by

that variable (e.g. USA, UK and Japan) having controlled for other sources of varia-

tion (e.g. industry type). Just as they provide conditional estimates for a discrete time

Markov chain that models the evolution of ratings, we compute conditional estimates

for duration times and transition rates for a continuous time Markov chain that models
5See footnote 23 for some evidence of sparsity in this context.
6 For instance the rating evolution for Japanese issuers in the Utility sector can be estimated although

this type of issuers comprise only 0.1% of the data. This is made possible by combining the information on
Japanese issuer transitions (3% of the sample) and on Utility sector issuer transitions (10% of the sample).
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the evolution of issuer ratings. However, our model and estimation methodology are

both different from theirs, as are the tools we use to demonstrate the heterogeneity.

In constructing the model, Nickell, Perraudin, and Varotto (2000) employ a Probit

framework to compute conditional transition probabilities in discrete time. We model

in continuous time, the state durations being exponential functions and transition

probabilities being logistic functions. This has two advantages. First, by modelling the

duration explicitly we provide a richer understanding of rating stability.7 Second, by

using a continuous time model we capture the usual advantages emphasized in Lando

and Skodeberg (2002).8

In estimating the model, Nickell, Perraudin, and Varotto (2000) use classical meth-

ods, we use a Bayesian approach. Bayesian inference reduces estimation error and is

more suitable for sparse data situations such as this.9

The dataset we use is the Moodys corporate bond default database. This rich dataset

provides us with issuer rating histories from several countries and industry sectors, and

spanning several decades.10

7 Figure 1 clearly indicates that the variability in duration times is quite high both within and across
rating categories. This is ample evidence to suggest that the average stay period in any given rating is not
a reliable summary statistic. A key feature of this paper vs. any other discrete time model based paper
(such as Nickell, Perraudin, and Varotto (2000)) is that duration times have a model that captures this large
variability.

8A continuous time framework is better at handling censoring, it avoids the embedding problem for
Markov chains and it makes term structure modelling easier.

9See section 4.1 for a more elaborate discussion on this point. See footnote 23 for evidence of data sparsity
in this context.

10See Section 3 for a detailed description of the dataset.
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2 Model

We model the changes in a issuer’s rating over time as a discrete space, continuous

time, stationary Markov process. These Markov processes can be represented by the

duration time that the process is in a state and transition probabilities or jump dis-

tributions for a transition to a new state. The duration times are independent and

exponentially distributed with rate parameters that depend on the issuer’s current rat-

ing. At the end of the duration, the rating jumps to a new rating. The jumps and

durations are mutually independent within an issuer. The states are indexed by k = 1,

. . . , K +1. The states are ordered such that the first state is AAA; the second state is

AA, and so on. State K corresponds to the rating being withdrawn, and state K +1 is

default, which is absorbing. We observe the ratings process for a set of issuers where i

indexes the issuer for i = 1, . . . , M . The observational time period is a ≤ t ≤ b.

During the observation period, issuer i has ni transitions or changes in its ratings.

The jth transition in the rating for issuer i occurs at time Ti,j for j = 1, . . . , ni where

a ≤ Ti,1 < . . .< Ti,ni ≤ b. At time t such that Ti,j ≤ t < Ti,j+1 the issuer’s rating is in

state si,j . The rating then changes at time Ti,j+1 to si,j+1 6= si,j .

Because the observation period is a finite interval, we need to be careful about left

and right truncation of the observed rating process. If the issuer was rated before the

start of the observation period, then the initial transition Ti,0 precedes a, the start of

the observation period, and has rating si,0. The rating continues in state si,0 from a

to Ti,1. If the issuer is first rated after a, then Ti,0 and si,0 are not defined. Similarly,
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some of the durations are right truncated. If the issuer does not default, then the ni+1

transition occurs at time Ti,ni+1 > b where b is the end of the observation period. If the

issuer defaults in the observation period, then the process ends at the last transition

Ti,ni because default is an absorbing state, and Ti,ni+1 is undefined. The transition

times Ti,0 and Ti,ni+1, when they are defined, are not observed.

The duration times are defined from the transition times. The duration time for the

jth transition for issuer i is: Di,j = Ti,j+1 − Ti,j for j = 1, . . . , ni − 1. If the issuer

is rated before a, the beginning of the observation period, then the initial duration is

Di,0 = Ti,1−Ti,0. However, we only observe the left truncated duration D∗
i,0 = Ti,1−a.

If the issuer is first rated after a, then Di,0 is undefined. If the issuer does not default

in the observation period, then Di,ni is right truncated, and we only observe D∗
i,ni

=

b − Ti,ni . If issuer i defaults before b, then Di,ni is not defined because default is an

absorbing state.

In discrete space, continuous time, stationary Markov processes, the duration times

are mutually independent and exponentially distributed random variables. The density

for duration Di,j is:

f(t|yi,j) = exp(−yi,j) exp [− exp(−yi,j)t] for t > 0, (1)
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with rate parameter exp(−yi,j) and expected value E(Di,j |yi,j) = exp(yi,j). Suppose

that the issuer is in state s = si,j during duration Di,j . Our model for the yi,j is:

yi,j = x′iβs + φi,D + εi,j (2)

where xi is a p-vector of covariates11 for the issuers; βs is a p-vector of regression

coefficients; φi,D is a random effect for issuer i; and εi,j are error terms. Both the

random effects and the error terms are mutually independent and normally distributed

with mean zero. The variance of the error terms depends on the state s: var(εi,j) =

σ2
s . The variance of the random effect is λ2

D.

