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Abstract

This paper asks two questions. First, we seek to develop a dynamic general equi-

librium model with aggregate uncertainty where the agents face a binary choice. We

learn that a standard overlapping-generations model in combination with a random-

ization scheme is sufficient to overcome the nonconvexities caused by binary choices.

With our newly developed modeling technique in hand, we turn our attention to an

analysis of the housing markets. Real estate transactions generate large fixed costs,

and one can interpret fixed costs as simply a binary choice. For our second question,

we ask whether these fixed costs, which are micro-level phenomena, can affect macro-

economic variables such as relative prices and the rewards to risk-taking. We learn

that while fixed costs dramatically affect individual behavior, the aggregate impact of

these discrete choices is relatively muted. Since the primary asset of the old is real es-

tate, the answers to these questions are important for our understanding of the impact

of the demographic wave on the economy.

∗This paper has benefited from conversations with Paolo Siconolfi, John Donaldson, Graciela
Chichilnisky, Wojciech Kopczuk, Bruce Preston, Joshua Gallin, members of the Macroeconomic and Quan-
titative Studies section at the Federal Reserve Board, and participants in the Columbia University student
seminars. All errors are my responsibility. Contact the author at bst23@columbia.edu. I have posted the
MATLAB code used in this paper at www.columbia.edu/~bst23.
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1 Introduction.

1.1 Overview.

We solve a general equilibrium model of the housing markets where the agents must pay

a fixed transaction cost to adjust their housing stock. We care about fixed costs because

they are the reason why large and infrequent adjustments characterize the dynamics of the

housing market. Only after we have an equilibrium model that incorporates fixed costs

can we ask about their macroeconomic consequences. We will show that one can naturally

address questions involving binary choices (such as fixed costs) within the structure of an

overlapping-generations (OLG) model.

Fixed costs are a type of nonconvexity that could lead to nonexistence of competitive

equilibria, even in static models. At least as early as Starr (1969), economists have recog-

nized that moving from a finite number of agents to an infinite number of agents may

restore equilibrium in nonconvex environments. Nevertheless, the mechanism involved,

assigning identical agents to different bundles, does not extend in a straightforward way to

the dynamic case. The novel feature of this paper is to show that the OLG model is well

suited to handle nonconvexities such as transaction costs.

Suppose we initialize a dynamic model with a continuum of agents, all of whom are the

same type. When fixed costs are present, the agent’s optimal policy may not be unique, so

heterogeneity could develop endogenously as different agents may make different choices.

When agents live forever, dynamic models may become intractable as the number of types

of agents grows without bound. An OLG structure restricts type-proliferation, restoring

tractability. Generations begin with one type, they segment into many types, but eventually

each generation exits the economic stage and removes some heterogeneity from the model.

Heterogeneity is a desirable feature of an economic model since it is plainly a char-

acteristic of the economy. Unfortunately, heterogeneity makes solving dynamic models

(which respect correct expectations) dramatically more difficult. In correct expectations1

models, prices are unknown functions of the underlying state space, which often includes

the distribution of wealth. Solving for these unknown functions in practice is difficult, and

1Following Radner (1982) we reserve the term “Rational Expectations” for models where the current mar-
ket price increases the information set of the agents. In our model the current market price is a deterministic
mapping from the current state; agents learn nothing from observing the current spot price.
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these difficulties may rise to the level of infeasibility with as little as three or four types of

agents. If ever the principle or parsimony binds, it binds here.

More generally, one could easily adapt the methods used in this paper to focus on some

other interesting nonconvex choice. Leaving aside the details, we overcome the noncon-

vexity created by fixed costs by allowing either the agents or the auctioneer to randomize

the decision of whether or not to pay the fixed adjustment cost. Since agents randomize this

binary decision, one type of agent may become two types of agents. By restricting agent’s

lives to only two periods we limit the amount of heterogeneity that can develop and keep

the problem within the realm of numerical feasibility. The tractability of this environment

appears only to depend on the OLG structure and a nonconvexity that one could describe

as a binary choice.

Any life-cycle model of owner-occupied housing inescapably leads to a discussion of

the reverse mortgage market. Our model is no exception, and our paper adds to the the-

oretical literature suggesting the need for such a market. Consider the housing financing

options facing an agent in her last period of life. If she does not borrow against the value of

her home, then, in the absence of a bequest motive, she leaves an unintended bequest. She

would therefore pay any price (she is not making a marginal decision) for the opportunity to

extract some of her housing wealth to fund current consumption. In addition, reverse mort-

gages allow the old to (optimally) shift all of the risk in value of their homes to younger

investors.

 
 Net Worth 

($ Median, 000’s) 
Home Value 

($ Median, 000’s) 
Home 

Ownership Rate 
Home Value/ 

Net Worth 
65-74 176.3 129.0 82.5% 73% 
74+ 151.4 111.0 76.2% 73% 

Source: SCF 2001, Federal Reserve Board of Governors. 

 

Figure 1:

We close this introduction with a reminder of the size and importance of the real estate

market in the US. Consider that the stock household real estate is worth about $15.3 trillion,

while the capitalization of the stock market is about $13.3 trillion and the flow GDP is about
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$11.0 trillion.2 Figure 1 shows that the 65+ demographic has about 73% of their wealth

invested in real estate. While this calculation is somewhat suspect since it relies of the

ratio of median values, we do not think it is qualitatively misleading. According to Census

projections those age 65+ will rise from 35 million people (12.4% of population) in 2000

to 66 million (19.6% of population) by the year 2030. Real estate is a large part of the

economy, it is the primary asset of the old, and the population of older Americans is about

to double.

1.2 Literature Review.

Asset Pricing and Portfolio Choice. The OLG model3 is not widely used in asset pric-

ing papers. Instead, economists have traditionally used recursive equilibrium models with

infinitely lived agents. This is not surprising for at least two important and related rea-

sons. First, one can characterize the solution to the individual programming problem rela-

tively easily using the Euler equations (see for example §4.5 of Stokey, Lucas, and Prescott

(1989)). Imperfections resulting from life-cycle considerations, which are often incorpo-

rated into OLG models, may invalidate the simple use of the Euler equations. Second,

empirical evaluation of an asset pricing model usually occurs at a quarterly frequency. For

an OLG model this seems to imply the need for at least 200 generations, a situation well

beyond the realm of computational feasibility. These challenges, however, do not imply

that one cannot derive new asset pricing insights from OLG models. For example, the pa-

per by Constantinides, Donaldson, and Mehra (2002) incorporates borrowing constrained

younger generations into a stochastic OLG model. The constraints on the young reduce

the supply of bonds, raising bond prices, and hence lower the equilibrium rate of interest.

