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Abstract

We find that risk-neutral asset return correlations implied by single-name credit
default swap (CDS) spreads average 13%. By contrast, Moody’s KMV estimate
that the physical correlations of the same names average 24%. The CDS-implied
correlations cannot account for observed prices of portfolio credit risk (ie CDS-index
tranche spreads) but these prices are matched closely on the basis of the M KMV
estimates. These findings underpin the two main conclusions of the paper: first,
there seems to be inconsistency in the way the single-name and index markets price
correlated default risk; second, there is little evidence in the sample for a correlation
risk premium. In addition, we find that CDS index spreads are driven largely by
the average levels of PDs and asset return correlations. While the impact of the
estimated dispersion in PDs and pairwise correlations is relatively smaller, it is
important for the differentiation of prices across index tranches. Furthermore, a
parsimonious one-factor model of asset returns provides a good approximation for
the purposes of pricing portfolio credit risk.
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1 Introduction

Portfolio credit risk has three key components: probability of default (PD), loss given

default (LGD) and default correlation. From among the three, default correlation has

received the least attention from academic researchers and market practitioners.1 How-

ever, the analysis of this component of portfolio credit risk has become increasingly

important owing to the recent rapid developments of innovative products in structured

finance, including collateralized debt obligations (CDOs), CDO of CDOs (also known

as CDO2), nth-to-default CDSs and CDS indices (see BCBS, 2004). All the numerical

methods used for pricing these instruments (see Hull and White, 2004; Gibson, 2004)

rely on estimates of default correlations but there is not consensus on how to obtain

those estimates.

The literature has proposed three alternative approaches to estimating default cor-

relations. The first, most direct, approach relies exclusively on default data (Daniels

et al., 2005; Demey et al., 2004; Jarrow and van Deventer, 2005). Since defaults are rare

events, however, the approach leads to large estimation errors, especially for portfolios

consisting of investment grade entities. The second approach deduces default correla-

tions from asset return correlations, which are estimated on the basis of the Merton

(1974) framework and equity-market data. This approach delivers physical (or actual)

asset return correlations, which differ from the risk-neutral correlations used for pricing

to the extent that there is a premium for the risk that correlations might change in the

future. Indeed, Driessen et al. (2005), who propose the third extant approach to estimat-

ing default correlations, rely on asset correlations estimated from option-prices and find

that the risk-neutral correlations differ substantially from their physical counterparts.

In this paper, we adopt a new method for estimating asset return correlations, which

relies on single-name credit default swap (CDS) spreads. The CDS market has developed

rapidly since 2002 and has delivered several years of daily spreads associated with highly

liquid contracts. Here, we focus exclusively on the CDS spreads of the companies that

enter the investment-grade variety of the popular CDS index Dow Jones CDX North

America 5-year (CDX.NA.IG.5Y).

Time series of the CDS spreads of these companies have implications for risk-neutral

1The mainstream of the credit risk literature focuses on PD: see Duffie and Singleton (2003) for
an overview. The growing literature on LGD includes Altman and Kishore (1996), Jarrow (2001) and
Covitz and Han (2004).
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asset return correlations, which we extract and employ as follows. We use single-name

CDS spreads to derive daily time series of single-name risk-neutral PDs and, then,

estimate the time path of asset returns. On the basis of the latter estimates, we cal-

culate risk-neutral asset return correlations. Combining these correlations with the

corresponding risk-neutral PDs, we conduct Monte Carlo simulations to obtain “CDS-

implied” prices of portfolio credit risk. In addition, we use a copula framework and

estimates of one-, two- and three-common-factor models of asset returns to derive alter-

native prices of portfolio credit risk. The match between these alternative prices, which

are free of Monte Carlo simulation errors, and the CDS-implied prices sheds light on

the number of common factors necessary to explain the joint behaviour of CDS spreads.

The Moody’s KMV estimates of physical asset return correlations, which are based

the proprietary Global Correlation (GCorr) model (Das and Ishii, 2001; Crosbie, 2005),

allow us to construct another set of prices of portfolio credit risk. We combine the

GCorr correlations for the companies in CDX.NA.IG.5Y with the corresponding risk-

neutral PDs, as implied by single-name CDS spreads, to obtain “GCorr-implied” prices

of portfolio credit risk. Paralleling the exercise based exclusively on single-name CDS

spreads, we also examine the number of common factors that are necessary to explain

the GCorr estimates of asset return correlations.

The CDS-implied and GCorr-implied prices we derive can be compared directly

to empirical tranche spreads of the CDS index CDX.NA.IG.5Y. We find substantial

differences between the CDS-implied prices and the observed tranche spreads of the

CDS index, which points to inconsistency in the pricing of correlated default risk across

markets. As regards the senior (ie relatively safe) tranches for instance, the single-name

CDS market implies prices that are 52% lower than the corresponding spreads observed

in the data. By contrast, this deviation is roughly 5% for GCorr-implied prices, which

match the data with similar precision over all index tranches. Since the GCorr model

delivers physical asset return correlations, this finding suggests that the correlation risk

premium is, at most, a negligible component of the prices of index tranches. The finding

thus stands in contrast to the above-mentioned conclusions of Driessen et al. (2005),

which are based on evidence from option prices.

We find that the main driver of CDS-implied and GCorr-implied prices is the average

estimated level of pairwise correlations. For instance, the discrepancy between the

average correlation implied by CDS spreads (13%) and the GCorr correlation (24%)
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drives a pricing difference that fully explains the difference of the two predicted spreads

for senior and super-senior tranches. Remarkably, the low average correlation embedded

in single-name CDS spreads explains the bulk of the overshooting of observed equity

tranche spreads and the undershooting of the senior tranche spreads by CDS-implied

prices. By contrast, the average level of GCorr correlations, in conjunction with the

estimated dispersion of risk-neutral PDs across names, leads to GCorr-implied prices

matching the data well for all but the super-senior tranche.

We also examine the pricing impact of the average level of estimated PDs and the

estimated dispersion in PDs and pairwise correlations. Importantly, a potential bias

in our PD estimates cannot explain on its own the poor fit of CDS-implied prices to

the data. Similarly, the dispersion in PDs and pairwise correlations falls significantly

short of accounting for the discrepancy between CDS-implied and observed prices of

portfolio credit risk. Nevertheless, this dispersion underpins the good performance of

GCorr-implied prices across several tranches and sheds light on the so-called implied

correlation smile.

The above findings are robust to a number of probable estimation errors. Alternative

ways to proxy for asset return series on the basis of single-name CDS spreads have a

small impact on asset return correlations and change little CDS-implied prices, even

under different mappings from asset returns to default correlations. Likewise, noise

from the Monte Carlo simulations has a negligible impact on the predicted tranche

spreads. This is implied by our finding that a single common factor of asset returns is

largely sufficient to account for both the CDS- and GCorr-implied prices. Specifically,

a one-common-factor model, which allows for circumventing Monte Carlo simulations,

delivers tranche spreads that deviate from their CDS-implied counterparts by 6% or

less; this deviation is less than 1% for GCorr-implied spreads.

The remainder of the paper is organized as follows. Sections 2 outlines the structure

of the CDS index markets and explains the basics behind the pricing of index tranches.

The following two sections explain different approaches to estimating prices of portfolio

credit risk, as implied by the single-name CDS market (Section 3) and GCorr asset

return correlations (Section 4). Section 5 describes our data and section 6 outlines our

major empirical findings by comparing implied to observed prices of portfolio credit

risk. Section 7 explains the driving forces behind implied prices and Section 8 examines

the robustness of our empirical findings. The final section concludes.
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2 The CDS index

In this paper, we consider one of the several existing products used for trading portfolio

credit risk. Such products include collateralized debt obligations (CDOs), tranches of

CDS indices and n-th to default CDSs.2 We focus exclusively on the Dow Jones CDX

North America investment grade 5-year index (CDX.NA.IG.5Y), which is reportedly

the most popular CDS index. This five-year contract, which is written in standardized

terms, is highly liquid in the secondary market and, thus, its trading is expected to

reflect accurately the views of market participants regarding portfolio credit risk.

The portfolio underlying the CDX.NA.IG.5Y index is used to define five standardized

index tranches, which are economically equivalent to the tranches of a synthetic CDO.

The tranche carrying the highest level of credit risk is known as the equity tranche. If

there has not been any default, the investor in this tranche (ie the protection seller)

receives quarterly a fixed premium rate (known as the tranche spread) on the tranche’s

principal value, which is defined as 3% of the total notional principal of the index.