The impact of the random effect can be seen by the conditional expected duration

given the random effect:

E(Di,j |φi,D) = E[E(Di,j |φi,D, εi,j)] = exp
(

x′iβs + φi,D +
σ2

s

2

)
. (3)

The random effect φi,D expresses the issuer’s “stickiness” to remain in a rating, com-

pared to other issuers, after adjusting for the covariate xi. If φi,D is positive, then

the issuer i tends to have longer durations, while if φi,D is negative, it changes ratings

faster than most issuers with the same covariate. The unconditional expected duration

integrates exp(yi,j) over both the random effect and error term:

E(Di,j) = exp
(

x′iβs +
λ2

D + σ2
s

2

)
(4)

11 The covariates used for implementation were dummy variables to capture country and industry effects.
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If issuer i was rated before a, the start of the observational period, we observe the left

truncated duration D∗
i,0 = Ti,1 − a. Using the memoryless property of the exponential

distribution, D∗
i,0 also has an exponential distribution with rate exp(−yi,0). If the

issuer is not in default over the observation period, then D∗
i,ni

is right censored, and

its contribution to the likelihood function is:

P (D∗
i,ni

> b− Ti,ni) = exp [− exp(−yi,ni)(b− Ti,ni)] . (5)

At time Ti,j the issuer has a transition from state r = si,j−1 to state s = si,j

where r 6= s. The transition probabilities are conditional on the previous state r.

If r = K + 1 is the absorbing (default) state, then the process ends. One way to

motivate the model for the jump distribution is through the random utility framework

of McFadden (1974). The rating agency has a random utility Ui,j,k for giving issuer

i a rating or k on transition j. In revaluating issuer i, the rating agency selects the

utility that maximizes the random utility. We assume that the random utility has the

following model:

Ui,j,k = z′iαr,k + ζi,j,k for k = 1, . . . , K and k 6= r (6)

Ui,j,K+1 = φi,A + ζi,j,K+1 for the default of absorbing state, (7)

where zi is a q-vector of covariates12 for issuer i; αr,k is a q-vector of coefficients; φi,A is

a random effect that measures propensity of the issuer to default; and ζi,j,k are mutually

12 The covariates used for implementation were dummy variables to capture country and industry effects.
The zi covariates for model implementation were identical to the xi covariates. This choice is by convenience,
and not a restriction imposed by either the model or the estimation method.
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independent error terms that have an extreme value distribution where, without loss

of generality, the scale parameter is one.13 The new rating for the issuer i is s =

arg maxk 6=r Ui,j,k. The the probabilities of jumping from r to s are logistic functions:

P (r|r, i) = 0 (8)

P (s|r, i) ∝ exp(z′iαr,s) for s = 1, . . . ,K and s 6= r (9)

P (K + 1|r, i) ∝ exp(φi,A) for the absorbing (default) state K + 1. (10)

The random effects captures individual differences in the issuers’ default rates, as can

be seen by the log-odds ratio of defaulting:

ln[P (K + 1|r, i)]− ln[P (s|r, i)] = φi,A − z′iαr,s for s 6= r. (11)

If φi,A is positive, the issuer is more likely, after adjusting for its covariates, to default

than comparable issuers, while if it is negative, the issuer is less likely to default.

The random effects φi = (φi,A, φi,D)′ for issuer i are random samples from a mean-

zero, bivariate normal distribution with covariance matrix:

Λ =




λ2
A λAD

λAD λ2
D


 .

13As a technical note, the utility for default does not include zi in order to identify the model: preference
structures are invariant to location and scale transformations of the utilities.
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Given the random effects, the duration times and jump process are independent within

an issuer. However, if one integrates over φi, then the duration times and jump process

are correlated. A positive (negative) covariance implies that issuers that tend to remain

in a rating state longer tend to have higher (lower) default rates.

Stationary Markov processes are also defined by their generators. The generator for

the rating process of issuer i depends on the value of the covariates, the random effects,

and the error terms. In a slight abuse of notation, εi,s is the error term for the ln-rate

model for durations when the issuer is in state s, and yi,s = x′iβs + φi,D + εi,s. The

generator for issuer i is a K by K + 1 matrix:

Qi(φi, εi, xi, zi) =





− exp(−yi,j) for the (j, j) element and j = 1, . . . ,K

exp(−yi,j)P (k|j, i) for the (j, k) element where

j = 1, . . . K; k = 1, . . . , K + 1; j 6= k.

(12)

The generator does not have a row for state K + 1 because it is absorbing.14 In using

the generator, say in portfolio applications to compute default rates, one may not have

estimates of the random effects for the issuers of interest. In this case, the random

effects and error terms can be integrated out of the generator by Monte Carlo by

generating G random deviates φ
(g)
i from a bivariate normal distribution with mean 0

and covariance matrix Λ and by generating the ε
(g)
i,s from normal distribution with mean

0 and variance σ2
s . Then, the Monte Carlo approximation of the integrated generator

14If, for the sake of completeness, a row is included for this state then all entries in that row are zero.
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is

Qi(xi, zi) ≈ 1
G

G∑

g=1

Qi(φ
(g)
i , ε

(g)
i , xi, zi).

3 Data Description

The dataset we use is the entire Moodys corporate bond default database available

as of late 2005.15 This rich dataset provides us rating histories from 112 countries

and 14 industry sectors. The model implementation uses dummy variables for coun-

tries and industries as covariates in the duration and transition models. To improve

both execution speed and output interpretation, it is desirable to have fewer countries

and industry sectors for the model implementation. To this end, we eliminate those

countries and industry sectors that have a very small number of rating transitions. In

doing so we first merge all countries in the European Union and treat it as one coun-

try EU. This leaves us with the countries USA, UK, Japan, Canada and EU. To fit

the model, we focus on the following 7 industry sectors : Banking, Utility, Insurance,

Transport, Government, Finance and Real Estate Finance, eliminating the remainder

which contain a very small fraction of the data. About 15% data was discarded in this

process.16

Table 1 gives the composition of this smaller dataset i.e. the one obtained after

elimination, across industry sectors and countries. We see that majority (over 80%)

15The earliest recorded rating transition is in 1921 although there are very few transitions up until 1970.
The last recorded rating transition is in April 2005.

