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Abstract

The aim of this paper is to propose a numerical method to price the Chicago
Board of Trade Treasury-bond futures. This contract is one of the most traded
in the world, largely because of its ability to hedge long term interest rate risk.
The di¢ culty to price it arises from its multiple inter-dependent embedded
delivery options, which can be exercised at various times and dates during
the delivery month. We consider a continuous time model with a continuous
underlying factor (the interest rate), moving according to a Markov di¤usion
process consistent with the no-arbitrage principle. We propose a model that
can handle all the delivery rules embedded in the CBOT T-bond futures, in-
terpreted here as an American-style interest rate derivative. Our pricing pro-
cedure is a backward numerical algorithm combining Dynamic Programming
(DP), approximation by �nite elements, and �xed point evaluation. Numerical
illustrations are provided under the Vacisek and CIR models.
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1 Introduction

A futures contract is an agreement between two investors traded on an exchange
to sell or to buy an underlying asset at some given time in the future, called the
delivery date, for a given price, called the futures price. By convention, at the time
the futures is written (the inception date), the futures price is known and sets the
value for both parties to zero. A futures contract is marked to market once a day
to eliminate counterparty risk. Precisely, at the end of each trading day, the futures
contract is rewritten at a new settlement price, that is, the closing futures price, and
the di¤erence with the last settlement futures price is substracted (resp. added) from
the short (resp. long) trader account.
The Treasury Bond futures traded on the Chicago Board of Trade (the CBOT

T-bond futures in the sequel) is the most actively traded and widely used futures
contract in the United States, largely because of its ability to hedge long term interest
rate risk. It calls for the delivery of $100,000 of a long-term governmental bond. The
notional or reference bond is a bond with a 6% coupon rate and a maturity of 20
years. Delivery months are March, June, September and December.
Since the notional bond is a hypothetical bond that is generally not traded in

the market place, the short has the option to choose which bond to deliver among
a deliverable set �xed by the CBOT. The actual delivery day within the delivery
month is also at the option of the short. These two delivery privileges o¤ered to
the short trader are known as the choosing option (or quality option) and the timing
option.
The choosing option allows the delivery of any governmental bond with at least 15

years to maturity or earliest call. To make the delivery fair for both parties, the price
received by the short trader is adjusted according to the quality of the T-bond deliv-
ered. This adjustment is made via a set of conversion factors de�ned by the CBOT
as the prices of the eligible T-bonds at the �rst delivery date under the assumption
that interest rates for all maturities equal 6% par annum, compounded semiannually.
The T-bond actually delivered by the short trader is called the cheapest-to-deliver
(CTD).
The timing option allows the short trader to deliver early within a delivery month

according to special features, that is, the delivery sequence and the end-of-month
delivery rule. The delivery sequence consists of three consecutive business days: The
position day, the notice day, and the delivery day. During the position day, the short
trader can declare his intention to deliver until up to 8:00 p.m., while the CBOT
closes at 2:00 p.m. (Central Standard Time). On the notice day, the short trader
has until 5:00 p.m. to state which T-bond will be actually delivered. The delivery
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then takes place before 10:00 a.m. of the delivery day, against a payment based on
the settlement price of the position day (adjusted according to the conversion factor).
Finally, during the last seven business days before maturity, trading on the T-bond
futures contracts stops while delivery, based on the last settlement price, remains
possible according to the delivery sequence. The so-called wild card play (or end-of-
the day option or six hours option) and the end-of-month option refer respectively
to the timing option during the three day delivery sequence and to the end-of-month
rule.
The modeling and measurement of the delivery options implicit in T-bond futures

contracts has been examined in the literature using di¤erent methods and leading
to non consensual empirical results. In particular, the issues of the performance of
the conversion factor system, the identi�cation of cheapest-to-deliver bond as well
as the valuation of the quality option embedded in Treasury-bond futures contracts
have been the subject of a substantial volume of research. A �rst stream of pa-
pers deals with the so-called conversion factor risk and its impact on the market,
propose alternative conversion systems and rules for the identi�cation of the CTD
(see for instance Livingston (1984), Kane and Marcus (1984), Jones (1985), Arak et
al. (1986), Benninga and Wiener (1999) and Oviedo (2006)). A second stream of
papers proposes valuation approaches for the quality option, which is considered to
be the most important, assuming a �at term structure for interest rates. Four main
methods are used: the exchange option pricing formula (Gay and Manaster (1984),
Boyle (1989), Hemler (1990)), the buy-and-hold approach (Hemler (1990), Kane and
Marcus (1986a), Hegde (1990)), the implied option value approach (Hegde (1988),
Hemler (1990), Hegde (1990)) and the switching option method (Barnhill and Seale
(1988a, 1988b), Hedge (1990)). A third stream of research, also concentrating on
the quality option, takes into consideration the term structure and stochastic nature
of interest rates (Ritchken and Sankarasubramanian (1992, 1995), Bick (1997), Carr
and Chen (1997), Lacoste (2002)). While the quality option is assumed to be the
most important, ignoring the other delivery options may lead to mispricing, and fail
to suggest optimal delivery strategies. A last stream of research considers the timing
option, either separately (Gay and Manaster (1986), Kane and Marcus (1986b)) or in
conjunction with the quality option (Arak and Goodman (1987), Peck and Williams
(1990), Boyle (1989), Gay and Manaster (1991), Nielsen and Ronn(1997), Chen and
Yeh (2004), Hranaoiva et al. (2005)). It is worth mentioning that the papers in
this last category use simplifying assumptions on the dynamics or the strategies.
To date, no work has been presented regarding the identi�cation of optimal exercise
strategies in the CBOT T-bond futures trading and the pricing of the contract under
stochastic interest rates when the interaction of all the delivery options is taken into
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account. In fact, complexity arising from all the embedded inter-dependent delivery
rules makes the contract computationally and analytically di¢ cult to price.
The aim of this paper is to propose a model and a pricing algorithm that can

handle explicitly and simultaneously all the delivery rules embedded in the CBOT
T-bond futures, in a stochastic interest rate environment. To do so, we consider
a continuous time model with a continuous underlying factor, the risk-free short
term interest rate. We assume that this rate moves according to a Markov di¤usion
process that is consistent with the no-arbitrage principle. Our pricing procedure is
a backward numerical algorithm combining Dynamic Programming (DP), approxi-
mation by �nite elements, and �xed point evaluation. In this context, the DP value
function is the value of the contract for the short trader (which is reset to 0 at the
settlement dates) and the DP recursion is given by no-arbitrage pricing (Elliott and
Kopp, 1999). Under a given assumption about the evolution of interest rates, the
numerical procedure output may be summarized into three results. The �rst gives
the theoretical futures prices at settlement dates. The second gives the delivery po-
sition strategy (deliver or not) on the position day. The third identi�es the CTD on
the notice day, given the futures price at the last settlement date. All three results
are functions of time and current interest rate.
The paper is organized as follows. Section 2 presents the model and the Dynamic

Programming formulation for the value of the contract. Section 3 describes in details
the numerical procedure. Section 4 reports on numerical results obtained under both
the Vasicek (1977) and Cox, Ingersoll and Ross (1985) (hereafter CIR) models for
the short rate process. Section 5 is a conclusion.