If defaults occur, this investor is obliged to pay its counterparty (ie the protection

buyer) an amount equal to the losses from default up to a maximum of 3% of the total

notional principal of the index. At the same time, the principal value of the tranche,

to which the premium rate is applied, is reduced accordingly to reflect the losses from

default. Similarly, an investor in the so-called mezzanine tranche is responsible for losses

between 3% and 7% of the total notional principal, while investors in the two senior

and the super-senior tranches are responsible for losses between 7% and 10%, 10% and

15%, and 15% and 30% of the total notional principal, respectively.

2.1 The economics of tranche spreads

The main exercise of this paper consists of comparing tranche spreads observed in the

data to tranche spreads implied by information on portfolio credit risk that is extracted

from alternative (eg single-name CDS and equity) markets. Key components of this

information are the risk-neutral PDs of the entities comprising a particular portfolio and

the correlations of these entities’ asset returns. Estimates of such PDs and correlations

(described in the following sections) allow for calculating the probability distribution of

the number of defaults in the portfolio.

2See Hull and White (2004) for a succinct description of these instruments.
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Such a probability distribution, combined with data on losses given default and the

risk-free rate, is what is needed to apply the methodology developed in Gibson (2004)

and calculate implied tranche spreads for the CDX.NA.IG.5Y index.3 In most general

terms, one first calculates the expected present value of the tranche principal EPt and,

then, the expected present value of contingent payments ECt that are received by the

protection buyer if defaults affect the tranche in focus. Denoting the tranche spread by

st, the present value of the expected fee payments by the protection buyer, stEPt, has

to equal ECt. Thus, the tranche spread is calculated as:

st =
ECt

EPt

3 Prices of portfolio credit risk based on single-name CDS

spreads

The two key components determining the spreads of CDS index tranches are (i) the

set of risk-neutral PDs of the names in the index and (ii) the associated correlation

matrix of asset returns. Estimates of these two components – which incorporate not

only objective statistical relationships but also market views – reveal the extent to which

their characteristics affect prices of portfolio credit risk. While there are well-established

procedures for extracting risk-neutral PDs from CDS or bond market data, there is no

consensus regarding the estimation of asset return correlations.

In this section we develop a method for pricing CDS index tranches on the basis

of asset return correlations estimated from single-name CDS spreads.4 The procedure

consists of three steps. First, we estimate a time series of risk-neutral PDs for each name

in the CDS index, using data on CDS spreads and default recovery rates. Second, we

use the so-obtained PD series to estimate the time path of asset returns for each name

in the CDS index. This allows us to estimate the matrix of risk-neutral correlations of

asset returns. In the third step, we use the estimated PDs and asset return correlations

in a Monte Carlo exercise that delivers “CDS-implied” tranche spreads.

It is possible to avoid resorting to Monte Carlo simulations for CDS-implied tranche

3The probability distribution is calculated for different time horizons, which increase by one quarter
and range from one quarter to five years.

4The CDS spread is widely considered as a better price of default risk than the bond spread, in that
it responds more quickly to changes in credit conditions (Blanco et al., 2005; Zhu, 2004) and is less
polluted by non-credit factors (Longstaff et al., 2005).
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spreads by placing more structure on the asset return correlations. We do so by esti-

mating a one-, two- and three-factor models of asset returns within a “stripped-down”

and a Kalman filter setups (described below). These models have two advantages: they

(i) imply tranche spreads that are free of noise stemming from Monte Carlo simulations

and (ii) shed light on how many common factors are necessary to explain the joint be-

haviour of single-name CDS spreads. It should be kept in mind, however, that these

models are polluted by errors inherent in the Kalman filter estimation.

3.1 CDS-implied PDs

In order to uncover risk-neutral PDs from CDS spreads, we adopt the simplified frame-

work of Duffie (1999), which incorporates the following features of CDS contracts. The

counterparties in a CDS contract are the buyer of credit risk protection and the seller

of that protection. The protection buyer agrees to make constant periodic premium

payments to the protection seller until the contract matures or a pre-specified credit

event materializes, whichever happens first. If a credit event occurs during the life of

the contract, the protection seller compensates the protection buyer with the difference

between the face value of the defaulted entity’s debt issue and the recovery value.

To rule out arbitrage opportunities, the present value of CDS premium payments

(expressed on the left-hand side of the next equation) has to equal the present value of

protection payments (on the right-hand side):

s

∫ T

0

e−rttΓtdt = (1 −RR)

∫ T

0

e−rttqtdt

where rt stands for the risk-free interest rate, s denotes the CDS premium (also known

as the CDS spread), qt denotes the instantaneous risk-neutral default probability (also

known as the risk-neutral default intensity) and Γt ≡ 1 −
∫ t
0
qsds is the risk-neutral

survival probability until time t. In addition, the face value of the reference entity’s

debt is normalized to unity and RR ∈ [0, 1] denotes the default recovery rate.

We adopt the standard simplifying assumptions that the risk-free rate and the de-

fault intensity are constant through time. These assumptions imply a closed-form solu-

tion for the default rate:5

q =
as

a(1 −RR) + bs

5The same formula is used in Packer and Zhu (2005).
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where a =
∫ T
0
e−rtdt and b =

∫ T
0
te−rtdt.

The last equation indicates that data from the single-name CDS market, which

contain CDS spreads and the corresponding recovery rates, as well data on the risk-free

rate allow for calculating risk-neutral default probabilities. The CDS market data are

described in Section 5.2.

3.2 CDS-implied asset return correlations

In order to calculate asset return correlations, we start by constructing the time path

of assets via a simple mapping from a time series of PDs, which are calculated as

described in Section 3.1. Suppose that the current date is t, default can occur only on

the expiration date T > t and entity i faces a threshold Di and a risk-neutral probability

of PDi,T−t. Suppose further that, under the risk-neutral measure, that entity’s date-T

assets Vi,T = fi ∗Vi,t + ξi,T , where f is a positive constant and ξi,T is a standard normal

shock unknown at time t but realized at time T . Then we know that:

Di − fi ∗ Vi,t ≡ vi,t = Φ−1 (PDi,T−t) (1)

where Φ−1 is the inverse of the standard normal CDF.

The last equation implies that the time path of vi,t mimics the path of the assets

of entity i. Thus, the risk-neutral asset correlation between entities i and j is given

by corr
(

Φ−1 (PDi,T−t) ,Φ
−1 (PDj,T−t)

)

. However, we do not estimate the latter pop-

ulation characteristic directly. The reason is that all the PD series we obtain exhibit

high persistence (ie fi ≈ 1 for all i), which suggests that the sample correlation between

Φ−1 (PDi,T−t) and Φ−1 (PDj,t) is likely to produce spurious correlation coefficients. To

address this issue, we estimate the correlation of asset returns as6:

ρij = corr (∆vi,t,∆vj,t) = corr
(

∆Φ−1 (PDi,T−t) ,∆Φ−1 (PDj,T−t)
)

(2)

where ∆ denotes the first difference.7

6In our estimation, we do not allow for variability in asset return correlations over time. The
assumption of constant asset return correlations is strong in principle but does not seem to be important
in the context of our data sample. A recent study by Daniels et al. (2005) provides evidence that asset
correlations change little over time. We also obtain indirect supporting evidence, which we report
together with out other empirical findings.

7Note that ρij equals exactly the correlation of asset returns (and ρij = corr (ξi,T , ξj,T )) only in the
unit root scenario: fi = fj = 1. The Phillips-Perron unit root test, which allows for serial correlation
in ξi,T , cannot reject the null hypothesis of unit root for 132 of the 136 time series in our sample. In
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The construction of time paths of asset values (ie vi,t) is based on several simplifying

assumptions, which were made without loss of generality. The assumption that the shock

ξi,T has a zero mean and unit variance is clearly inconsequential since, for calculating

correlation coefficients, it suffices to estimate any time-invariant affine transformation

of asset returns. Another assumption, which seems important, is the premise that a

default can occur only on the expiry date T . However, we can allow for default to

occur at any point in time until date T by re-interpreting the shock ξi,T as a random

variable that falls below the “augmented threshold” vi,t with the probability that assets

fall below the “true” (unobserved) default threshold between dates t and T . In turn,

vi,t should be interpreted as a variable allowing to calculate Pi,T−t on the basis of all

the information available at date t. Indeed, these general interpretations do underlie

our calculation of CDS-implied prices of portfolio credit risk.