16The original data (all countries and sectors) had 27231 rating transitions. After selecting countries and
industries, there were 22983 rating transitions left.
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of the coverage is for US issuers.17 Similarly majority (over 75%) of the data relates

to the Industrial sector, and of the remainder, substantial parts relate to Banking and

Utility sectors. For the rest of the study we focus on these three sectors.

As is customary we grouped the original ratings into eight states: Aaa, Aa, A, Baa,

Ba, B, C, D and WR. In our case this grouping is also necessary on practical grounds

because the probability of each from-to rating transition is modelled as a function of

several covariates. Estimating/interpreting all these coefficients is more meaningful if

there are only a handful of transitions possible. This makes it necessary to have a

parsimonious state space. The ratings are ordered from the highest to the lowest with

Aaa being the top ranking, D being the default state and WR denoting the state of

rating withdrawal.

In general, there are very few rating category transitions per issuer and it is rare for

an individual issuer to make more than three transitions in its life.18 Table 2 shows

the cross tabulation of rating category transitions. The diagonal entries in this table

are zero because observations are made in continuous time.19 The state End signifies

that the observation period ended prior to making any transition so the destination

state is unknown. From this table it follows that majority of the transitions are to

neighboring states, and that there are substantially more downgrades than upgrades.

17Moody’s coverage used to be largely focused on US issuers but in the recent times has become more and
more international.

18See footnote 23.
19If observations were made at discrete time points, then possibly the source and destination states could

have been identical, say for instance when no transition was made. In Table 2 we record a transition only
when an actual transition is made. Conversely, every actual transition made does definitely get recorded in
Table 2.
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A large proportion (over 20%) of these transitions were to the Withdrawn state. An

even larger proportion (over 30%) were to End state. These censored observations were

not incorporated in the estimates of transition probabilities.20

Apart from the transitions themselves, a key quantity of interest is the duration of

time spent in each state. The censored observations were indeed useful in enriching

the estimates of duration times. Extracting this additional information from censored

observations is facilitated by the fact that we employ a continuous time framework.

Table 3 lists mean durations in days for each of the rating categories. It seems to

indicate that higher rated issuers spend more time in their current rating category

before making a transition. Figure 1 presents box plots for the duration times in

each rating category. They show that not only the median duration time but also the

variability in duration times is more for higher rated issuers.21

4 Estimation methodology

4.1 Introduction to Bayesian inference

We use Bayesian inference to estimate the proposed model for ratings migration.22

Bayesian inference is particularly well suited in capturing random effects and parameter

heterogeneity in repeated observation studies, such as ours, where there are a large

20 As is customary in literature, a transition probability matrix estimate does not report the transition
probability to End state.

21While commenting on the summary statistics of duration times, it is important to note that the number
of transitions made from all initial rating categories is not the same. See Table 2 right hand margin column.

22For a more detailed introduction to Bayesian inference, see for instance Congdon (2001).
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number of issuers and relative few rating transitions for each issuer.23 In this situation,

traditional estimates at the issuer level either do not exist or have large sampling

variability. Bayesian inference automatically shrinks the maximum likelihood estimate

(MLE), if it exists, to an aggregate or pooled estimate based on all of the data.

The amount of shrinkage depends on a variety of factors, such as the sampling vari-

ation of the issuer-specific MLE and the heterogeneity among the issuers. When the

issuer-specific MLE does not exist, the Bayes estimate does by incorporating infor-

mation from all of the issuers. In sparse-data situations, the issuer-specific estimates

reflect the aggregate behavior of the data. As more observations are obtained for a

particular issuer, the Bayes estimate reflects less on the aggregate behavior and more

on the data for the specific issuer. In addition to issuer-specific estimates, Bayesian

inference also estimates the heterogeneity among the issuers.24

An important practical advantage of using Bayesian inference is also that it becomes

straightforward to obtain interval estimates such as confidence intervals.25 Interval

estimates for default probabilities are becoming increasingly popular.26 Details of the

estimation methodology are given in the Appendix.

23 The percentage of issuers making exactly 1, 2 and 3 transitions in their entire life is roughly 30%, 20%
and 10%. Furthermore, the median of the number of transitions made by issuers during their entire lifetimes
is 2. The sparsity is likely to be even more pronounced when narrowing the sample to some specific cross
section of issuers such as those in a particular industrial sector or country of domicile.

24See Allenby and Lenk (1994) and Allenby and Lenk (1995) for more detailed discussions on Bayesian
inference for panel data.

25We do not provide such estimates here so as not to distract from our primary focus viz. heterogeneity
which can be demonstrated with point estimates.

26See for instance Christensen, Hansen, and Lando (2004).

15



5 Empirical Results

5.1 Estimates for the standard profile

Of primary interest to us is the generator for the continuous time Markov chain, and

a one year transition probability matrix. In Table 4 we present these estimates for US

issuers in the Industrial sector. These issuers make up more than half of our data, and

we treat this profile as the standard profile. It is important to note that we estimate

the generator using a day as the unit of time, so the diagonal entries of the generator

are to be interpreted as exit rates per day (and not per year).

Estimates for issuers from other countries (we focus on UK, Japan, Canada and

EU) or other industry sectors (we focus on Industrial, Banking and Public Utility) will

differ from the above standard profile estimates due to inherent heterogeneity in the

rating migration behavior. The purpose of this study is to quantify and analyze that

difference.

5.2 Estimates for other profiles

In the interest of brevity we do not tabulate generators and transition probability

matrices for each possible profile. To illustrate the heterogeneity we choose a few

prominent country-sector combinations and compare their estimates with those for

the US-Industrial issuers. For the sake of illustration, one year transition probability

matrices for US issuers in the industrial, banking and utility sectors (these comprise

over three fourths of our data) are given in Table 5. They show strong sector effects.
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For instance, Banking and Utility sector issuers have about 7 − 8% lower chance of

default. Diagonal entries can vary drastically (e.g. see B or C) and as do upgrade

probabilities (e.g. see BAA, BA). Similarly, comparing one year transition probability

matrices (not presented here in the interest of brevity) we find prominent country effects

within sectors. Both country and sector effects suggest that ignoring the heterogeneity

can lead to large errors in default risk computations.