2 Model and DP Formulation

2.1 Notation

We consider frictionless cash and T-bond futures markets in which trading takes
place continuously. Denote

� (c;M) 2 � an eligible T-bond with a principal of 1 dollar, a continuous coupon
rate c, and a maturity M , where the set � of eligible bonds is known at the
date the contract is written;

� fcM the conversion factor corresponding to the T-bond (c;M), where the set
ffcM : (c;M) 2 �g is known at the date the contract is written;
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� frtg a Markov process for the risk-free short term interest rate that is consistent
with the no-arbitrage principle;

� �(r; t; �) the discount factor over the period [t; � ] ; � � t; when rt = r

�(r; t; �) = E

�
exp(�

Z �

t

rudu) j rt = r
�
; (1)

� p (t; c;M; r) the price at t of the eligible T-bond (c;M) when rt = r;

p (t; c;M; r) = c

Z M

t

�(r; t; u)du+ �(r; t;M);

� gt (r) a given price for the T-bond futures at t when rt = r;

� g�t (r) the fair settlement price for the T-bond futures at t when rt = r.

To be consistent with the CBOT delivery rules, we consider a sequence of mo-
toring dates thm where the lower index m = 0; :::; n is computed in days from the
date the contract is written and the upper index h 2 f2; 5; 8g indicates the time in
hours within that day. Assuming that the contract is written at t0 = t20; we denote
the marking to market dates by t2m for m = 0; : : : ; n, where tn represents the last
trading date during the delivery month. We denote the delivery position dates by t8m
for m = n; : : : ; n, where tn and tn are respectively the �rst and the last date of the
delivery month, 0 < n < n < n. Finally, the delivery notice dates are denoted t5m for
m = n + 1; : : : ; n + 1. Our choice of monitoring dates is justi�ed by the fact that,
within the delivery month, it is better for the short trader to wait until 8:00 p.m.
each day to decide whether to take or not a delivery position. Moreover, we assume
that the delivery notice date coincides with the actual delivery, since this does not
change the (expected) value of the contract.
Our DP model determines the value of the contract for the short trader at each

monitoring date, as a function of the interest rate at the current and last settlement
dates, assuming that the short trader behaves optimally. We obtain the fair settle-
ment price by making the value of the contract null for both parties at the settlement
dates.
The contract is evaluated by backward recursion in three distinct periods: The

end-of-the-month period, where no trading takes place, but delivery is still possible
(m = n; :::n), the beginning of the delivery month where trading and delivery are
both possible (m = n; :::; n), and the period before the delivery month, where no
action is taken by the short trader, but the settlement price is adjusted every day
(m = 0; :::; n).
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2.2 End-of-the-month Period

Recall that during the last seven business days before maturity, trading on the T-
bond futures contracts stops while delivery remains possible, based on the settlement
price at the last settlement date, indexed by m0. If an intention to deliver is issued
at the delivery position date t8m, for m = n; :::n, we de�ne the expected exercise value
vem (r

0; r) and the actual exercise value vam (r
0; r) for the short trader, as a function

of the interest rate at the last settlement date, denoted r0, and at the current date,
denoted r, as follows:

vem (r
0; r) = E

" 
vam

�
r0; rt5m+1

�
e
�
R t5m+1
t8m

rudu

!
j rt8m = r

#
, (2)

vam (r
0; r) = max

(c;M)2�

�
gm0(r0)fcM � p

�
t5m+1; c;M; r

�	
, (3)

where m0 = n:
Otherwise, if the short trader decides not to deliver at t8m, for m = n; :::; n,

we de�ne the holding value vhm (r
0; r), which is computed by no-arbitrage to be the

expected value of the future potentialities of the contract and given by (5) below.
The short trader will of course issue an intention to deliver at (t8m; r

0; r) if and only
if

vem(r
0; r) > vhm(r

0; r).

The value function for the short trader at t8m, for m = n; :::; n; is thus de�ned
recursively by:

v8m (r
0; r) = max

�
vem (r

0; r) ; vhm (r
0; r)
	

(4)

vhm (r
0; r) = E

"
v8m+1

�
r0; rt8m+1

�
e
�
R t8m+1
t8m

rudu j rt8m = r
#

(5)

v8n (r
0; r) = ven (r

0; r) ; (6)

and the settlement value for the short trader at (t2m0 ; rt2
m0
) is the expected discounted

value at t8m0:

v2m0 (r0) = E

"
v8m0

�
r0; rt8

m0

�
e
�
R t8
m0

t2
m0

rudu

j rt2
m0
= r0

#
; (7)

where m0 = n. Notice that equations (2) - (7) de�ne a mapping from the space of
functions gm0 : R!R to the space of functions v2m0 : R!R, but we did not make this
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dependency on gm0 explicit to alleviate the notation. Moreover, the settlement value
at m0 and r0 is de�ned for any settlement price function gm0(r0), constant during the
end-of-the-month period, which can be written

v2m0 (r0) = Fr0m0(g)

where Fr0m0:R!R is a function de�ned by the Dynamic Program (2) - (7) with
g = gm0(r0) and m0 = n.
However, the settlement price at t2m0 should be selected so that the value to both

parties is 0, taking into account the timing and quality options. Consequently, the
fair settlement price at t2m0 ; denoted g�m0(r), is a function of the settlement date
interest rate such that:

v2m0 (r0) = Fr0m0(g�m0(r0)) = 0 for all r0; (8)

where m0 = n.

2.3 Delivery Month

During the delivery month (m = n; :::; n � 1), the value of the contract for the
short trader may be evaluated in the same manner as in the previous section, but
the holding value must account for the interim payments at the marking to market
dates. Thus, the exercise value functions vem (r

0; r) and vam (r
0; r) at respectively t8m

and t5m, for m = n; n� 1 are given by (2)-(3), where m0 = m. The holding value at
t8m, however, accounts for the interim payment at the next marking to market date,
that is,

vhm (r
0; r) = E

"�
gm(r

0)� g�m+1
�
rt2m+1

��
e
�
R t2m+1
t8m

rudu

+ v2m+1

�
rt2m+1

�
e
�
R t2m+1
t8m

rudu j rt8m = r
#

= E

"�
gm(r

0)� g�m+1
�
rt2m+1

��
e
�
R t2m+1
t8m

rudu j rt8m = r
#
, (9)

since the settlement value at m + 1 is the null function for a fair settlement price.
The value function at t8m and t