Since the young have no ability to use leverage in the equity market, the equilibrium rate of

return on risky assets increases. Another important contribution comes from Geanakoplos,

2The real estate estimate is from the Federal Reserve Board of Governors’ (Flow of Funds) 6/10/2004
estimate of the value of household real estate at the end of the first quarter 2004. Equity value is the market
capitalization of the Russell 3000 at its rebalance on July 1, 2004. The GDP number is from the BEA’s
8/27/2004 estimate of nominal GDP for 2003.

3The OLG model has a long history in economics, and a full review is not required here. We do, however,
feel obliged to at least footnote a few key papers. The handbook treatment of the OLG model is contained
in Geanakoplos and Polemarchakis (1991). Karl Shell contributed a number of early, and insightful, works.
For example, his note on the “double infinity of commodities and consumers” (Shell (1971)) and his group of
papers including Balasko and Shell (1981) clarified some important issues on the structure of OLG models.
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Magill, and Quinzii (2003) where demographic fluctuations create predictable variation in

asset prices.

Since housing is the major intersection between an agent’s consumption and invest-

ment decisions, it is a natural starting point for consumption-based explanations of excess

returns. Piazzesi, Schneider, and Tuzel (2003) use housing as a factor in an empirical as-

set pricing model. In a cross-sectional regression of stock returns where Fama and French

(1995) use a factor for the size of firms, Piazzesi, Schneider, and Tuzel (2003) use a factor

for the share of personal expenditures devoted to housing. They find that this “expendi-

ture share” does help explain differences in returns of portfolios of stocks. Although their

empirical model is loosely based on equilibrium arguments, the authors do not solve an

equilibrium model. If housing is actually a cause of excess returns, and not merely corre-

lated with more fundamental sources of risk, then a general equilibrium model should also

yield this result.

Recursive Macroeconomics. One feature of the OLG model we are highlighting through-

out this paper is its ability to limit heterogeneity. In order to make clear why controlling

heterogeneity is desirable, we turn next to a short description of the recursive models and,

importantly, their numerical solutions. The fundamental concept in recursive macroeco-

nomics is the notion of the state variable. A vector of state variables summarizes all the

significant information about the economy and is the unique gateway to dynamic analy-

sis. If we want our stochastic economy to be recursive in the state variables, we must

assume that uncertainty is driven by a Markov process. A stationary Markov equilibrium is

a pricing function and a policy function such that the economy satisfies agent optimization,

market clearing, and correct expectations. The pricing function maps the current position

of the economy into current prices, while the policy function describes the evolution of the

state of the system.

Solving these models is difficult since the unknowns are functions that one must nu-

merically approximate. The dimension of the state vector essentially determines whether a

given model is tractable. If the dimension is low, say two or less, then numerical methods

are likely to give positive results. The complexity of the problem rises exponentially in the

number of state variables and the literature commonly refers to this problem as the curse
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of dimensionality.4 In general, prices depend on the distribution of agents (say along the

wealth space). The number of states variables is then likely to equal the number of types of

agents. Therefore, one cannot compute solutions to models that generate a growing num-

ber of types with current technology. We will see in the next section that one can solve

models with many types of agents if one dispenses either with correct expectations or with

aggregate uncertainty.

Incorporating Discrete Choices. Many authors have incorporated binary choices into

equilibrium models and we will broadly categorize the approaches into two styles. We

will discuss the specifics papers below, but first we want sketch the big picture to show

exactly where our paper extends the research frontier. In one approach, exemplified by

Hansen (1985), all agents randomize over the binary choice, but the outcome of the lottery

has no dynamic implications for the individual agents. That is, the outcome of the lottery

does not affect the state of the agent next period. A model of this type that begins with a

representative agent remains a model with a representative agent. Researchers using this

approach can almost forget about the discrete choice and conduct a standard representative

agent analysis. Most importantly, the analysis remains feasible in the presence of aggregate

uncertainty. In short, this method applies to models with binary choices and aggregate

uncertainty as long as the outcomes of the lotteries do not have dynamic implications.

In the other approach, exemplified by Caplin and Spulber (1987), agents take determin-

istic actions over a binary choice and these actions do have dynamic implications. That

is, the binary choice has a discontinuous impact on current-period actions and on the state

of the agent next period. Models of this type are initialized with agents distributed along

an interval (the interpretation of this interval is model-dependent). The necessary next

steps in this class of models are to eliminate all aggregate uncertainty and then to assume

or show that the distribution of agents remains unchanged over time. Idiosyncratic shocks

may cause agents to change positions along the interval, but the distribution of agents never

changes. The microeconomic dynamics have no aggregate impact and prices are constant

over time. In short, this method applies to models with binary choices but without ag-

gregate uncertainty as long as the dynamic implications of the discrete choices lead to a

4See Judd (1998) for more information on numerical approximations. A recent paper using high-
dimensional interpolation techniques is.Krueger and Kubler (2004)
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distribution of the agents that is constant over time.

The innovative aspect of our methodology is that we are able to solve for equilibrium

where lotteries have dynamic implications in a setting with aggregate uncertainty. The cost

of incorporating dynamic implications and aggregate uncertainty is paid in state variables.

Prices become a function of the non-constant distribution of agents. Our model remains

tractable only because we use the OLG structure to limit the number of types of agents.

The curse of dimensionality constrains the complexity of the model. We stress, however,

that our solution respects correct expectations.

Standard Walrasian equilibrium existence proofs rely on fixed-point theorems, which,

in turn, require optimal policies that are (at least) convex and defined over a convex set.

By construction, a consumption set with discrete choices is not convex, and the optimal

policy may not be convex-valued. An auctioneer can convexify the excess demand cor-

respondence of a model populated by a continuum of agents by making assignments on

behalf of the agents.5 For example, suppose we have a unit mass of agents each demanding

either zero or one unit of a product in fixed supply of one-half unit. Individual agent opti-

mization will not necessarily lead to market clearing. In addition to announcing prices, the

auctioneer must coordinate the plans of the agents so that half of the agents consume zero

units and half of the agents consume one unit. We can view this process as auctioneer-level

randomization.

Equilibrium may also exist in nonconvex environments if we allow a continuum of

agents to choose lotteries over consumption bundles. Consider, for example, a model where

the individual programming problem is entirely standard except for a binary choice. Instead

of selecting, say, action 0 or action 1, the researcher can convexify the choice set by allow-

ing agents to choose the probability, λ, of taking action 0. Unfortunately, nothing implies

that the agent’s problem is concave in λ, and thus the optimal choice set may still fail to be

convex. If the agent’s optimal policy is concave in λ, standard existence arguments again

apply.

Prescott and Townsend (1984a, 1984b) developed the lottery framework, and Prescott

and Shell (2002) have reviewed some more recent developments. In a lottery framework,

agents may purchase random consumption bundles and the value of a commodity is lin-

ear in its delivery probability. With a continuum of agents of each type, we can construct

5For a quick textbook discussion of this topic see Mas-Colell, Whinston, and Green (1995) §17.1.
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a randomizing device such that the actual expenditures of each type equal the expected

expenditures of each type of agent, thus random choices made by individuals do not intro-

duce aggregate uncertainty. In a lottery framework, agents pay for all random bundles with

certainty knowing that actual delivery is uncertain. In contrast, mixed strategies refer to a

policy where the agent’s choice is still random, but she pays the full cost of only the bundle

that the market actually delivers to her. The Prescott-Townsend approach is not necessarily

about discrete choices, but we specialize their model to handle fixed costs, which is a focus

of this paper.