To quantify the heterogeneity we compare different issuer profiles on the basis of

following quantities of interest.

1. Jafry-Schuermann mobility metric proposed in Jafry and Schuermann (2004).

2. Probability that a C rated issuer will have defaulted in one year.

3. Probability that a BAA rated issuer will have been upgraded one year later.

4. Probability that a AAA rated issuer will be AAA one year later.

Figures 2 through 5 display the variation in above quantities across different sector-

country profiles. It is worth noting that our approach can give estimates for any

country-sector combination though such an issuer may not even exist in the dataset we

use (or there may be very few issuers with that profile). This is done by aggregating

the separately obtained marginal information on issuer characteristics.27

27See footnote 6.
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5.2.1 The Jafry-Schuermann mobility metric

The Jafry-Schuermann mobility metric proposed in Jafry and Schuermann (2004) is

the average of the singular values of the mobility matrix for that issuer profile. Here,

the mobility matrix is obtained by subtracting an identity matrix from the one year

transition probability matrix for that issuer profile. For Industrial issuers in the US,

our standard profile, this metric is 0.2278178. Figure 2 shows deviations from this

metric for different issuer profiles. A deviation to the left indicates less mobility than

that for the standard profile, and vice versa. Figure 2 illustrates that compared to

the standard profile, utility sector issuers are generally less mobile and banking sector

issuers are generally more mobile. This may have to do with the fact that there is

much less uncertainty about the revenue streams of Utility sector issuers (as they are

regulated). In contrast, Banking sector issuers are generally highly leveraged and their

future revenue streams have higher variance.

5.2.2 The C→D default probability

Ideally we would like to compare unconditional one year default probabilities across

issuer profiles. However, the proportions of issuers across rating categories vary across

profiles, and the overall default probability becomes a difficult object of comparison.

In general the largest default probability is from the C rating category. Hence we

compare and contrast default behavior using C→D default probability. Figure 3 shows

the variation in this default probability across issuer profiles. One can easily see that

compared to other issuer profiles the standard profile of US Industrial issuers shows a

generally higher default probability and may lead to an overestimation of default prob-
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abilities if issuer heterogeneity is ignored. Within each sector, the ordering observed

for the C→D default probability is UK > Canada > US > EU > Japan. This may be

a reflection of the differences in corporate bankruptcy laws across different countries.

Japanese banks enjoyed a lenient accounting for bad loans in the 1990s. UK corporate

bankruptcy laws are relatively highly creditor-friendly. The stance a rating agency

may take in granting a C rating under such circumstances is to be overly conservative

in Japan, and much less so in the UK. The true proportion of C rated defaulters may

therefore be much higher in the UK than in Japan.

5.2.3 The BAA upgrade probability

Apart from default, an interesting outcome of interest is an upgrade, especially if it

is from a medium to high grade. Here we illustrate the heterogeneity in the sample

by examining the probability that a BAA rated issuer is upgraded to either AAA, AA

or A rating category within the next year. Figure 4 shows the variation in this total

upgrade probability for BAA rated issuers across different issuer profiles. It shows

that the banking sector issuers are 10-15% more likely to be upgraded than issuers

from other sectors. UK issuers systematically have a higher upgrade probability than

US issuers. The two findings are probably related since the sample of UK issuers is

dominated more by Banking sector, whereas the sample of US issuers is dominated by

the Industrial sector.
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5.2.4 The AAA stay probability

Finally we look at the chance that AAA issuers with negligible credit risk will remain

AAA issuers after a year. Figure 5 shows the variation in this stay probability for

AAA rated issuers across different issuer profiles. In general these stay probabilities

are smallest for Banking issuers and largest for Utility issuers, with those for Industrial

issuers lying somewhere in between. This rating stability result is consistent with the

rating mobility related result obtained by using the Jafry-Schuermann metric. Again

the ordering is possibly a reflection of the uncertainty in revenue streams faced by

issuers.

5.3 Robustness checks

Having obtained these systematic patterns in issuer-specific estimates it is natural

to wonder if they are indeed rooted in the data or is it the (continuous time) model

peculiarities or the (Bayesian) estimation methods that is driving this heterogeneity.

As a cross check we set forth to estimate the one year transition probability matrices

in three other ways and examine them for evidence of heterogeneity. In each case the

aim was to illustrate sector heterogeneity focusing on the differences between Industrial

and Utility sector issuers only.

5.3.1 Continuous time logistic model, ML estimation

Firstly, to remove the effect of Bayesian estimation on the results we attempted to

compute Maximum Likelihood estimates for a simpler version of our model in con-
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tinuous time i.e. an equivalent model without random effects, but with exponential

duration and logistic transition probabilities. There are several coefficients to estimate

for issuer profile characteristics for the duration model and also for each <from,to>

rating category transition. It turned out that in a large majority of cases the data was

so sparse that either estimation algorithm did not converge or the converged coeffi-

cients were not statistically significant. 28 This is not the case with the main results

presented in Section 5 using Bayesian inference. While we could not offer a robustness

check for heterogeneity, this exercise highlighted the benefits of Bayesian estimation

that is able to tackle the data sparsity.