3.3 Estimating common-factor models of asset returns

When pricing CDS index tranches, it is possible to use asset return correlations di-

rectly but this requires resorting to Monte Carlo simulations. The advantage of using

the Monte Carlo simulation method is that it does not impose any restriction on the

structure of the correlation matrix. Nevertheless, the computational burden is high and

the correlations could be contaminated by data noise. To circumvent these problems

we undertake two approaches to imposing structure on asset return correlations, which

allows one to employ the copula method for pricing index tranches. The first, stripped

down, approach requires only a correlation matrix and makes no assumptions regarding

the statistical properties of common factors, which affect the asset returns of a group

of borrowers, and idiosyncratic factors, which explain the behaviour of asset returns

that is unaccounted for by common factors. The second approach, a straightforward

application of the Kalman filter, relies on estimates of time series of asset returns, im-

poses distributional assumptions on the common and idiosyncratic factors and estimates

the relative importance of these factors together with the dynamics of their underlying

stochastic processes.

addition, setting fi = 1 leads to a reasonable approximation of the dynamics of the other 4 cases.
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3.3.1 A Stripped-down approach

To implement this approach for a cross section of N entities, we need the matrix of

asset return correlations ρij . Then we postulate that these correlation coefficients are

underpinned by F common factors Mt = [M1,t, · · · ,MF,t]
′ and N idiosyncratic, or

entity-specific, factors Zi,t, which affect asset returns ∆vi,t as follows

∆vi,t = AiMt +
√

1 −A′
iAi ∗ Zi,t (3)

where Ai ≡ [αi,1, · · · , αi,f , · · · , αi,F ] is the vector of common factor loadings, αi,f ∈
[−1, 1] and

∑F
f=1

α2
i,f ≤ 1. All common and idiosyncratic factors are assumed to be

mutually independent. We also postulate, without loss of generality, that all factors

have zero means and unit standard deviations.

We estimate the loading coefficients αi,f (i = 1, · · · , N , f = 1, · · · , F ) by minimiz-

ing the mean squared difference between the factor-implied correlation and the target

correlation:8

min
A1···AF

N
∑

i=1

∑

j 6=i

(

ρij −AiA
′
j

)2

3.3.2 A Kalman filter approach

To implement a Kalman filter, we use time series of asset returns, which are denoted

by ∆vi,t and estimated as outlined in Section 3.2. The joint behaviour of asset returns

is assumed to be driven by common and idiosyncratic factors, as specified in equation

(3).

Compared with the stripped-down approach, the Kalman filter specification provides

a better reflection of the time series property embedded in the data, and allows for

estimating the dynamics of common and idiosyncratic factors. But this is at the expense

of a distributional requirement. In particular, it is necessary to assume that all the

factors are distributed normally. Given that assumption, we allow for serial correlation

in each common factor but assume that the idiosyncratic factors are white noise.

Greater detail on the Kalman filter maximum-likelihood estimation is relegated to

8For each initial guess, a local minimum can be obtained by the application of a multi-dimensional
constrained optimization algorithm (Andersen et al., 2003). We implement 10,000 random initial values
to ensure that the solution is a global minimum.
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Appendix A. The vectors of estimated common factor loadings αi,f (i = 1, · · · , N ,

f = 1, · · · , F ) imply directly the pairwise correlation coefficients:

corr(∆vi,t,∆vj,t) = AiA
′
j

3.4 CDS-implied spreads of CDS-index tranches

We use our estimates of risk-neutral PDs and asset return correlations (based on single-

name CDS spreads) to derive CDS-index tranche spreads. Without imposing structure

on the asset return correlations, we need to resort to Monte Carlo simulations for esti-

mating a key determinant of tranche spreads: the probability distribution of the number

of defaults in the portfolio underlying the CDS index.9 By contrast, if we use a common-

factor model of asset returns, we calculate this probability distribution by employing a

Gaussian copula.10 Having obtained an estimate of the probability distribution of the

number of defaults, we follow the approach outlined in Section 2.1 to derive CDS-implied

tranche spreads.

4 GCorr-implied spreads of CDS-index tranches

Moody’s KMV estimates of physical asset return correlations can be used to construct

another set of tranche spreads. These estimates are based on the proprietary GCorr

model, which delivers asset return correlations between any two names in the MKMV

database. MKMV estimates the correlations in two steps. In the first step, asset

returns are extracted from equity returns on the basis of an option pricing model, data

on contractual liabilities and information about firms’ size, industry, profitability and

geographical location. The second step estimates the exposure of each entity to 120

common factors (see Das and Ishii, 2001; Crosbie, 2005): 2 global economic factors, 5

regional economic factors, 7 sector factors, 61 industry-specific factors and 45 countries-

specific factors. Once this estimation is cariied out, the pairwise asset return correlation

can then be easily calculated from the loading coefficients on the common factors.

With the last observation in mind, we follow the approach outlined in Section 2.1

to construct GCorr-implied tranche spreads on the basis of GCorr asset return correla-

9The simulations exercise is described in Appendix B.1.
10The Gaussian copula exercise is outlined in Appendix B.2.
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tions and risk neutral PDs.11 These PDs are extracted from single-name CDS spreads

and are constructed as explained in Section 3.1. Paralleling our estimates of CDS-

implied tranche spreads, we also construct GCorr-implied tranche spreads on the basis

of common-factor models of GCorr correlations. This exercise uses the stripped-down

algorithm outlined in Section 3.3.1.

To the extent that investors require a premium for bearing correlation risk, the

physical GCorr correlations should not allow for an accurate match of empirical prices

of portfolio credit risk.

5 Data

The data we use in this paper can be divided in three big blocks. The first block consists

of tranche spreads for the CDS index CDX.NA.IG.5Y. The second block consists of data

from the single-name CDS market, which are at the root of our estimates of risk-neutral

PDs and asset-return correlations. The third block consists of GCorr correlations. In

addition, we obtain 5-year Treasury rates from Bloomberg in order to proxy for the

risk-free rate of return (Figure 1).

5.1 Data on tranche spreads

The CDX.NA.IG.5Y index consists of 125 investment-grade North American entities

that represent major industrial sectors and are actively traded in the single-name CDS

market as well. Each entity has the same share in the total notional principal of the

index. The index was introduced on November 13, 2003, and has been updated semi-

annually to reflect events such as defaults, rating changes and mergers or acquisitions.

These updates have resulted in four releases of the index.

The tranche spreads we use in this paper are provided by JP Morgan Chase. The

data include daily spreads for five tranches (from equity to super-senior) of the “on-the-

run” CDX.NA.IG.5Y index. We consider the first three releases of the index that were

launched on 13 November 2003, 23 March 2004 and 21 September 2004, respectively.

Owing to credit and market events causing exits from and entries into the index, we

consider 136 constituent names in total.

11In addition, we use the LGD estimates described in Section 5.2.
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5.2 Data from the single-name CDS market

The single-name CDS data are provided by Markit, which has constructed a network

of industry-leading partners who contribute information across several thousand credits

on a daily basis. Using the contributed quotes, Markit calculates the daily CDS spreads

for each credit in its database as well as the daily recovery rates used to price the

contract. In the light of the composition and contractual terms of the CDX.NA.IG.5Y

index, we use a times series of 5-year senior unsecured CDS spreads associated with the

no-restructuring clause (see ISDA, 2003) and denominated in US dollars. We consider

each of the 136 reference entities that belonged to the CDS index at any point in time

between 13 November 2003 and March 20 2005. In order to work with time series of

equal length, we use single-name CDS spreads from April 24, 2003 to September 27,

2005 (for a total of 634 business days).

The default recovery rates provided by Markit vary little both in the cross-section

and over time (see Table 1 and Figure 1). Considering the cross section of time averages,

we obtain the 1st and 99th percentiles of recovery rates to be at 36.8% and 40.3%

respectively. Likewise, the daily average recovery rates fluctuate within a narrow band:

between 37% and 40%. In order to eliminate potential noise in these data, we set the

recovery rate to be the same across entities on each day and smooth the time series of

recovery rates via an HP filter (Figure 1).12

5.3 Data from Moody’s KMV

Moody’s KMV update monthly their estimates of the GCorr model. Each estimate

provides the physical correlation of asset returns for the firms in Moody’s KMV rating

universe. We use the March 2005 estimate of the GCorr pairwise correlations for the

136 firms that belonged to the CDX.NA.IG.5Y index at any point in time between 13

November 2003 and March 20 2005.

