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Modeling the dynamics of stock returns is a key issue in modern asset pricing. A realistic model

of return dynamics is essential for option pricing, portfolio analysis, and risk management. One of

the most popular continuous-time models for return dynamics in the current literature is the a�ne

jump-di�usion (hereafter AJD) models of Du�e, Pan, and Singleton (2000) (hereafter DPS). In

AJD models, stock returns are driven by a�ne di�usions and compound Poisson processes. AJD

models capture important stylized behaviors of index returns and are highly tractable. They allow

closed-form pricing formulae for a wide range of equity and �xed-income derivatives.

Despite the successes of AJD models, Brownian motion and compound Poisson process (the

two main building blocks of AJD models) are only two special cases of L�evy processes, which are

continuous-time stochastic processes with stationary and independent increments. L�evy processes are

much more 
exible than Brownian motion and compound Poisson process for modeling purposes. For

example, L�evy processes allow non-normal increments (compared to normal increments of Brownian

motion) and much richer jump structures than compound Poisson process. Moreover, Carr and Wu

(2004) show that L�evy processes are as tractable as AJD models for pricing purposes: Closed-form

pricing formulae are available for a wide range of derivative securities under L�evy processes.

These appealing features of L�evy processes have spurred a fast-growing literature that models

return dynamics using L�evy processes in recent years.1 This new development, however, has raised

some challenging theoretical and empirical issues in the current literature. While existing studies

of L�evy processes have mainly focused on either the physical or the risk-neutral return dynamics, a

key remaining question is whether L�evy processes have signi�cant empirical advantages over AJD

models in modeling the joint return dynamics.2 This is an important question because the ultimate

1See Wu (2006) for an excellent review of the current literature on L�evy processes. See A��t-Sahalia (2004) and

A��t-Sahalia and Jacod (2004) on some fundamental issues on statistical inferences of L�evy processes.
2Madan, Carr, and Chang (1998), Carr, Geman, Madan, and Yor (2002), Huang and Wu (2003), and Carr and Wu
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test of the success of a model should be its ability to capture both the physical and the risk-neutral

dynamics of asset returns. In addition, the most sophisticated AJD models in the literature can

capture many important stylized behaviors of index returns. One such model is the double-jump

model of Eraker, Johannes, and Polson (2003) (hereafter EJP), which includes not only stochastic

volatility and leverage e�ect, but also compound Poisson jumps in both returns and volatility. There

are no direct comparisons between L�evy jump models and the double-jump model of EJP (2003) in

capturing the joint return dynamics in the current literature.3

In this paper, we compare the performances of some widely used L�evy jump models with that of

the most sophisticated AJD models in capturing the joint dynamics of spot and option prices of the

S&P 500 index. In particular, we consider models with stochastic volatility and jumps in returns that

follow variance gamma (VG) or log stable (LS) processes, two most commonly used L�evy processes

in the current literature. We also consider AJD models with stochastic volatility and compound

Poisson jumps in returns or correlated compound Poisson jumps in both returns and volatility. The

latter is the preferred model of EJP (2003).

Our approach has several advantages over most existing studies on L�evy processes. First, our

analysis focuses on the joint dynamics of spot and options prices. In contrast, most existing studies

on L�evy processes have mainly focused on either the physical or the risk-neutral dynamics. Second,

by using both spot and option prices, we could obtain more accurate estimates of model parameters

and latent volatility and jump variables, because both sets of prices contain important information

about the same return dynamics. Finally, the joint analysis allows us to estimate market prices of

risks that govern the change of measure process. This is impossible to do in most previous studies

(2003) have studied various L�evy processes, such as variance gamma (VG) and log stable (LS) processes, for option

pricing. On the other hand, Li, Wells, and Yu (2006) provide a Bayesian analysis of return models with stochastic

volatility and L�evy jumps using S&P 500 index returns.
3Existing studies of L�evy processes using option prices, such as Huang and Wu (2003), do not compare the perfor-

mances of L�evy jump models with that of the double-jump model.
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because spot (option) prices allow identi�cation of only the physical (risk-neutral) parameters.

We face several challenges in our joint analysis of L�evy jump models. First, while the change of

measure for Brownian motion and compound Poisson process is well understood, the change of mea-

sure for in�nite-activity L�evy jumps is more complicated and less studied in the literature. Second,

the estimation of L�evy processes is generally quite di�cult. For example, for stable distribution, ex-

cept for some special cases, the probability density generally does not have a closed form and higher

moments of returns do not even exist. As a result, it is di�cult to use likelihood- or moment-based

methods for estimation. Finally, the inclusion of option prices signi�cantly increases the computa-

tional complexity because certain parameters enter into the option pricing formulae nonlinearly and

the computation of option prices involves numerical integrations.

Our paper overcomes these di�culties and contributes to the fast-growing literature on L�evy

processes in several dimensions. First, based on an important result of Sato (1999), we provide a

detailed analysis on the change of measure for VG and LS processes. In existing AJD models, jumps

under both the physical and the risk-neutral measures are restricted to follow the same compound

Poisson processes. For a fair comparison between AJD and L�evy jump models, we restrict jumps in

our L�evy models to follow the same L�evy processes under both measures.

Second, we develop and implement e�cient Markov chain Monte Carlo (MCMC) methods for

estimating model parameters, latent volatility and jump variables of L�evy jump models using spot

and option prices. The MCMC methods allow us to �lter out latent volatility and jump variables,

which are important for understanding the contributions of these factors to model performance.

The MCMC methods developed here are extensions of that of Li, Wells, and Yu (2006) (hereafter

LWY), who mainly focus on estimating L�evy jump models using spot prices. Due to the nonlinear

option pricing formulae involved, we rely on more sophisticated updating procedures for many model

parameters and latent variables.
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Finally, we apply the MCMC methods to estimate the AJD and L�evy jump models using daily

returns of the S&P 500 index and daily prices of a short-term ATM SPX option from January

4, 1993 to December 31, 1993. We show that our L�evy jump models signi�cantly outperform the

preferred AJD model of EJP (2003) in capturing the joint dynamics of the spot and option prices

of the S&P 500 index. For the physical dynamics, the in�nite-activity L�evy jumps capture many

small movements in index returns that are too big for Brownian motion to model and too small for

compound Poisson process to capture. For the risk-neutral dynamics, the L�evy jump models have

signi�cantly smaller in-sample and out-of-sample option pricing errors than the preferred AJD model.

We also con�rm the result of Eraker (2004) that jumps in volatility do not signi�cantly improve the

modeling of option prices, although they improve the modeling of the physical dynamics.

There are only a few other studies that estimate L�evy processes using spot and option prices

jointly. Wu (2004) introduces the so-called dampened power law to capture the tail behaviors of

index returns under the physical and the risk-neutral measures. Bakshi and Wu (2005) estimate

L�evy jump models using the spot and option prices of the Nasdaq 100 index during the Internet

\bubble" period. Our study di�ers from and complements these papers in terms of our research

objective, theoretical approach, and estimation method.

The main focus of our paper is to address a basic and yet fundamental issue in the current

continuous-time �nance literature: Can commonly used L�evy jump models outperform the most

sophisticated AJD models in capturing the joint dynamics of spot and option prices? The empirical

advantages of L�evy jump models over AJD models documented here will help to remove any doubts

on the empirical relevance of L�evy processes and will help to further advance the literature on

L�evy processes. On the other hand, while Wu (2004) and Bakshi and Wu (2005) consider more

sophisticated L�evy models, they do not compare the performances of their models with that of AJD

models and thus do not address the basic question studied in this paper.
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Consistent with the main objective of our study, we also adopt a di�erent approach to the change

of measure for L�evy processes from that of Wu (2004) and Bakshi and Wu (2005). We require that

jumps follow the same L�evy processes under the physical and the risk-neutral measures in order to

have a fair comparison with AJD models in which jumps under both measures follow compound

Poisson processes. Given this restriction, we obtain the Radon-Nikodym derivatives for VG and

LS processes based on Sato's (1999) theorem. In contrast, Wu (2004) and Bakshi and Wu (2005)

�x the form of the Radon-Nikodym derivative, which is de�ned by the so-called Esscher transform.

Under this transform, jumps generally follow di�erent L�evy processes under the two measures. The

two approaches to the change of measure impose di�erent restrictions on model structures and are

appropriate for di�erent applications.

The estimation method used in our paper is also di�erent from that of Wu (2004) and Bakshi

and Wu (2005), which is likelihood based. The MCMC approach we adopt is particularly suitable to

deal with the large number of latent volatility and jump variables and allows us to study the impacts

of priors and parameter uncertainties in applications such as hedging, portfolio selection, and VaR

calculation.

The rest of the paper is organized as follows. In Section 1, we introduce the AJD and L�evy jump

models and discuss the change of measure and option pricing under these models. In Section 2, we

develop MCMC methods for estimating model parameters and latent variables of L�evy jump models

using spot and option prices. Section 3 contains empirical results using daily S&P 500 index returns

and prices of SPX options. Section 4 concludes the paper. Appendix A provides mathematical proofs

and Appendix B provides detailed discussions of the MCMC methods.

1. AJD and L�evy Jump Models for Return Dynamics

In this section, we introduce some of the most sophisticated AJD models and some commonly

used L�evy jump models for return dynamics. We also discuss the change of measure (between the
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physical and the risk-neutral measures) and option pricing under these models. This section provides

the theoretical foundation for the empirical analysis in the later part of the paper.

1.1 AJD Models for Return Dynamics

Suppose the uncertainty of the economy is described by a probability space (
;F ;P) and a �l-

tration fFtg. We refer to P as the physical probability measure which represents the probability

measure of the real world in which we reside. Let St be the price of a stock and Yt be the contin-

uously compounded return on the stock, i.e., Yt = logSt: We assume that the dynamics of Yt are

characterized by the following model:

dYt = �dt+
p
vtdW

(1)
t (P) + dJyt (P) ; (1)

dvt = � (� � vt) dt+ �v
p
vt

�
�dW

(1)
t (P) +

p
1� �2dW (2)

t (P)
�
+ dJvt (P) ; (2)

where � measures the expected rate of return, vt measures the instantaneous volatility of return,

W
(1)
t (P) and W (2)

t (P) are independent standard Brownian motions under P; and Jyt (P) and Jvt (P)

represent jumps in returns and volatility under P, respectively.

In the above model, the instantaneous volatility of returns is stochastic and follows the square-

root process of Heston (1993): � represents the long-run mean of vt; � is the speed of mean reversion,

�v is the so-called volatility of volatility, and � measures the correlation between volatility and

returns. Many studies have documented a strong negative correlation between volatility and returns,

the so-called \leverage" e�ect, and the correlation coe�cient � helps to capture this phenomenon.

The above model is sometimes referred to as the double-jump model because of the jumps in

both returns and volatility. As shown in EJP (2003), the negative jumps in returns, Jyt (P) ; help to

capture the major crashes observed in the U.S. market; and the jumps in volatility, Jvt (P) ; help to

model rapid increase in volatility that cannot be easily captured by the square-root process.

In models with jumps only in returns, it is often assumed that the jump component follows

a compound Poisson process with a constant jump intensity and jump sizes that follow a normal
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distribution:

Jyt (P) =
NtX
n=1

�yn;

where Nt � Poisson (�t) and �yn � N
�
�y; �

2
y

�
:We refer to this model as the Merton Jump (hereafter

MJ) model because it was �rst introduced in Merton (1976). Among models with jumps in both

returns and volatility, the correlated Merton Jump (hereafter CMJ) model is the preferred model in

EJP (2003) and Eraker (2004): 0BB@ Jyt (P)

Jvt (P)

1CCA =

NtX
n=1

0BB@ �yn

�vn

1CCA ;

where Nt � Poisson (�t) ; �vn � exp (�v) ; and �
y
nj�vn � N

�
�y + �J�

v
n; �

2
y

�
:

The model in (1)-(2) nests most AJD models for return dynamics under the physical measure

in the existing literature. For example, without jumps in returns and volatility, the above model

reduces to the stochastic volatility model of Heston (1993). With MJ jumps only in returns, we

have the stochastic volatility and MJ jump model of Bates (1996), Bakshi, Cao, and Chen (1997),

Andersen, Benzoni, and Lund (2002), and Pan (2002) among others.

We consider two AJD models in our empirical analysis. The �rst model, denoted as SVMJ, has

stochastic volatility and MJ jumps in returns. The second model, denoted as SVCMJ, has stochastic

volatility and correlated MJ jumps in returns and volatility and is the preferred model of EJP (2003).

1.2 L�evy Jump Models for Return Dynamics

The two basic building blocks for AJD models, Brownian motion and compound Poisson process,

are special cases of L�evy processes, which are continuous-time stochastic processes with stationary

and independent increments. Formally, if Xt is a scalar L�evy process with respect to the �ltration

fFtg, then Xt is adapted to Ft; the sample paths of Xt are right-continuous with left limits, and

Xs � Xt is independent of Ft and distributed as Xs�t for 0 � t < s: L�evy processes are much

more 
exible than Brownian motion and compound Poisson process because they allow discontinuous

sample paths, non-normal increments, and more 
exible jump structures that have (possibly) in�nite

7



arrival rates.

Although the probability densities of L�evy processes are generally not known in closed form, their

characteristic functions �Xt(u) can be explicitly speci�ed as follows,

�Xt(u) = E
�
eiuXt

�
= e�t x(u); t � 0;

where  x (u) is called the characteristic exponent and satis�es the following L�evy-Khintchine formula

(see Bertoin, 1996, p. 12)

 x (u) � �i��u+
��2u2

2
+

Z
R0

�
1� eiux + iux1jxj<1

�
� (dx) ;

u 2 R; �� 2R, �� 2R+, and � is a measure on R0 =Rn f0g (R less zero) with

Z
R0
min

�
1; x2

�
�(dx) <1:

The L�evy-Khintchine formula suggests that a L�evy process consists of three independent com-

ponents: a linear deterministic drift part, a Brownian part, and a pure jump part. The triplet�
��; ��2; � (�)

�
; often called the characteristics of the L�evy process, completely describe the probabilis-

tic behavior of the process. The L�evy measure �(dx) dictates the jump behavior of the process. It

has the interpretation that � (E) ; for any subset E � R; is the rate at which the process takes jumps

of size x 2 E: In other words, � (E) measures the number of jumps whose jump sizes falling in E

per unit of time.

Depending on its L�evy measure � (�) ; a pure jump L�evy process can exhibit rich jump behaviors.

For �nite-activity jump processes, which have a �nite number of jumps within any �nite time interval,

� needs to be integrable, that is, Z
R0
� (dx) = � <1: (3)

The classical example of a �nite-activity jump process is the MJ model, in which the integral in (3)

de�nes the Poisson arrival intensity �. Conditional on one jump occurring, the MJ model assumes
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that the jump magnitude is normally distributed with mean �y and variance �
2
y : The L�evy measure

of the MJ model is given by

�MJ (dx) = �
1q
2��2y

exp

 
�(x� �y)

2

2�2y

!
dx:

Obviously, one can choose any distribution, F (x) ; for the jump size under the compound Poisson

framework and obtain the L�evy measure � (dx) = �dF (x) :

Unlike �nite-activity jump processes, an in�nite-activity jump process allows an (possibly) in�nite

number of jumps within any �nite time interval. The integral of the L�evy measure in (3) is no longer

�nite. Within the in�nite-activity category, the sample path of the jump process can exhibit either

�nite or in�nite variation, meaning that the aggregate absolute distance traveled by the process is

�nite or in�nite, respectively, over any �nite time interval.