As an example, suppose we have an economy populated by a unit mass of agents with

identical linear utility functions defined over quantities of single good called c whose price

we normalize to 1. We assume the world lasts one period and we endow each agent with

one unit of c. Consider a lottery equilibrium where each agent purchases 2 units of c with

probability 1/2. Each agent pays his entire endowment to receive this random bundle, and,

given linearity of the utility functions, this is a utility maximizing plan. Market clearing is

satisfied, as half of the population will consume two units and the other half will consume

zero units.

How should we interpret random contracts? We do not even have anecdotal evidence

of people signing random contracts in the residential real estate market. This does not

necessarily imply that a model with random contracts will not give an approximation to

aggregate behavior. We might suppose unobserved characteristics of the agents partly de-

termine actions that appear random to the economic researcher. In the specific context of

the housing market, we might interpret random contracts as a search model where agents

only have a probability of selling their home each period. Whatever the interpretation, the

model we construct will imply that agents actually want to sign random contracts. The

most important reason for using lotteries is that they allow us to solve for equilibrium in

models where we may otherwise have no solutions.

The model of Hansen (1985) permits lotteries over an indivisible labor supply decision

by a continuum of infinitely lived agents. That is, each agent initially has the option of

either working full time or of being unemployed in a given period. Hansen convexifies the

discrete choice by allowing the agents to specify the probability with which they work in

exchange for a deterministic wage. The equilibrium wage depends on the aggregate labor

supply, but the wages paid to an individual worker do not depend on whether the lottery
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selects that particular worker for employment in a given period. The only consequence of

the result of the lottery is a change in current period utility as the employed agents suffer the

disutility of work. This behavior is not akin to mixed strategy, as the agent strictly prefers

not to work (she is paid anyway). All workers sign the same contracts, receive the same

wages, and make the same investments. Therefore, at the start of the next period, all agents

are again identical. Heterogeneity does not proliferate inside the model and distribution of

wealth is not a state variable of Hansen’s economy.

An oft-cited paper that incorporates fixed costs in equilibrium is Caplin and Spulber

(1987). Their context is price-setting firms in the presence of menu costs. In their model,

fixed menu costs make it optimal for all firms to follow (S, s) pricing rules. By abstracting

from macroeconomic uncertainty, postulating continuous money growth, and imposing a

uniform distribution of agents along the relative price space, the authors show how money

can be neutral even in the presence of menu costs. In equilibrium, the distribution of

prices remains fixed and firms simply change positions in the relative price space. These

techniques do not extend to the case of aggregate uncertainty, as the distribution of firms

would no longer be constant.

A recent paper that incorporates fixed costs within a general equilibrium model of hous-

ing is Gruber and Martin (2003). From the agent’s perspective, our model is similar to their

model in the sense that the agents enjoy utility over nondurable and durable goods. Their

focus is on precautionary saving and the distribution of wealth rather than on asset pric-

ing. A key modeling difference between our paper and Gruber and Martin (2003) is that

they populate their model with a continuum of immortal agents endowed with uninsurable,

idiosyncratic productivity. With no other sources of uncertainty, their assumptions remove

all macroeconomic fluctuations and they are able to focus on the steady state distribution

of agents. Computing this unknown stationary distribution is their main numerical accom-

plishment. The Caplin and Spulber (1987) and the Gruber and Martin (2003) construct con-

tinuous aggregate excess demand by aggregating over sufficiently dispersed agents. Since

prices depend of this distribution, their models only remain tractable when this distribution

remains unchanged.

We want to close this subsection by mentioning an alternative method for solving mod-

els with many heterogeneous agents. Suppose agents believe that heterogeneity affects

prices only through the moments of its distribution. The basis of this approach, developed
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in Krusell and Smith (1998) and den Haan (1997), is to assume that only a few moments (a

small finite number of scalars) are a good summary of an arbitrary distribution (an infinite-

dimensional object). This methodology has one undeniable benefit; it is feasible. That is,

one can solve the models using standard numerical methods as the number of state vari-

ables have been reduced from infinity down to (hopefully) one or two. On the negative side,

we are not sure whether the generated solutions are approximate solutions to a model with

boundedly-rational agents or approximate solutions to a model populated by agents with

perfect conditional foresight.6 An analysis of computational errors is not likely to resolve

this question. An accurate computation of equilibrium in a bounded-rationality model does

not imply that the computed equilibrium actually respects correct expectations. We stress,

however, that this approach is computationally feasible and Khan and Thomas (2003) ap-

ply this methodology to model where firms must pay a firm-specific fixed cost to invest.

Heterogeneity in firms develops endogenously in their model and the distribution of capi-

tal becomes a state variable that matters to prices only through its distributional moments.

Their interesting findings are that fixed costs have a large effect upon firm behavior, but

relatively little effect upon the macroeconomy.

Reverse Mortgages. Since “you can’t take it with you,” people have every incentive to

exhaust their wealth prior to death. How can one exhaust their owner-occupied housing?

Since we exclude rental markets from our analysis, agents borrow against the value of their

homes in order to boost consumption when old. Homes prices are not deterministic, so

the agent wants to short an asset whose value fluctuates with the value of their home. If

only a riskless asset were available, the agent would borrow until the value her repayments

are just equal to value of her home in the “worst” state of the world. In other states of

nature, she would leave an unintended bequest. These powerful forces, however, have not

led to the widespread use of reverse mortgages. The well-written survey by Caplin (2002)

pegged cumulative reverse mortgage issuance at only 50,000, but recent reports7 indicate

substantial growth with at least 18,000 closing in 2003 and 36,000 closings in 2004. Mayer

and Simons (1994) conservatively estimate the potential size of the (growing) market at 1.3

million reverse mortgages, while Rasmussen, Megbolugbe, and Morgan (1995) estimate

6Krueger and Kubler (2004) demonstrate cases where the Krusell and Smith methodolgy fails.
7See Kelly (2004). His article was based on HUD numbers for fiscal years 2003 and 2004.
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the potential market size at 3.7 million reverse mortgages. Among the many reasons Caplin

cites for the gap between the large number of people who would benefit from a reverse

mortgage and the actual number of closings are transactions costs and uncertain impacts on

taxes and eligibility for government transfer programs.

The importance of reverse mortgages in our model is somewhat determined by the ab-

sence of both bequest motives and rental markets. We noted earlier that the home ownership

rate for households 65 years and older is about eighty-percent. Regardless of the reasons

why the old own their homes, this market structure seems unlikely to change anytime soon

and we think the owner-occupied model is the most relevant starting point for analysis.