6 Empirical findings

In this section we discuss the CDS- and GCorr-implied prices of portfolio credit risk,

which we calculate as described in Sections 3 and 4. The two sets of prices consist

of implied spreads for the CDX.NA.IG.5Y index and can be compared directly to the

12We set the HP filter parameter λ to 64000.
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actual (ie observed) tranche spreads of this index. Our main conclusions are based on

Figure 2, which plots the time series of the alternative spreads, one tranche at a time,

and Table 2, which provides summary statistics.

The observed, CDS- and GCorr-implied tranche spreads exhibit similar patterns

over time. In particular, the observed tranche spreads increase during the first months

of 2004 and are on a downward path thereafter. This pattern is mirrored closely by the

implied spreads, with the exception of June and July 2004. Importantly, spreads across

all index tranches exhibit similar time paths. This suggests that these paths are unlikely

to be driven by changes in market perceptions regarding asset return correlations, as

such changes have opposite effects on the spreads of equity and senior tranches. (This

point is explained further below.) Instead, the intertemporal pattern of tranche spreads

seems to be driven mostly by risk-neutral PDs, which decline in late 2003, rise in early

2004 and decline after September 2004 (see Figure 3).

A comparison across the levels of spreads unveils significant discrepancies between

observed and CDS-implied spreads. To be sure, the implications of the single-name

CDS market seem to be largely in line with the data for the equity and mezzanine

tranches, at which the average pricing discrepancies are 8.1% and 1.6%, respectively,

of the observed spreads. At the same time, however, CDS-implied spreads undershoot

substantially the actual spreads for the senior and super-senior tranches: by 43, 30 and

12 basis points (or, in relative terms, by 38%, 66% and 94%), respectively.

By contrast, GCorr-implied spreads match the data closely across four of the five

tranches. On average over time, these spreads deviate from the corresponding observed

spreads by less than 9% for the equity, mezzanine and two senior tranches. The super-

senior tranche provides an exception to the general picture with a discrepancy of 54%,

which is, nonetheless, twice as small as the corresponding discrepancy between observed

and CDS-implied super-senior tranche spreads.

The above comparison across the levels of observed and implied spreads suggests

inconsistency in the way the index and single-name CDS markets incorporate corre-

lated credit risk into prices. This conclusion is based on (i) the relative success with

which CDS- and GCorr-implied spreads match the data, (ii) the fact that any difference

between the two sets of implied spreads is due, by construction, to differences in the

underlying asset return correlations and (iii) the premise that GCorr correlations reflect

accurately perceptions of asset return correlations in the index market. If that premise
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is true, then the poor match between CDS-implied and observed spreads is evidence

of market segmentation, whereby the focus on single-name default risk may lead to

independent pricing across names, which reflects poorly probabilities of joint defaults.

The premise need not be true, however, if non-credit factors (eg administrative costs

or a liquidity premium), which do not enter the calculation of implied spreads, inflate

observed spreads. While non-credit factors are indeed likely to have a substantial effect

at the super-senior tranche, which carries very low credit risk, it seems a stretch to

claim that they are a major driving force for the spreads of the riskier senior tranches.

Instead, the poor performance of the CDS-implied spreads at the senior tranches may

reflect the fact that the calculation of these spreads does not incorporate information

regarding the pricing of protection against catastrophic events (ie when 12% or more

of the investment-grade entities in the index default). Such information pertains to the

tails of assets’ risk-neutral distributions and its extraction is beyond the scope of this

paper.

To the extent that GCorr correlations reflect accurately market perceptions of asset

return correlations, the close match between GCorr-implied and observed index spreads

suggests that the correlation risk premium is quite small in the CDS index market.

The GCorr model delivers physical asset return correlations, which should imply too

low index spreads if the index market prices in a compensation for uncertainty in these

correlations. As suggested by Table 2 and Figure 2, this does not seem to be the case, in

sharp contrast to the conclusions of Driessen et al. (2005), who find strong evidence for

a correlation risk premium in the option market. Section 7.2 provides further support

of our results by comparing GCorr correlations to the level of asset-return correlations

necessary for matching exactly observed spreads.

7 Explaining the implied tranche spreads

While the CDS-implied spreads do not match closely the observed spreads of the

CDX.NA.IG.5Y index, especially at senior tranches, the match is improved consider-

ably when one considers GCorr-implied spreads. In this section, we attempt to explain

these results by focusing on the two main inputs into the pricing of portfolio credit risk:

individual PDs and asset return correlations.
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7.1 Impact of the average PD

Our first exercise is to examine the pricing implications of bias in our estimates of

risk-neutral PDs. Thus, we calculate implied spreads for different average levels of

PDs (keeping the dispersion in PDs, as well as all the other parameters, as originally

estimated) and illustrate the results in Figure 4. Since higher PDs are tantamount to

increased credit risk, higher PDs lead unambiguously to higher spreads for all index

tranches. In quantitative terms, moderate bias in PDs can have a sizeable impact on

tranche spreads: for example, a 5% change in the average PD causes the mezzanine

tranche spread to change by roughly 9%. At the same time, errors in the estimate of

the average PD due to outliers have negligible pricing implications: setting the average

PD to equal the median of the individual PDs 13 increases all tranche spreads by less

than 2%.

Most importantly, however, a bias in our estimates of risk-neutral PDs cannot ac-

count for the deviations of CDS- or GCorr-implied spreads from the data at all tranches.

This is so because, on the one hand, all tranche spreads increase in the average PD,

while, on the other hand, CDS-implied (GCorr-implied) spreads overshoot observed

spreads for the equity and mezzanine (mezzanine) tranches but undershoot for the

other tranches. Thus, eliminating a hypothetical bias in our PD estimates in order to

match exactly observed spreads for a particular index tranche would lead to a larger

pricing discrepancy at another tranche.

7.2 Impact of the average correlation

We also examine the pricing implications of a potential bias in the estimates of asset

return correlations. To this end, we recalculate the CDS- and GCorr-implied index

spreads for alternative average correlation coefficients, keeping all the other parameters

as originally estimated and illustrate the results in Figure 5.14

Figure 5 illustrates the standard qualitative result that a change in correlations

that lowers the spread for a given tranche increases the spread for other tranches. The

intuition behind this result has been discussed in numerous papers (see for example

13Table 1 provides descriptive statistics of our estimates of PDs.
14This exercise removes the cross sectional dispersion in correlation coefficients, because there is no

clear way to change average correlations without affecting the structure of the correlation matrix. It
will be shown later (section 7.4) that this abstraction only has second-order pricing implications.
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Belsham et al., 2005; Amato and Gyntelberg, 2005) and can be seen by considering two

extreme cases: a fully diversified portfolio (correlation of 0) and a portfolio of perfectly

correlated entities (correlation of 1). A switch from the first to the second portfolio

increases the probability of defaults en masse but also increases the probability of no

defaults. Thus, such a switch lowers the spread for the equity tranche (which is relevant

only for the first defaults) but increases the spread for the senior tranches (which are

relevant at high default rates). By contrast, when one moves from a well-diversified

to a non-diversified portfolio and considers the mezzanine tranche, the two forces at

work counteract each other and the overall impact is ambiguous. This is what Figure 5

illustrates.

Quite importantly, the bulk of the differences between CDS- and GCorr-implied

spreads is explained by the differences in the underlying average correlations. Assum-

ing no cross-sectional dispersion in pairwise correlations but increasing their level from

13% (the average CDS-implied correlation) to 24% (the average GCorr-implied corre-

lation) lowers the equity tranche spread by 390 basis points, which equals 137% of the

difference between CDS- and GCorr-implied equity tranche spreads. This share stands

at 248%, 137%, 114% and 93% for the other tranches, from mezzanine to super-senior,

respectively.

In addition, the sensitivity of tranche spreads to the level of asset return correlations

has a direct bearing on the existence of a correlation risk premium in the CDS-index

market. To see this, one needs to first observe that, as portrayed in Figure 5, perturba-

tions from realistic asset correlation levels (i.e. below 60%) have unambiguous impacts

on the spreads for the equity, senior and super-senior tranches. Consequently, the pric-

ing of correlation risk can explain why the GCorr-implied spreads tend to undershoot

the observed spreads for these tranches, provided that the GCorr correlations reflect

accurately market perceptions of physical distributions.15

To quantify the correlation risk premium, we focus on one tranche at a time and

deduce the constant correlation coefficient that implies an exact match of the average

observed spread, while all the other parameters are kept unchanged. It turns out that,

for the equity, the two senior and the super-senior tranches, that correlation coefficient

15By contrast, the impact of a correlation risk premium on the mezzanine tranche spread is ambiguous,
as the relationship between the correlation level and the spread for this tranche is not monotone.