In our empirical analysis, we choose the relatively parsimonious variance-gamma (hereafter VG)

model of Madan, Carr, and Chang (1998) as a representative of the in�nite-activity but �nite vari-

ation jump model. The VG process is obtained by subordinating an arithmetic Brownian motion

with drift 
 and variance � by an independent gamma process with unit mean rate and variance rate

�; G�t : That is,

XV G (tj�; 
; �) = 
G�t + �W (G�t ) ;

where W (t) is a standard Brownian motion and is independent of G�t : The L�evy measure of the VG

process is given by

�V G(dx) =

8>><>>:
1
�
exp(�Mx)

x dx x > 0

1
�
exp(�Gjxj)

jxj dx x < 0

;

where M =
�q

1
4

2�2 + 1

2�
2� + 1

2
�
��1

and G =
�q

1
4

2�2 + 1

2�
2� � 1

2
�
��1

: If 
 = 0; then the

jump structure is symmetric around zero, and M = G. Note that as the jump size approaches zero,

the arrival rate approaches in�nity. Thus, an in�nite-activity model incorporates (possibly) in�nitely
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many small jumps. The L�evy measure of an in�nite-activity jump process is singular at a zero jump

size.

Another example of in�nite-activity jump model is the L�evy �-stable process. In this process,

jump sizes follow an �-stable distribution denoted as S� (�; �; 
) ; with a tail index � 2 (0; 2]; a skew

parameter � 2 [�1; 1] ; a scale parameter � � 0; and a location parameter 
 2 R: The parameter �

determines the shape of the distribution, while � determines the skewness of the distribution. Stable

densities are supported on either R or R+. The latter situation occurs only when � < 1 and � = �1:

The characteristic function of an �-stable distribution S is given by

E
�
eiuS

�
=

8>><>>:
exp

�
��� juj�

�
1� i�

�
tan ��

2

�
(sign u)

�
+ i
u

�
� 6= 1

exp
�
�� juj

�
1 + i� 2� (sign u) ln juj

�
+ i
u

�
� = 1:

For a standardized �-stable distribution, denoted as S� (�; 1; 0) ; � = 1 and 
 = 0:

All �-stable processes are built upon a fundamental process called �-stable motion. A process Xt

is an �-stable motion if (i) X0 = 0 a.s., (ii) Xt has independent increments, and (iii) the increment

Xt �Xs (t > s) follows an �-stable distribution S�

�
�; (t� s)

1
� ; 0

�
: The role that �-stable motion

plays for �-stable processes is similar to that of Brownian motion for di�usion processes. Among

�-stable processes, we choose the �nite moment log-stable (hereafter LS) process of Carr and Wu

(2003) in our analysis. We obtain this process by multiplying an �-stable motion by a constant �:

Following Carr and Wu (2003), we set � = �1 to achieve �nite moments for index levels under the

risk-neutral measure (and thus �nite option prices), and negative skewness in the return density, a

feature that cannot be captured by either a Brownian motion or a symmetric L�evy �-stable motion.

We also restrict � 2 (1; 2) so that the process has the support of the whole real line. The �-stable

process de�ned in this way is a L�evy process with in�nite activity and in�nite variation and has a

L�evy measure

�LS(dx) =

8>><>>:
c1

1
x1+�

dx x > 0

c2
1

jxj1+�dx x < 0

;
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where c1 =
��(1+�)

2 and c2 =
��(1��)

2 : In the LS model, c1 becomes zero so that only negative jumps

are allowed in the L�evy measure. However, it is important to point out that in addition to the pure

jump part characterized by the L�evy measure �LS (dx) ; the LS process also has a deterministic drift

part that compensates the negative jumps so that the whole process is a martingale. For in�nite-

variation jumps, the compensation is so much that the admissible domain of LS actually covers the

whole real line, although there are only negative jumps. As a result, the LS process has an �-stable

distribution with in�nite p-th moment for p > �.

Therefore, we consider the following L�evy jump models for return dynamics in our empirical

analysis,

dYt = �dt+
p
vtdW

(1)
t (P) + dJyt (P) ; (4)

dvt = � (� � vt) dt+ �v
p
vt

�
�dW

(1)
t (P) +

p
1� �2dW (2)

t (P)
�
; (5)

where Jyt (P) follows either the VG or LS processes: J
y
t (P) = XV G (tj�; 
; �) or Jyt (P) = XLS (tj�; �) :

We refer to the above model with VG or LS jumps in returns as SVVG and SVLS, respectively. These

two models allow us to compare the performances of in�nite-activity jumps in returns with that of

compound Poisson jumps in both returns and volatility.

1.3 Change of Measure and Option Pricing for AJD and L�evy Jump Models

While equations (1)-(2) and (4)-(5) describe the AJD and L�evy jump models respectively under

the physical measure P; for the purpose of option pricing, we also need return dynamics under the

risk-neutral measure Q. Thus we need to consider the change of measure between P and Q for these

models.

The change of measure for Brownian motion is well understood in the literature. Following the

standard practice of Pan (2002), we assume that the market prices of risks of Brownian shocks to

returns and volatility are



(1)
t = �s

p
vt; (6)
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(2)
t = � 1p

1� �2

�
��s +

�v

�v

�
p
vt; (7)

respectively. Thus, the change of measure for the two Brownian motions is

dW
(1)
t (Q) = dW

(1)
t (P) + 
(1)t dt;

dW
(2)
t (Q) = dW

(2)
t (P) + 
(2)t dt;

where dW
(1)
t (Q) and dW (2)

t (Q) are independent standard Brownian motions under Q:

While the change of measure for Brownian motion only involves changing the drift term, the

change of measure for L�evy processes is much more complicated. The important result of Sato

(1999) provides the theoretical foundation for the change of measure of L�evy processes considered in

this paper.

Theorem 1. (Sato (1999)). Let
�
XP
t ;P

�
and

�
XQ
t ;Q

�
be two L�evy processes on R with correspond-

ing characteristic triplets
�
��P; ��

2
P; �P (dx)

�
and

�
��Q; ��

2
Q; �Q (dx)

�
; and � (x) = log

�
�Q(x)
�P(x)

�
: Then P

and Q are equivalent for all t if and only if the following conditions are satis�ed: (i) ��P = ��Q; (ii)

The L�evy measures are equivalent with
R1
�1

�
e�(x)=2 � 1

�2
�P (dx) < 1; and (iii) If ��P = 0; then

we must in addition have ��Q � ��P =
R 1
�1 x (�Q (x)� �P (x)) dx: And the Radon-Nikodym derivative

equals eUt ; where Ut is a L�evy process with characteristic triplet
�
��u; ��

2
u; �u (dx)

�
: (i) ��2u = 0; (ii)

��u = �
R1
�1

�
ey � 1� yjyj�1

� �
�P�

�1� dy; and (iii) �u = �P�
�1:

Proof. See Sato (1999).

The above theorem provides the necessary and su�cient conditions for two probability measures

of L�evy processes to be equivalent. The three conditions are imposed on the drift, Brownian, and

jump parts of a L�evy process, respectively. The �rst condition requires that the change of measure

does not a�ect the volatility of the Brownian part of a L�evy process, which is similar to the change

of measure for Brownian motions. The second condition requires the Hellinger distance between the

two L�evy measures to be �nite. That is, for the two probability measures to be equivalent, the jump
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structures of the two L�evy processes cannot be too di�erent from each other. The third condition

imposes restriction between the drift terms and the L�evy measures of the two L�evy processes.

Sato's (1999) theorem is very general, and to apply it in empirical analysis, some restrictions

on model structures have to be imposed. One approach that has been adopted by Wu (2004) and

Bakshi and Wu (2005) is based on the Esscher transform, which explicitly speci�es the form of the

Radon-Nikodym derivative between P and Q: Under this approach, if we have a L�evy jump under one

measure, we can easily get its representation under the other measure. Because the Radon-Nikodym

derivative is �xed, the L�evy jumps under the two measures may not follow the same L�evy processes.

This approach allows greater 
exibility for modeling purposes, because the Esscher transform allows

di�erent L�evy jumps under the physical and the risk-neutral measures.

However, under AJD models, jumps under both P and Q follow the same compound Poisson

processes with di�erent parameters. To be consistent with the main objective of our study, we

choose a di�erent approach to the change of measure from that of Wu (2004) and Bakshi and Wu

(2005). Speci�cally, to have a fair comparison with AJD models, we restrict L�evy jumps under P

and Q to follow the same L�evy process. That is, if the L�evy jump under P is VG (LS), then the

L�evy jump under Q has to be VG (LS) as well, although with possible di�erent parameters. Under

this restriction, the Radon-Nikodym derivative between P and Q generally will be di�erent from

that of Wu (2004) and Bakshi and Wu (2005). Based on the general result of Sato (1999) and our

speci�c model restriction, we obtain the following results on the change of measure for the four jump

processes considered in our paper.

Proposition 1. The parameters of the following four jump processes under measures P and Q must

satisfy the following restrictions:

� All parameters of MJ, (�; �y; �y) ; can change freely between P and Q;

� All parameters of CMJ, (�; �y; �y; �J ; �v) ; can change freely between P and Q;

13



� Among the parameters of VG, (�; 
; �) ; 
 and � can change freely between P and Q, while �

has to be the same under P and Q;

� None of the parameters of a L�evy �-stable process, (�; �; �; 
) ; can change between P and Q:

Proof. See Appendix A.

The above results impose restrictions on the physical and the risk-neutral parameters of the four

jump processes. For MJ and CMJ, all parameters can take di�erent values under the physical and the

risk-neutral measures. Previous studies, such as Pan (2002) and Eraker (2004), show that allowing all

the parameters to change between measures makes econometric identi�cation di�cult. As a result,

they only allow the mean jump size �y to be di�erent between P and Q: To compare our results

with existing studies, we follow the same approach. As a result, the parameters of MJ and CMJ

under both measures are
�
�; �y; �y; �

Q
y

�
and

�
�; �y; �v; �J ; �y; �

Q
y

�
; respectively. The parameters of

VG and LS under both measures are
�
�; 
; �; 
Q; �Q

�
and (�; �) ; respectively.

If the L�evy measures of the four jump processes under P and Q satisfy the restrictions in Proposi-

tion 1, then the Radon-Nikodym derivatives of these processes are given as eUt ; where Ut is de�ned as

in the second part of Sato's (1999) theorem. Combining this with the change of measure for the two

Brownian motions, we obtain the Radon-Nikodym derivatives for the AJD and L�evy jump models:

dQ
dP
jt = exp

�
�
Z t

0

(1)s dW (1)

s (P)�
Z t

0

(2)s dW (2)

s (P)� 1
2

�Z t

0

(1)2s ds+

Z t

0

(2)2s ds

��
expUt:

This naturally leads to the risk-neutral return dynamics of all four models we consider

dYt =

�
rt �

1

2
vt +  

Q
J (�i)

�
dt+

p
vtdW

(1)
t (Q) + dJyt (Q) ; (9)

dvt = [� (� � vt) + �vvt] dt+ �v
p
vt

�
�dW

(1)
t (Q) +

p
1� �2dW (2)

t (Q)
�
+ dJvt (Q) ; (10)

where Jvt (Q) = 0 for SVMJ, SVVG, and SVLS. The drift term of the return process under Q has

three components: the risk-free interest rate rt; the Ito adjustment for log price �1
2vt; and the jump
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compensator in returns  QJ (�i) under Q:4Consequently the drift term of the return process under

P equals � = rt � 1
2vt +  

Q
J (�i) + �svt:

Option prices are determined by the risk-neutral dynamics of stock returns. Carr and Wu (2004)

show that L�evy processes are as tractable as AJD models for the purpose of option pricing: The

risk-neutral dynamics in (9)-(10) lead to closed-form solution to the characteristic function of the

log stock price under Q: That is, when interest rate is constant,

�t (u) = EQ0
�
eiuYt

�
= EQ0

�
e
iuY0+iu(r+ J (�i))t+iu

�R t
0

p
vtdW

(1)
s (Q)� 1

2

R t
0 vsds

�
+iuJyt

�
= eiuY0+iu(r+ J (�i))tEQ0

h
eiuJ

y
t

i
EQ0

�
e
iu
�R t

0

p
vtdW

(1)
s (Q)� 1

2

R t
0 vsds

��
= eiuY0+iu(r+ J (�i))te�t J (u)e�b(t)v0�c(t);

where

b (t) =

�
iu+ u2

� �
1� e��t

�
(� + �M ) + (� � �M ) e��t ;

c (t) =
��

�2v

"
2 ln

2� �
�
� � �M

� �
1� e��t

�
2�

+
�
� � �M

�
t

#
;

�M = �� �v � iu�v�; � =
q
(�M )2 + (iu+ u2)�2v ; and Y0 = log (S0) :

The closed-form expression of the characteristic function of the log stock price naturally leads

to closed-form expression of the Fourier transform of option prices. Consequently, option price can

be solved using the Fourier inversion formula. The time-0 price of a European call option with

time-to-maturity of � and strike price of K equals

F (Y0; v0; �;K) = EQ0
�
e�r� (S� �K)+

�
=

e�r�

�
� Re

�Z 1

0
e�ix log(K)

�� (x� i)
�x2 + ix dx

�
:

4The explicit expressions of  J (�) of the four jump processes are given in Appendix A.
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In addition to the contractual terms of the option, the option price also depends on the current levels

of the stock price (Y0) and the instantaneous stochastic volatility (v0).

2. MCMC Estimation of L�evy Jump Models Using Spot and Option Prices

In this section, we discuss Bayesian MCMC estimation of L�evy jump models using spot and option

prices. We �rst summarize the speci�cations of all models considered in our empirical studies. Then

we discuss the econometric methods used for model estimation and comparison.

2.1 Summary of Model Speci�cations

In our joint estimation of L�evy jump models, we use daily returns on the S&P 500 index and

daily prices of a short-term ATM SPX option. Let C (t; �;K) be the market price at t of the option

with time-to-maturity � and strike price K; and F (t; �;K; Yt; vt;�) be the theoretical price of the

same option in a given model where the log stock price equals Yt; the instantaneous volatility equals

vt; and the vector of model parameters is denoted as �: We assume that the market price of the

option equals its theoretical price plus some random noises:

C (t; �;K) = F (t; �;K; Yt; vt;�) +$
c
t ;

where $c
t is the option pricing error. Similar to Eraker (2004), we allow �rst-order autocorrelation

in option pricing errors,

$c
t � N

�
�c$

c
t�1; �

2
c

�
:

This speci�cation intends to capture the phenomenon that if option pricing error is high on one day,

it is likely to be high on the next day.

We consider �rst-order Euler discretization of the continuous-time models at daily frequency.