5.3.2 Continuous time Markov chain, ML estimation

Our second attempt to retain the continuous time domain (in addition to moving

away from Bayesian estimation) was simply to remove the effect of our model-specific

assumptions (such as logistic functional form for transition probabilities). We do so by

performing Maximum Likelihood estimation of an ordinary continuous time Markov

chain. Exponentiating the generator so obtained gives the transition probability ma-

trix. To illustrate heterogeneity we compare the transition probability matrices from

two subsamples of the original data. One subsample corresponds to Industrial sector

issuers, and the second subsample corresponds to Utility sector issuers. These two 1

year transition probability matrices are given in Table 6 and show significant differences

across sector subsamples. This can be quantified by the difference of 1.02 between their

28We used the ready-made glm routine in R environment for statistical computing. Please see footnote 23
for details the sparsity of this dataset.
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Jafry-Schuermann metrics. 29 Furthermore, the default rates in the last column clearly

illustrate the sample heterogeneity.

5.3.3 Discrete time Markov chain, yearly observations

Lastly, to remove the influence of continuous time modelling, as well as that of our

model’s functional form and our Bayesian estimation approach, we computed MLEs

for a discrete time Markov chain. In this context it was necessary to make discrete

time observations, so we chose to do it at the end points of the ten 1 year intervals.

Again, we used the two subsamples of the original data mentioned above. One sub-

sample corresponds to Industrial sector issuers, and the second subsample corresponds

to Utility sector issuers. We estimated for each sector’s subsample a yearly transi-

tion probability matrix for a ten year period ending year 2000. We averaged these

ten yearly matrices to obtain an average one year transition probability matrix. As

shown in Table 7 this average transition probability matrix showed significant differ-

ences across sector subsamples. This can be quantified by the difference of 3.85 between

their Jafry-Schuermann metrics. 30 Furthermore, the default rates in the last column

clearly illustrate the sample heterogeneity.

6 Implications for Risk Capital

Risk capital is the amount of capital kept aside to cover unexpected economic losses

during extreme events. We offer a small illustration of how issuer heterogeneity affects

29Figure 2 may help put this number in perspective.
30Figure 2 may help put this number in perspective.

22



risk capital. We construct a hypothetical “typical” credit portfolio, then compute the

loss distribution on this portfolio with and without incorporating issuer heterogeneity.

The two loss distributions give rise to two different estimates for risk capital, which we

choose to quantify by the difference between Value at Risk (VAR) and Expected Loss

(EL) for the portfolio at hand. It turns out that for this particular portfolio the risk

capital is lower if heterogeneity is taken into account.

The “typical” hypothetical portfolio construction was guided by the following con-

siderations. First, the number of obligors should be approximately 100. Second, the

industry sector concentration of exposure amounts should roughly mirror the sector-

wise distribution of loan amounts tabulated in Heitfield, Burton, and Chomsisengphet

(2006). Third, the distribution of credit quality should roughly be 15% good, 60%

medium and 25% bad. The actual portfolio constructed deviated from these consid-

erations slightly but more or less respected all the preset criteria (e.g. it had 105

obligors instead of 100). We assumed the recovery rate to be constant at 40%. The

total nominal amount of exposure does not matter as we are interested in risk capital

as a percentage of that amount.

The model and method we proposed so far was to estimate the default risk is ap-

plicable at obligor level. In a portfolio setting, the dependence structure of defaults

becomes crucial in determining the loss distribution of the overall portfolio. We used

CreditRisk+ to model this dependence structure. We considered two scenarios. First

the default rate inputs were chosen to differ across obligors depending on which indus-

trial sector they lie in, thus explicitly incorporating heterogeneity. Second the default
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rate inputs were input as if all obligors belonged to the standard profile of Industrial

issuers, thus assuming homogeneity.

We found that ignoring sector heterogeneity in default rates increased the risk capital

from 5.4% to 6.3% which is an increase of about 15% in proportional terms. Choosing

median loss instead of expected loss to define risk capital, or choosing sector-specific

recovery rates instead of a universal constant 0.4, did not change this result in any

significant way. Furthermore, using a benchmark portfolio with equal weights across

sectors also gave results consistent with those mentioned above.

7 Conclusion

Using a continuous time model, Bayesian estimation techniques and a sample of

roughly 23000 rating transitions from the Moodys corporate bond default database

we identified significant differences in rating migration behavior between issuers of

different industry sectors and countries. Quantifying these differences in terms of a

mobility metric and also in terms of default, upgrade and stay probabilities yielded

several systematic patterns in the deviation from the standard issuer profile viz. US

Industrial issuer. To summarize, we provided strong support and a tool to condition

generator estimates on issuer profiles. When working in a portfolio context, such a

conditioning gives a clearer picture of Value at Risk and risk capital, as we illustrated

using a hypothetical credit portfolio.
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Appendix - Bayesian Estimation

Prior Distributions used

Bayesian analysis of the model requires prior distributions for the unknown parameters.

We make common choices:

βs ∼ Np(µ0,β,s, Σ0,β,s) (13)

αr,s ∼ Nq(µ0,α,r,s,Σ0,α,r,s) (14)

σ2
s ∼ IG

(
γ0,s

2
,
δ0,s

2

)
(15)

Λ ∼ IW2(η0, Ω0) (16)

where Np(µ,Σ) is the p-variate normal distribution with mean µ and covariance matrix

Σ; IG
(γ

2 , δ
2

)
is the inverse Gamma distribution with shape γ

2 and scale δ
2 ; and IWp(η, Ω)

is the p dimensional inverted Wishart distribution with η degrees of freedom and scale

matrix Ω.

In the empirical study, we used highly noninformative priors. We assumed that the

prior means µ0,β,s and µ0,α,r,s are zero, and the prior variances Σ0,β,s and Σ0,α,r,s were

100 times an identity matrix. The parameters for the Inverse Gamma distribution were

set so that prior mean for σ2
s was one, and the prior variance was 10. The prior degrees

of freedom for the Inverse Wishart distribution was six, and the scale matrix was the

identity.
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MCMC Algorithm

We used Markov chain Monte Carlo (MCMC) (c.f. Congdon 2001) to analyze the

model. MCMC sequentially generates the subsets of the parameters from the “full

conditional” distribution given the data and the other sets of parameters. Except for

the generation of the ln-rate parameters yi,j , the MCMC uses standard algorithm.