17



equals 20%, 23%, 26% and 32%, respectively.16 The distance between these values

and the average GCorr correlation of 24% provides a measure of the correlation risk

premium. Thus, this premium is seen to be much smaller than the one deduced by

Driessen et al. (2005) who calculate an 18-percentage-point difference between the risk-

neutral and physical correlations on the basis of option-market data.

7.3 A Lesson from implied correlations

The analysis in Sections 7.1 and 7.2 reveals that the levels of PDs and asset return

correlations are the main drivers of the close fit between observed and GCorr-implied

spreads for the equity, mezzanine and senior tranches. As seen above, the level of

estimated PDs is crucial for avoiding a consistent bias in implied spreads across tranches,

while the level of correlations allows for a close match between implied spreads and data

for each particular tranche.

On should note, however, that in making these observations we have abstracted

from the pricing implications of the cross-sectional dispersion in PDs and correlation

coefficients. To test whether we have abstracted from an empirically important point,

we consider the well-known “implied correlations”, which are deduced (following Hull

and White, 2004) from observed index spreads on the assumption that PDs and pairwise

correlations do not vary in the cross section. For each tranche and date in our sample,

an implied correlation is defined as the correlation that delivers the same spread as the

observed one, assuming that all PDs equal the estimated average for that day.17 As

portrayed by Figure 6, implied correlations decrease (from 18% to 10%, on average) as

one switches from the equity to the mezzanine tranche and then increase (to 21.6%,

23.7% and 30.2%) with the seniority of the tranche: ie they exhibit the standard smile

found in the literature.18

If cross-sectional dispersions in PDs and correlations do indeed have negligible pric-

ing implications, then the average GCorr correlation should be close to the implied

16The difference between the average GCorr and the “exact match” correlations is highest for the
super-senior tranche. This comes as no surprise given that the GCorr-implied spreads provide the
poorest match of the data exactly for that tranche, which, as argued above, is likely to be influenced
disproportionately by non-credit factors.

17Since the relationship between correlations and tranche spreads need not be monotone, there might
be multiple or no solutions for implied correlations. In our sample, such a problem arises only for the
mezzanine tranche. When there is no solution, we do not report an implied correlation. When there
are multiple solutions, we pick the one that limits the volatility of the implied correlations over time.

18See Amato and Gyntelberg (2005).
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correlations for all tranches. The implied correlation for the mezzanine tranche illus-

trates most starkly that this is not the case. In the summer of 2004, for example, the

implied correlation for that tranche is lower than the GCorr correlation by about 20 per-

centage points: a difference that should change the tranche spread by 140 basis points

according to the sensitivity results reported in Figure 5. By contrast, the difference

between observed and GCorr-implied spreads is much smaller, at about 85 basis points.

This result suggests that dispersion in PDs and asset return correlations, which have

been ignored so far in the analysis of empirical findings, might have important pricing

implications.

7.4 Impact of dispersion in PDs and correlations

Estimates of correlation coefficients and risk-neutral PDs exhibit substantial variation

in the cross section. As shown in Table 1, which provides summary statistics of averages

over time, the standard deviation of PDs in the cross section equals 50 bps. In addition,

the entity carrying the highest level of single-name credit risk has an average PD that

is more than 10 times larger than the PD of the least risky entity. In turn, pairwise

correlation coefficients vary between -0.5692 and 0.7962, when implied by the single-

name CDS market, and between 0.0464 and 0.65, when implied by the GCorr model.

Hull and White (2004) report that dispersion of PDs and correlations coefficients

could have significant pricing implications for the CDS index tranches. We quantify

these implications in the context of our data set by perturbing the CDS-implied and

GCorr-implied spreads (reported in Figure 2) in three different ways. First, we calculate

implied spreads by setting all individual PDs to their cross-section average in each day

but keep all the other parameters intact. Second, we repeat the first exercise with

pairwise correlations taking the place of individual PDs. Third, we calculate implied

spreads after eliminating the cross-sectional variation in both PDs and asset return

correlations. The results are plotted in Figure 7 and summarized in Table 4.B-4.D

for the GCorr-implied spreads. To save space, we report the results for CDS-implied

spreads only briefly in Table 4.B-4.D.

The dispersion in PDs and correlations has a smaller pricing effect than the levels

of these parameters but does help to explain further the close match between GCorr-

implied and observed tranche spreads. In particular, removing dispersion in PDs and/or

correlations falls significantly short of explaining the poor match between these spreads
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and the data. Likewise, the dispersion in GCorr correlation has a negligible impact on

GCorr-implied spreads. Interestingly, however, removing the dispersion in individual

PDs worsens the fit of GCorr implied spreads for all tranches, except for the super-

senior one. This worsening can be as high as 300% for the more risky senior tranche in

mid-2004.

As explained by Hull and White (2004), dispersion in PDs affects tranche spreads

via two channels. To understand the first channel, it is useful to think of a portfolio

consisting of two independent entities. In this setup, changing the difference between

the two PDs while keeping their average constant is analogous to changing the area

of a rectangle while keeping the total length of its sides constant. Just as the area of

the rectangle is maximized when its sides are equal, the probability of joint defaults

is maximized when the two PDs are the same. This logic can be extended to any

number of entities in the portfolio to see that dispersion in PDs lowers the probability

of defaults en masse. In addition, it is easily seen that the probability of no defaults

is independent of the dispersion in PDs. The bottom line is that, when a CDS index

consists of independent entities, increasing the dispersion in their PDs would tend to

raise tranche spreads, with the impact increasing in the seniority of the tranche.

The second channel, via which dispersion in PDs affects prices, is seen most clearly

if one considers a portfolio of perfectly correlated entities. In such a setting, the prob-

ability of at least one default equals the highest PD in the cross section, whereas the

probability of defaults en masse depends positively on the lower PDs in the cross sec-

tion. Thus, increasing the dispersion in PDs renders the equity tranche riskier and the

senior tranches less risky but can have ambiguous effects for “intermediate” tranches.

The cyan lines in Figure 7 illustrate the combined implications of these two channels.

Consistent with the provided intuition, dispersion in PD raises the spread for the equity

tranche but lowers the spreads for all the other tranches.

The pricing implications of dispersion in PDs prompt us to reconsider the so-called

correlation-smile puzzle, which is illustrated in Figure 6 and is based on the assumption

that PDs do not vary in the cross section. There is a puzzle, because, contrary to what

that figure illustrates, it seems strange that different index tranches should be priced

on the basis of different asset return correlations. Acknowledging that the puzzle can,

in principle, be due to market segmentation across tranches or to non-credit factors, we

propose an alternative explanation via Figure 8. We construct that figure in two steps.
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In the first step we extract five sets of index tranches from the time series plotted in

Figure 6: each set is for June 30, 2004; one set consists of the observed tranche spreads,

one consists of CDS-implied tranche spreads when both PDs and correlations vary in the

cross section, and the remaining three sets correspond to scenarios in which variability

in PDs and/or correlations is shut off. In the second step, we calculate the implied

correlation coefficients, assuming that each spread is priced on the basis of PDs and

correlations that do not vary in the cross section.

The main message of Figure 8 is that differences in implied correlation coefficients

across tranches may be largely due to the unjustified underlying assumption that PDs

and correlation coefficients do not change across the entities in the portfolio. It is obvi-

ous from the methodological descriptions in Section 4 that the GCorr-implied spreads

rely on the same set of correlation coefficients for all tranches. Nevertheless, assuming

that these correlation coefficients and the associated PDs do not change in the cross

section produces the implied correlation smile depicted with a blue line, which comes

close to the correlation smile implied by the observed tranche spreads (in red line).

Spreads calculated after shutting off either the variability of PDs or that of correlations

also lead to implied correlation smiles (the dashed green and black lines), indicating

that dispersion in both sets of parameters has important pricing implications for the

mezzanine tranche.

8 Robustness checks

The rapid growth of credit derivatives markets has spurred the development of various

numerical methods for pricing purposes. Such methods include the copula method,

which exploits the fact that asset return correlations are driven bny firms’ exposures to

common factors, and a multi-period Monte Carlo simulation, which allows for default

at any point in time before the contract’s maturity date. In this section, we examine

whether our empirical findings (reported above) could paint a misleading picture if

market particiapnts adopt alternative numerical methods in the pricing process.