Simulation studies in EJP (2003) and LWY (2006) show that the bias introduced by daily discretiza-

tion is very small. Therefore, the joint dynamics of the daily spot and the option prices under the
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four models we consider are summarized by the following system of equations:8>>>>>><>>>>>>:

Ct+1 � Ft+1 = �c (Ct � Ft) + �c�ct

Yt+1 = Yt + ��+
p
vt��

y
t+1 + J

y
t+1;

vt+1 = vt + �(� � vt)� + �v
p
vt��

v
t+1 + J

v
t+1;

(11)

where � = 1
252 ; � = rt � 1

2vt +  J (�i) + �
svt; �

c
t ; �

y
t+1; and �

v
t+1 � N(0; 1), corr(�yt+1; �

v
t+1) = �; and

�ct is independent of �
y
t+1 and �

v
t+1:

Specializing (11) to each of the four models, we have the following exact speci�cations of each

model.

� SVMJ. In this model, Jyt+1 = �yt+1N
y
t+1; P (N

y
t+1 = 1) = ��, �yt+1 � N(�y; �

2
y); and J

v
t+1 = 0 for

all t. We have observations (Yt; Ct)
T
t=0; latent volatility variables (vt)

T
t=0, jump times (N

y
t )
T
t=1,

and jump sizes (�yt )
T
t=1; and parameters � = f(�; �; �v; �; �y; �y; �) ;

�
�Qy
�
; (�s; �v) ; (�c; �c)g;

where the �rst group of parameters is either common to both measures or unique to the physical

measure, the second one is unique to the risk-neutral measure, the third one represents the

market prices of return and volatility risks, and the last one represents option pricing errors.

� SVCMJ. In this model, Jyt+1 = �yt+1Nt+1; J
v
t+1 = �vt+1Nt+1; P (Nt+1 = 1) = ��, �vt+1 �

exp (�v) ; and �
y
t+1j�vt+1 � N

�
�y + �J�

v
t+1; �

2
y

�
. We have observations (Yt; Ct)

T
t=0; latent volatil-

ity variables (vt)
T
t=0, jump times (Nt)

T
t=1, and jump sizes (�

v
t )
T
t=1 and (�

y
t )
T
t=1; and parameters

� = f(�; �; �v; �; �y; �y; �; �J ; �v) ;
�
�Qy
�
; (�s; �v) ; (�c; �c)g; where the �rst group of parameters

is either common to both measures or unique to the physical measure, the second one is unique

to the risk-neutral measure, the third one represents the market prices of return and volatility

risks, and the last one represents option pricing errors.

� SVVG. In this model, Jvt+1 = 0 for all t; and Jyt+1 follows a VG process whose discretized

version is

Jyt+1 = 
Gt+1 + �
p
Gt+1�

J
t+1;
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where �Jt+1 � N(0; 1) and Gt+1 � �(�� ; �). �
J
t+1 and Gt+1 are independent of each other and are

independent of �yt+1 and �
v
t+1: The parametrization of the Gamma distribution, � (�; �) ; used in

this paper has density form 1
���(�)x

��1ex=� : We have observations (Yt; Ct)Tt=0; latent volatility

variables (vt)
T
t=0, jump times/sizes (J

y
t )
T
t=1, and time-change variables (Gt)

T
t=1; and parameters

� = f(�; �; �v; �; �; 
; �) ;
�

Q; �Q

�
; (�s; �v) ; (�c; �c)g; where the �rst group of parameters is

either common to both measures or unique to the physical measure, the second one is unique

to the risk-neutral measure, the third one represents the market prices of return and volatility

risks, and the last one represents option pricing errors.

� SVLS. In this model, Jvt+1 = 0 for all t: The jump size Jyt+1, independent of �
y
t+1 and

�vt+1; follows a stable distribution with shape parameter �; skewness parameter �1; zero

drift, and scale parameter ��
1
� : That is, Jyt+1 � S�(�1; ��

1
� ; 0): We have observations

(Yt; Ct)
T
t=1; latent volatility variables (vt)

T
t=0, and jump times/sizes (J

y
t )
T
t=1; and parameters

� = f(�; �; �v; �; �; �) ; (�s; �v) ; (�c; �c)g; where the �rst group of parameters is either common

to both measures or unique to the physical measure, the second one represents the market

prices of return and volatility risks, and the last one represents option pricing errors.

2.2 MCMC Methods

Estimation of L�evy processes is generally very di�cult for several reasons. First, the probability

densities for most L�evy processes are not known in closed form, and for certain L�evy processes higher

moments of asset returns do not even exist. Second, the high dimensionality of latent variables,

such as stochastic volatility, jump sizes and jump times, signi�cantly complicates the estimation.

Computationally it is very demanding to integrate out the large number of latent variables when

implementing either likelihood or moment-based approaches. The inclusion of option prices signif-

icantly increases the computational complexity because certain parameters enter into the option

pricing formulae nonlinearly, and the computation of option prices involves numerical integrations.
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LWY (2006) have developed e�cient Bayesian MCMC methods for estimating L�evy processes

using only the spot price.5 We extend their methods to estimate the physical and risk-neutral

dynamics of L�evy processes jointly using spot and option prices. The main di�erence here is that

we need to rely on more sophisticated updating procedures for many model parameters and latent

variables due to the nonlinear option pricing formula involved.

Since MCMC analysis of SVMJ and SVCMJ has been considered in previous studies, such as

EJP (2003) and Eraker (2004), we focus our discussions of MCMC methods on SVVG and SVLS. We

mainly discuss how to derive the joint posterior distributions of model parameters and latent variables

for the two models and brie
y explain how to obtain posterior samples for individual parameters

and latent variables by simulating from the complicated joint posterior distributions. More detailed

discussions of our MCMC methods are provided in Appendix B.

We �rst consider SVVG. To simplify notation, we denote the index returns as Y = fYtgTt=0 ;

the option prices as C = fCtgTt=0 ; the volatility variables as V = fvtgTt=0 ; the jump times/sizes

as J = fJyt g
T
t=1 ; and the time-change variables as G = fGtgTt=1 : The joint posterior distribution of

parameters and latent variables, p (�;V;J;GjY;C) ; can be decomposed into products of individual

conditionals

p (�;V;J;GjY;C) / p(Y;C;V;J;G;�)

= p (CjY;V;�) p(Y;VjJ)p(JjG;�)p(Gj�)p(�):

Given the assumed option price dynamics, we have

p (CjY;V;�) =
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)
:

5Earlier studies, such as Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998), and Chib, Nardari,

and Shephard (2003), apply MCMC methods to estimate discrete-time stochastic volatility models. Other studies that

apply MCMC methods to continuous-time models for stock price or interest rate include Jones (1998, 2003a, b), Eraker

(2001, 2004), and Elerian, Chib, and Shephard (2001).
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Conditioning on vt and J
y
t+1, Yt+1 � Yt and vt+1 � vt follow a bivariate normal distribution0BB@ Yt+1 � Yt

vt+1 � vt

1CCA jvt; Jyt+1 � N

0BB@
0BB@ ��+ Jyt+1

�(� � vt)�

1CCA ; vt�

0BB@ 1 ��v

��v �2v

1CCA
1CCA ;

Jyt+1jGt+1;� � N(
Gt+1; �
2Gt+1) and Gt+1j� � �(�

�
; �):

Therefore, the joint posterior distribution of parameters and latent variables is given as

p (�;V;J;GjY;C) /
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)

�
T�1Y
t=0

1

�vvt�
p
1� �2

exp

�
� 1

2(1� �2)

��
�yt+1

�2 � 2��yt+1�vt+1 + ��vt+1�2��

�
T�1Y
t=0

1

�
p
Gt+1

exp

�
�(Jt+1 � 
Gt+1)

2

2�2Gt+1

�
�
T�1Y
t=0

1

�
�
� �(�� )

G
�
�
�1

t+1 expf�Gt+1
�
g � p(�);

where �yt+1 =
�
Yt+1 � Yt � ��� Jyt+1

�
=
p
vt� and �vt+1 = (vt+1 � vt � �(� � vt)�) =

�
�v
p
vt�

�
:

In SVLS, conditioning on vt and St+1, Yt+1�Yt and vt+1�vt follow a bivariate normal distribution0BB@ Yt+1 � Yt

vt+1 � vt

1CCA jvt; St+1 � N

0BB@
0BB@ ��+ St+1

�(� � vt)�

1CCA ; vt�

0BB@ 1 ��v

��v �2v

1CCA
1CCA ;

St+1 � S�(�1; ��
1
� ; 0):

In SVLS, we model jumps using stable process which can exhibit skewness and heavier tails than

normal distributions. Unfortunately, the probability density of St+1; p (St+1j�) ; is unknown. This

makes it di�cult to explicitly write down the joint likelihood function of (Yt+1; vt+1; St+1) ; because

p (Yt+1; vt+1; St+1j�) = p (Yt+1; vt+1jSt+1;�) p (St+1j�) : Consequently, it is di�cult to obtain the

joint posterior distribution for SVLS.

Buckle (1995) provides a representation of a stable variable which makes it possible to estimate

parameters of stable distributions using MCMC. The basic observation of Buckle (1995) is that

although the density of a stable variable is generally unknown, the joint density of the stable variable

and a well-chosen auxiliary variable is explicitly known. This joint density in turn leads to known
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joint posterior density of the stable variable and the auxiliary variable, which can be used in our

MCMC algorithm.

For the LS process we consider, we set � 2 (1; 2], � = �1, 
 = 0 and � = ��
1
� . We denote

the index returns as Y = fYtgTt=0 ; the option prices as C = fCtgTt=0 ; the volatility variables as

V = fvtgTt=0 ; the jump times/sizes as S = fStg
T
t=1 ; and the auxiliary variables asU = fUtgTt=1 : Based

on Buckle's (1995) result, we obtain the joint posterior distribution of V, S, U and � as

p (�;V;S;UjY;C) / p(Y;C;V;S;U;�)

= p (CjY;V;�) p(Y;VjS)p(S;Uj�)p(�)

/
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)

�
T�1Y
t=0

1

�vvt�
p
1� �2

exp

�
� 1

2(1� �2)

��
�yt+1

�2 � 2��yt+1�vt+1 + ��vt+1�2��

�( �

j�� 1j� 1
��
)T � exp

(
�
T�1X
t=0

j St+1

��
1
� t�(Ut+1)

j
�

��1

)
�
T�1Y
t=0

8<:j St+1

��
1
� t�(Ut+1)

j
�

��1
1

j St+1
��

1
�
j

9=;
�
T�1Y
t=0

h
1St+12(�1;0)\Ut+12(� 1

2
;l�)

+ 1St+12(0;1)\Ut+12(l�; 12 )

i
� p(�)

where �yt+1 = (Yt+1 � Yt � ��� St+1) =
p
vt�; �

v
t+1 = (vt+1 � vt � �(� � vt)�) =

�
�v
p
vt�

�
; l� =

��2
2� ; and t�(Ut+1) = (

sin[��Ut+1+
(2��)�

2
]

cos[�Ut+1]
)( cos[�Ut+1]

cos[�(��1)Ut+1+ (2��)�
2

]
)(��1)=�: We obtain joint posterior

samples of �;V; S; and U by simulating from the above joint posterior density. We then marginal-

ize U out to obtain the samples for �;V; and S. That is, we simply throw away the observations of

U and retain the observations of �;V; and S:

In general, it is di�cult to simulate directly from the above high-dimensional posterior distri-

butions. Instead, we derive the complete conditional distributions for each individual parameter

and latent variable and obtain posterior samples by simulating from these individual complete con-

ditionals iteratively following standard MCMC procedure. For example, for SVVG, we obtain the

posterior distribution p
�
�ij��i;J;G;V;Y;C

�
for i = 1; :::; k; where �i is the i-th element of �
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and ��i = (�1; :::; �i�1; �i+1; :::; �k) ; the posterior distribution for jump times p (J
y
t j�;G;V;Y;C) ;

jump sizes p (Gtj�;J;V;Y;C) ; and latent volatility variables p (vtjvt+1; vt�1;�;J;G;Y;C) ; for all

t: In estimation, we draw posterior samples from the above complete conditional distributions and

use the means of the posterior samples as parameter estimates and the standard deviations of the

posterior samples as standard errors of the parameter estimates. Appendix B provides the priors,

the posterior distributions, and the updating procedures for model parameters and latent variables

for all four models.

2.3 Model Diagnostics and Comparisons

The posterior estimates of model parameters and latent state variables allow us to examine the

performances of all four models in capturing the joint dynamics of spot and option prices.

One way to gauge the performances of each model in capturing the spot price is to test whether

the standardized model residuals of both returns and volatility follow an N (0; 1) distribution as in

EJP (2003) and LWY (2006). For example, for SVLS, if the model is correctly speci�ed, then

Yt+1 � Yt � ��� St+1p
vt�

= �yt+1 � N (0; 1) ;

and

vt+1 � vt � � (� � vt)�
�v
p
vt�

= �vt+1 � N (0; 1) :

Deviations of �yt+1 and �
v
t+1 from N (0; 1) can reveal rich information on potential sources of model

misspeci�cations.

To compare the performances of di�erent models in capturing the risk-neutral dynamics, we test

whether one model has signi�cantly smaller option pricing errors than another. For this purpose,

we adopt an approach developed by Diebold and Mariano (1995) (hereafter DM) in time series fore-

casting literature. Consider two models whose associated daily option pricing errors are f"1 (t)gTt=1

and f"2 (t)gTt=1 ; respectively. The null hypothesis that the two models have the same pricing errors is

E ["1 (t)] = E ["2 (t)] ; or E [d (t)] = 0; where d (t) = "1 (t)� "2 (t) : DM (1995) show that if fd (t)gTt=1
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is covariance stationary and short memory, then

p
T
�
d� �d

�
� N (0; 2�fd (0)) ;

where d = 1
T

PT
t=1 ["1 (t)� "2 (t)], fd (0) = 1

2�

P1
q=�1 
d (q) and 
d (q) = E [(dt � �d) (dt�q � �d)] :

In large samples, d is approximately normally distributed with mean �d and variance 2�fd (0) =T:

Thus, under the null hypothesis of equal pricing errors, the following DM statistic

DM =
dq

2� bfd (0) =T
is distributed asymptotically as N (0; 1) ; where bfd (0) is a consistent estimator of fd (0) :6 To compare
the overall performances of the two models, we use the DM statistic to measure whether one model

has signi�cantly smaller option pricing errors than another. We also use the DM statistic to measure

whether one model has smaller pricing errors than another for options in a speci�c moneyness and

maturity group.

3. Empirical Results

In this section, we provide empirical analysis of the four models (SVMJ, SVCMJ, SVVG, and

SVLS) using the spot and option prices of the S&P 500 index. We �rst introduce the data used in

our analysis. We then examine the performances of the four models based on their (i) estimates of

model parameters and latent volatility/jump variables; (ii) empirical �ts of the spot price; and (iii)

in-sample and out-of-sample option pricing errors.