Economist need to provide policy advice for situations where the bequest motive is not

active. Consider the viewpoint contained in Dynan, Skinner, and Zeldes (2002) where the

bequest motive is only “operational” in certain states of the world. If the old have plenty of

resources and insurance to both fund retirement expenditures (including healthcare costs)

and leave generous bequests, then the retirement of the baby-boom generation is not as

an important economic issue. The more serious (and likely) scenario is that advances in

healthcare technology have increased both life expectancy and the cost of living longer. The

current baby-boom generation may not have the resources to fund their future consumption

paths, especially medical and long-term care costs.

More generally, one should put the analysis of reverse mortgages in the context of a

larger portfolio choice problem. Agents should choose their exposure to housing price

risk as if it were just another asset class. Investment in owner-occupied housing requires

owner occupation. The last sentence is not a tautology; it is a central ingredient in a proper

economic model of housing. In particular, one cannot easily separate the consumption

services from owner-occupied housing from its characteristics as a pure investment. This

stands in stark contrast to the equity market where one can invest only in Pepsi but drink

only Coke. Many papers, most recently including Caplin, Gordon, and Joye (2004) and

Shiller (2004), have called for the development of an asset or insurance product to protect

homeowners against idiosyncratic fluctuations in the value of real estate.8

8The recent increase in home prices has heighted interest in these issues. See, for example, Gallin (2004),
Case and Shiller (2004) and McCarthy and Peach (2004).
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Summary of Zero Transaction Costs Case. The methodological focus of this paper is to

describe a model of housing with fixed transaction costs. Since a model of housing neces-

sitates the use of durable goods, we summarize the features of an OLG model with durable

goods.9 One notable difference in the durable goods model compared with a nondurable

goods model with agents who live two periods is that a collateralized bond market may ex-

ist in equilibrium, as agents may borrow against the equity in their homes. Adding durable

goods to an OLG model without aggregate uncertainty and without population growth does

not change some important standard results. For example, the competitive equilibrium may

not be Pareto optimal. Inefficient equilibria are characterized by negative interest rates, and

a transfer scheme from the young to the old in every period can increase welfare in that

case. Both steady state and inflationary monetary equilibria exist when the competitive

equilibrium without money is not Pareto optimal.

2 E1: No Aggregate Uncertainty, Auctioneer-Level Ran-

domization.

2.1 Maintained Assumptions.

In this section we detail a model without aggregate uncertainty, as this allows us to in-

troduce the structure of our model while avoiding some complications. We postpone our

comments on asset pricing until section 3. In Economy E1 time is discrete, it begins in the

finite past, and it extends into the indefinite future. There are markets for two goods in pos-

itive net supply and a collateralized inside bond market with endogenous net interest rate r .

One of the goods is nondurable while the other is a durable good (homes) that depreciates

at rate δ ∈ (0, 1). Default is not permitted in any state of the world, and the inside bond

market exists only because homes function as collateral. We assume that the nondurable

good serves as the numeraire and agents can exchange durable goods for nondurable goods

at price p. The economy is populated by a continuum of three types of economically ac-

tive agents at any moment in time, and the measure of each type is normalized to unity.

The agents in these overlapping generations are referred to as the young, the old, and the

estates. The estates are simply the collection of assets owned by the generation that was

9The analysis is available from the author upon request.
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previously old. The reason we need to introduce the estates is that the old agents must

own their homes in the last period of life. Markets for rental housing do not exist and the

agent cannot sell her home excluding the service flow housing. In contrast, she can sell her

financial assets ex-dividend, but, again, consumption of owner-occupied housing requires

owner occupation.

We assume for simplicity that the young are endowed with all of the nondurable good

and an amount of durable good that is just enough to replace aggregate depreciation from

last period. There are no production choices. Endowing the young with this amount of

durable good ensures that the aggregate quantity of durable good remains constant, thus

eliminating a potential state variable. The aggregate endowment of the nondurable good is

denoted ωc and the aggregate amount of durable good in the economy is denoted ωk . While

a more complete model would incorporate production, we do not believe it is essential

for making our basic points. To the degree that land is a fixed factor, abstracting from

production is the correct assumption. Furthermore, a production technology should also

reflect some of the institutional details that make housing capital unique such as locational

characteristics (local public services), minimum sizes (zoning laws), and irreversibilities.

Of course, fixed costs at the level of the agent will have no effects if consumers can hire

firms to make costless adjustments on their behalf.

The old have only the assets they purchased when young. In equilibrium, the older

generation’s assets will consist of savings in the form of bonds and ownership of some

amount of durable goods. In equilibrium, the estates will consist of a positive amount of

housing and a short position in bonds with a net value of zero. We invite to reader to look

at Figure 2 for a graphical view of the timing conventions.

The important institutional detail is a fixed transaction cost that must be paid by the old

if they sell their stock of durable good. In particular, if the old sell any amount of housing

in the spot market they must ‘destroy’ τ ≥ 0 units of the nondurable good for each unit

of the durable good that they bring to market. We will also assume free disposal, so we

know in equilibrium τ ≤ p. The transaction cost is therefore a technical constraint on the

economy and transaction costs are not received by another sector as income. When the old

agent sells her durable stock, she is also simultaneously purchasing a new level of stock.

There is no additional transaction cost associated with this purchase. The transaction cost

will generate two types of agents: those who hold when old and those who sell when old.
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In equilibrium, the choices of the young will depend on whether they plan to adjust their

housing stock when old.

All agents have the same utility function over lifetime consumption patterns. We will

let c represent nondurable consumption, k represent durable consumption, and θ B represent

bond purchases. We will use the subscripts 0 and 1 for consumption in the young and old

period, respectively, and the subscripts h and s for the types of agents who hold and sell

when old, respectively. Each agent’s utility is a logarithmic transformation of a Cobb-

Douglass consumption index with parameter α ∈ (0, 1), with time subjectively discounted

at rate β. We assume the service flow from the ownership of the durable good is directly

proportional to the stock.

Utility if Hold: U(c0h, k0h, c1h, k1h) = log
(

cα0hk1−α
0h

)
+ β log

(
cα1hk1−α

1h

)
Utility if Sell: U(c0s, k0s, c1s, k1s) = log

(
cα0sk1−α

0s

)
+ β log

(
cα1sk1−α

1s

) (1)

We now introduce a lottery framework by allowing agents to randomize over the choice of

holding versus selling their stock of housing, and in the case where the agents are indifferent

over these actions, we allow the auctioneer to choose among optimal plans on behalf of the

agents. Let λ be the probability that the agent holds the durable good. The choice variable

λ can take any value in the unit interval, but we will show that in Economy E1 the optimal

policies are always corners with respect to λ.