8.1 The common factor structure of asset return correlation

It is standard practice for market practitioners to adopt a common-factor model in

order to price structured finance products, including CDS indices, nth-to-default CDS
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and CDOs. When the dependence of asset values on common factors is estimated, the

Gaussian copula (Appendix B.3) provides an efficient algorithm for calcualting prices

of portfolio credit risk.

To employ this algorithm, one needs to decide on the number of common factors

and determine the coefficient with which each asset value loads on each common factors.

We use a Kalman filter framework (Section 3.3.2) to estimate the unobserved common

factors and the associated loading coefficients in the single-name CDS market, and

employ the stripped-down specification (Section 3.3.1) to extract the factor loading

structure underlying the GCorr correlations.19 The, we use the factor-loading structure

to determine tranche spreads, which sheds light on the relevance of common-factor

models for pricing purposes.

Our Kalman filter results, based on the CDS data between April 24, 2003 and

September 27, 2005, are summarized in Table 3.A-3.C. In addition, Figure 9 plots the

histogram of the differences between (i) the correlations implied directly by single-name

CDS spreads and used in the main part of the paper and (ii) the correlations based on

one-, two- and three-common-factor models. For each of the three CDS indices, the one-

factor model performs well in matching average correlations but tends to under-estimate

the dispersion in correlation coefficients and fails to explain the skewness and kurtosis.

This suggests that one factor alone is not capable of fully generating the heterogeneity of

constituent entities in the CDS market. When the number of common factor increases,

the result improves substantially. In particular, the 3-factor model appears to perform

well in explaining both the mean and the higher moments of correlation coefficients:

the mean squared deviation decreases from 0.083 for the 1-factor model to 0.06 for the

3-factor model.

As regards GCorr estimates, the one-factor model appears to perform extremely well

in explaining pairwise correlations (Table 3.D). This model matches exactly the mean

and standard deviation of pairwise correlations and leads to only slight deviations from

higher moments. The two-factor model performs even better, but the benefit is only

marginal.

As far as pricing implications are concerned (Table 4.E), common-factor models

19The stripped-down and Kalman filter specifications lead to virtually identical conclusions regarding
CDS-implied spreads. To avoid redundancy, we do not report the “stripped down” estimates implied
by the single-name CDS market.
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do not alter the empirical findings reported in Section 6. Most strikingly, even the

tranche spreads implied by the one-factor models are extremely close to the baseline

values. Thus, despite the capacity of multi-factor models to explain better the higher

moments of correlation distributions, this improvement has negligible implications for

pricing. This is consistent with our previous finding that the dispersion in correlation

coefficients plays a very small role for tranche spreads. In sum, the evidence shows that

it is reasonable for market participants to use a one-common-factor model when pricing

portfolio credit risk.20

8.2 Alternative simulations of defaults

Our calculations of CDS-implied tranche spreads are based on simulations of default

that have been criticized in the literature. In particular, we have followed the logic of

the copula method, which postulates that a default is triggered by the single draw of a

random variable (representing the borrower’s assets) falling below a particular threshold.

Alternatively, however, a default can be simulated in a multi-period setting under the

assumption that it is triggered the first time asset values cross a threshold. As pointed

out by Duffie and Singleton (2003), the alternative specification may lead to different

probabilities of joint defaults and, thus, different prices of portfolio credit risk. In this

section, we examine the relevance of this observation for our sample.

For the multi-period simulations, we generate 10 intra-day observations (i.e. 13200

intervals in 5 years). Owing to the computational burden, we calculate the tranche

spreads every 20 business days during the period between November 21, 2003 and March

18, 2005. Figure 11 and Table 4.F report the simulation results.

Overall, the multi-period simulation does generate pricing differences, particularly

for the mezzanine and senior tranches. Nevertheless, incorporating these pricing dif-

ferences pushes the CDS-implied tranche spreads even further away from the observed

spreads.

There are two reasons behind the price differentials between the one-period and

multi-period simulations. First, the joint default distribution tends to be different. As

shown in Figure 12, the multi-period method raises the probability of a small number

of defaults and lowers the probability of a large number of defaults (consistent with the

20The generality of this conclusion may be subject to further investigation, owing to the fact that the
set of entities in our study all belong to the same region and the investment-grade group.
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example in Duffie and Singleton, 2003). As a result, the equity tranche spreads tend to

be higher and senior tranche spreads tend to be lower than in the one-period simulation.

The second reason is due to an estimation error specific to the multi-period simulation.

Because of the discrete-time approximation, the simulation ignores the probability of

default during the small intervals between two sub-periods. As a result, the multi-period

simulation delivers single-name default probabilities that are lower than the benchmark

PDs by 2.5 basis points on average. This simulation error causes the predicted tranche

spreads from the multi-period simulation to be lower for all tranches.

8.3 Alternative estimates of CDS-implied correlations

The asset return correlation implied from the single-name CDS market can in principle

be affected by the mapping from CDS spreads to PDs and from PDs to the underlying

asset values. As a robustness check, we implement the following two exercises.

(1) An alternative mapping from CDS spreads to PDs. We approximate the default

intensity by q = ρ
1−RR , which is quite popular among market practitioners in the context

of investment-grade entities.

(2) An alternative mapping from PDs to the asset return correlation. We allow

defaults to occur at any point in time before maturity of the associated contracts and

capture this sending via a Merton framework. The details of the mapping under this

scenario are outlined in Appendix B.2.

The two alternative mappings change little our initial estimates of asset return cor-

relations.21 As a result, the correlation coefficients implied by these mappings lead to

CDS- and GCorr-implied tranche spreads that confirm the findings reported in Section

6.

9 Conclusion

This paper examined how alternative estimates of risk neutral PDs and asset return

correlations affect prices of portfolio credit risk. Asset return correlations implied by

the single-name CDS market turn out to be substantially lower than the correlations

consistent with observed spreads of a popular CDS index. This discrepancy suggests

inconsistency in the way single-name and index markets incorporate correlated default

21The results are available upon request.
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risk into prices. By contrast, the observed CDS-index tranche spreads seem to be

based on correlations that are close to M KMV’s estimates of physical asset return

correlations, raising the question of whether there is correlation risk premium in the

CDS index market.

Our analysis also sheds light on the so-called implied-correlation smile and on char-

acteristics of the model used by participants in the CDS index market. In particular,

the dispersion in individual PDs and pairwise correlation coefficients, albeit with a

smaller overall impact that the level of these parameters, can help one to reconcile an

implied correlation smile with the close match between GCorr-implied and observed

spreads across four index tranches. In addition, our numerical simulations show that a

one-factor model of asset returns is sufficient to explain the bulk of observed prices of

portfolio credit risk.
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Appendix

A The Kalman filter estimation

The state-space specification for the Kalman filter is as follows:

∆vt = Hξt (4)

ξt = Fξt−1 + υt (5)

E(υtυ
′
t) = Q (6)

where

∆vt ≡ [∆v1,t · · ·∆vN,t]
′, ξt ≡ [M1,t · · ·MF,t Z1,t · · ·ZN,t]

′

υt ≡ [η1,t · · · ηF,t Z1,t · · ·ZN,t]
′ is a vector of

standard normal variables

H ≡





α1,1 ... α1,F

√

1 −A′
1
A1 0 0

... ... ... 0 ... 0

αN,1 ... αN,F 0 0
√

1 −A′
NAN



 (7)

where the vector Af is defined in Section 3.3.1

F ≡









ψ1 0 0
0 ... 0 0F×N

0 0 ψF

0N×F 0N×N









and Q ≡









1 − ψ2
1 0 0

0 ... 0 0F×N

0 0 1 − ψ2
F

0N×F IN









(8)

To estimate the unknown parameters in H, F and Q as well as the unobserved

factors ξt, we first carry out two preliminary steps:

1. Standardize each time series of asset returns. In other words, we first de-mean

and then divide by the sample standard deviation each time series {∆vi,t}T
t=1

.