3.1 The Data

We use the same data as that in A��t-Sahalia and Lo (1998), which include daily spot and option

prices of the S&P 500 index between January 4, 1993 and December 31, 1993. A��t-Sahalia and Lo

(1998) take the midpoint of the bid and ask prices of each option as observed market price and

6We estimate the variance of the test statistic using the Bartlett estimate of Newey and West (1987) with a lag

order of 50.
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eliminate observations with time-to-maturity less than one day, implied volatility greater than 70

percent, and price less than 1
8 : To deal with potential nonsynchronous trading and unobservable

dividend yield, they back out the futures price of the underlying index at the time the option prices

are observed. They obtain prices of calls and puts that have the same time-to-maturity and strike

price and are closest to the money. Using put-call parity, they solve for the futures price at that

certain maturity, which then can be used to back out the implied dividend yield via the cost-of-carry

relation.7

Our estimation uses daily returns of the S&P 500 index and daily prices of a short-term ATM

SPX option that we choose for each day.8 We require that the option has a time-to-maturity between

20 and 50 days and is closest to the money, i.e., its strike to spot price ratio is closest to one.9 On a

few days without such options, we use an option whose time-to-maturity is closet to 20 days. Table

1 provides summary statistics on the data used directly in our estimation. During 1993, the mean

and standard deviation of annualized continuously compounded daily returns of the index are 7.36%

and 8.94%, respectively. Index returns exhibit slight negative skewness and high kurtosis. The mean

and median time-to-maturities of the short-term options are 34 and 35 days, respectively, while the

shortest and longest time-to-maturities are 16 and 50 days, respectively. The price of the options

has a mean of $7.14 and a range between $3.44 and $10.72. The implied volatility has a mean of

9.2% and a range between 6.7% and 12.23%. The ratio between the strike and the spot price of the

short-term option is very close to 1. A��t-Sahalia and Lo (1998) note that the short-term interest

rates exhibit little variation during 1993, ranging from 2.85 percent to 3.21 percent. As a result, we

assume constant interest rate in our estimation and use the prevailing interest rate each day in our

7See A��t-Sahalia and Lo (1998) for more detailed descriptions of the dataset.

8Short-term ATM options are among the most liquid options and should have the most e�cient prices in the market.
9Since the time-to-maturity of an option changes daily, we have to use di�erent options on di�erent days in our

estimation.
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pricing formula.

Figure 1 provides time series plots of the level and log change of the S&P 500 index, and the

implied volatility of the short-term SPX options. The level of the index has increased steadily during

1993, with occasional relatively large negative returns, although none is as large as that of several

major stock market crashes in other periods. The implied volatility 
uctuates between 5% and 15%

during 1993 with strong mean reversion.

3.2 Estimates of Model Parameters and Latent Volatility/Jump Variables

Table 2 reports posterior estimates of (i) model parameters under both the physical and the

risk-neutral measures; (ii) market prices of risks for the two Brownian shocks (�v and �s); and (iii)

parameters describing option pricing errors (�c and �c). Figures 2 and 3 provide time series plots of

the �ltered volatility and jump variables for the four models, respectively. The estimates of model

parameters and latent variables reveal both similarities and di�erences among the four models.

Consistent with existing studies, all four models exhibit strong negative correlations between

volatility and returns: The estimates of � for the four models range from -0.56 to -0.82. The four

models share similar estimates of the long-run mean (�) of the volatility processes.10 The estimates

of the market prices of return and volatility risks are very similar across the four models and are

similar to those in previous studies. For example, the estimates of �s (�v) in the four models are

between 3.5 and 4.4 (2.9 and 4.8), while the estimate of �s (�v) in Pan (2002) equals 3.6 (3.1). The

four models also share similar estimates of parameters describing option pricing errors (�c and �c).

In particular, the estimates of �c in the four models are about 0.90, con�rming that there is indeed

strong autocorrelation in option pricing errors.

The four models also di�er from each other in important ways. For example, the volatility process

of SVVG has the strongest mean-reversion (�) and the highest volatility of volatility (�v) among the

10Due to jumps in volatility in SVCMJ, the long-run mean of volatility in this model should include the impact of

jumps.
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four models.11 The �ltered volatility variables of the four models in Figure 2 con�rm this fact and

show that the other three models have much smoother volatility factors. Interestingly, the �ltered

volatility variables of SVVG mimic the behavior of the implied volatilities of the short-term SPX

options (shown in Figure 1) much more closely than that of the other three models.

AJD and L�evy jump models exhibit dramatically di�erent jump behaviors. The estimated jump

intensities (�) for SVMJ and SVCMJ suggest that on average there are about one to two jumps per

year. While the mean jump sizes under P
�
�Py
�
in the two models are close to zero, the mean jump

sizes under Q
�
�Qy
�
are much more negative. The �ltered jump sizes and times of the two models in

Figure 3 also show that there are a few large jumps in returns (and volatility) in SVMJ (SVCMJ). On

the other hand, Figure 3 shows that in addition to several large jumps, SVVG and SVLS also exhibit

many frequent small jumps in returns. Hence, the in�nite-activity L�evy jumps have the advantage

of capturing both the infrequent large jumps as well as the frequent small jumps in returns. The

risk-neutral jump distribution of VG is less positively skewed than its physical jump distribution,

suggesting that jumps are less positive under Q than under P: This fact suggests that LS is likely

to underperform VG in modeling the joint dynamics of index returns because its parameters are

restricted to be the same under both measures. The estimated jump risk premium in index returns

is given by  QJ (�i) �  PJ (�i) for each model. The jump risk premiums for SVMJ and SVCMJ are

0.29% and 0.12%, respectively. The jump risk premium for SVVG is much higher at 2.28%, and by

de�nition the jump risk premium for SVLS is zero.

3.3 Performances in Modeling the Spot Price

In this section, we examine the performances of the four models in capturing the physical dy-

namics of the S&P 500 index. Based on estimated model parameters and latent volatility/jump

11The estimates of � in this paper di�er from that in LWY (2006) in magnitude mainly because we use a di�erent

scale on observables in our estimation. While LWY (2006) consider index returns in percentages, we express index

returns in decimal points.
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variables, we calculate the standardized residuals for both returns and volatility, �yt+1 and �
v
t+1. If a

given model is correctly speci�ed, then the distributions of both residuals should be close to N (0; 1).

Figure 4 (5) plots kernel density estimators of �yt+1 (�
v
t+1) of each of the four models and the

density function of N (0; 1) : For both SVMJ and SVCMJ, �yt+1 and �
v
t+1 exhibit clear deviations from

standard normal: There is a high peak at the center of the distributions of both residuals, suggesting

that the two models fail to capture the many small movements in both returns and volatility. On

the other hand, the distributions of �yt+1 and �
v
t+1 of the two L�evy jump models are much closer to

standard normal. The residuals of SVVG are closer to standard normal than that of SVLS. The fact

that none of the parameters of LS can change between P and Q limits its ability in capturing the

joint dynamics of index returns.

In addition to graphical illustrations, we also formally test whether �yt+1 and �
v
t+1 follow N (0; 1)

using the Kolmogorov-Smirnov (KS hereafter) test. For each set of the residuals, the KS test com-

pares the empirical cumulative distribution function (CDF) with the CDF of N (0; 1) and rejects

the null hypothesis if the maximum distance between the two CDFs is too big. The KS tests in

Table 3 reject the null hypothesis that �yt+1 and �
v
t+1 of SVMJ and SVCMJ follow a standard normal

distribution. The p-values are between 3-4% for most cases, except that the p-value equals 5.37%

for �vt+1 of SVCMJ. This suggests that including MJ jumps in volatility improves the modeling of

the volatility process. Consistent with Figures 4 and 5, the KS test fails to reject the null hypothesis

that �yt+1 and �
v
t+1 of the two L�evy models follow a standard normal distribution (p-values range from

25% to 38% for the two residuals under both models).

The above �ndings are consistent with the theoretical results of A��t-Sahalia (2004), and the

simulation and empirical evidence in LWY (2006). A��t-Sahalia (2004) shows that although in�nite-

activity L�evy jumps can generate an in�nite number of small jumps within any �nite time interval,

the frequency at which such jumps can occur is still a magnitude smaller than the frequency of
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movements in a Brownian motion. The size of such jumps also tend to be a magnitude larger than

that of a Brownian motion. Through numerical simulations, LWY (2006) show that A��t-Sahalia's

results, although derived for pure L�evy jumps, also hold for models with stochastic volatility and

L�evy jumps. Using daily returns of the S&P 500 index between January 1980 and December 2000,

LWY (2006) show that in�nite-activity L�evy jumps can capture the many small jumps in index

returns that are too big for Brownian motion to model and too small for compound Poisson process

to capture.

3.4 Performances in Modeling Option Prices

There is no guarantee that a model that captures the physical dynamics better also can �t option

prices better. For example, Eraker (2004) shows that while the double-jump model of EJP (2003)

captures index returns better than SVMJ, it does not have signi�cantly smaller option pricing errors.

In this section, we address the basic question whether the L�evy jump models we consider can capture

the joint dynamics of the S&P 500 index returns better than the AJD models.

Panel A of Table 4 reports the time series mean of daily absolute and percentage pricing errors

of the short-term ATM SPX options used in model estimation for the four models.12 We �nd similar

pricing errors for SVMJ and SVCMJ: The mean absolute pricing errors of the two models are about

44 cents (the mean option price is $7.14); and the mean percentage pricing errors of the two models

are about 6.3%, which is bigger than the percentage bid-ask spread of the option. On the other hand,

the mean absolute pricing errors of SVVG and SVLS are about 16 and 24 cents, respectively, and

the mean percentage pricing errors are about 2.4 and 3.6%, respectively. Consistent with the results

of Eraker (2004), the DM statistics in Panel B of Table 4 show that the pricing errors of SVMJ

and SVCMJ are not signi�cantly di�erent from each other. In contrast, SVVG and SVLS have

signi�cantly smaller absolute and percentage pricing errors than SVMJ and SVCMJ, and SVVG has

12Absolute pricing error of an option is the absolute value of the di�erence between model and market prices of the

option, and percentage pricing error of an option is the absolute pricing error divided by the market price of the option.
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signi�cantly smaller pricing errors than SVLS. The time series plots of the daily absolute (percentage)

pricing errors of the four models in Figure 6 (7) show that SVVG and SVLS have smaller absolute

(percentage) pricing errors than SVMJ and SVCMJ during most of the sample period. In particular,

SVVG has almost uniformly smaller in-sample option pricing errors than the AJD models. SVLS has

somewhat worse performances than SVVG and has relatively large percentage pricing errors during

the last few days of March 1993. Panel C of Table 4 shows that the KS test fails to reject the null

hypothesis at the 5% level that the option pricing errors �ct follow N (0; 1) for all models, con�rming

our econometric speci�cation of option pricing errors.

In addition to the short-term ATM SPX options used in estimation, we also examine the perfor-

mances of the four models in pricing 12,725 other options in the dataset.13 Because these options

have not been used in model estimation, they provide evidence on the out-of-sample performances

of the four models in option pricing. We divide all options into six moneyness groups, from deep

in-the-money (ITM) to deep out-of-the-money (OTM) options, and �ve maturity groups, with time-

to-maturities from less than one month to longer than six months. The majority of these options

are ITM options with time-to-maturities between one to six months, and we do not observe many

short-term deep OTM options. Based on the estimated model parameters and latent volatility vari-

ables, we calculate the theoretical price of each of these options under each model. Then based on

options that are available on each day, we obtain daily arithmetic weighted average of absolute and

percentage pricing errors for (i) all options; (ii) options within each of the moneyness groups (op-

tions across all maturities that belong to a certain moneyness group) or each of the maturity groups

(options across all moneyness that belong to a certain maturity group); and (iii) options within each

individual moneyness/maturity group.

We �rst examine the overall performances of the four models by focusing on the average pricing

13We eliminate options with prices that are less than one dollar.
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errors of the 12,725 out-of-sample options. The time series mean of daily weighted average of the

absolute and percentage pricing errors of all options are reported in the last four rows of the last

column in Panels A and B of Table 5, respectively. We see clearly that SVCMJ has smaller absolute

and percentage pricing errors than SVMJ, and SVVG and SVLS have smaller absolute and percentage

pricing errors than SVMJ and SVCMJ. While SVLS has the smallest absolute pricing errors, SVVG

has the smallest percentage pricing errors. The DM statistics for pair-wise comparisons of the four

models based on the absolute and percentage pricing errors of all options are reported in the last six

rows of the last column in Panels C and D of Table 5, respectively. While SVCMJ has signi�cantly

smaller absolute pricing errors than SVMJ, the percentage pricing errors of the two options are not

signi�cantly di�erent from each other. In contrast, SVVG has signi�cantly smaller absolute and

percentage pricing errors than both SVMJ and SVCMJ. SVLS has somewhat worse performances

than SVVG. For example, SVVG has signi�cantly smaller percentage pricing errors than SVLS, and

SVLS has percentage pricing errors that are not signi�cantly smaller than that of SVCMJ. Figure

8 (9) provides time series plots of daily weighted average of the absolute (percentage) pricing errors

of all options for the four models during our sample period. Consistent with the DM statistics, we

�nd that SVVG and SVLS have smaller absolute pricing errors than SVMJ and SVCMJ during most

of the sample period. While SVVG has smaller percentage pricing errors than SVMJ and SVCMJ

during most of the sample period, SVLS does not have a clear dominance over SVCMJ in terms of

percentage pricing errors.

Next we examine the performances of the four models in pricing options grouped by time-to-

maturity. The time series mean of daily weighted average of the absolute and percentage pricing

errors of options in each of the �ve maturity groups are reported in the last column in Panels A and

B of Table 5, respectively. The DM statistics for pair-wise comparisons of the four models based

on the absolute and percentage pricing errors of options in the �ve maturity groups are reported
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in the last column in Panels C and D of Table 5, respectively. We �nd similar patterns in model

performances for options in each maturity group as that for all options. For example, we �nd that

SVVG has signi�cantly smaller absolute and percentage pricing errors than SVMJ and SVCMJ for

most maturity groups. While SVLS has signi�cantly smaller absolute pricing errors than SVMJ and

SVCMJ for all maturity groups, it has signi�cantly smaller percentage pricing errors than SVMJ

and SVCMJ only for options with shortest time-to-maturities. SVVG has smaller percentage pricing

errors, although not all signi�cant, than SVLS for all maturity groups. Interestingly, we �nd that

SVCMJ does not have signi�cantly smaller absolute and percentage pricing errors than SVMJ for

all �ve maturity groups.

Finally, we examine the performances of the four models in pricing options grouped by moneyness.

The time series mean of daily weighted average of the absolute and percentage pricing errors of options

in each of the six moneyness groups are reported in the last four rows in Panels A and B of Table 5,

respectively. The DM statistics for pair-wise comparisons of the four models based on the absolute

and percentage pricing errors of options in the six moneyness groups are reported in the last six rows

in Panels C and D of Table 5, respectively. We �nd that SVCMJ has signi�cantly smaller absolute

(percentage) pricing errors than SVMJ only for ITM (deep ITM) options. In contrast, SVVG and

SVLS have signi�cantly smaller absolute and percentage pricing errors than SVMJ and SVCMJ for

most ITM and slightly OTM (1:0 < K=S < 1:03) options. While SVVG has smaller absolute and

percentage pricing errors than SVMJ and SVCMJ for all deep OTM options (K=S > 1:03) ; the

di�erences are statistically signi�cant only for absolute but not for percentage pricing errors. SVVG

tends to have larger (smaller) pricing errors than SVLS for ITM (OTM) options. We obtain similar

�ndings for moneyness groups with di�erent time-to-maturities, although the advantages of the L�evy

jump models over the AJD models become less signi�cant for options with longer time-to-maturities.