2.2 Agent Optimization.

Program for the Old. The old agent will choose the probability of making a transaction

in the durable goods market and the prices of the conditional consumption bundles are

linear in this lottery. The assumption of a continuum of consumers assures that λ introduces

no aggregate uncertainty and that the deliveries expected by individuals are realized in

aggregate. The old agent begins this period with a level k̄ of durable goods and A1 of cash,
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which is the value of the bonds she bought last period. Her program is

V 1
(
k̄, A1

)
= max

c1h,k1h,θ
B
1h,c1s ,k1s,θ

B
1s ,λ

λ log
(

cα1hk1−α
1h

)
+ (1 − λ) log

(
cα1sk1−α

1s

)

(objective function)

SUBJECT TO:

λ
(
c1h + θ B

1h

)
+ (1 − λ)

(
c1s + pk1s + θ B

1s

)
≤ A1 + (1 − λ) (p − τ) k̄

(budget feasibility when old)

k1h = k̄

(definition of holding the durable good)

0 ≤ (λk1h + (1 − λ) k1s) (1 − δ) p + (1 + r)
(
λθ B

1h + (1 − λ) θ B
1s

)
(budget feasibility of the estate)

λ ∈ [0, 1]

(definition of a lottery)

(2)

Using k1h = k̄, and combining the two budget feasibility conditions (thus eliminating

bond purchases,
(
λθ B

1h + (1 − λ) θ B
1s

)
, from the program) we have the following simplified

program.

V 1
(
k̄, A1

)
= max

c1h,c1s,k1s
λ∈[0,1]

λ log
(
cα1hk̄1−α

)
+ (1 − λ) log

(
cα1sk1−α

1s

)

(objective function)

SUBJECT TO:

λc1h + (1 − λ) c1s + (1 − λ) r+δ

1+r pk1s ≤

A1 +
(
(1 − λ) (p − τ )+ λ1−δ

1+r p
)

k̄

(budget feasibility when old)

(3)

We show later that in the steady-state equilibrium agents will only choose λ ∈ {0, 1}.

Suppose, for now, we take λ as an arbitrary parameter in the unit interval. We can then

make a clear interpretation of the budget constraint. The right hand side of the inequal-

ity represents the agent’s resources: cash (A1), expected revenues from sales of durable

goods today ((1 − λ) (p − τ ) k̄), and the expected present discounted value of sales of

(then depreciated) durable goods tomorrow (λ1−δ

1+r pk̄). The left had side of the inequality

represents expenditures on nondurable consumption conditional on holding, nondurable
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consumption conditional on selling, and durable consumption conditional on selling with

the “prices” λ, (1 − λ), and (1 − λ) r+δ

1+r p, respectively. Taking λ as given and defining

I ≡ A1 +
(
(1 − λ) (p − τ)+ λ1−δ

1+r p
)

k̄, the solution to the above program is

c1h = I α
αλ+(1−λ)

c1s = I α
αλ+(1−λ)

k1s = I 1−α
αλ+(1−λ)/

(
r+δ

1+r p
) (4)

The policies call for spending a constant fraction of income (suitably defined) on each of the

commodities. The solution for λ is not available in closed-form, but numerical routines can

compute its value instantaneously. For given values of k̄ and A1 the program, concentrated

in λ, is concave. The values of k̄ and A1, however, are not fixed from the perspective of the

young agent, they are determined by her optimal policy, interest rates, and depreciation.

The result of this flexibility is that the young agent’s problem is actually convex in λ.

Program for the Young. When the agent is young, she has an endowment with a value

of A0 = ωc + pδωk . As we assume the young agent is not subject to transaction costs, her

division of wealth between nondurable and durable goods is irrelevant; all that matters is its

total value. Let V 1
(
k̄, A1

)
be the objective function when old and let (c0, k0) represent, for

now, the choices when young. Once we solve the optimal choice of λ (it will be zero or one)

we will specialize the notation to reflect the polar cases where the agent deterministically

holds or sells.
V 0 (A0) = max

c0,k0,θ
B
0

log
(

cα0 k1−α
0

)
+ βV 1

(
k̄, A1

)

(objective function)

SUBJECT TO:

c0 + pk0 + θ B
0 ≤ A0

(budget feasibility when young)

A1 = (1 + r) θ B
0

(evolution of financial wealth)

k̄ = (1 − δ) k0

(evolution of housing stock)

(5)
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Using the definition of V 1 (k, A1) along with the constraints defined in Equation 2, we can

write the young agent’s problem as

V 0 (A0) = max
c0,k0,c1h,c1s,k1s

λ∈[0,1]

log
(
cα0
)
+ (1 + βλ) log

(
k1−α

0

)

+βλ log
(
cα1h

)
+ β (1 − λ) log

(
cα1s

)
+ β (1 − λ) log

(
k1−α

1s

)
+ (1 − α) βλ log (1 − δ)

(objective function)

SUBJECT TO:

c0 +
(

p − (1 − λ) (1−δ)
(1+r) (p − τ)− λ (1−δ)2

(1+r)2 p
)

k0

+ λ

1+r c1h +
1−λ
1+r c1s + (1 − λ) r+δ

(1+r)2 pk1s ≤ A0

(budget feasibility)
(6)

Since we do not have a closed-form solution for λ, we temporarily take it as given. Straight-

forward computations yield the following optimal choices as a function of the value of the

young agent’s endowment, A0. The optimal policies are written in a form so that we see, as

expected, that the agent spends a constant fraction of her wealth on each good regardless of

the price. The quantity purchased adjusts with price to maintain budget balance. The price

as seen by the young agent is shown after the “/” sign.

c0 = A0
α

α+αβ+(1−α)(1+βλ)+(1−λ)(1−α)β /1

c1s = A0
αβ

α+αβ+(1−α)(1+βλ)+(1−λ)(1−α)β /
1

1+r

c1h = A0
αβ

α+αβ+(1−α)(1+βλ)+(1−λ)(1−α)β /
1

1+r

k0 = A0
(1−α)(1+βλ)

α+αβ+(1−α)(1+βλ)+(1−λ)(1−α)β /
(

p − (1 − λ) (1−δ)
(1+r) (p − τ)− λ (1−δ)2

(1+r)2 p
)

k1s = A0
(1−λ)(1−α)β

α+αβ+(1−α)(1+βλ)+(1−λ)(1−α)β /
(
(1 − λ) r+δ

(1+r)2 p
)

(7)

In addition to the choices the agent makes when young (c0 and k0), Equation 7 shows the

choices she will make next period (c1h, c1s , and k1s). Plugging these choices back into

the objective function we could arrive at nearly a closed-form expression for the value

function. The only choice parameter over which we have not optimized is λ. We can show

analytically that the remaining optimization problem maximizes a convex function (convex

in λ) over the unit interval and therefore the optimal policy will be a corner solution. Agents
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in this model will never choose proper lotteries, although they might be indifferent between

holding and selling the durable good when old. The excess demand function of an agent

will not be continuous in prices, as demand will shift when the agent switches from holding

to selling the durable good. Thus, allowing for randomization at the level of the agent does

not produce a model where equilibrium exists. The reason we allowed the parameter λ

to take values in [0, 1] is that we did not want to assume the agents would only choose

λ ∈ {0, 1}.