2. Ensure that the estimated loading coefficients belong to the interval [−1, 1], ie
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parameterize H as follow (i = 1, · · · , N , j = 1, · · · , F ):

αi,1 = 2Φ(li,1) − 1

αi,2 =
√

1 − α2
i,1 · [2Φ(li,2) − 1]

· · ·
αi,F =

√

1 − α2
i,1 − · · · − α2

i,F−1
· [2Φ(li,F ) − 1]

ψj = 2Φ(bj) − 1

Then we follow Hamilton (1994) to derive the conditional distribution:

∆vt|∆vt−1 ∼ N(Hξ̂t|t−1, HPt|t−1H
′)

where Pt|t−1 = (F − Kt−1H)Pt−1|t−2(F
′ − H ′K ′

t−1) + Q, the gain matrix Kt−1 ≡
FPt−1|t−2H

′(HPt−1|t−2H
′)−1 and ξ̂t|t−1 is a linear function of ∆vt−1. Thus, the log

likelihood function to maximize is

max
{H,F,Q}

N
∑

i=1

T
∑

t=1

log f(∆vt|∆vt−1)

f(∆vt|∆vt−1) ≡ (2π)−n/2|HPt|t−1H
′|−1/2

×exp{−1

2
(∆vt −Hξ̂i,t|t−1)

′(HPt|t−1H
′)−1(∆vt|∆vt−1 −Hξ̂i,t|t−1)}

B Estimating the probability distribution of joint defaults

This appendix outlines three methods for estimating the probability distribution of the

number of defaults in a given portfolio. Two of the methods rely directly on asset return

correlations and carry out Monte Carlo simulations. The first one of these methods

assumes that a default can occur only at a particular point in time, whereas the second

one allows for a default to occur at any point in time prior to the maturity of the

corresponding debt contract. The third method relies on a common-factor model of

asset returns and employs the Gaussian copula.

B.1 One-period Monte Carlo simulation22

This method estimates the probability distribution of defaults in a portfolio of N ex-

posures when a default is driven by a single draw of a random variable. The method

relies on estimates of pairwise asset correlations and PDs. For asset correlations we

22Strictly speaking, this simulation is also a copula method but without the common factor structure.
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use ρij , as defined by equation (2) and thus make implicitly the assumption that the

autoregressive parameter fi = 1.

1. Let R denote the Cholesky factor of the correlation matrix, which has ρij as its

ij-th entry.

2. Generate N random draws x0 from independent standard normal distributions.

3. Calculate x = R′x0.

4. Denoting the i-th member of x by xi (i = 1, · · · , N) and the associated PD by

PDi, entity i is said to default if and only if xi < Φ−1(PDi).

5. Repeat steps 2 to 4 a large number of times to estimate the probability of n ∈
{0, · · · , N} defaults.

B.2 Multi-period Monte Carlo simulation

This appendix outlines an alternative simulation procedure, which delivers an estimate

of the probability distribution of defaults in a portfolio of borrowers. We consider N

borrowers, each one of which can default in any one of multiple time periods and ask

the following generic question: What is the probability that n defaults occur over time

horizon τ ?

To answer this question, we start by assuming that the risk-neutral asset-value

process is given by:
dVi,t

Vi,t
= µidt+ σidWi,t (9)

where µi is the (constant) risk-neutral drift, σi is the asset volatility and Wi,t is a

standard Wiener processes. Further, let entity i default as soon as the distance-to-

default DDi,t ≡ lnVi,t−lnDi

σi
crosses zero. The variable dDDi,t has a drift µ∗ ≡ µ−σ2/2

σ

and a unit variance, implying that the risk-neutral probability of default over the next

τ years is given by:

PDi,t (τ) = 1 − Φ

(

DDi,t + sµ∗i√
τ

)

+ exp (−2sµ∗i ) Φ

(−DDi,t + sµ∗i√
τ

)

(10)

The last equation allows for constructing time series of the distance-to-default vari-

able. For any DDi,t and µ∗i , PDi,t (s) is a concave function of τ , implying that the

default intensity decreases over time. In the light of the maintained assumption for

deriving default intensities (q) from CDS spreads, we set the values of DDi,t and µ∗i
to be such as to imply a 1-year PD and a 5-year average default intensity equal to the

corresponding qi,t.
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To simulate defaults in a portfolio, we need to simulate paths of the distance-to-

default variables for all the constituent entities. To carry out these simulations for a

particular point in time t, we need the initial distance to default DDi,t, and the drift

parameters µ∗i , which we calculate as described in the previous paragraph. In addition,

we need the correlation matrix of the distance-to-default random variables, which we

estimate by calculating corr (∆DDi,t,∆DDj,t) for all pairs i− j in the sample.

Finally, we calculate the probability of n defaults over time horizon τ , allowing for

a default to occur as soon as a distance-to-default variable falls below zero. Specifically,

we record whether a particular simulation delivered n defaults, ie whether ΣN
i=1Ii,τ = n,

where Ii,τ = 1 if DDi,t ≤ 0 for some t ∈ [0, τ ] and Ii,τ = 0 otherwise. The ratio of the

number of simulations for which the equality ΣN
i=1Ii,τ = n holds to the total number of

simulations is our estimate of the probability that n defaults occur over horizon τ when

the portfolio consists of N names

B.3 Gaussian copula

This appendix outlines the copula method, which relies on a common-factor model of

assets and has been developed by Li (2000), Laurent and Gregory (2005) and Andersen

and Sidenius (2005). For illustrative purposes, we assume that assets are driven by

a single common factor and use notation from Appendix A. Denoting the common

factor, the loading coefficient on that factor and the PD of entity i by M , αi and PDi,t,

respectively, the joint default probability can be calculated in three steps.

The first step is to calculate the conditional default probability for individual entity

i on date t, PDi(t|Mt). When the asset value Vi,t = αiMt +
√

1 − α2
i,tZi,t and Mt and

Zi,t are independent standard normal variables, it follows that

qi(t|M) = Φ





Φ−1(PDi,t) − αiM
√

1 − α2
i





where PDi,t is the unconditional probability of default.

The second step is to calculate the conditional probability of an arbitrary number

of defaults. Suppose we know the probability of k ∈ {0, 1, ...,K} defaults in a set of

K entities: pK(k, t|M). Then, adding one more entity to the set leads to the following

update of the default distribution:

pK+1(0, t|M) = pK(0, t|M)(1 − PDK+1(t|M))

pK+1(k, t|M) = pK(k, t|M)(1 − PDK+1(t|M))

+pK(k − 1, t|M)PDK+1(t|M) k = 1, · · · ,K
pK+1(K + 1, t|M) = pK(K, t|M)PDK+1(t|M))
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This recursion is started by setting the initial condition p0(0, t|M) = 1.

The final step is to calculate the unconditional probability of k defaults:

p(k, t) =

∫ ∞

−∞
p(k, t|M)φ(M)dM

In approximating the integral, we vary M between −5 and 5 and set the grid size

dM = 0.02.

The generalization to multiple factors is conceptually straightforward but increases

the computation time. We choose the grid size to be 0.1 and 0.4 for the 2-factor and

3-factor models respectively.
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Table 1: Summary statistics of PDs and recovery rates

mean std dev min 5% 25% 50% 75% 95% max

PDs (bps)
Daily averages 85.3 12.6 63.7 65.4 74.6 87.9 97.5 102.1 105.4
Averages over time 85.3 50.0 23.5 34.9 58.4 71.2 91.1 216.9 281.1

Recovery rates (%)
Daily averages 38.4 0.9 36.4 37.3 37.7 38.3 39.5 39.7 39.7
Averages over time 38.4 0.7 36.3 37.3 38.1 38.5 38.9 39.5 41.0

Notes: The summary statistics reflect all entities that belonged to any of the first three CDX.NA.IG.5Y

releases. The underlying data start on Oct. 21 2003 and end on Mar. 20 2005. The first row reports

summary statistics of the daily cross-sectional averages of PDs and recovery rates. The second row

reports summary statistics of time averages of individual PDs and recovery rates.