The analysis in this section clearly demonstrates the advantages of the L�evy jump models over

31



the AJD models in modeling the joint dynamics of the spot and option prices of the S&P 500 index.

The in�nite-activity L�evy jumps capture the many small movements in index returns that cannot be

captured by the AJD models. The L�evy jump models also have signi�cantly smaller in-sample and

out-of-sample option pricing errors than the AJD models, although LS is less 
exible than VG due

to more stringent restrictions on its jump parameters. We emphasize that the superior performances

of the L�evy jump models are obtained under the restriction that jumps under the physical and the

risk-neutral measures must follow the same L�evy process. If we allow jumps to follow di�erent L�evy

processes under the two measures, L�evy jump models are likely to have even better performances

in capturing the joint dynamics of index returns. Therefore, our analysis points out the great

potentials of L�evy processes for continuous-time �nance modeling and strongly suggests that we can

enrich existing AJD models by incorporating in�nite-activity L�evy jumps.

4. Conclusion

In this paper, we address a basic and yet fundamental question in the current continuous-time

�nance literature: Whether newly proposed L�evy jump models can outperform the most sophisticated

AJD models in capturing the joint dynamics of stock and option prices. We provide detailed analysis

on the change of measure for in�nite-activity L�evy jumps and develop e�cient Markov chain Monte

Carlo methods for estimating L�evy jump models using spot and option prices. We show that models

with in�nite-activity L�evy jumps in returns signi�cantly outperform AJD models with Merton jumps

in both returns and volatility in capturing the joint dynamics of the spot and options prices of the

S&P 500 index. Our analysis strongly suggests that incorporating in�nite-activity L�evy jumps into

existing AJD models can substantially increase the 
exibility of AJD models without sacri�cing their

tractability.
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APPENDIX A. Change of Measure for L�evy Jump Processes

In this section, we provide the proof of Proposition 1, which imposes restrictions on the parameters

of the four jump processes (MJ, CMJ, VG, and LS) under the physical measure P and the risk-neutral

measure Q: We need the following preliminary results for the proof of Proposition 1.

A.1 Characteristic component, L�evy measure and drift for MJ, CMJ, VG, and LS

We �rst provide analytical expressions of the characteristic component, L�evy measure and drift

for MJ, CMJ, VG, and LS, which will be used in later analysis. To emphasize the generality of these

results, we omit dependence of model parameters on probability measures.
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A.2 Three Lemmas

In this subsection, we prove three Lemmas, which will be used in later analysis.

Lemma 1. Suppose f(x) and g(x) are continuous functions,

(i) if f(x) � g(x) when x!1 (i.e. limx!1
f(x)
g(x) = 1), then for any constant a > 0,Z 1

a
jf(x)jdx <1,

Z 1

a
jg(x)jdx <1;

(ii) if f(x) � g(x) when x! 0+ (i.e. limx!0+
f(x)
g(x) = 1), then for any constant a > 0,Z a

0
jf(x)jdx <1,

Z a

0
jg(x)jdx <1;
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(iii) if f(x) � g(x) when x! 0� (i.e. limx!0�
f(x)
g(x) = 1), then for any constant a > 0,Z 0

�a
jf(x)jdx <1,

Z 0

�a
jg(x)jdx <1;

(iv) if f(x) � g(x) when x! �1 (i.e. limx!�1
f(x)
g(x) = 1), then for any constant a > 0,Z �a

�1
jf(x)jdx <1,

Z �a

�1
jg(x)jdx <1:

Proof. First, we prove (() for (i). Since limx!1
f(x)
g(x) = 1, then for � =

1
2 , 9 M > a > 0, such that

8 x > M ,
���f(x)g(x) � 1

��� � 1
2 . This implies that 8 x > M;����f(x)g(x)

����� 1 � ����f(x)g(x)
� 1
���� � 1

2
=) jf (x)j � 3

2
jg (x)j :

If
R1
a jg(x)jdx <1, then Z 1

M
jf(x)jdx � 3

2

Z 1

M
jg(x)jdx <1:

By the continuity of f (x) ;
RM
a jf (x)j dx has to be �nite. Therefore,Z 1

a
jf(x)jdx =

Z M

a
jf(x)jdx+

Z 1

M
jf(x)jdx <1:

Next, we prove ()) for (i). Since limx!1
f(x)
g(x) = 1, then for � = 1

2 , 9 M > a > 0, such that 8

x > M ,
���f(x)g(x) � 1

��� � 1
2 . This implies that 8 x > M;

1�
����f(x)g(x)

���� � ����f(x)g(x)
� 1
���� � 1

2
=) jg(x)j � 2jf(x)j

If
R1
a jf(x)jdx <1, then Z 1

M
jg(x)jdx � 2

Z 1

M
jf(x)jdx <1:

By the continuity of g (x) ;
RM
a jg (x)j dx has to be �nite. Therefore,Z 1

a
jg(x)jdx =

Z M

a
jg(x)jdx+

Z 1

M
jg(x)jdx <1:

This completes the proof of (i). Since similar proof can be applied to the other three cases, we

skip the proofs of (ii), (iii), and (iv) here.

Lemma 2. For any constants M > 0 and a > 0, we have (i)
R1
a e�Mx 1

xdx < 1; and (ii)R �a
�1 eMx 1

�xdx <1.

Proof. For (i), by integration by parts and the fact that 1
M

R1
a

e�Mx

x2
dx � 0;Z 1

a
e�Mx 1

x
dx =

1

M

e�Ma

a
� 1

M

Z 1

a

e�Mx

x2
dx � 1

M

e�Ma

a
+
1

M

Z 1

a

e�Mx

x2
dx;
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Since, Z 1

a

e�Mx

x2
dx �

Z 1

a

1

x2
dx = �1

x
j1a =

1

a
;

we have

0 <

Z 1

a
e�Mx 1

x
dx � e�Ma

aM
+

1

aM
<1:

For (ii), by the transform �x = y, case (ii) is reduced to case (i), and the proof is skipped.

Lemma 3. For any constants a, b; and c, the integral
R1
0 eax

2+bx+cdx is �nite if and only if the

leading coe�cient is negative (i.e., a < 0 if a 6= 0 or b < 0 if a = 0).

Proof. If a = 0, Z 1

0
eax

2+bx+cdx =

Z 1

0
ebx+cdx = ec

Z 1

0
ebxdx:

It is easy to see that the integral is �nite if and only if b < 0.

If a 6= 0, R1
0 eax

2+bx+cdx =
R1
0 ea(x+

b
2a
)2�( b

2

4a
�c)dx

= e�(
b2

4a
�c) R1

0 ea(x+
b
2a
)2dx

= e�(
b2

4a
�c) R1

b
2a
eay

2
dy (after transforming y = x+ b

2a)

= e�(
b2

4a
�c)(

R 1
b
2a
eay

2
dy +

R1
1 eay

2
dy):

The �rst term is always �nite by the continuity of eay
2
. Hence the integral

R1
0 eax

2+bx+cdx is �nite

if and only if the second term if �nite. If a < 0,
R1
1 eay

2
dy �

R1
1 eaydy = � eay

a < 1. If a > 0,R1
1 eay

2
dy �

R1
1 eaydy =1. This completes the proof.

A.3 Proof of Proposition 1.

Since the Brownian parts under both P and Q are absent for all four models, condition (i) of

Sato's theorem is automatically satis�ed. It is easy to see that condition (iii) of Sato's theorem is

satis�ed for MJ, CMJ, and VG. Hence our analysis of these three models focuses on condition (ii) of

Sato's theorem. We use f(x) to denote the integrand in condition (ii) of Sato's theorem.

MJ. Suppose the parameters under P and Q are (�P; �Py ; �
P
y ) and (�

Q; �Qy ; �
Q
y ); respectively. The

integral in condition (ii) isR1
�1 f(x)dx =

R1
�1(e

�(x)
2 � 1)2�P(dx)

=
R1
�1(�Q + �P � 2

p
�Q�P)dx

=
R1
�1

�Qp
2��Qy

exp

�
� (x��Qy )2

2(�Qy )2

�
dx+

R1
�1

�Pp
2��Py

exp
n
� (x��Py)2

2(�Py)
2

o
dx

�
R1
�1 2

r
�Q�P

�QY �
P
y

1
2� exp

�
�1
4

�
(x��Qy )2

(�Qy )2
+

(x��Py)2
(�Py)

2

��
dx

= �Q + �P � 2
r

�Q�P

�QY �
P
y

1
2�

R1
�1 exp

�
�1
4

�
(x��Qy )2

(�Qy )2
+

(x��Py)2
(�Py)

2

��
dx;
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Note that

�1
4

"
(x� �Qy )2

(�Qy )2
+
(x� �Py)2

(�Py )
2

#
= �1

2

0@W �
x� S

W

�2
� S2

W
+
1

2

24 �Qy
�Qy

!2
+

 
�Py
�Py

!2351A
where W = 1

2(
1

(�Qy )2
+ 1

(�Py)
2 ) and S =

1
2(

�Qy

(�Qy )2
+

�Py
(�Py)

2 ). As a result, the third term becomes

�2
s
�Q�P

�Qy �Py

1

W
exp

0@ S2

2W
� 1
4

24 �Qy
�Qy

!2
+

 
�Py
�Py

!2351A :

Therefore, the integral in condition (ii) is �nite no matter how the three parameters di�er between

P and Q.

CMJ. Suppose the parameters under P and Q are (�P; �Py ; �
P
y ; �

P
v ; �

P
J) and (�

Q; �Qy ; �
Q
y ; �

Q
v ; �

Q
J ); re-

spectively. Since jumps in CMJ are two dimensional, the L�evy measure of CMJ is a function of two

variables, x1 and x2. The integral in condition (ii) becomesR1
0

R1
�1(e

�(x)
2 � 1)2�P(dx1dx2)

=
R1
0

�Q

�Qv
exp

�
� x2
�Qv

��R1
�1

1p
2��Qy

exp

�
� (x1�!Qy )2

2(�Qy )2

�
dx1

�
dx2

+
R1
0

�P

�Pv
exp

�
� x2
�Pv

��R1
�1

1p
2��Py

exp
�
� (x1�!Py)2

2(�Py)
2

�
dx1

�
dx2

�2
R1
0

R1
�1

r
�Q�P

�Qv�Pv�
Q
y �Py

1
2� exp

h
�1
2

�
1

�Qv
+ 1

�Pv

�
x2

i
exp

 
�1
4

"�
x1�!Qy
�Qy

�2
+
�
x1�!Py
�Py

�2#!
dx1dx2;

where !Qy = �Qy + �
Q
J x2 and !

P
y = �Py + �

P
Jx2.

One can easily see that the �rst and second terms equal �Q and �P; respectively. What is left is

to show that the third term is �nite. After some algebra, the third term becomes

�2
Z 1

0

s
�Q�P

�Qv �Pv�
Q
y �Py

exp

8<:�12
�
1

�Qv
+
1

�Pv

�
x2 +

S2

2W
� 1
4

24 !Qy
�Qy

!2
+

 
!Py
�Py

!2359=;
r
1

W
dx2;

where W = 1
2(

1

(�Qy )2
+ 1

(�Py)
2 ) and S =

1
2(

!Qy

(�Qy )2
+

!Py
(�Py)

2 ): Note that

�1
2

�
1

�Qv
+
1

�Pv

�
x2 +

S2

2W
� 1
4

24 !Qy
�Qy

!2
+

 
!Py
�Py

!235
= �1

2

�
1

�Qv
+
1

�Pv

�
x2�

1

4

1

(�Qy )2 + (�Py )
2

��
�Qy + �

Q
J x2

�2
+
�
�Py + �

P
Jx2

�2
� 2

�
�Qy + �

Q
J x2

��
�Py + �

P
Jx2

��
;

which is proportional to a function with the form e�2x
2
2+�1x2+�0 , and

�2 = �
1

4

1

(�Qy )2 + (�Py )
2
(�QJ � �

P
J)
2;
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�1 = �
1

2

�
1

�Qv
+
1

�Pv

�
x2 �

1

2

1

(�Qy )2 + (�Py )
2
(�QJ � �

P
J)(�

Q
y � �Py):

According to Lemma 3, the third term is �nite if and only if the leading coe�cient of �2x
2
2 +

�1x2 + �0 is negative. If �
Q
J 6= �PJ , then �2 < 0 and the third term is �nite. If �QJ = �PJ , then �2 = 0

and �1 = �1
2(

1

�Qv
+ 1

�Pv
) < 0, and the third term is �nite too.

Therefore, (�; �y; �y; �J ; �v) can change freely between P and Q.

VG. Suppose the parameters under P and Q are (�P; 
P; �P) and (�Q; 
Q; �Q); respectively. Because

f(x) = (
p
�Q �

p
�P)

2 and is nonnegative, the integral
R1
�1 f(x)dx =

R 0
�1 f(x)dx +

R1
0 f(x)dx is

�nite if and only if both
R 0
�1 f(x)dx and

R1
0 f(x)dx are �nite.

Over the positive half line, the integrand is

f(x) =
1

x

"
1

�Q
exp

�
�MQx

�
+
1

�P
exp(�MPx)� 2

r
1

�Q�P
exp

�
�1
2
(MQ +MP)x

�#
:

Remember that �V G(x) =
1
�
exp(�Mx)

x ; where M =
�q

1
4

2�2 + 1

2�
2� + 1

2
�
��1

for x > 0:

For any constant a > 0,
R1
0 f(x)dx =

R a
0 f(x)dx+

R1
a f(x)dx. A direct application of Lemma 2

shows that
R1
a f(x)dx is �nite because each of the three components of f(x) has the same functional

form as in case (i) of Lemma 2. For
R a
0 f(x)dx, we need to examine the behavior of f(x) around

zero.

If �Q 6= �P; when x! 0+;

1

x

"
1

�Q
exp

�
�MQx

�
+
1

�P
exp(�MPx)� 2

r
1

�Q�P
exp

�
�1
2
(MQ +MP)x

�#
� C

x
;

where

C =
1

�Q
+
1

�P
� 2
r

1

�Q�P
> 0:

According to case (ii) of Lemma 1, because
R a
0
C
x dx =1, we have

R a
0 f(x) =1.