Each duration time Di,j has a ln-rate parameter yi,j . The ln-rate parameters have a

normal distribution with mean µi,s = x′iβs +φi,D and standard deviation σs where the

state for Di,j is s = si,j . The full conditional distribution for yi,j can be written as the

product of exponential and normal densities:

f(yi,j) ∝ exp(−yi,jci,j) exp[− exp(−yi,j)di,j ] exp
[
−(yi,j − µi,j)2

2σ2
s

]

where ci,j = 1 if the duration time Di,j is observed, and ci,j = 0 if the duration

time is right truncated, which occurs if the bond does not default before the end of the

observation interval. We generate yi,j by using the “slice sampling” method of Damien,

Wakefield, and Walker (1999). This method introduces an auxiliary random variable

V and defines the joint distribution of V and yi,j as:

f(yi,j , v) ∝ χ {v ≤ exp[− exp(−yi,j)di,j ]} exp(−yi,jci,j) exp
[
−(yi,j − µi,j)2

2σ2
s

]

where χ is the indicator function. One can verify that integrating over V in the joint

distribution gives the full conditional distribution of yi,j . Given yi,j , the conditional

distribution of V is uniform on zero to exp[− exp(−yi,j)di,j ]. Given V , the conditional
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distribution of yi,j has a truncated normal distribution:

f(yi,j |V ) ∝ exp
[
−(yi,j − [µi,j − ci,jσ

2
s ])

2

2σ2
s

]
χ {yi,j > − ln[− ln(v)]} .

These facts are used in the MCMC to generate yi,j . Given the current value of yo
i,j ,

generate yi,j from a truncated normal distribution with mean µi,j− ci,jσ
2
s ; variance σ2

s ,

and lower truncation:

yi,j > − ln[− ln(v)] (17)

yi,j > yo
i,j − ln

[
di,j − exp(yo

i,j) ln(u)
]

(18)

where u is a uniform [0, 1] random deviate. We used the inverse cumulative distribution

function for the normal distribution to generate the truncated normal (c.f. Ripley

(1987)).

Given the ln-rate parameters {yi,j}, the full conditional distributions for βs, φi,D

and σ2
s are standard, closed-form distributions. The full conditional density for βs is:

βs ∼ Np(µn,β,s, Σn,β,s) (19)

Σn,β,s =


 ∑

i,j:si,j=s

1
σ2

s

xix
′
i + Σ−1

0,β,s



−1

(20)

µn,β,s = Σn,β,s


 ∑

i,j:si,j=s

1
σ2

s

(yi,j − φi,D)xi + Σ−1
0,β,sµ0,β,s


 . (21)
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The random effects φi have a bivariate normal distribution. The full conditional dis-

tribution of φi,D involves the conditional distribution of φi,D given φi,A:

φi,D|φi,A ∼ N

(
λAD

λ2
A

φi,A, λ2
D −

λ2
AD

λ2
A

)
. (22)

The full conditional distribution of φi,D is:

φi,D ∼ Np(µi,D, Σi,D) (23)

Σi,D =




K∑

s=1

∑

j:si,j=s

1
σ2

s

+
λ2

A

λ2
Dλ2

A − λ2
AD



−1

(24)

µi,D = Σi,D




K∑

s=1

∑

j:si,j=s

1
σ2

s

(yi,j − x′iβs) +
λADφi,A

λ2
Dλ2

A − λ2
AD


 . (25)

The full conditional distribution of σ2
s is:

σ2
s ∼ IG

(
γn,s

2
,
δn,s

2

)
(26)

γn,s = γ0,s +
∑

i,j:si,j=s

1 (27)

δn,s = δ0,s +
∑

i,j:si,j=s

(
yi,j − x′iβs − φi,D

)2 (28)

We use random walk, Metropolis-Hastings to generate the parameters αr,s and φi,A

for the jump distributions or transition probabilities. We generate a candidate value

αc
r,s from a random walk:

αc
r,s ∼ Nq(αr,s, τ

2
1 I)
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where τ1 is a tuning parameter for the algorithm. This candidate is accepted with

probability:

ρ(αr,s, α
c
r,s) = min

{
π(αc

r,s)
π(αr,s)

, 1
}

where π is proportional to the posterior distribution of αr,s:

π(αr,s) =
∏

i,j:si,j−1=r

P (si,j |r, i) exp
[
−1

2
(αr,s − µ0,α,r,s)′Σ−1

0,α,r,s(αr,s − µ0,α,r,s)
]

,

and si,j are the observed ratings for all issuers and transitions. The current value αr,s is

retained with probability 1−ρ(αr,s, α
c
r,s). Similarly, random walk, Metropolis-Hastings

is used to generate φi,A. Generate a candidate from:

φc
i,A ∼ N(φi,A, τ2

2 ),

and τ2 is a tuning parameter for the algorithm. The candidate is accepted with prob-

ability

ρ(φi,A, φc
i,A) = min

{
π(φc

i,A)
π(φi,A)

, 1
}

where

π(φi,A) =
∏

j:si,j−1=r

P (si,j |r, i) exp


−

λ2
D

(
φi,A − λAD

λ2
D

φi,D

)2

2
(
λ2

Aλ2
D − λ2

AD

)


 ,

and the current φi,A is retained with probability 1− ρ(φi,A, φc
i,A).

The initial “burn-in” period of our MCMC chains consisted of 100,000 iterations.