Table 2: Comparing three prices of index tranche spreads

A. Average tranche spreads

index market CDS-implied GCorr-implied

0-3 % 1705.4 1856.3 1572.8
3-7 % 303.9 313.1 330.4
7-10 % 111.1 69.9 112.4
10-15 % 45.5 15.9 42.2
15-30 % 12.5 0.8 5.9

B. Pricing differences

average (%) MAE (%)

Index vs. CDS-implied
0-3 % 137.4 8.1 140.5 8.2
3-7 % 4.8 1.6 39.6 12.7
7-10 % -42.6 -38.3 42.6 38.3
10-15 % -29.9 -65.7 29.9 65.7
15-30 % -11.7 -93.6 11.7 93.6

Index vs. GCorr-implied
0-3 % -143.8 -8.4 156.5 9.2
3-7 % 22.5 7.4 45.8 15.1
7-10 % -0.3 -0.3 10.9 9.8
10-15 % -4.0 -8.8 8.4 18.5
15-30 % -6.8 -53.9 6.8 53.9

Notes: The statistics in panel B cannot be calculated directly from panel A because there are 46 days

with missing observations in the index market.
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Table 3: Common-factor approximation of asset return correlations

A. CDX.NA.IG.5Y release 1

Tranche mean std dev skew kurt min max MAE MSE

CDS-implied 0.1333 0.0994 0.2516 5.0457 -0.5692 0.7962 – –
1-factor 0.1331 0.0570 0.6648 3.2081 0.0199 0.3614 0.0590 0.0823
2-factor 0.1332 0.0721 -0.3302 5.6162 -0.4620 0.4712 0.0515 0.0696
3-factor 0.1329 0.0809 0.1004 5.0364 -0.4455 0.5185 0.0437 0.0597

B. CDX.NA.IG.5Y release 2

Tranche mean std dev skew kurt min max MAE MSE

CDS-implied 0.1298 0.1006 0.3092 5.0887 -0.5692 0.7962 – –
1-factor 0.1298 0.0568 0.6213 3.2008 0.0117 0.3644 0.0604 0.0837
2-factor 0.1297 0.0728 -0.0730 5.7524 -0.4321 0.4912 0.0526 0.0707
3-factor 0.1294 0.0824 0.2880 5.3939 -0.4470 0.5490 0.0441 0.0599

C. CDX.NA.IG.5Y release 3

Tranche mean std dev skew kurt min max MAE MSE

CDS-implied 0.1283 0.0995 0.3095 5.0887 -0.5692 0.7962 – –
1-factor 0.1284 0.0556 0.6846 3.2589 0.0188 0.3636 0.0599 0.0830
2-factor 0.1283 0.0711 -0.1049 5.9161 -0.4542 0.4855 0.0526 0.0706
3-factor 0.1280 0.0802 0.2706 5.6569 -0.4569 0.5552 0.0446 0.0605

D. All 136 entities included in the three releases

Tranche mean std dev skew kurt min max MAE MSE

GCorr 0.2380 0.0764 0.8589 4.6444 0.0464 0.6500
1-factor 0.2378 0.0750 0.6295 3.7691 0.0469 0.5518 0.0122 0.0177
2-factor 0.2380 0.0756 0.8235 4.4433 0.0458 0.5782 0.0076 0.0115

Notes: “MAE” stands for mean absolute errors and “MSE” for mean squared errors. Panels A to

C summarise the match between CDS-implied asset return correlations and correlations implied by

common factor models (under the Kalman-filter specification). Panel D summarises the match between

GCorr correlations and correlations implied by the stripped-down specification.
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Table 4: Sensitivity analysis of CDX tranche spreads

A. Benchmark spreads

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied 1856.3 313.1 69.9 15.9 0.8
GCorr-implied 1572.8 330.4 112.4 42.2 5.9
index market 1705.4 303.9 111.1 45.5 12.5

B. Remove dispersion in PDs

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied 1860.2 322.4 75.7 18.3 1.1
GCorr-implied 1499.1 343.2 128.4 52.6 8.4

C. Remove dispersion in correlation coefficients

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied 1948.4 299.7 56.6 11.0 0.5
GCorr-implied 1557.9 341.1 113.6 40.8 5.3

D. Remove dispersion in PDs and correlations

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied 1915.5 316.8 67.0 14.6 0.8
GCorr-implied 1501.9 353.4 127.2 49.2 7.2

E. Sensitivity to the factor structure

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied
1-factor 1898.1 302.9 65.8 14.9 0.8
2-factor 1889.7 305.0 66.8 15.2 0.8
3-factor 1886.0 310.6 69.5 16.1 0.8

GCorr-implied
1-factor 1577.9 328.8 111.9 42.1 5.9

F. Sensitivity to numerical methods

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

CDS-implied
one-period MC 1850.0 310.5 68.6 15.6 0.8
multi-period MC 1836.4 244.6 42.7 7.9 0.3

Notes: As implied by average daily tranche spreads between November 21, 2003 and March 18, 2005

(369 business days in total). The only exception is panel F, in which the results are based on average

tranche spreads calculated every 20 days during the same sample period (18 observations in total).
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Figure 1: Default recovery rates and risk-free rates of return
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Note: (1) Recovery rates are provided by Markit. The recovery rate on each day refers
to the cross-sectional average of the 125 entities that are included in the “on-the-run”
CDX.NA.IG.5Y release. The HP filter adopts λ = 64000. (2) The risk-free rate of
return is proxied for by 5-year Treasury rates.
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Figure 2: Observed and implied spreads of CDS index tranches

Jan04 Jan05
0

1000

2000

tr
a

n
c
h

e
 0

−
3

%

Jan04 Jan05
0

200

400

600

tr
a

n
c
h

e
 3

−
7

%

Jan04 Jan05
0

100

200

tr
a

n
c
h

e
 7

−
1

0

Jan04 Jan05
0

50

100

tr
a

n
c
h

e
 1

0
−

1
5

0

10

20

tr
a

n
c
h

e
 1

5
−

3
0

observed spreads
CDS−implied
GCorr−implied

Note: The observed tranche spreads in the CDS index market are provided by JP
Morgan. The two sets of implied tranche spreads are based on the one-period Monte
Carlo simulation method (Appendix B.1).
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Figure 3: Daily cross-sectional average PDs
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Figure 4: The sensitivity of tranche spreads to PDs: an example
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Note: The sample set includes the 125 entities in CDX.NA.IG.5Y release 3. The pricing
of tranche spreads is based on the CDS-implied asset return correlation and the average
recovery rate and average risk-free rate during the sample period. In the baseline case
(dPD=0), individual PDs are set to the average PDs of each firm over the sample period,
with a mean of 79 basis points and a standard deviation of 53 basis points across the
125 entities. We then change all individual PDs by the same amount and re-price the
tranche spreads.
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Figure 5: The sensitivity of tranche spreads to correlation coefficients: an example
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Note: In this example: the recovery rate is 40%, and the risk-free rate is 3.5%. The
sample set includes the 125 entities in CDX.NA.IG.5Y release 3. Individual PDs equal
the average PD of each firm over time, and all pairwise correlation coefficients are as-
sumed to be equal. Tranche spreads are calculated by varying the correlation coefficient
from 0 to 1.
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Figure 6: Implied correlations in the index market, by tranche
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Note: The implied correlation is calculated from the observed tranche spreads on each
day, on the assumption that the PDs and pairwise correlation coefficients are the same
across entities.
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Figure 7: Sensitivity of tranche spreads to dispersion in correlations and PDs
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Note: The pricing is based on the GCorr correlation. The dark dash-dotted lines
assume the same correlation coefficients but allows PDs to vary across entities. The
cyan lines assume instead the same PD across entities (on each day), but do not alter the
original GCorr correlations. The green dash-dotted lines assume that both correlation
coefficients and PDs are the same across entities. The results of the latter two exercises
are hardly distinguishable for the 0-3 and 7-10 tranches.
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Figure 8: Implied correlation smile, an example
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Note: The example pertains only to 30.06.2004. Tranches change across the horizonal
axis: from 1 to 5, the tranches increase in seniority from the equity to the super-
senior tranche, which are defined in the text. The calculation of implied correlation is
divided into two steps. In the first step, we record observed spreads and baseline GCorr-
implied spreads, as well as GCorr-implied spreads under certain restrictions on PDs and
pairwise correlations. In the second step, implied tranche correlations are derived using
the standard method, which assumes the same PD and correlation coefficients across
entities.
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Figure 9: Common factor models of asset returns
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Note: The upper-left panel shows the distribution of the CDS-implied correlation coef-
ficients. The 1-, 2- and 3- common factor models are estimated via a Kalman filter (see
Appendix B). The distributions of correlation coefficient discrepancies are shown in the
other three panels.
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Figure 10: Sensitivity of tranche spreads to the assumed correlation structure
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Note: Solid lines represent prices based on the CDS-implied asset return correlation and
the one-period Monte Carlo simulation method. The other results are obtained using a
Gaussian copula.
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Figure 11: Pricing implications of different mappings from asset return to default cor-
relations
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Note: Both simulations use the CDS-implied asset return correlation, but they differ
in that one relies on the one-period Monte Carlo simulation method (Appendix B.1)
whereas the other one relies on the multi-period Monte Carlo simulation specification
(Appendix B.2).
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Figure 12: Joint default distributions, 5-year horizon
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Note: The results pertain to March 7, 2005. The tranche spreads are 1417.1, 172.9,
27.5, 5.0 and 0.2 basis points using the one-period Monte Carlo simulation and 1386.2,
128.0, 15.0, 1.6 and 0.025 basis points using the multi-period simulation.
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