If �Q = �P = �; then

limx!0+
1
x

h
1
�Q
exp

�
�MQx

�
+ 1

�P
exp(�MPx)� 2

q
1

�Q�P
exp

�
�1
2(M

Q +MP)x
�i

= 1
� [�M

Q �MP � 2(�1
2)(M

Q +MP)] = 0:

So for � = 1, there exists M > 0 such that 8 0 < x < M < a,�����1x
"
1

�Q
exp

�
�MQx

�
+
1

�P
exp(�MPx)� 2

r
1

�Q�P
exp

�
�1
2
(MQ +MP)x

�#����� � 1:
Therefore, R a

0 jf(x)jdx =
RM
0 jf(x)jdx+

R a
M jf(x)jdx

� M +
R a
M jf(x)jdx <1:
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The second integral is �nite by the continuity of f(x). This proves
R1
0 f(x)dx <1. By the transform

y = �x, the exact proof can be applied to the integral over the negative half line, which is �nite too.

Therefore, condition (ii) is satis�ed if and only if �Q = �P and the other two parameters, 
 and �,

can change freely between P and Q.

LS. Suppose the parameters of a L�evy �-stable process are (�P; �P; �P; 
P) and (�Q; �Q; �Q; 
Q)

under P and Q; respectively. The integral in condition (ii) of Sato's theorem is �nite when bothR 0
�1 f(x)dx and

R1
0 f(x)dx are �nite.

First, we focus on
R1
0 f(x)dx. For x > 0, the integrand is

f(x) = cQ1 jxj��
Q�1 + cP1 jxj��

P�1 � 2
q
cQ1 c

P
1 jxj

��Q��P
2

�1

where cQ1 =
(�Q)�(1+�Q)

2 and cP1 =
(�P)�(1+�P)

2 . For any constant a > 0,
R1
0 f(x)dx =

R a
0 f(x)dx +R1

a f(x)dx. And for the second term,

R1
a f(x)dx =

cQ1
��Qx

��Q j1a +
cP1
��Px

��P j1a +
4
q
cQ1 c

P
1

�Q+�P
x
��Q��P

2 j1a

=
cQ1

�Qa�Q
+

cP1
�Pa�P

� 4
q
cQ1 c

P
1

�Q+�P
a
��Q��P

2 <1:

So what is left is to check the �niteness of
R a
0 f(x)dx.

If �P < �Q; then

f(x) = 1

x�Q+1
(cQ1 + c

P
1x

�P��Q � 2
q
cQ1 c

P
1x

�Q��P
2 )

� cQ1
x�

Q+1 when x! 0 + :

Since Z a

0

cQ

x�Q+1
dx =

cQ

��Qx
��Q ja0 =1;

according to Lemma 1 (ii),
R a
0 f(x)dx is in�nite.

If �P = �Q = �; but cQ1 6= cP1 , thenZ a

0
f(x)dx =

cQ1 + c
P
1 � 2

q
cQ1 c

P
1

�� x��ja0 =1:

If �P > �Q, we have
R a
0 f(x)dx =1 and the proof is symmetric to the one for �P < �Q .

If �P = �Q and cQ1 = cP1 , then f(x) is identically zero and its integral over [0; a] is �nite.

So only when �P = �Q and cQ1 = cP1 ,
R1
0 f(x)dx is �nite. For

R 0
�1 f(x)dx, by the simple transform

y = �x, the same proof applies and we conclude again that
R 0
�1 f(x)dx is �nite only when �P = �Q

and cQ2 = cP2 .

Therefore, in terms of jump parameters, the following two equations must be satis�ed

(�P)�(1 + �P) = (�Q)�(1 + �Q);
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(�P)�(1� �P) = (�Q)�(1� �Q);

and from which we conclude that

�P = �Q and �P = �Q:

In general, this means that to maintain the equivalence between the two L�evy �-stable processes,

(�; �; �) have to be the same under P and Q, which implies that �P(x) = �Q(x).

Unlike the previous three models, we need to check condition (iii) of Sato's theorem for LS. The

di�erence between the two L�evy drifts under P and Q is

��Q � ��P =
 

Q �

Z
1jxj>1

x�Q(dx)

!
�
 

P �

Z
1jxj>1

x�P(dx)

!
:

Because the L�evy measures under P and Q are the same, the left-hand side of condition (iii) of Sato's

theorem becomes

��Q � ��P = 
Q � 
P;

and the right-hand side of condition (iii) becomes zero. This implies that condition (iii) is satis�ed

only when 
Q = 
P.

Therefore, we further conclude that to maintain the equivalence between the two L�evy �-stable

processes, (�; �; �; 
) must be the same under P and Q.
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APPENDIX B. Descriptions of MCMC Methods

B.1 Priors for Model Parameters

In this section, we discuss the priors for parameters of all four models. For most parameters that

have been considered in LWY (2006), we choose the same priors and hyperparameter values. And

for most new parameters that only appear in this joint study, we choose standard conjugate priors

whenever possible to simplify numerical simulations.

� Priors for parameters common to four models. We consider the following prior distri-

butions: � � N(0; 1) (truncated at zero), � � N(0; 1) (truncated at zero), � � Uniform(0; 1),

�v � 1
�v
, �s � N(0; 1), �v � N(0; 1), �c � N(0; 1); and �c � 1

�c
.

� Priors for parameters common to SVMJ and SVCMJ. For �Py and �Qy , we choose

standard conjugate priors: �Py � N(0; 1) and �Qy � N(0; 1): We choose 
at priors for �y and �:

�y � 1
�y
and � � Uniform(0; 1).

� Priors for parameters unique to SVCMJ. For �v and �J ; we choose the following priors:

�v � 1
�v
and �J � N(0; 1).

� Priors for parameters unique to SVVG. We choose the following priors for the �ve pa-

rameters that are unique to SVVG: 
P � N(0; 1); 
Q � N(0; 1); � � 1
� ; �

P � 1
�P
; and �Q � 1

�Q
.

� Priors for parameters unique to SVLS. For � and �; we choose the following joint priors:

� � Uniform(1; 2) and � � 1
� .

Although we choose 
at priors for the variance parameters, the priors of most other parameters

are proper priors, pretty uninformative, and have been used in previous studies. In general, as the

sample size becomes large, the information contained in the likelihood function dominates that in

the priors. As a result, we �nd the results computed later seem to be relatively invariant to the

choice of priors.

B.2 MCMC Methods for SVMJ

In this section, we discuss the updating algorithms and the posterior distributions of model

parameters and latent variables for SVMJ. Compared to LWY (2006), the posterior likelihood here

always has an additional component, which is the likelihood of option pricing errors. Since the

computation of option price involves numerical integration, the parameters that appear in the option

pricing formula usually do not have known posterior distributions. To overcome this di�culty, we
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adopt the method of Damine, Wake�eld, and Walker (1999) (hereafter DWW) to update these

parameters. Parameters that are not involved in the option pricing formula we usually have standard

known posterior distributions, from which we draw posterior samples. In this and the following

sections, we discuss the updating methods, �rst for parameters that appear in the option pricing

formula, then for the rest.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

�N( SW ;

r
1

W ) 1�>0

where W = �
(1��2)�2v

PT�1
t=0

(��vt)2
vt

+ 1; S = 1
�v(1��2)

PT�1
t=0

(��vt)(
Bt+1
�v

��At+1)
vt

; At+1 = Yt+1 �

Yt � (rt � 1
2vt +  J(�i) + �svt)��Ny

t+1�
y
t+1; and Bt+1 = vt+1 � vt. We denote the �rst term

as l(�), omitting dependence on other parameters to simplify notation. Its calculation involves

numerical integration because of the option pricing formula involved. The second term in the

posterior is a truncated normal distribution and is the same as the corresponding posterior

distribution of � in LWY (2006), except for the di�erent de�nition of the drift term in At+1.

This combination motivates us to use the DWW method. Speci�cally, for a given previous

draw, �(g), the algorithm for (g + 1)-th iteration is:

1. Draw �(g+1) from N( SW ;
q

1
W ) 1�>0;

2. Draw an auxiliary variable u from Uniform(0; l(�(g)));

3. Accept �(g+1) if l(�(g+1)) > u; otherwise, keep �(g).

� Posterior for �. Similarly, the posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

�N( SW ;

r
1

W ) 1�>0

where W = �2�
�2v(1��2)

PT�1
t=0

1
vt
+ 1;S = �

(1��2)�v
PT�1

t=0 (
Bt+1=�v��At+1

vt
); At+1 = Yt+1 � Yt � (rt �

1
2vt +  J(�i) + �svt)� � Ny

t+1�
y
t+1; and Bt+1 = vt+1 + (�� � 1)vt. Again we use the DWW

method and the updating algorithm is the same as that for �.

� Posterior for �v. The posterior of �v is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
� exp( �

1� �2 (
T�1X
t=0

At+1Bt+1)
1

�v
)| {z }

:=l(�v)
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�( 1
�2v
)
T
2
+ 1
2 exp(�

PT�1
t=0 B

2
t+1

2(1� �2)
1

�2v
)

where At+1 =
Yt+1�Yt�(rt� 1

2
vt+ J (�i)+�svt)��Ny

t+1�
y
t+1p

vt�
and Bt+1 =

vt+1�vt��(��vt)�p
vt�

. The algo-

rithm is similar to that for �:

1. Draw 1

(�
(g+1)
v )2

from �(T2 +
3
2 ; (

PT�1
t=0 B2t+1
2(1��2) )

�1);

2. Draw an auxiliary variable u from Uniform(0; l(�
(g)
v ));

3. Accept �
(g+1)
v if l(�

(g+1)
v ) > u; otherwise, keep �

(g)
v .

� Posterior for �. The posterior of � is proportional to the function �(�)

/ �(�) :=

T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
�

(1� �2)�
T
2 exp

 
�12(1� �2)

T�1X
t=0

(A2t+1 +B
2
t+1) +

�

(1� �2)

T�1X
t=0

At+1Bt+1

!

where At+1 =
Yt+1�Yt�(rt� 1

2
vt+ J (�i)+�svt)��Ny

t+1�
y
t+1p

vt�
and Bt+1 =

vt+1�vt��(��vt)�
�v
p
vt�

. It is well

known that the sampling distribution of Pearson's correlation is negatively skewed and the

so-called \Fisher's Z transformation" converts Pearson's correlation to a normally distributed

variable. Motivated by Fisher's idea, we develop the following algorithm:

1. Draw 1
2 log

1+�(g+1)

1��(g+1) from N(12 log
1+�r
1��r ;

1
T�3); where �r = Corr(A;B), A = fAt+1gT�1t=0 ;

B = fBt+1gT�1t=0 ; and g(�r) =
1
2 log

1+�r
1��r is the formula of Fisher's Z transformation.

2. Accept �(g+1) with probability

min

0B@�(�(g+1)
�(�(g)

�
exp(� (g(�(g)�g(�r))2

2
T�3

)

exp(� (g(�(g+1)�g(�r))2
2

T�3
)
; 1

1CA :

By removing the skewness of the distribution for the candidate draw, our algorithm converges

more quickly than the one without the transformation.

� Posteriors for �v and �Qy . Since the updating methods and the posteriors of �v and �Qy are

the same, we focus our discussion on �v: The posterior of �v is proportional to

/ �(�v) :=
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
� exp(�(�

v)2

2
):

We update the parameter using the Metropolis-Hasting algorithm. A normal distribution

centered at the previous draw with constant variance 1 is used as the proposal distribution for

the candidate draw, which is accepted with the probability min
�
�(�v(g+1))

�(�v(g))
; 1
�
.
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� Posterior for �y. The posterior of �y is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�y)

�( 1
�2y
)
T
2
+ 1
2 exp(�1

2

t�1X
t=0

(�yt+1 � �Py)2
1

�2y
):

We use the DWW method to update the parameter:

1. Draw 1

(�
(g+1)
y )2

from �(T2 +
3
2 ;

1
1
2

PT�1
t=0 (�

y
t+1��Py)2

);

2. Draw an auxiliary variable u from Uniform(0; l(�
(g)
y ));

3. Accept �
(g+1)
y if l(�

(g+1)
y ) > u; otherwise, keep �

(g)
y .

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

��
PT�1
t=0 Nt+1(1� �)T�

PT�1
t=0 Nt+1 :

The DWWmethod is used and the proposal distribution for the candidate draw isBeta(
PT�1

t=0 Nt+1+

1; T �
PT�1

t=0 Nt+1 + 1). The algorithm is skipped.

For parameters that do not appear in the option pricing formula, i.e., (�s; �Py ; �c; �c); we obtain

known posterior distributions.

� Posterior for �s. The posterior of �s follows a normal distribution �s � N( SW ;
1
W ); where

W = �
(1��2)

PT�1
t=0 vt + 1, S = 1

(1��2)
PT�1

t=0 (At+1 �
�
�v
Bt+1), At+1 = Yt+1 � Yt � (rt � 1

2vt +

 J(�i) + �svt)��Ny
t+1�

y
t+1; and Bt+1 = vt+1 � vt � �(� � vt)�.

� Posterior for �Py . The posterior of �Py follows a normal distribution �Py � N( SW ;
1
W ); where

W = T
�2y
+ 1; and S = �T�1t=0 �t+1

�2y
:

� Posterior for �c. The posterior of �c follows a normal distribution �c � N( SW ;
1
W ); where

W =
PT�1
t=0 A2t
�2c

+ 1;S =
PT�1
t=0 AtAt+1

�2c
, and At+1 = Ct+1 � Ft+1.

� Posterior for �c. The posterior of �c follows a gamma distribution 1
�2c
� �(T2+

3
2 ;

1
1
2

PT�1
t=0 (At+1��cAt)2

);

where At+1 = Ct+1 � Ft+1.

Next we consider the posteriors of latent jump and volatility variables.

� Posterior for �yt+1. The posterior of �yt+1 is �
y
t+1 � N( SW ;

1
W ); where W =

N2
t+1

(1��2)vt� +

1
�2y
;S = Nt+1

(1��2)vt�(At+1� �Bt+1=�v) +
�y
�2y
; At+1 = Yt+1� Yt� (rt� 1

2vt+ J(�i) + �
svt)�; and

Bt+1 = vt+1 � vt � �(� � vt)�:
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� Posterior for Nt+1. The posterior ofNt+1 isNt+1 � Bernoulli( �1
�1+�2

); where �1 = e
� 1
2(1��2) [A

2
1�2�A1B]�;

�2 = e
� 1
2(1��2) [A

2
2�2�A2B](1��); A1 =

�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)�� �yt+1

�
=
p
vt�;

A2 =
�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)�

�
=
p
vt�; andB = (vt+1 � vt � �(� � vt)�) =(�v

p
vt�):

� Posterior for vt+1. For 0 < t+ 1 < T , the posterior of vt+1 is proportional to

/ exp(� 1

2�2c
[(Ct+1 � Ft+1)2 � 2�c(Ct+1 � Ft+1)(Ct � Ft)])�

exp(� 1

2�2c
[�2c(Ct+1 � Ft+1)2 � 2�c(Ct+2 � Ft+2)(Ct+1 � Ft+1)])�

exp

8<:�
h
�2��yt+1�vt+1 +

�
�vt+1

�2i
2(1� �2)

9=;� 1

vt+1
� exp

(
�
�
(�yt+2)

2 � 2��yt+2�vt+2 + (�vt+2)2
�

2(1� �2)

)
;

where �yt+1 =
�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)��Ny

t+1�
y
t+1

�
=
p
vt�; and

�vt+1 = (vt+1 � vt � �(� � vt)�) =(�v
p
vt�): And the posterior for vt when t = 0 and t = T can

be derived in the similar way.