We then generated another 100,000 iterations for estimation. To conserve memory, we
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thinned the chained by only using every tenth iterations, for a total of 10,000 iterations

to compute posterior means and posterior standard deviations of the parameters. We

also computed the generator for various values of the covariates on each of the 10,000

iterations that we used for estimation. On each of these iterations, we generated 100

random effects φi, and 100 error terms εi,s for each state, and computed the generator

for each draw of the random effects and error terms. In totaly, we computed the

generator 1,000,000 times for each setting of covariates.
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Table 1: Cross Tabulation : Countries vs. Sectors

Banking Industrial Utility Other Total
Canada 47 546 46 224 863

EU 569 685 71 312 1637
Japan 168 469 23 89 749

UK 232 537 113 131 1013
US 1200 12848 2115 2558 18721

Total 2216 15085 2368 3314 22983

Table 2: Cross tabulation of rating category transitions
End AAA AA A Baa Ba B C WR D Total

End 0 0 0 0 0 0 0 0 0 0 0
AAA 130 0 256 20 0 0 0 0 98 0 504

AA 667 102 0 828 15 3 4 0 375 0 1994
A 1067 10 537 0 1199 49 12 1 742 0 3617

Baa 965 7 40 804 0 976 75 12 784 6 3669
Ba 440 1 9 49 715 0 1250 68 965 16 3513
B 696 1 9 25 54 611 0 1234 897 112 3639
C 318 0 1 1 12 24 228 0 344 848 1776

WR 3294 32 59 171 171 232 238 74 0 0 4271
D 0 0 0 0 0 0 0 0 0 0 0

Total 7577 153 911 1898 2166 1895 1807 1389 4205 982 22983

Table 3: Mean Duration Times

Rating Category AAA AA A Baa Ba B C WR
Mean Duration in Days 2807 2192 2463 2112 1449 1143 1002 1140
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Table 4: Daily Generator (Q) & Yearly Transition Probability Matrix (TPM)
Estimates for the Standard Profile i.e. US Industrial Issuers

Q AAA AA A BAA BA B C WR D

AAA −3.236E−04 2.138E−04 1.240E−05 4.578E−15 1.472E−13 2.957E−14 3.475E−16 9.743E−05 1.051E−09
AA 3.016E−05 −4.020E−04 2.410E−04 3.506E−06 2.491E−06 1.993E−06 4.525E−08 1.227E−04 1.789E−07

A 1.088E−06 3.991E−05 −3.340E−04 1.702E−04 1.116E−05 2.678E−06 1.357E−07 1.088E−04 5.168E−08
BAA 2.947E−07 4.020E−06 8.942E−05 −4.183E−04 1.657E−04 1.498E−05 4.825E−07 1.426E−04 8.381E−07

BA 8.035E−08 2.015E−06 9.691E−06 1.142E−04 −6.990E−04 3.062E−04 1.217E−05 2.505E−04 4.133E−06
B 2.053E−07 2.003E−06 5.151E−06 1.153E−05 1.375E−04 −7.398E−04 3.133E−04 2.397E−04 3.029E−05
C 1.465E−10 1.346E−09 3.879E−07 7.418E−06 1.511E−05 1.499E−04 −1.083E−03 2.715E−04 6.384E−04

WR 2.957E−05 9.249E−05 3.800E−04 4.554E−04 8.916E−04 9.936E−04 2.848E−04 −3.128E−03 7.207E−08
D 0 0 0 0 0 0 0 0 0

TPM AAA AA A BAA BA B C WR D

AAA 0.8891 0.0688 0.0088 0.0023 0.0039 0.0044 0.0013 0.0213 0.0001
AA 0.0098 0.8650 0.0791 0.0061 0.0058 0.0061 0.0017 0.0262 0.0002

A 0.0006 0.0133 0.8886 0.0566 0.0093 0.0060 0.0016 0.0238 0.0002
BAA 0.0003 0.0021 0.0311 0.8634 0.0553 0.0135 0.0025 0.0312 0.0006

BA 0.0004 0.0017 0.0079 0.0395 0.7876 0.0971 0.0112 0.0516 0.0030
B 0.0004 0.0016 0.0058 0.0094 0.0483 0.7782 0.0854 0.0500 0.0208
C 0.0003 0.0011 0.0045 0.0074 0.0147 0.0503 0.6790 0.0494 0.1933

WR 0.0063 0.0199 0.0815 0.0997 0.1790 0.2009 0.0627 0.3398 0.0102
D 0 0 0 0 0 0 0 0 1
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Table 5: Estimation Results : Transition Probability Matrices (over one year horizon) for
US Issuers in various industry sectors. Table entries are 100 times the probability values.