2
m is then given by (4) and (7), with m

0 = m. Finally,
for each mark-to-market date t2m; m = n� 1; :::; n� 1; the settlement price function
g�m0(r) is such that (8) is veri�ed, with m0 = m.
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2.4 Initial period

Within the time period
�
t0; t

2
n�1
�
, delivery is not possible, so that the value of the

contract for the short trader only involves taking into account the interim payments
in the marking to market account. The value function at t2m, for m = 0; :::; n� 1, is
thus given by

v2m(r) = E

"�
gm(r)� g�m+1

�
rt2m+1

��
e
�
R t2m+1
t2m

rudu j rt2m = r
#
;

where g�m is such that (8) is satis�ed for m0 = m, m = 0; :::n � 1: Therefore, the
successive settlement prices can be obtained by the recursive relation

g�m (r) =

E

"
g�m+1

�
rt2m+1

�
e
�
R t2m+1
t2m

rudu j rt2m = r
#

�(r; t2m; t
2
m+1)

for all r;m = 0; :::n� 1: (10)

3 Dynamic Programming Procedure

Equations (2)-(10) de�ne a dynamic program which can be used to �nd the fair
settlement prices and the optimal timing and choosing strategies for the short trader
by backward induction. This dynamic program is de�ned on the state space f(r0; r) :
r0 � 0; r � 0g and does not admit a closed-form solution, even for the most simple
case where the interest rate is assumed to be constant. In this section, we describe
a numerical procedure for the solution of this dynamic program. Three speci�c
numerical problems must be addressed:

� the optimization in (3) which involves the price of the eligible bonds according
to the underlying interest rate model,

� the computation of the expectations in (2), (5), (7), (9) and (10) of functions
which are analytically intractable,

� the determination of the root of (8).

The numerical procedures consists in

� �nding the CTD by an appropriate search over the eligible set according to the
properties of the bond prices,
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� approximating the functions v8m(g; �) and g�m(�) by expectations of linear �nite
elements interpolation functions,

� �nding the fair settlement price as a �xed point of a contraction mapping.

3.1 Optimization Procedure

Finding the CTD at m; r0; r consists in solving the following:

vam (r
0; r) = max

(c;M)2�

(
gm0(r0)fcM � (c

Z M

t5m+1

�
�
r; t5m+1; u

�
du+ �

�
r; t5m+1;M

�
)

)

where the �nite set of eligible bonds and their conversion factors are �xed at the
signature of the contract and gm0(r0) is given. The function to be maximized is
linear in c, so that the optimal coupon is extremal and given by either c � min c
or c � max c: If an analytic expression for � (r; t; �) is known, it is straightforward
to check the properties of the projections of the function to optimize on c = c and
c = c. If these are convex, simple inspection of the extremal maturities will yield the
CTD. If either one is concave, a line search for �xed c and/or c can be performed.
Otherwise, since the number of eligible bonds is �xed, an enumeration of all eligible
bonds with extremal coupons will yield the CTD and the value of vam (r

0; r). Notice
that, while the value of vam (r

0; r) can be obtained with as much precision as the price
of a given bond for any r0; r and gm0 ; it cannot be expressed in closed form.

3.2 Interpolation Procedure

The interpolation procedure consists in approximating an analytically intractable
function, the value of which is known at a �nite number of points, by a piecewise
linear continuous function.
Let G = fa1; : : : ; aqg be a grid de�ned on the set of interest rates, with the

convention that a0 = �1 and aq+1 = +1. Given a function hj : G ! R, the
interpolation function bhj : R! R is given by:

bhj (r) = qX
i=0

(�i + �ir) I (ai � r < ai+1) , for all r 2 R,

where the function I is the indicator function and the coe¢ cients �i and �i are
obtained by matching bh and h on G, that is
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�i =
ai+1h(ai)� aih(ai+1)

ai+1 � ai
;

�i =
h(ai+1)� h(ai)
ai+1 � ai

; i = 1; :::q � 1;

and �0 = �1; �0 = �1; �q = �q�1; �q = �q�1.

3.3 Expectations of Interpolation Functions

De�ne the transition parameters

A��tk;i � E
h
I (ai � r� < ai+1) e�

R �
t rudu j rt = ak

i
(11)

and
B��tk;i � E

h
r�I (ai � r� < ai+1) e�

R �
t rudu j rt = ak

i
, (12)

where t0 � t � � , k = 0; : : : ; q, and i = 0; : : : ; q.
We assume that these transition parameters and the discount factor �(r; t; �) can

be obtained with precision from the dynamics of frt, t � t0g. Notice that for several
dynamics of the interest rates, closed-form solutions exist for the transition parame-
ters and discount factor, as discussed in Ben-Ameur et al (2007). Examples include
Vasicek (1977), CIR (1985), and Hull and White (1990). Closed form formulas for
the transition parameters and discount factor for the Vasicek and in the CIR model
are recalled in the Appendix.
Given an interpolation function bhj : R! R, the expected value at t and rt = ak

of a future payo¤ bhj at � is given by:
ehj (t; � ; ak) � E hbh (r� ) e� R �t rudu j rt = aki

= E

"
qX
i=0

(�i + �ir� ) I (ai � r� < ai+1) e�
R �
t rudu j rt = ak

#

=

qX
i=0

�iA
��t
k;i + �iB

��t
k;i for all ak 2 G.
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3.4 Root Finding Procedure

At a given r0 and m0, the root �nding procedure consists in �nding a constant g such
that

v2m0 (r0) = Fr0m0(g) = 0

where Fr0m0 is de�ned by the Dynamic Program (2) - (7), (9) with g = gm0(r0)
Consider two settlement prices g1 and g2 such that g1 < g2: Since

max
(c;M)2�

�
g1fcM � p

�
t5m+1; c;M; r

�	
< max

(c;M)2�

�
g2fcM � p

�
t5m+1; c;M; r

�	
for all r and m, it is easy to show that Fr0m0 is strictly monotone in g. Moreover,

lim
g!�1

Fr0m0(g) = �1

lim
g!+1

Fr0m0(g) = +1:

Therefore, Fr0m0(�) admits a unique root.
Consider the following successive approximation scheme:

g1 = g0 � Fr0m0
�
g0
�

gk+1 = gk � Fr0m0
�
gk
� gk � gk�1
Fr0m0 (gk)� Fr0m0 (gk�1)

; k > 1

where g0 is given.
Now, since Fr0m0(�) is strictly increasing, this Quasi-Newton successive approxi-

mation scheme will converge to the unique root from any starting point (for example,
a good starting point is

g0 = min
(c;M)2�

(
c
RM
T
�(r; tm0 ; u)du+ �(r; tm0 ;M)

�(r; tm0 ; T )fcM

)
(13)

which is the price at tm0 of a forward contract maturing at an appropriately chosen
T with a choosing option on the same basket �). Moreover, since the number of
exercise strategies is �nite, it can be shown that there exists a neighborhood of the
root where Fr0m0 is linear in g, so that this approximation scheme will converge in a
�nite number of steps.
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3.5 Algorithm