While LWY (2006) use ARMS to update vt and obtain very good results, the implementation

of ARMS here is di�cult because it requires intensive numerical integrations for each adaptive

rejection Metropolis iteration. As a result, we use the traditional Metropolis-Hasting method

to update vt; and use the Student-t distribution with a degree of freedom of 6 as the proposal

distribution.

B.3 MCMC Methods for SVCMJ

The common parameters and latent variables between SVMJ and SVCMJ have similar posterior

distributions. So in this section, we focus on the posterior distributions of the parameters and latent

variables that are unique to SVCMJ.

� Posterior for �v. The posterior of �v is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�v)

�( 1
�v
)T+1 exp(� 1

�v

T�1X
t=0

�vt+1):

The DWW method is used and the proposal distribution for the candidate draw is IG(T +

2; 1PT�1
t=0 �vt+1)

).
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� Posterior for �J . The posterior of �J is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�J )

�N( SW ;

r
1

W );

where W =
PT�1
t=0 (�

v
t+1)

2

�2y
+ 1; S =

PT�1
t=0 �vt+1At+1

�2y
; and At+1 = �yt+1 � �Py . The DWW method is

used and the proposal distribution for the candidate draw is N( SW ;
q

1
W ).

� Posterior for �vt+1. The posterior of �vt+1 follows a normal distribution �vt+1 � N( SW ;
1
W ) 1�vt+1>0;

where W =
N2
t+1

(1��2)vt� +
�2J
�2y
;S = Nt+1

(1��2)vt�(��At+1+
Bt+1�v
+

�yt+1��Py)�J
�2y

� 1
�v
; At+1 = Yt+1� Yt�

(rt � 1
2vt +  J(�i) + �

svt)�; and Bt+1 = vt+1 � vt � �(� � vt)��Nt+1�
v
t+1:

B.4 MCMC Methods for SVVG

The common parameters and latent variables between SVMJ and SVVG have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVVG.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

� 
1

�
�
� �(�� )

!T  T�1Y
t=0

Gt

!�
�
�1

| {z }
:=l(�)

� exp
(
�1
�
(

T�1X
t=0

Gt)

)
1

�
:

The DWWmethod is used and the proposal distribution for the candidate draw is IG(2; 1PT�1
t=0 Gt+1)

).

� Posteriors for 
Q and �Q. The algorithms for updating 
Q and �Q are the same as that for

�v in SVMJ, except that the candidate draw for �Q needs to be truncated at zero since it has

to be a positive number.

� Posterior for 
P. The posterior of 
P is 
P � N( SW ;
1
W ); where W = 1

(�P)2

PT�1
t=0 Gt+1 + 1;

and S = 1
(�P)2

PT�1
t=0 Jt+1:

� Posterior for �P. The posterior of �P is (�P)2 � IG(T2 +
3
2 ;

1
1
2

PT�1
t=0

(Jt+1�
PGt+1)2
Gt+1

):

� Posterior for Jt+1. The posterior of Jt+1 follows a normal distribution Jt+1 � N( SW ;
1
W );

where W = 1
(1��2)vt� +

1
(�P)2Gt+1

; S = 1
(1��2)vt�(At+1�

�Bt+1
�v

)+ 
P

(�P)2
; At+1 = Yt+1�Yt� (rt�

1
2vt +  J(�i) + �

svt)�; and Bt+1 = vt+1 � vt � �(� � vt)�:
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� Posterior for Gt+1. The posterior of Gt+1 is proportional to

/ G
�
�
� 3
2

t+1 exp

�
� J2t
2�2

1

Gt+1

�
exp

�
�
�
(
P)2

2(�P)2
+
1

�

�
Gt+1

�
:

This is exactly the same as the posterior of Gt+1 in LYW (2006) who use ARMS to update

Gt+1. Since the iterations do not involve numerical integration, we still use ARMS here.

B.5 MCMC Methods for SVLS

The common parameters and latent variables between SVMJ and SVLS have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVLS.

� Posterior for �: The posterior of � is proportional to

�(�) /
QT�1
t=0 exp(�

[(Ct+1�Ft+1)��c(Ct�Ft)]2
2�2c

)� ( �
��1)

T exp

�
�
PT�1

t=0 j
St+1

��
1
� t�(Ut+1)

j
�

��1

�
�
QT�1
t=0 j

St+1

��
1
� t�(Ut+1)

j
�

��1 �
h
( 1� )

�
��1
im+1

expf�( 1� )
�

��1 1
M g � 1(�)�2[1:01;2]:

We use the same algorithm as in LWY (2006) to update �; and see LWY (2006) for details.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

�

"�
1

�

� �
��1

T + 1

#
exp

(
�
�
1

�

� �
��1

 
T�1X
t=0

j St+1

�
1
� t�(Ut+1)

j
�

��1

!)

The DWW method is used with the following proposal distribution ( 1� )
�

��1 � �(T + ��1
� +

1; 1PT�1
t=0 j

St+1

�
1
� t�(Ut+1)

j
�

��1+ 1
M

):

� Posteriors for St+1 and Ut+1. The posteriors for St+1 and Ut+1 are the same as those in

LWY (2006), and we follow the same updating algorithms. See LWY (2006) for details.
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Table 1. Summary Statistics of Spot and Option Prices of the S&P 500 Index 
 
This table provides summary statistics of spot and option prices of the S&P 500 index 
between January 4, 1993 and December 31, 1993. Panel A reports summary statistics of 
continuously compounded daily returns of the S&P 500 index during the sample period. 
Panel B reports summary statistics on time-to-maturity, price, implied volatility, strike 
price, spot price, and moneyness (strike/spot) of the short-term ATM SPX option used in 
model estimation. We restrict the time-to-maturity of the option to be between 20 and 50 
days. On a few days without such options, we use an option whose time-to-maturity is 
closest to 20 days. Because the time-to-maturity of an option changes daily, in general we 
have to use different options on different dates.  
 
Panel A. Summary statistics of continuously compounded daily returns of the S&P 500 
index between January 4, 1993 and December 31, 1993. 
   

 Mean Variance Skewness Kurtosis Min Max 
S&P 500 0.000292 0.0000316 -0.0332 5.5602 -0.0256 0.0223 

 
Panel B. Summary statistics for the short-term ATM SPX option used in model 
estimation between January 4, 1993 and December 31, 1993. 
  

 Mean Median Std. Dev. Min Max 
Time-to-maturity 34 35 9.24 16 50 

Option price 7.14 7.25 1.61 3.44 10.72 
Implied volatility 0.092 0.0914 0.0095 0.0679 0.1223 

Strike price 449.8207 450 10.3086 425 450 
Spot price 450.0755 448.394 10.1711 427.0155 470.0928 

Moneyness (Strike/Spot) 0.9994 0.9994 0.003 0.9946 1.0055 
 



Table 2. Parameter Estimates of AJD and Lévy Jump Models 
 

This table reports posterior estimates of model parameters of AJD and Lévy jump models using 
daily returns on the S&P 500 index and daily prices of a short-term ATM SPX option between 
January 4, 1993 and December 31, 1993. We discard the first 10,000 runs as "burn-in" period 
and use the last 90,000 iterations in MCMC simulations to estimate model parameters. 
Specifically, we take the mean of the posterior distribution as parameter estimate and the standard 
deviation of the posterior as standard error. 
 

 SVMJ SVCMJ SVVG SVLS 
κ 2.6387 

(0.544) 
3.3627 

(0.6452) 
15.778 

(1.3706) 
6.2792 
(0.467) 

θ 0.0049 
(0.0030) 

0.0076 
(0.0022) 

0.0060 
(0.0011) 

0.0055 
(0.0017) 

σv 0.1198 
(0.0116) 

0.1676 
(0.0179) 

0.3043 
(0.0315) 

0.1852 
(0.0268) 

ρ -0.7014 
(0.0163) 

-0.7786 
(0.0324) 

-0.8167 
(0.0511) 

-0.5619 
(0.0746) 

ηv 3.0526 
(0.8005) 

1.1074 
(0.5933) 

4.7128 
(2.2753) 

2.9419 
(1.336) 

ηs 3.7020 
(2.7850) 

4.3586 
(2.499) 

4.328 
(3.046) 

3.5962 
(1.784) 

ρc 0.8952 
(0.0557) 

0.8665 
(0.0495) 

0.895 
(0.0584) 

0.9023 
(0.0660) 

σc 0.2039 
(0.0275) 

0.2257 
(0.0216) 

0.1869 
(0.0189) 

0.2666 
(0.0256) 

λ 0.0103 
(0.0216) 

0.0048 
(0.0040) 

-- -- 

μy
P 0.0150 

(0.0108) 
-0.03376 
(0.0108) 

-- -- 

μy
Q -0.3091 

(0.1294) 
-0.3414 
(0.0892) 

-- -- 

σy 0.0107 
(0.0064) 

0.0103 
(0.0063) 

-- -- 

μv -- 0.00849 
(0.0075) 

-- -- 

ρJ -- -0.0038 
(0.00492) 

-- -- 

ν -- -- 0.0142 
(0.0017) 

-- 

γP -- -- 0.0256 
(0.0315) 

-- 

σP -- -- 0.0462 
(0.0070) 

-- 

γQ -- -- 0.0030 
(0.0056) 

-- 

σQ -- -- 0.0412 
(0.0150) 

-- 

α -- -- -- 1.846 
(0.0012) 

σ -- -- -- 0.0352 
(0.0014) 



Table 3. Kolmogorov-Smirnov Goodness-of-Fit Test of Model Residuals 
 
This table provides Kolmogorov-Smirnov (KS) tests of the hypotheses that the standardized 
model residuals of returns and volatility of each of the four models follow N(0,1). We report the 
KS statistics and their corresponding p-values for both residuals of all four models.  

 
 Return Residuals Volatility Residuals 

 SVMJ SVCMJ SVVG SVLS SVMJ SVCMJ SVVG SVLS 

KS Statistics 0.096 0.0934 0.0619 0.0695 0.0950 0.0893 0.0642 0.0592 

p-values 0.0317 0.041 0.3246 0.2531 0.0305 0.0537 0.2902 0.3797 

 
Table 4. In-Sample Performances in Option Pricing 

 
This table provides summary information on the in-sample performances of the four models in 
pricing the short-term ATM options used in model estimation. Absolute pricing error is defined 
as the absolute value of the difference between model and market prices of an option. Percentage 
pricing error is defined as the absolute pricing error of an option divided by the market price of 
the option.    
 
Panel A. Time series mean and standard deviation (in parentheses) of the absolute and percentage 
pricing errors of the short-term ATM options used in model estimation. 
 

 SVMJ SVCMJ SVVG SVLS 
Absolute 
(in dollar) 

0.44 
(0.2913) 

0.44 
(0.3268) 

0.16 
(0.1189) 

0.24 
(0.1890) 

Percentage 0.0629 
(0.0419) 

0.0634 
(0.0467) 

0.024 
(0.0186) 

0.0361 
(0.0329) 

 
Panel B. Diebold-Mariano (DM) statistics for in-sample option pricing errors. The DM statistics 
measure whether the first model has significantly smaller absolute and percentage pricing errors 
than the second model in each of the six pairs of models in the first row. Bold entries mean that 
the difference is significant at the 5% level for one-sided test. To save space, we omit “SV” in the 
names of all four models. 

 
 VG-MJ LS-MJ VG-LS VG-CMJ LS-CMJ MJ-CMJ 

Absolute -2.3192 -2.0840 -2.1356 -2.2950 -1.9849 0.0165 
Percentage -2.3254 -1.9715 -1.9908 -2.2970 -1.8967 -0.0842 

 
Panel C. Kolmogorov-Smirnov test of the hypotheses that the standardized option pricing errors 
of each of the four models follow N(0,1). We report the KS statistics and their corresponding p-
values for each model. 
 

 SVMJ SVCMJ SVVG SVLS 
KS Statistics 0.0846 0.0794 0.0800 0.0765 

P-values 0.0525 0.0812 0.0771 0.1022 
 



Table 5. Out-of-Sample Performances in Option Pricing 
 
This table reports the out-of-sample performances of the four models in option pricing. Based on 
the estimates of model parameters and latent volatility variables using the spot and option prices 
of the S&P 500 index, we obtain the theoretical price of each option that is not used in model 
estimation (12,725 in total) under each of the four models. We divide these options into six 
moneyness (defined as the ratio between strike and spot prices) and five maturity groups. The 
numbers of options belonging to each moneyness/maturity group during the entire sample also 
are reported. Based on options that are available on each day, we obtain daily arithmetic weighted 
average of absolute and percentage pricing errors of options within each moneyness/maturity 
group. Then we obtain the time series means of the daily pricing errors over the sample period for 
each option group. Absolute pricing error is defined as the absolute value of the difference 
between model and market prices of an option. Percentage pricing error is defined as the absolute 
value of the difference between model and market prices of an option divided by the market price 
of the option. 
    
Panel A. Time series mean of daily weighted average of absolute pricing errors (in dollar) of out-
of-sample options in each moneyness/maturity group. 
 

  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 
# 410 731 650 387 9 0 2187 

SVMJ 0.2265 0.3663 0.4277 0.3347 0.6449 N/A 0.3410 
SVCMJ 0.2148 0.3518 0.3867 0.3025 0.3220 N/A 0.3172 
SVVG 0.2319 0.3061 0.2399 0.2234 0.2404 N/A 0.2553 

<1m 

SVLS 0.1779 0.2817 0.2760 0.2580 0.2277 N/A 0.2524 
# 694 896 679 676 306 0 3251 

SVMJ 0.5133 0.8113 0.7902 0.5226 0.3700 N/A 0.6371 
SVCMJ 0.4575 0.6893 0.6252 0.4697 0.3393 N/A 0.5400 
SVVG 0.4667 0.5653 0.3045 0.2467 0.2835 N/A 0.3915 

1-2m 

SVLS 0.3996 0.5682 0.3721 0.3444 0.4344 N/A 0.4297 
# 605 693 611 612 613 16 3150 

SVMJ 0.7937 1.3026 1.2660 0.8602 0.4593 0.4491 0.9452 
SVCMJ 0.6335 0.9732 0.9043 0.7091 0.4726 0.3407 0.7250 
SVVG 0.6639 0.8261 0.4889 0.3119 0.4252 0.1543 0.5286 

2-3m 

SVLS 0.5467 0.7267 0.4215 0.4468 0.6531 0.5792 0.5527 
# 941 415 334 328 370 170 2558 

SVMJ 1.1953 1.8914 1.9260 1.5650 0.8238 0.4239 1.3352 
SVCMJ 0.8150 1.2498 1.3257 1.2193 0.8240 0.5618 0.9805 
SVVG 0.9454 1.1721 0.8257 0.4151 0.4524 0.5474 0.7876 

3-6m 

SVLS 0.6982 0.8231 0.4669 0.3818 0.8369 0.9546 0.6700 
# 696 170 128 120 154 311 1579 

SVMJ 1.8625 3.2767 3.0434 3.2549 2.4035 1.0897 2.1051 
SVCMJ 0.9751 1.7010 1.7761 1.8833 1.6684 1.0344 1.2712 
SVVG 1.4383 2.1033 1.4651 1.4414 0.6432 0.4837 1.2285 

>6m 

SVLS 0.8029 0.9653 0.4122 0.4376 0.8658 1.3964 0.8610 
# 3346 2905 2402 2123 1452 497 12725 

SVMJ 0.8482 1.0786 1.0641 0.8752 0.6895 0.7868 0.9296 
SVCMJ 0.5997 0.7877 0.7595 0.6776 0.6109 0.7943 0.6832 
SVVG 0.6953 0.7172 0.4541 0.3392 0.3832 0.4422 0.5444 

All 

SVLS 0.5095 0.5792 0.3702 0.3768 0.6378 1.1006 0.5093 
 



 
Panel B. Time series mean of daily weighted average of percentage pricing errors of out-of-
sample options in each moneyness/maturity group. 
 