Suppose we allow the auctioneer to make an assignment of hold or sell on behalf of the

agents. The auctioneer may only choose actions that are among the optimal policies of the

agents. If, at the posted prices, the utility of holding is greater than the utility of selling,

then the auctioneer must assign all agents the hold bundle. In the case where the utility of

holding and selling are equal, we allow the auctioneer to assign a fraction, γ , of the agents

to hold the durable good and a fraction (1 − γ ) to sell the durable good. To be clear, λ is

one of the agent’s choices and we have shown λ ∈ {0, 1}. In contrast, γ is the fraction of

agents assigned by the auctioneer to hold the durable good when old. We can see clearly

from Equation 7 that the choice of λ (made when old) affects the optimal choices when

young, so an interior choice of γ will imply the existence of two different types of young

agents.

2.3 Steady-State Equilibrium.

We will search for a steady-state equilibrium, which we define as a constant relative price

and a constant interest rate such that when agents optimize, taking these prices as given,

all markets clear. Agents correctly anticipate these constant prices. The model we have

constructed is dynamic, but we have not yet described the initial conditions of this system.

We suppose that at the start of time there a generation who is initially old. We endow

the initial old with the same division of wealth that future older generations will have in

equilibrium. The old agents who plan to hold will have one combination of cash and

durable goods and the old agents who plan to sell will have a different combination of cash

and durable goods. Thus, these initial conditions are endogenous to the system and are

defined by Equation 8.
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Endowment for the Initial Old. The system begins with a generation that is old in the

initial period and the endowment of that generation satisfies

k̄h = (1 − δ) k0h

Ah = (1 + r) θ B
0h

k̄s = (1 − δ) k0s

As = (1 + r) θ B
0s

(8)

The pair
(
k̄h, Ah

)
is the endowment of durable goods and cash for the agent who will hold

her stock, while the pair
(
k̄s, As

)
is the endowment of durable goods and cash for the agent

who will sell her durable good. The values on the right hand side of Equation 8 are the

equilibrium interest rate and choices of the young agent. These initial conditions are an

important component of the steady-state solution. When the initial conditions are defined

in this way, the economy begins in the steady state and prices are therefore constant.10 We

assume that all of the durable goods that are not owned by the young or the old are owned

by the estates. In equilibrium, the old will have, through their bond holdings, a claim to the

entire durable stocked owned by the estates. The value of this claim is called cash because

the agent need not pay a transaction cost when spending these resources.

Market Clearing Conditions. Given the market clearing interest rate and relative price,

consumption levels satisfy the following conditions. The variable γ , chosen by the auc-

tioneer, is the fraction of the agents who hold the durable good when old.

ωc = γ (c0h + c1h)+ (1 − γ ) (c0s + c1s)+ τ (1 − δ) (γ k1h + (1 − γ ) (k0s + k1s))

(market clearing in the nondurable goods market)

ωk = γ (k0h + k1h)+ (1 − γ ) (k0s + k1s)

(market clearing in the durable goods market)

0 = γ
(
θ B

0h + θ B
1h

)
+ (1 − γ )

(
θ B

0s + θ B
1s

)
(market clearing in the bond market)

(9)

10We speculate that other initial conditions would converge to the same steady state. However, further
analysis of the no-aggregate-uncertainty case is not likely to yield additional economic insight. In Section 3
we analyze a more general case, and in that model the endowment of the initial old is not fixed.
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If Walras’ law holds, one of the market clearing conditions is redundant11. The reason

durable goods enter the market clearing condition in the nondurable goods market is that

transaction costs, based on sales of durable goods, are modeled as a destruction of the

nondurable good.

Equilibrium γ . Let V Hold be the value function for the agent who always holds and

V Sell be the value function for the agent who always sells. The parameter γ , which the

auctioneer chooses, is not arbitrary, and γ ∈ [0, 1] must satisfy

0 = max
[
0,
(
V Hold − V Sell) ∗ (1 − γ )

]
+ max

[
0,
(
V Sell − V Hold) ∗ γ ] (10)

If holding is preferred to selling then γ = 1 and all agents hold and conversely, if selling

is preferable to holding then γ = 0 and all agents hold. The auctioneer may choose any

γ ∈ [0, 1] when V Hold = V Sell . Just to be clear, the parameter λ is a randomization

parameter that the agent chooses, and we have shown the agent always chooses λ ∈ {0, 1}.

The auctioneer may choose an interior γ only in the case when the agents are indifferent to

λ = 0 or λ = 1.

Existence of Equilibrium. Suppose γ is fixed and agents mechanically follow the pre-

scription of the auctioneer. That is, a fraction of the agents, γ , sell the durable good when

old and a fraction (1 − γ ) do not. With this restriction, the OLG model is entirely standard

and existence is assured. The next issue is whether a γ satisfying Equation 10 exists. Here

we can consider some simple cases. If V Hold ≥ V Sell at γ = 0, then γ = 0 is an equilib-

rium. If V Sell ≥ V Hold at γ = 1, then γ = 1 is an equilibrium. Otherwise, by continuity

of the value function, there exists an equilibrium point in (0, 1) such that V Sell = V Hold .

2.4 A Numerical Example.

We turn next to a numerical solution of Economy E1 in order to evaluate the impact of

transaction costs on the macroeconomy. For example, the level of the transaction costs can

affect the level of interest rates and the relative price. We will present, in graphical form, a

11We only consider Pareto optimal cases (the interest rate is greater than the population gowth of zero), so
Walras’ law holds for the numerical case we consider.
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sequence of comparative statics. For a given set of exogenous parameters we will vary the

transaction cost and trace the equilibrium prices and choices in the economy. We turn next

to a description of the values used for the exogenous parameters.

α = 0.85 The coefficient on nondurable goods in the Cobb-Douglass aggregator α is

set to 0.85. Just for this paragraph, consider the following thought experiment where a

hypothetical agent consumes rental housing, S, other goods, N , and has the utility function

NαS1−α. If units were normalized so that the relative price is one then the optimal choices

of N and S would satisfy α

1−α = N
S . We can observe the ratio N/S in the national accounts

and if we look at the ratio in a base year, by construction, the relative price is equal one and

real and nominal values coincide. In 2001personal consumption expenditures excluding

housing services were $5.981 trillion while consumption of housing services were $1.073

trillion12, and so the value of α is computed. Fine, but the model constructed in this paper

is not one of renting but rather one of purchasing the homes that yield a service flow. The

Bureau of Economic Analysis produces an account of fixed assets that includes the stock of

residential housing. Suppose instead of renting the entire housing stock for $1.073 trillion

the agent purchased the entire housing stock on margin, held it for one year, enjoyed the

housing services and then sold. Renting and margin purchase followed by resale deliver the

same commodity in the same states of the world, so their costs should be equal. The margin

cost of a dollar at gross interest rate R is (R − 1)/R. In 2001 the average adjustable-rate

mortgage rate averaged13 5.83%, implying a margin cost of 5.51c/ per dollar. Therefore

the cost of purchasing the entire housing stock, valued at $11.493 trillion14, on margin

is a mere $633 billion. This is substantially less than the $1073 billion our hypothetical

aggregate agent actually paid to rent the housing stock. No arbitrage intuition suggests

the difference stems from costs associated with ownership such as depreciation, taxes, and

insurance. Let δ be the sum of those costs. Then δ solves 11.493 ∗
(1.0583−1

1.0583 + δ
)
= 1.073,

so the ‘depreciation’ δ is should be set to 0.0383.