The algorithm consists in solving the dynamic program (2)-(10) by backward induc-
tion from the last delivery position date t8n on the grid G.
In each of the three periods spanning the contract, the main loop of the algorithm

consists in iteratively �nding, from an initial guess, the fair settlement price at the
settlement dates, as a function of the current spot interest rate, considering all the
delivery options. This is realized by applying, at a given position date, the root
�nding procedure on all points of G, and then applying the interpolation procedure
to obtain the price as a continuous function of the interest rate. The fair price at
a settlement date is then obtained by applying the expectation procedure over the
time interval between the settlement and the position dates.
The inner loop of the algorithm consists in obtaining, for a given settlement price

function, the value of the contract for the short trader at a given position date,
considering all the delivery options, as a function of the interest rate at the last
settlement date and the current interest rate. This is realized by applying, on all
points of G �G, the optimization procedure to �nd the CTD and the actual exercise
value on the grid. The interpolation procedure is then applied to obtain a continuous
function, and the expectation procedure is applied on the time interval between the
position and the notice dates, yielding the exercise value at the position date. This
is compared with the holding value, which is known on the grid points. The optimal
value function at the notice date is then interpolated and the expectation procedure
is applied between either two successive notice dates (during the end-of-the-month
period) or the last settlement and current notice dates. This yields the value for the
short seller at the settlement date as a function of the interest rate, which is null if
the settlement price is fair.
The detailed algorithm is provided in the Appendix.

4 Numerical Illustration

In our numerical experiments, the �nite set of deliverable bonds contains 62 bonds
with maturity ranging from 15 to 30 years in steps of 6 months. Since only the bonds
with extremal coupon rates are optimal to deliver, we consider only two coupon rates
corresponding to the highest and lowest coupon rates in the current CBOT set of
deliverable bonds, namely c = 8:125% and c = 5:25%. The inception date is chosen
to be three months prior to the �rst day of the delivery month.
We apply our dynamic programming procedure to obtain futures prices at the

inception date under both the Vasicek and CIR term structure models, using the
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closed-form formulas (17)-(19) or (20)-(22) for the discount factor and transition
parameters. Table 1 below gives the (risk neutral) parameter values used in the
numerical experiments.

Table 1: Input data
Deterministic Vasicek CIR

r 0.06 0.098397028 0.133976855
� 10�6 0.44178462 0.14294371
� 10�6 0.13264223 0.38757496

The interest rates grid points a1; :::; aq are selected to be equally spaced with

a0 = �1, a1 = r � 8
q

�2

2�
, aq = r + 8

q
�2

2�
for the Vasicek model, while a1 = 0 and

aq = 1 for the CIR model. The number of grid points is denoted N .
We �rst give the precise de�nitions adopted here for the timing options. De�ni-

tions of implicit delivery options are not uniform throughout the literature and one
must be cautious in comparing results across studies. In this paper, the timing option
gives the short trader the right to deliver on any day during the delivery month (also
called the accrued interest option). The delivery month is divided into two periods;
in the �rst 15 business days, the futures market is open, while in the last 7 business
days, it is closed. The wild card option (WC) (also called the six hours option or
the end-of-the day option) refers to the right, during the �rst 15 days of the delivery
month, to wait until 8:00 p.m. (6 hours after the closing of the futures market) to
decide about taking or not a delivery position. The end-of-the month option (EOM)
refers to the right to deliver on any day during the last 7 business days of the delivery
month, during which the futures market is closed while the bond market is open.
We disentangle the individual e¤ects of each implicit option by pricing various

futures contracts embedding di¤erent combinations of these options. The price of
the quality option, for instance, is computed as the di¤erence between the price of
a futures contract o¤ering all the embedded delivery options and the same contract
allowing only one bond to be delivered (here, the notional bond). The price of all the
embedded options is obtained by comparing the price of the straight futures contract
(o¤ering no options) with the price of the contract with all embedded options. The
values of the timing options are obtained similarly.
The Dynamic Programming procedure provides the price of the futures and the

embedded options, as a function of the current spot interest rate, on any day prior
to expiration.
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4.1 Convergence

We �rst examine the convergence properties of the DP procedure. In order to do so,
we report on two numerical experiments. In the �rst one, we use a set of parameters
de�ning a nearly deterministic interest rate of 6%, for which the closed-form forward
price is 1 (forward and future prices are equal when rates are deterministic). The
relative error in the price of the contract on the inception date is recorded as the
number of grid points is increased from 40 to 640. In the second experiment, we use
the Vasicek model for the stochastic interest rate. Since in that case we do not have
an exact solution, we report on the di¤erence between two successive values of the
futures price when the number of points of the grid is doubled, from 75 to 600.
Parameter values are those in Table 1. Results are reported in Tables 2 and 3

in the Appendix. Figure 1 below represents the log of the error as a function of
the log of the distance between grid points and the error as a function of the log of
computation time.

Figure 1: Convergence of the DP futures prices (r=6%)

Figure 2 plots, for various levels of interest rates at the inception date, the relative
di¤erence between two successive prices as a function of the grid size and computation
time in the Vasicek experiment.
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Figure 2: Convergence of the DP futures prices (Vasicek)

4.2 Futures and Option Prices

We now report on futures prices at the inception date for levels of interest rates
ranging from 1% to 20%, and for various combinations of embedded options, from
which we obtain the value of the di¤erent options. Parameter values are given in
Table 1. Tables 4 and 5 in the Appendix present the contract prices and option
values for the Vasicek dynamics, while Tables 6 and 7 do so for the CIR dynamics.
Figure 3 compares the prices of the straight futures contract and the contract with
all its embedded options and Figure 4 compares the values of the embedded options
as a function of the interest rate. Futures prices are seen to be negatively related
to interest rates, which is to be expected since the T-bond futures contract is an
interest rate derivative with a T-bond as underlying security.
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Figure 3: Futures prices vs interest rate

Figure 4: Options values vs interest rates

From Tables 5 and 7, we observe that for the Vasicek (resp. CIR) interest rate
dynamics, the quality option is worth an average 1.48 (resp. 1.35) percentage points
of par and represents approximately 88% (resp. 89%) of the price of all the options
together. The value of the timing option is relatively very small, averaging 0.2 (resp.
0.15) percentage points of par. These results are consistent with previous studies,
where the quality option is reported to be much more valuable than the timing option,
with average values in the range of our results. For both dynamics, the value of the
Wild Card option is very small, while the value of the end-of-the month option is
found to be approximately nil for all interest rate levels and is therefore not reported
in our results.
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The value of the quality option is observed to be negatively related to interest
rates, while the converse is true for the timing option, with an overall e¤ect dominated
by the quality option. The fact that the quality option is negatively related to the
interest rate can be explained by the fact that the basket of eligible bonds becomes
less valuable with rising interest rates. The fact that the timing option is positively
related to the interest rate can be explained by the fact that the proceeds of early
exercise can be invested at a higher rate.
In Tables 8 to 13 in the Appendix, we report on the evolution, during the delivery

month, of the futures price and quality and timing options values under both the
Vasicek and the CIR dynamics. The timing option value is observed to decrease
with elapsed time (see Figure 5), which is due to the fact that the opportunities to
deliver early are reducing as maturity approaches. On the other hand, the value of
the quality option and the futures price do not exhibit a speci�c relation with respect
to time to maturity.