  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 
# 410 731 650 387 9 0 2187 

SVMJ 0.0058 0.0165 0.0512 0.1486 0.4547 N/A 0.0492 
SVCMJ 0.0055 0.0159 0.0467 0.1361 0.2269 N/A 0.0455 
SVVG 0.0059 0.0136 0.0299 0.1079 0.1822 N/A 0.0358 

<1m 

SVLS 0.0046 0.0127 0.0345 0.1251 0.1754 N/A 0.0391 
# 694 896 679 676 306 0 3251 

SVMJ 0.0123 0.0318 0.0601 0.1091 0.2230 N/A 0.0675 
SVCMJ 0.0109 0.0269 0.0480 0.1060 0.2098 N/A 0.0600 
SVVG 0.0111 0.0217 0.0223 0.0637 0.1813 N/A 0.0413 

1-2m 

SVLS 0.0096 0.0220 0.0280 0.0860 0.2698 N/A 0.0565 
# 605 693 611 612 613 16 3150 

SVMJ 0.0171 0.0466 0.0778 0.1086 0.1836 0.4048 0.0929 
SVCMJ 0.0135 0.0346 0.0557 0.0944 0.2011 0.3132 0.0800 
SVVG 0.0140 0.0290 0.0289 0.0453 0.1974 0.1445 0.0608 

2-3m 

SVLS 0.0116 0.0255 0.0256 0.0651 0.2977 0.5322 0.0858 
# 941 415 334 328 370 170 2558 

SVMJ 0.0223 0.0570 0.0905 0.1220 0.1562 0.2099 0.0840 
SVCMJ 0.0152 0.0379 0.0632 0.0989 0.1845 0.2801 0.0793 
SVVG 0.0173 0.0349 0.0377 0.0315 0.1260 0.2680 0.0552 

3-6m 

SVLS 0.0129 0.0244 0.0215 0.0350 0.2222 0.4668 0.0770 
# 696 170 128 120 154 311 1579 

SVMJ 0.0279 0.0739 0.1064 0.1369 0.1759 0.2232 0.1013 
SVCMJ 0.0146 0.0386 0.0624 0.0824 0.1262 0.2383 0.0821 
SVVG 0.0212 0.0472 0.0507 0.0580 0.0453 0.1524 0.0552 

>6m 

SVLS 0.0118 0.0216 0.0141 0.0194 0.0726 0.3948 0.0902 
# 3346 2905 2402 2123 1452 497 12725 

SVMJ 0.0169 0.0368 0.0686 0.1206 0.1983 0.2558 0.0799 
SVCMJ 0.0124 0.0277 0.0513 0.1044 0.1965 0.2761 0.0682 
SVVG 0.0138 0.0244 0.0294 0.0601 0.1497 0.1810 0.0478 

All 

SVLS 0.0105 0.0205 0.0273 0.0774 0.2484 0.4202 0.0678 
 



 
Panel C. Diebold-Mariano statistics for out-of-sample absolute option pricing errors. The DM 
statistics provide pair-wise comparison of the four models by testing whether one model has 
significantly smaller average absolute pricing errors for all options in a moneyness/maturity 
group than another model. Bold entries mean that the difference is significant at the 5% level for 
one-sided test. To save space, we omit “SV” in the names of all four models. 

 
  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 

CMJ-MJ -1.7668 -0.8338 -0.9281 -0.8031 -1.1932 N/A -1.0157 
VG-MJ 1.4395 -1.9841 -2.1976 -1.8955 -1.1874 N/A -2.1534 
LS-MJ -1.9624 -2.1164 -2.0520 -1.8198 -1.1521 N/A -2.1822 

VG-CMJ 1.8063 -1.9994 -2.1509 -1.9837 -1.0054 N/A -2.2147 
LS-CMJ -1.9434 -2.0074 -1.8812 -1.3121 -0.7914 N/A -2.1042 

<1m 

VG-LS 1.9787 1.7326 1.7082 -1.2879 0.2645 N/A 0.5039 
CMJ-MJ -1.7604 -1.5251 -1.2552 -0.5710 -0.4336 N/A -1.1861 
VG-MJ -1.8993 -2.2908 -2.2814 -2.0180 -0.8580 N/A -2.1810 
LS-MJ -2.1464 -2.2012 -2.2132 -1.9686 0.8279 N/A -2.1971 

VG-CMJ 1.1031 -1.9680 -2.1355 -2.2564 -0.8512 N/A -2.2246 
LS-CMJ -2.0388 -1.7929 -1.9642 -1.5753 1.1398 N/A -1.9545 

1-2m 

VG-LS 2.1589 -0.1343 -1.7099 -1.5248 -1.7043 N/A -1.9527 
CMJ-MJ -1.7324 -1.7959 -1.6328 -0.9777 0.1582 -1.0337 -1.5235 
VG-MJ -1.8912 -2.2737 -2.3052 -2.1745 -0.2667 -1.1509 -2.2117 
LS-MJ -1.9515 -2.2209 -2.2649 -2.0783 1.3863 1.2100 -2.1834 

VG-CMJ 1.2902 -1.6519 -2.0447 -2.2686 -0.6865 -1.2063 -2.1223 
LS-CMJ -1.7439 -1.9372 -2.1862 -2.0230 1.6082 1.2561 -2.1516 

2-3m 

VG-LS 1.9874 1.6638 1.2299 -1.6618 -1.9679 -1.2501 -1.5180 
CMJ-MJ -1.6966 -1.5935 -1.5966 -1.3984 0.0017 1.4403 -1.6223 
VG-MJ -1.9068 -1.8075 -1.8741 -1.8678 -1.7757 0.6340 -1.9135 
LS-MJ -1.8979 -1.8001 -1.8703 -1.8696 0.1379 1.3620 -1.9118 

VG-CMJ 1.5495 -1.0360 -1.7960 -1.8395 -1.7288 -0.0786 -1.7093 
LS-CMJ -1.8516 -1.8211 -1.8706 -1.8459 0.0975 1.1861 -1.8510 

3-6m 

VG-LS 1.8822 1.7771 1.8449 0.5368 -1.7159 -1.6189 1.8466 
CMJ-MJ -1.5920 -1.4692 -1.2808 -1.3175 -1.2192 -0.5187 -1.5557 
VG-MJ -1.7633 -1.6492 -1.4216 -1.5072 -1.5206 -1.5965 -1.7735 
LS-MJ -1.7636 -1.6375 -1.4247 -1.4948 -1.4752 1.2163 -1.7800 

VG-CMJ 1.5676 1.4175 -1.4570 -1.3412 -1.6055 -1.6312 -0.5975 
LS-CMJ -1.7604 -1.6774 -1.4605 -1.5514 -1.4854 1.1355 -1.7806 

>6m 

VG-LS 1.7607 1.6244 1.4291 1.4431 -1.1041 -1.5995 1.7905 
CMJ-MJ -1.9016 -1.9638 -1.8676 -0.8352 -0.8352 0.1097 -1.9099 
VG-MJ -2.2597 -2.3311 -2.3773 -2.3265 -2.1020 -1.7403 -2.3763 
LS-MJ -2.1899 -2.2645 -2.3387 -2.2224 -0.6282 1.3636 -2.3450 

VG-CMJ 1.6180 -1.6520 -2.1540 -2.2960 -2.3739 -1.7134 -2.1240 
LS-CMJ -2.1576 -2.0566 -2.1546 -2.0084 0.4012 1.2432 -2.1495 

All 

VG-LS 2.1226 2.0109 1.7971 -0.6805 -2.1395 -1.7513 1.2602 
 

 
 



 
Panel D. Diebold-Mariano statistics for out-of-sample percentage option pricing errors. The DM 
statistics provide pair-wise comparison of the four models by testing whether one model has 
significantly smaller average percentage pricing errors for all options in a moneyness/maturity 
group than another model. Bold entries mean that the difference is significant at the 5% level for 
one-sided test. To save space, we omit “SV” in the names of all four models. 
 

  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 
CMJ-MJ -1.8850 -0.8150 -0.9270 -0.7585 -1.1818 N/A -0.9228 
VG-MJ 1.3796 -1.9967 -2.2112 -1.7763 -1.1784 N/A -2.0898 
LS-MJ -1.9569 -2.1059 -2.0019 -1.6502 -1.1426 N/A -2.0485 

VG-CMJ 1.6496 -2.0335 -2.1848 -1.9168 -0.9024 N/A -2.2132 
LS-CMJ -1.9396 -1.9917 -1.8855 -0.7639 -0.6630 N/A -1.7508 

<1m 

VG-LS 1.9797 1.5824 -1.8616 -1.3085 0.1974 N/A -1.5654 
CMJ-MJ -1.8195 -1.6080 -1.2548 -0.1624 -0.3166 N/A -0.6672 
VG-MJ -1.8943 -2.2905 -2.2800 -1.7687 -0.6587 N/A -1.7678 
LS-MJ -2.0938 -2.1898 -2.2169 -1.6601 0.9121 N/A -1.6579 

VG-CMJ 0.6688 -1.9888 -2.1456 -2.1737 -0.6489 N/A -2.1122 
LS-CMJ -2.0024 -1.7760 -1.9752 -1.2314 1.1470 N/A -0.5227 

1-2m 

VG-LS 2.1212 -0.3528 -1.8068 -1.3359 -1.6689 N/A -1.7763 
CMJ-MJ -1.7939 -1.6333 -1.7332 -0.7565 0.5252 -1.0135 -0.8370 
VG-MJ -1.8533 -2.2729 -2.3072 -2.1214 0.2460 -1.1503 -1.6702 
LS-MJ -1.8715 -2.2149 -2.2678 -1.9509 1.6306 1.2039 -0.5083 

VG-CMJ 0.9732 -1.6578 -2.0610 -2.2676 -0.1112 -1.2093 -1.9506 
LS-CMJ -1.6515 -1.9207 -2.1928 -1.8926 1.6314 1.2546 0.8804 

2-3m 

VG-LS 1.8733 1.6264 1.0487 -1.6689 -2.0008 -1.2514 -2.0436 
CMJ-MJ -1.7666 -1.6382 -1.7258 -1.3049 0.8921 1.4194 -0.5147 
VG-MJ -1.9032 -1.8226 -1.8840 -1.8833 -1.0246 0.5775 -1.6532 
LS-MJ -1.8998 -1.8149 -1.8809 -1.8905 1.3086 1.3656 -0.6250 

VG-CMJ 1.5456 -1.2034 -1.7934 -1.8315 -1.6591 -0.1326 -1.6502 
LS-CMJ -1.8284 -1.8263 -1.8662 -1.8367 1.0389 1.2126 -0.2382 

3-6m 

VG-LS 1.8905 1.7901 1.8580 -0.7960 -1.7273 -1.6573 -1.8472 
CMJ-MJ -1.7460 -1.8248 -1.3664 -1.4648 -1.2954 0.5983 -1.4166 
VG-MJ -1.7535 -1.6633 -1.4153 -1.5224 -1.5534 -1.3260 -1.7210 
LS-MJ -1.7589 -1.6538 -1.4177 -1.5331 -1.4787 1.4281 -0.8345 

VG-CMJ 1.5641 -1.6546 -1.4598 -1.3693 -1.6536 -1.5141 -1.7206 
LS-CMJ -1.7444 -1.6794 -1.6537 -1.6524 -1.4851 1.3563 0.5618 

>6m 

VG-LS 1.7606 1.6426 1.4211 1.5088 1.2626 -1.5859 -1.6403 
CMJ-MJ -1.7702 -1.6413 -1.6381 -0.9811 -0.0556 0.6563 -1.0911 
VG-MJ -2.3261 -2.3804 -2.3958 -2.2341 -1.1596 -1.0329 -2.0320 
LS-MJ -2.2811 -2.3280 -2.3671 -2.2381 1.3526 1.4279 -1.6567 

VG-CMJ 1.6203 -1.7274 -2.2020 -2.3510 -1.7514 -1.3495 -2.2100 
LS-CMJ -2.1184 -2.0353 -2.1701 -1.6855 1.5986 1.4341 -0.0787 

All 

VG-LS 2.2243 2.0025 1.1281 -1.4085 -2.0515 -1.8444 -2.1713 
 
 
  



 
Figure 1. Level and log change of the S&P 500 index, and implied volatility of the short-term ATM SPX options used in model 
estimation between January 4, 1993 and December 31, 1993. 

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
420

440

460

480
a. Level of the S&P 500 Index in 1993

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94

-0.02

0

0.02

b. Log Change of the S&P 500 Index in 1993

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
0

0.005

0.01

0.015
c. Implied BS Volatility of the ATM Options in 1993



 
Figure 2. Estimated volatility variables of SVMJ, SVCMJ, SVVG, and SVLS using daily returns of the S&P 500 index and 
daily prices of the short-term ATM SPX options between January 4, 1993 and December 31, 1993. 
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Figure 3. Estimated jumps in returns of SVMJ, SVCMJ, SVVG, and SVLS using daily returns of the S&P 500 index and daily 
prices of the short-term ATM SPX options between January 4, 1993 and December 31, 1993. 
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Figure 4. Kernel densities of standardized model residuals of returns of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993. 
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Figure 5. Kernel densities of standardized model residuals of volatility of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993. 
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Figure 6. In-sample absolute option pricing errors of SVMJ, SVCMJ, SVVG, and SVLS, which are estimated using daily 
returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 1993 and December 31, 
1993. 
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Figure 7. In-sample percentage option pricing errors of SVMJ, SVCMJ, SVVG, and SVLS, which are estimated using daily 
returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 1993 and December 31, 
1993. 
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Figure 8. Average absolute pricing errors for all out-of-sample options of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993. 

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
0

1

2

a. Absolute Pricing Errors for All Options: SVMJ v.s. SVVG SVMJ
SVVG

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
0

1

2

b. Absolute Pricing Errors for All Options: SVMJ v.s. SVLS SVMJ
SVLS

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
0

1

2

c. Absolute Pricing Errors for All Options: SVCMJ v.s. SVVG SVCMJ
SVVG

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94
0

1

2

d. Absolute Pricing Errors for All Options: SVCMJ v.s. SVLS SVCMJ
SVLS



 
Figure 9. Average percentage pricing errors for all out-of-sample options of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993.  
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