12National Income and Product Accounts Table 2.3.5. Personal Consumption Expenditures by Major Type
of Product. As of 7/30/2004.

131-Year Adjustable-Rate Mortgages. Source: http://www.freddiemac.com.
14Fixed Asset Table. Table 1.1. Current-Cost Net Stock of Fixed Assets and Consumer Durable Goods,

1925-2002 Billions of dollars; yearend estimates. As of 7/30/2004.
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Annualized δ = 0.005, Annualizedβ = 0.95 The data certainly suggest a much higher

depreciation rate, but the competitive equilibrium in that case is not a Pareto optimal. We

do not want to use this model as an explanation of government transfer programs or as a

rational for money, so we set the depreciation rate low enough to ensure a Pareto optimal

competitive equilibrium. When we simulate economy E2 we will use the more realistic

level of depreciation implied by the national accounts. The subjective discount factor, β, is

set to the value used in Heaton and Lucas (1996), among other papers.

ωc = 10, ωk = 19.2 The average aggregate amount of nondurable good is normalized to

10 units, and in 2001 the ratio of the housing stock to personal consumption expenditures

excluding housing was 11.493/5.981 = 1.92. We use the same ratio of housing stock to

nondurable goods.

τ ∈ [0, 0.025] We range the transaction cost from zero to just beyond the level where the

older generation does not engage in any transactions in the durable goods market.

Optimal Consumption Plans. The numerical solution to this program is described in

Appendix A. Given that the optimal choices are known in closed-form (conditional on λ),

the numerical solution is relatively easy to compute and is highly accurate. Figure 3 shows

the equilibrium choices of all four types of agents in the model (young or old and sell or

hold dimensions). We note that the equilibrium interest rate is such that (1 + r) β < 1, so

the optimal consumption profile is declining with age. As the utility function is separable

in nondurable and durable goods, the hold or sell decision does not affect nondurable con-

sumption. When the agent sells, she consumes a relatively large amount of durable when

young and reduces her stock when old. When the agent holds, she can only reduce her

stock through the passive effects of depreciation. The inability to optimally smooth leads

her to consume less durable good when young and more durable good when old. Figure

3 also shows some unusual kinks that merit further explanation. The graphs represent a

sequence of solutions with one solution for each value of the transaction cost parameter, so

points with different τ -axis values represent different economies. The kinks in the graphs

represent responses to different equilibrium prices and interest rates.
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Equilibrium Price, Interest Rate, and “Randomization” Parameter. Figure 4 shows

that, when transaction costs are low, all agents sell the durable good when old. As transac-

tion costs rise, the rate of return earned by saving via durable goods declines and the young

agents respond by shifting their portfolios toward bonds. This causes the price of durable

goods and the interest rate to fall. Eventually, transaction costs become high enough that

some agents begin to hold their stock of durable goods when old, and these agents con-

sume more durable good when old. This creates a rise in the price of durable goods and

also a much larger supply of bonds (more collateral now held by the old) that helps push

up interest rates.

Lessons. In Economy E1 individual agents will never randomize their individual con-

sumption plans. Equilibrium exists and is computable as long as we allow the auctioneer to

assign different consumption plans to different agents. Heterogeneity is a useful modeling

tool since it may help overcome nonconvexities, and the OLG framework is useful since

it allows the economic researcher to control the amount of heterogeneity that enters the

model. In the next section we will show how to extend the model the case of aggregate

uncertainty.

3 E2: Aggregate Uncertainty, Agent-Level Randomization.

3.1 Maintained Assumptions.

An important question we can address in a model with aggregate uncertainty is whether

fixed transaction costs affect the risk-reward profile of assets. Is it possible that individual

agents would prefer to randomize their consumption in the presence of fixed costs and

aggregate uncertainty? We will compare our results from the fixed transaction costs to a

model of convex transaction costs. We turn next to developing a model with which we can

answer these questions.

Here is how Economy E2 compares with Economy E1. The form of the utility function

along with the time and generational structure remains the same. The old agent will now

pay a fixed or quadratic adjustment cost for changing her holdings of the durable good. If
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the old agent begins the period with k̄z units of durable good and consumes kz1s units of

the durable good while old with probability (1 − λ), then she pays a transaction cost of

Transaction Cost = (1 − λz)
(
τ k̄z + v

(
k̄z − kz1s

)2
)

(11)

Where τ indexes the level of the fixed costs and v indexes the convex cost. In our numerical

work we will set either τ or v to zero. It is important to make this comparison since many

economists have assumed, for tractability, that all transaction costs are convex. Transaction

costs are again modeled as a destruction of nondurable good.

Aggregate uncertainty enters the model by the introduction of a “fruit tree” in positive

net supply. This tree yields a random dividend of nondurable goods each period. We require

that the dividend assume only a finite number, J , of values. Before introducing the notation

for the price of the fruit tree we note that our solution will be Markov in the relevant state

variable, denoted z. The state variable will indicate the current exogenous state (current

dividend) and the current endogenous state summarized by the distribution of the durable

good. When the state is z the amount of the dividend is denoted dz and the price of the

fruit tree in state z is denoted q F
z . Shares in the fruit tree are infinitely divisible, and the

number of fruit tree shares purchased is denoted θ F , with a subscript 0 or 1 to indicate the

young or old agent, respectively. Transitions among the exogenous states are given by the

exogenous transition matrix π zẑ .

The aggregate stock of the durable good is still ωk and δ∗ωk is endowed to the younger

generation. The young still receive an endowment of ωc of nondurable goods, but the

aggregate endowment of nondurable goods is uncertain and its value in state z is ωc +

dz . As we noted in Section 2, endowing the young with durable goods is not an optimal

assumption, but it does reduce the number of state variables.

Just as in the case without aggregate uncertainty, default is not permitted and borrowing

is only possible because the agents fully collateralize their debts with their homes. We now

allow the agents to make trades in two zero-net-supply assets. The first asset is a bond, with

quantities denoted θ B , that sells for price 1 in any state z and pays (1 + rz) next period.