Figure 5: Evolution of the value of the timing option through the delivery month

4.3 Optimal delivery strategy

To illustrate the evolution of the optimal delivery decision and the associated change
in the CTD through the delivery month, we report the optimal exercise strategy for
days 1, 10, 15, 18, 20 and 22 of the delivery month. The decision is represented by
a binary variable equal to 1 if delivery is optimal and 0 otherwise and the CTD is
identi�ed by the pair (c;M). Notice that the decision during the wild card period
depends on the level of interest rates at 2:00 p.m. and 8:00 p.m. on the same day,
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while the decision during the end-of-the month period depends on the interest rate at
2:00 p.m. on the last futures trading day and at 8:00 p.m. on the notice day. Tables
14 and 15 in the Appendix present the results for the Vasicek and CIR dynamics in
the speci�c case where the spot rate is 6% at the settlement date.
We notice that, during the �rst 15 days of the delivery month, the timing option is

exercised optimally whenever interest rates rise during the period between 2:00 p.m.
and 8:00 p.m., while it is generally not exercised during the end-of-the month (unless
interest rates reach a very high level). It is also interesting to notice that the CTD
may have interior maturity, especially for high levels of interest rates. Moreover,
bonds with both minimal coupon rates and minimal maturities may be optimal to
deliver (which is not observed for deterministic rates).
Finally, Table 16 presents the optimal delivery strategy on the 15th day of the

delivery month for various combinations of interest rates at 2:00 p.m. and 8:00 p.m.

4.4 Sensitivity of futures and option prices

In this last section, we perform sensitivity analyses of the option values to the pa-
rameters of the interest rate models. Results are presented for the Vasicek model;
sensitivity under the CIR model is qualitatively similar.
Figure 6 presents the impact of a variation of the mean reversion speed when

r = 0:03 and � = 0:1.

Figure 6: Options values sensitivities to � (Vasicek)

We observe that both the quality and timing options values are negatively a¤ected
by the mean reversion speed. This is consistent with the observation of Chen et al.
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(1999) about the quality option value in the Japanese futures market under the Hull
and White dynamics. The authors argue that an increase in the mean reversion rate,
which determines the relative volatilities of long and short rates, dampens out short
term rate movements quickly and therefore reduces the long term volatility, which is
positively related to the quality option value.
Figure 7 presents the impact of a variation of the long term mean when � = 0:3

and � = 0:1 and shows a negative relation between option values and long term
mean.

Figure 7: Options values sensitivities to r (Vasicek)

Figures 8 and 9 present the impact of a variation in volatility when r = 0:03 and
� = 0:3. As expected, the relation between futures prices and options values and
volatility is observed to be positive. Chen et al. (1999) �nd similar results for the
quality option in the Japanese futures market.
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Figure 8: Futures price sensitivity to � (Vasicek)

Figure 9: Options values sensitivity to � (Vasicek)

5 Conclusion

This paper presents an e¢ cient numerical method for the identi�cation of optimal
exercise strategies for the CBOT T-bond futures, and for the pricing of the con-
tract, under stochastic interest rate dynamics, and accounting for the interaction
of all the inter-dependent delivery options. This numerical algorithm, which com-
bines dynamic programming, �nite elements approximation, analytical integration
and �xed point evaluation, is to our knowledge the �rst to tackle all the complexities
of the CBOT futures contract in a stochastic interest rate framework. The numer-
ical illustrations provided here use the Vasicek and CIR models, but the method is

20



�exible and can be used with any speci�cation for the interest rate dynamics, pro-
vided the transition parameters and discount factor can be obtained or approximated
e¢ ciently.
Our numerical investigations show convergence and consistency. An extension to

two-factor or stochastic volatility models (such as GARCH for example) should be
the object of further research.

6 Appendix

6.1 Transition parameters

We give, for the Vasicek (1977) and CIR (1985) models, the closed-form formulas for
the transition parameters A�k;i and B

�
k;i de�ned respectively in (11) and (12) as well

as for the discount factor �(r; t; t+ �) de�ned in (1). For both models, the derivation
of these closed-forms starts from the distribution of the random vector�

rt+�;

Z t+�

t

rudu

�
(14)

conditional on the value of rt, for 0 � t � t + �. For proofs and more details about
the derivation of these closed-forms we refer to Ben-Ameur et al (2007).

6.1.1 The Vasicek model

Under the risk-neutral probability measure, the interest rate process is the solution
to the following stochastic di¤erential equation

drt = �(r � rt)dt+ �dBt; for t � 0;

where fBt; t � 0g is a standard Brownian motion, � is the mean reversion speed, r is
the long term mean and � is the volatility. For the Vasicek model, the distribution
of the random vector (??) conditional on rt = r is bivariate normal with mean

�(r; �) = (�1(r; �); �2(r; �)) = (r + e
���(r � r); r� + 1� e

���

�
(r � r)) (15)

and covariance matrixX
(�) =

�
�21 (�) �12 (�)
�21 (�) �22 (�)

�
=

�
�2

2�

�
1� e�2��

�
�2

2�2

�
1� 2e��� + e�2��

�
�21

�2

2�3

�
�3 + 2�� + 4e��� � e�2��

� � :
(16)
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The discount factor and the transition parameters are then given by

�(r; t; t+ �) = exp(��2(r; �) + �22 (�) =2); (17)

A�k;i = e
�(�2(ak;�)+�22(�)=2) [�(xk;i)� �(xk;i�1)] ; (18)

and

B�k;i = e�(�2(ak;�)+�
2
2(�)=2) [(�1(ak; �)� �12 (�))(�(xk;i)� �(xk;i�1))

��1 (�) (e�x
2
k;i � e�x2k;i�1)=

p
2�
i
; (19)

where

xk;i = (ai � �1(ak; �) + �12 (�))=�1 for i = 0; :::; q;
xk;�1 = �1

and � is the standard normal distribution function.

6.1.2 The CIR model

Under the risk-neutral probability measure, the interest rate process is the solution
to the following stochastic di¤erential equation

drt = �(r � rt)dt+ �
p
rtdBt; for t � 0:

For the CIR model, the distribution of the random vector (??) conditional on
rt = r is characterized by its Laplace transform:

E

�
exp(�!