Banking Sector

AAA AA A BAA BA B C WR D
AAA 85.06 11.44 0.64 0.25 0.07 0.01 0.01 2.53 0.00

AA 0.43 90.07 5.91 0.39 0.09 0.04 0.01 3.04 0.00
A 0.15 5.58 88.32 2.95 0.23 0.04 0.01 2.72 0.00

BAA 0.27 2.03 15.61 72.01 5.54 0.48 0.05 3.97 0.04
BA 0.17 1.10 5.95 14.92 61.71 10.57 1.28 4.24 0.06

B 0.31 0.68 1.61 4.90 13.98 56.97 14.14 6.45 0.95
C 0.07 0.18 0.25 0.41 0.33 0.75 85.00 2.02 11.00

WR 4.54 11.21 14.58 12.38 3.36 0.63 0.23 53.04 0.02
D 0 0 0 0 0 0 0 0 100

Industrial Sector

AAA AA A BAA BA B C WR D
AAA 88.91 6.88 0.88 0.23 0.39 0.44 0.13 2.13 0.01

AA 0.98 86.50 7.91 0.61 0.58 0.61 0.17 2.62 0.02
A 0.06 1.33 88.86 5.66 0.93 0.60 0.16 2.38 0.02

BAA 0.03 0.21 3.11 86.34 5.53 1.35 0.25 3.12 0.06
BA 0.04 0.17 0.79 3.95 78.76 9.71 1.12 5.16 0.30

B 0.04 0.16 0.58 0.94 4.83 77.82 8.54 5.00 2.08
C 0.03 0.11 0.45 0.74 1.47 5.03 67.90 4.94 19.33

WR 0.63 1.99 8.15 9.97 17.90 20.09 6.27 33.98 1.02
D 0 0 0 0 0 0 0 0 100

Utility Sector

AAA AA A BAA BA B C WR D
AAA 94.17 3.78 1.83 0.07 0.01 0.00 0.00 0.15 0.00

AA 0.34 90.63 7.45 0.54 0.03 0.02 0.01 0.98 0.00
A 0.03 1.79 92.22 4.47 0.20 0.02 0.01 1.27 0.00

BAA 0.02 0.10 3.72 90.97 3.16 0.25 0.11 1.65 0.02
BA 0.02 0.10 0.50 9.93 82.87 3.84 0.95 1.66 0.14

B 0.01 0.06 0.33 3.14 15.35 66.63 9.18 3.39 1.90
C 0.04 0.09 0.64 2.97 3.78 11.68 62.27 6.39 12.14

WR 0.01 1.90 11.27 19.20 3.63 1.00 0.57 62.37 0.06
D 0 0 0 0 0 0 0 0 100
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Table 6: Robustness Checks : Continuous time Markov Chain

Industrial Aaa Aa A Baa Ba B C WR D
Aaa 89 6 1 0 0 0 0 3 0
Aa 1 86 8 0 0 0 0 4 0
A 0 1 88 6 1 0 0 4 0

Baa 0 0 3 84 6 1 0 6 0
Ba 0 0 0 4 77 9 1 8 0
B 0 0 0 1 4 74 9 9 3
C 0 0 0 0 1 5 63 9 22

WR 0 0 1 2 3 3 1 90 0
D 0 0 0 0 0 0 0 0 100

Utility Aaa Aa A Baa Ba B C WR D
Aaa 95 3 2 0 0 0 0 0 0
Aa 0 91 8 1 0 0 0 1 0
A 0 2 91 5 0 0 0 2 0

Baa 0 0 4 89 4 0 0 2 0
Ba 0 0 0 10 82 4 1 2 0
B 0 0 0 3 18 60 11 5 3
C 0 0 0 2 4 13 57 8 15

WR 0 0 3 4 1 0 0 91 0
D 0 0 0 0 0 0 0 0 100

Transition Probability Matrices (over one year horizon) for Industrial and Utility Issuers. Each table above shows 100 times the
probability values. The matrices have been estimated using an ordinary continuous time Markov chain and the entire dataset.
They illustrate the heterogeneity between Industrial and Utility sector issuers.

Table 7: Robustness Checks : Discrete time Markov Chain

Industrial Aaa Aa A Baa Ba B C WR D
Aaa 84 8 2 0 0 0 0 5 0
Aa 0 83 9 1 0 0 0 6 0
A 0 1 84 7 1 0 0 6 0
Baa 0 0 4 83 4 1 0 7 0
Ba 0 0 1 5 70 10 1 12 1
B 0 0 0 0 5 71 9 11 4
C 0 0 0 0 1 5 63 10 22
WR 0 0 1 2 3 7 2 85 0
D 0 0 0 0 0 0 0 0 100

Utility Aaa Aa A Baa Ba B C WR D
Aaa 91 5 4 0 0 0 0 0 0
Aa 0 83 12 2 0 0 0 4 0
A 0 2 88 5 1 0 0 3 0
Baa 0 0 4 87 3 1 0 5 0
Ba 0 0 1 5 83 5 1 4 0
B 0 0 1 10 11 70 1 5 3
C 0 0 0 0 0 11 65 10 14
WR 0 1 3 6 2 1 0 86 0
D 0 0 0 0 0 0 0 0 100

Transition Probability Matrices (over one year horizon) for Industrial and Utility Issuers. Each table above shows 100 times
the probability values. The matrices have been estimated using a discrete time Markov chain and discrete (yearly) observation
times over the ten year period 1991-2000. They illustrate the heterogeneity between Industrial and Utility sector issuers.
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Figure 1: Summary of duration times spent in each rating category
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This figure shows the variation of duration times across rating categories. Higher rated issuers have longer and more variable
duration times.
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Figure 2: Variation of the Jafry Schuermann metric across issuer profiles
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This figure shows the variation of the Jafry-Schuermann metric (proposed in Jafry and Schuermann (2004)) across country-
sector profiles on a relative scale. US Industrial issuers make up the standard profile. The figure shows for other important
issuer profiles, (100 times) the deviation of the mobility metric from this standard. Compared to US Industrial issuers, US as
well as non-US issuers from the utility sector have generally lower mobility and US as well as non-US issuers from the banking
sector have generally higher mobility.
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Figure 3: Variation of the C→D default probability across issuer profiles
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This figure shows the variation in C→D default probability across issuer profiles. The standard profile of US Industrial issuers
shows a generally higher default probability. Within each sector, the EU issuers show systematically lower default probabilities
than their US and UK counterparts.
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Figure 4: Variation of the BAA upgrade probabilities across issuer profiles
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This figure graphs the probability that a BAA rated issuer is upgraded to either AAA, AA or A rating category within the next
year. It shows the variation in this total upgrade probability for BAA rated issuers across different issuer profiles. It shows that
the banking sector issuers are 10-15% more likely to be upgraded than issuers from other sectors. Within each sector depicted,
UK issuers systematically have the highest upgrade probability.
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Figure 5: Variation of the AAA stay probabilities across issuer profiles
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This figure shows the variation in the stay probability for AAA rated issuers across different issuer profiles. This is the chance
that AAA issuers will remain in AAA rating category after a year. In general these stay probabilities are smallest for Banking
issuers and largest for Utility issuers, with those for Industrial issuers lying somewhere in between. Within each sector, the EU
issuers show systematically higher AAA stay probabilities than other issuers in that sector.
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