Z t+�

t

rudu� �rt+�) j rt = r
�

= exp(X(�; !; �)� rY (�; !; �));

where

X(�; !; �) =
2�r

�2
log

�
2
(!)e(
(!)+�)�=2

(��2 + 
(!) + �)(e
(!)� � 1) + 2
(!)

�
;

Y (�; !; �) =
�(
(!) + �+ e
(!)�(
(!)� �)) + 2!(e
(!)� � 1)

(��2 + 
(!) + �)(e
(!)� � 1) + 2
(!) and


(!) =
p
�2 + 2!�2:
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For the CIR model, the discount factor and the transition parameters are given
by

�(r; t; t+ �) = exp(X(�; 1; 0)� rY (�; 1; 0)); (20)

A�k;i = �(ak; t; t+ �)

1X
u=0

e���=2
(��=2)

u

u!

�
Fd+2u(

ai+1
�
)� Fd+2u(

ai
�
)

�
; (21)

and

B�k;i = �(ak; t; t+ �)�
1X
u=0

e���=2
(��=2)

u

u!

�
�2(ai+1fd+2u(

ai+1
�
)� aifd+2u(

ai
�
)

+(d+ 2u)(Fd+2u(
ai+1
�
)� Fd+2u(

ai
�
))

�
; (22)

where Fd+2u and fd+2u are the distribution and the density functions of a chi-square
random variable with d+ 2u degrees of freedom,


 =
p
�2 + 2�2;

� =
�2e
� � 1

2(
 + �)(e
� � 1) + 2
 ;

d =
4�r

�2
and

�k =
8
2e
�ak

�2 [(
 + �)(e
� � 1) + 2
] (e
� � 1) :

6.2 Algorithm

1. Initialization:

De�ne G. De�ne ". Set evhn (ak0 ; ak) = 0 for all ak0 ; ak 2 G
2. Step 1: (end-of-the-month, m = n; :::; n)

2.1 Set m = n.

2.2 Set k0 = 1.

2.3 Set gn (ak0) using (13) with T = t5n+1 and m
0 = t2n.

2.4 Apply the optimization procedure at (m; ak0 ; ak) for all ak 2 G yielding

evam(ak0 ; ak) = vam (ak0 ; ak) :
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2.5 Apply the interpolation procedure, setting h(ak) = evam(ak0 ; ak), ak 2 G,
yielding bvam (ak0 ; r) = bh(r):

2.6 Apply the expectation procedure to bh(r) = bvam (ak0 ; r) at t = t8m and
� = t5m+1 for all ak 2 G, yielding

evem (ak0 ; ak) = eh �t8m; t5m+1; ak� for all ak 2 G:

2.7 Compute

evm (ak0 ; ak) = max �evem (ak0 ; ak) ; evhm (ak0 ; ak)� for all ak 2 G

and apply the interpolation procedure, setting h(ak) = evm(ak0 ; ak), ak 2 G,
yielding bvm (ak0 ; r) = bh(r):

2.8 While m � n, apply the expectation procedure to bh(r) = bvm (ak0 ; r) at
t = t8m�1 and � = t

8
m for all ak 2 G, yielding

evhm�1 (ak0 ; ak) = eh2 �t8m�1; t8m; ak� for all ak 2 G;

set m = m� 1 and go to step 2.4,
Else, apply the expectation procedure to bh(r) = bvn (ak0 ; r) at t = t2n and
� = t8n, yielding ev2n (ak0) = eh �t2n; t8n; ak0� :

2.9 While jevn (ak0)j > ", apply the root �nding procedure to update gn (ak0)
and go to step 2.4,
Else, set eg�n (ak0) = gn (ak0).

2.10 While k0 < q, set k0 = k0 + 1 and go to step 2.3.

2.11 Apply the interpolation procedure, setting h(ak) = eg�n (ak), ak 2 G, yield-
ing bg�n (r) = bh(r);
and apply the expectation procedure to bh(r) at t = t8n�1 and � = t2n, for
all ak 2 G, yielding

eg8n�1 (ak) = eh �t8n�1; t2n; ak� = for all ak 2 G:

24



3. Step 2 (delivery month, m = n; :::; n� 1)

3.1 Set m = n� 1.
3.2 Set k0 = 1.

3.3 Set gm (ak0) using (13) with T = t5m+1and m
0 = t2m:

3.4 Apply the optimization procedure at (m; ak0 ; ak) for all ak 2 G as in step
2.4, yielding evam(ak0 ; ak) = vam (ak0 ; ak) :

3.5 Apply the interpolation and expectation procedures at t = t8m and � =
t5m+1 as in steps 2.5 and 2.6, setting h(ak) = evam(ak0 ; ak), ak 2 G, yieldingevem (ak0 ; ak) = eh �t8m; t5m+1; ak� for all ak 2 G:

3.6 Using (9), compute

evhm (ak0 ; ak) = gm (ak0) � �ak; t8m; t2m+1�� eg8m (ak) , for all ak 2 G.
3.7 Compute

evm (ak0 ; ak) = max �evem (ak0 ; ak) ; evhm (ak0 ; ak)� for all ak 2 G

and apply the interpolation procedure as in step 2.7, setting h(ak) =evm(ak0 ; ak), ak 2 G, yielding bvm (ak0 ; r) = bh(r):
3.8 Apply the expectation procedure to bh(r) = bvm (ak0 ; r) at t = t2m and

� = t8m as in step 2.8, yielding ev2m (ak0) = eh (t2m; t8m; ak0) :
3.9 While jevm (ak0)j > ", apply the root �nding procedure to update gm (ak0)

and go to step 3.4,
Else set eg�m (ak0) = gm (ak0).

3.10 While k0 < q, set k0 = k0 + 1 and go to step 3.3.

3.11 Apply the interpolation procedure as in step 2.11, setting h(ak) = eg�m (ak),
ak 2 G, yielding bg�m (r) = bh(r):

3.12 While m � n, apply the expectation procedure to bh(r) as in step 2.11 at
t = t8m�1 and � = t

2
m, for all ak 2 G, yielding eg8m�1 (ak) = eh �t8m�1; t2m; ak�

for all ak 2 G; set m = m� 1 and go to step 3-2.
Else, apply the expectation procedure to bh(r) as in step 2.11 at t = t2m�1
and � = t2m, for all ak 2 G, yielding eg2m�1 (ak) = eh �t2m�1; t2m; ak� for all
ak 2 G:
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4. Step 3 (before the delivery month, m = �1; : : : ; n� 1)

4.1 Set m = n� 1.
4.2 Using (10), compute

eg�m (ak) = eg2m (ak)
�(ak; t2m; t

2
m+1)

:

4.3 Apply the interpolation procedure as in step 3.11, setting h(ak) = eg�m (ak),
ak 2 G, yielding bg�m (r) = bh(r):
Apply the expectation procedure to bh(r) as in step 3.12 at t = t2m�1 and
� = t2m, for all ak 2 G, yielding eg2m�1 (ak) = eh �t2m�1; t2m; ak� for all ak 2 G:

4.4 While m � �1, set m = m� 1 and go to step 4.2.

6.3 Numerical Results Tables

Table 2: Convergence of the DP futures prices (r=6%)
N Futures price CPU (sec.)
40 0:999988554424208 1
80 0:999988578106129 2
160 0:999988723848566 11
320 0:999989050184833 57
640 0:999989668027805 338
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Table 3: Convergence of the DP futures prices (Vasicek)
N

r (%) 75 150 300 600
1 1:117557 1:102783 1:098359 1:096947
2 1:097853 1:083635 1:079358 1:077998
3 1:078868 1:06484 1:060669 1:059384
4 1:060213 1:046297 1:042331 1:041097
5 1:041558 1:028163 1:024308 1:023124
6 1:023569 1:010356 1:006578 1:005465
7 1:0059 0:992787 0:989176 0:988111
8 0:988232 0:975609 0:972072 0:97105
9 0:97118 0:958733 0:955246 0:954285
10 0:95444 0:942081 0:938726 0:937804
11 0:937699 0:9258 0:92249 0:921598
12 0:92153 0:9098 0:906516 0:90567
20 0:801306 0:79126 0:788245 0:787505

CPU (sec.) 3 30 146 720

Table 4: Prices of futures contracts (Vasicek)
r (%) All options No options No Quality No EOM No WC
1 1.096947 1.117247 1.116872 1.096947 1.097044
2 1.077998 1.097775 1.097306 1.077998 1.078118
3 1.059384 1.078663 1.078085 1.059385 1.059528
4 1.041097 1.059906 1.059202 1.041098 1.041265
5 1.023124 1.041488 1.040641 1.023124 1.023313
6 1.005465 1.023414 1.022406 1.005466 1.005674
7 0.988111 1.005672 1.004486 0.988112 0.988337
8 0.97105 0.988251 0.986872 0.971051 0.971289
9 0.954285 0.971155 0.969568 0.954285 0.954534
10 0.937804 0.954373 0.952564 0.937805 0.938059
11 0.921598 0.937894 0.935851 0.921599 0.921854
12 0.90567 0.921724 0.919438 0.905671 0.905923
20 0.787505 0.802563 0.798247 0.787506 0.787634

Average 0.934282 0.951179 0.949092 0.934282 0.934479
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Table 5: Value of delivery options (Vasicek)
r (%) All options Quality Timing Wild Card
1 0.020301 0.019926 0.000375 9.7e�05
2 0.019777 0.019308 0.000469 0.00012
3 0.019279 0.018701 0.000578 0.000144
4 0.018809 0.018104 0.000704 0.000168
5 0.018365 0.017517 0.000847 0.000189
6 0.017949 0.016941 0.001008 0.000209
7 0.017561 0.016375 0.001185 0.000226
8 0.017201 0.015822 0.001379 0.000239
9 0.016871 0.015283 0.001588 0.000249
10 0.016569 0.01476 0.00181 0.000255
11 0.016297 0.014254 0.002043 0.000256
12 0.016053 0.013767 0.002286 0.000253
20 0.015058 0.010742 0.004316 0.000129

Average 0.016897 0.014811 0.002087 0.000197

Table 6: Prices of futures contracts (CIR)
r (%) All options No options No Quality No EOM No WC
1 1.133371 1.151521 1.151492 1.133371 1.133397
2 1.107959 1.12558 1.1255 1.107959 1.10801
3 1.083116 1.100257 1.100099 1.083116 1.083191
4 1.058838 1.075541 1.075277 1.058838 1.058936
5 1.035116 1.051418 1.051021 1.035117 1.035236
6 1.011937 1.027872 1.027319 1.011938 1.012075
7 0.989289 1.004889 1.004157 0.98929 0.989443
8 0.967159 0.982454 0.981526 0.967161 0.967325
9 0.945535 0.960551 0.959413 0.945537 0.945709
10 0.924407 0.939172 0.937814 0.924409 0.924587
11 0.903762 0.918301 0.916716 0.903764 0.903944
12 0.88359 0.897927 0.896112 0.883592 0.883772
20 0.737978 0.751386 0.747853 0.737979 0.738115

Average 0.921991 0.937053 0.935476 0.921992 0.922132
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Table 7: Value of delivery options (CIR)
r (%) All options Quality Timing Wild Card
1 0.01815 0.018121 2.9e�05 2.6e�05
2 0.017621 0.017541 8e�05 5.1e�05
3 0.017141 0.016983 0.000158 7.5e�05
4 0.016703 0.016439 0.000264 9.8e�05
5 0.016302 0.015905 0.000397 0.00012
6 0.015935 0.015382 0.000553 0.000138
7 0.0156 0.014868 0.000732 0.000154
8 0.015295 0.014367 0.000928 0.000166
9 0.015016 0.013878 0.001138 0.000174
10 0.014765 0.013407 0.001358 0.00018
11 0.014539 0.012954 0.001585 0.000182
12 0.014337 0.012522 0.001815 0.000182
20 0.013408 0.009875 0.003533 0.000137

Average 0.015061 0.013484 0.001577 0.000141

Table 8: Evolution of the futures contract price
during the delivery month (Vasicek)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 1.096947 1.107754 1.108219 1.108809 1.109536
2 1.077998 1.086479 1.086840 1.087298 1.087855
3 1.059384 1.065630 1.065896 1.066227 1.066626
4 1.041097 1.045194 1.045371 1.045586 1.045839
5 1.023124 1.025144 1.025243 1.025352 1.025469
6 1.005465 1.005466 1.005500 1.005521 1.005502
7 0.988111 0.986156 0.986141 0.986088 0.985948
8 0.97105 0.967218 0.967162 0.967043 0.966790
9 0.954285 0.948665 0.948571 0.948389 0.948032
10 0.937804 0.930480 0.930354 0.930110 0.929638
11 0.921598 0.912639 0.912499 0.912195 0.911610
12 0.90567 0.895093 0.895000 0.894648 0.893959
20 0.787505 0.765590 0.765590 0.765590 0.764891

Average 0.934282 0.927090 0.927125 0.927090 0.926703
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Table 9: Evolution of the value of the Quality option
during the delivery month (Vasicek)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 0.019926 0.020240 0.020236 0.020222 0.020186
2 0.019308 0.019607 0.019593 0.019567 0.019527
3 0.018701 0.018997 0.018972 0.018935 0.018886
4 0.018104 0.018409 0.018377 0.018326 0.018263
5 0.017517 0.017838 0.017804 0.017742 0.017662
6 0.016941 0.017276 0.017254 0.017190 0.017101
7 0.016375 0.016669 0.016676 0.016649 0.016555
8 0.015822 0.015933 0.015987 0.016071 0.016024
9 0.015283 0.015101 0.015195 0.015376 0.015505
10 0.01476 0.014297 0.014423 0.014667 0.015017
11 0.014254 0.013540 0.013680 0.013984 0.014540
12 0.013767 0.012887 0.012980 0.013332 0.014067
20 0.010742 0.009821 0.009821 0.009821 0.010935

Average 0.014811 0.014375 0.014403 0.014506 0.015042

Table 10: Evolution of the value of the Timing option
during the delivery month (Vasicek)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 0.000375 1e�06 0 0 0
2 0.000469 1e�06 0 0 0
3 0.000578 6e�06 1e�06 0 0
4 0.000704 1.8e�05 4e�06 0 0
5 0.000847 5.1e�05 1.5e�05 1e�06 0
6 0.001008 0.000129 4.9e�05 4e�06 0
7 0.001185 0.000298 0.000145 2e�05 1e�06
8 0.001379 0.000622 0.000373 9.1e�05 3e�06
9 0.001588 0.001058 0.000723 0.000299 9e�06
10 0.00181 0.001486 0.001069 0.000542 2.2e�05
11 0.002043 0.001895 0.0014 0.000775 4.5e�05
12 0.002286 0.002285 0.001715 0.000997 7.8e�05
20 0.004316 0.004843 0.003779 0.002443 0.000415

Average 0.002087 0.001914 0.001451 0.000879 0.000117
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Table 11: Evolution of the futures contract price
during the delivery month (CIR)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 1.133371 1.144027 1.144522 1.145144 1.145904
2 1.107959 1.116384 1.116778 1.117277 1.1179
3 1.083116 1.089348 1.089635 1.090003 1.090485
4 1.058838 1.06295 1.063139 1.063383 1.063717
5 1.035116 1.037198 1.037304 1.037439 1.037623
6 1.011937 1.012085 1.012116 1.012152 1.012189
7 0.989289 0.987604 0.987567 0.987505 0.987409
8 0.967159 0.963746 0.963647 0.963495 0.963269
9 0.945535 0.940494 0.940341 0.940103 0.939746
10 0.924407 0.917834 0.917635 0.917311 0.916837
11 0.903762 0.895744 0.895508 0.895102 0.894514
12 0.88359 0.87421 0.873947 0.873464 0.872772
20 0.737978 0.719414 0.719413 0.719148 0.717873

Average 0.921991 0.915982 0.915954 0.915742 0.915314

Table 12: Evolution of the value of the Quality option
during the delivery month (CIR)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 0.018121 0.018238 0.018234 0.018228 0.01821
2 0.017541 0.01756 0.017545 0.017521 0.017469
3 0.016983 0.017006 0.016991 0.016964 0.016892
4 0.016439 0.016529 0.016511 0.016479 0.0164
5 0.015905 0.016096 0.016067 0.016023 0.015945
6 0.015382 0.015678 0.01565 0.015594 0.015523
7 0.014868 0.015218 0.015225 0.01519 0.015121
8 0.014367 0.01462 0.014708 0.014781 0.014736
9 0.013878 0.013882 0.014035 0.014271 0.01437
10 0.013407 0.013169 0.013368 0.013692 0.014007
11 0.012954 0.012497 0.012733 0.013139 0.013656
12 0.012522 0.011865 0.012128 0.012611 0.013305
20 0.009875 0.00895 0.008951 0.009216 0.010814

Average 0.013484 0.013068 0.013165 0.013453 0.014019
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Table 13: Evolution of the value of the Timing option
during the delivery month (CIR)

r (%) Inception Day 1 Day 5 Day 10 Day 15
1 2.9e�05 0 0 0 0
2 8e�05 0 0 0 0
3 0.000158 0 0 0 0
4 0.000264 1e�06 0 0 0
5 0.000397 5e�06 1e�06 0 0
6 0.000553 2.9e�05 7e�06 1e�06 0
7 0.000732 0.000119 4.2e�05 3e�06 0
8 0.000928 0.000364 0.000185 2.3e�05 1e�06
9 0.001138 0.000766 0.000497 0.00016 4e�06
10 0.001358 0.001157 0.000815 0.000381 1.2e�05
11 0.001585 0.001527 0.001114 0.000592 2.8e�05
12 0.001815 0.001876 0.001396 0.000791 5.4e�05
20 0.003533 0.004033 0.003136 0.002009 0.000325

Average 0.001577 0.001563 0.001181 0.000708 8.915e�05
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Table 14: Evolution of the optimal strategy (Vasicek)
r2p:m: = 6%

r8p:m:(%) day 1 day 5 day 10 day 15 day 18 day 20 day 22

1
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
1

(5; 15)

3
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
1

(5; 15)

5
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
0

(5; 15)
1

(5; 15)

6
0

(8; 15)
0

(8; 15)
0

(8; 15)
0

(8; 15)
0

(8; 15)
0

(8; 15)
1

(8; 15)

7
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)

8
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)

10
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)

12
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)

20
1

(8; 17:5)
1

(8; 17:5)
1

(8; 17:5)
1

(8; 17:5)
1

(8; 17:5)
1

(8; 18)
1

(8; 18)
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Table 15: Evolution of the optimal strategy (CIR)
r2p:m: = 6%

r8p:m:(%) day 1 day 5 day 10 day 15 day 18 day 20 day 22
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1
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0
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0

(8; 15)
0

(8; 15)
1

(8; 15)

7
1

(8; 15)
1
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1

(8; 15)
1

(8; 15)
0

(8; 15)
0

(8; 15)
1

(8; 15)

8
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
0

(8; 15)
0

(8; 15)
1

(8; 15)
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1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
0

(8; 15)
0

(8; 15)
1

(8; 15)

12
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
1

(8; 15)
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1

(8; 30)
1

(8; 30)
1

(8; 30)
1

(8; 30)
1

(8; 30)
1

(8; 30)
1

(8; 30)
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Table 16: Optimal delivery strategy
on the 15th day of the delivery month

r8p:m:(%)
r2p:m:(%) 1 2 3 4 5 6 7 8 9 10 12 14 20

1 0 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1 1 1 1
5 0 0 0 0 0 1 1 1 1 1 1 1 1
6 1 0 0 0 0 0 1 1 1 1 1 1 1
7 1 1 1 0 0 0 0 1 1 1 1 1 1
8 1 1 1 1 0 0 0 0 1 1 1 1 1
9 1 1 1 1 1 0 0 0 0 1 1 1 1
10 1 1 1 1 1 1 0 0 0 0 1 1 1
12 1 1 1 1 1 1 1 1 1 0 0 1 1
14 1 1 1 1 1 1 1 1 1 1 0 0 1
20 1 1 1 1 1 1 1 1 1 1 1 1 0
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