This asset is riskless in the sense that its payoff does not vary with realization of uncertainty

next period. The second asset pays (1 − δ) pẑ for each unit purchased at price q M
z in the

previous period. The parameter δ is the depreciation rate of durable goods and pẑ is the

price durable good next period given the realization of state ẑ. We will refer to this asset
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as a reverse mortgage and denote the quantity purchased by θM . Reverse mortgages are in

zero-net-supply and in equilibrium the old will issue the reverse mortgage security.

Before moving on with the algebra of this model, we want to again defend our assump-

tions about the bequest motive and the existence of a reverse mortgage market. In equi-

librium, the reverse mortgage security will trade, while the riskless bond will not. Since

reverse mortgages are not widely used in the US, we want to give the reader a flavor for

how to remove reverse mortgages from the model. One easy alteration is to drop reverse

mortgages and allow for unintended bequests where we assign the (weakly positive) value

of the estates to the endowment of the young. This assumption would re-open the riskless

bond market and shift some wealth to the young generation, but little else. Turning back

to the bequest motive, the reason that reverse mortgage market is active is not caused by

the absence of bequests. If the agent had a positive bequest motive, she would still choose

an optimal portfolio through which to save and it seems unlikely that this portfolio would

consist of entirely riskless bonds.

3.2 Agent Optimization.

Program of the Old. We begin at the end of the agent’s life and impose the condition

that the estate of the agent must have non-negative wealth. In the model without aggregate

uncertainty this did not create much of a problem as the agent simply borrows against the

(deterministic) future value of her home. In the presence of aggregate uncertainty the agent

knows only the distribution of the future value of her home. Suppose risk-free bonds are the

only asset in the economy. Her optimal policy in that case is to borrow up until her future

debt is equal to the minimum over all future values of her home. The reverse mortgage

security allows the agent to borrow against the entire future value of her home since her

repayment schedule varies directly with the value of the home. In equilibrium the old will

sell all of their house-price risk to the younger generation. As a consequence, numeraire

bond trading will shut down as the old will always have demand zero and the interest rate

will equilibrate the younger generation’s demand to zero. The younger generation must

also purchase the entire fruit tree, as the old have no reason to save for the future.

As in Economy E1, the old agent holds the durable good with probability λ. Unlike

Economy E1, however, the old agents may optimally choose a nondegenerate lottery. Her

stock of durable goods at the beginning of the period is k̄z and her financial assets are Az ,
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her program is

V 1
(
k̄z, Az

)
= max

cz1h,kz1h,cz1s ,kz1s,

θM
z1,λz

λz log
(

cαz1hk1−α
z1h

)
+ (1 − λz) log

(
cαz1sk1−α

z1s

)

(objective function)

SUBJECT TO:

λzcz1h + (1 − λz) (cz1s + pzkz1s)+ q M
z θM

z1 ≤

Az + (1 − λz)
(
(pz − τ) k̄z − v

(
k̄z − kz1s

)2
)

(budget feasibility when old)

kz1h = k̄z

(definition of holding)

0 ≤ (λzkz1h + (1 − λz) kz1s) (1 − δ) pẑ + (1 − δ) pẑθ
M
z1

(budget feasibility of the estate)

λ ∈ [0, 1]

(definition of a lottery)

(12)

Prices are linear in the lotteries so, for example, to purchase one unit of c with probability

λz costs λz ∗1∗1 (probability times price times quantity). Using kz1h = k̄z , and combining

the two budget feasibility conditions (thus eliminating reverse mortgage purchases, θM
z1,

from the program) we arrive at the following simplified program.

V 1
(
k̄z, Az

)
= max

cz1h,cz1s,kz1s
λz∈[0,1]

λz log
(
cαz1hk̄1−α

z

)
+ (1 − λz) log

(
cαz1sk1−α

z1s

)

(objective function)

SUBJECT TO:

λzcz1h + (1 − λz)
(

cz1s +
(

pz − q M
z

)
kz1s + v

(
k̄z − kz1s

)2
)
≤

Az + (1 − λz) (pz − τ) k̄z + λzq M
z k̄z

(budget feasibility)

(13)

As in Section 2, we will not have a closed-form solution for the optimal value of λ. We

solve for the optimal policies of the other choices conditional on λ. We are then able

to show that the young agent’s objective function, concentrated in λ, is concave. The

important implication of concavity is that individual agents may optimally randomize their
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consumption bundle. Solving the above program we find that cz1h = cz1s and solving for

kz1s in terms of cz1s leads to the following quadratic equation.

[2v] k2
z1s +

[(
pz − q M

z

)
− 2v k̄z

]
kz1s −

[
(1 − α) cz1s/α

]
= 0 (14)

The solutions for the optimal policies in the v = 0 case (no convex costs) are

cz1s =
α

(1−λz)(1−α)+α
I

cz1h = α
(1−λz)(1−α)+α

I

kz1s =
1−α

(1−λz)(1−α)+α
I 1

pz−q M
z

(15)

Where I = Az + (1 − λz) (pz − τ) k̄z +λzq M
z k̄z . For v > 0 and τ = 0, the above quadratic

has one positive real root, it is

kz1s =
−
((

pz − q M
z

)
− 2v k̄z

)
+

√((
pz − q M

z

)
− 2v k̄z

)2
+ 8v (1 − α) cz1s/α

4v
(16)

In the case of v > 0, the optimal policy for the consumption of cz1s is given by the following

equation

I = cz1s

+(1 − λz)
(

pz − q M
z

) − ((
pz − q M

z

)
− 2v k̄z

)
+

√((
pz − q M

z

)
− 2v k̄z

)2
+ 8v (1 − α) cz1s/α

4v

+(1 − λz) v


k̄z −

−
((

pz − q M
z

)
− 2v k̄z

)
+

√((
pz − q M

z

)
− 2v k̄z

)2
+ 8v (1 − α) cz1s/α

4v




2

(17)

For v > 0 the equation is a quadratic15 in cz1s and we need to spend a moment analyzing

the roots of this equation. With some simplifications we can write the above equation as

15As a quick consistency test, we note that using L’Hôpital’s rule we have that as v → 0 we have cz1s →

I ∗ α/ (α + (1− λz) (1− α)), just as it should.
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I +
2 (1 − λz)

((
pz − q M

z

)
− 2v k̄z

)2

16v
− (1 − λz) v k̄2

z =

(
1 +

(1 − λz) (1 − α)

2α

)
cz1s

+
2 (1 − λz)

((
pz − q M

z

)
− 2v k̄z

)√((
pz − q M

z

)
− 2v k̄z

)2
+ 8v (1 − α) cz1s/α

16v
(18)

More compactly, we can write

T = Ucz1s + V
√

W + Xcz1s (19)

where

T = I +
2(1−λz)((pz−q M

z )−2v k̄z)
2

16v − (1 − λz) v k̄2
z

U =
(

1 +
(1−λz)(1−α)

2α

)
V =

(1−λ)((pz−q M
z )−2v k̄z)

8v

W =
((

pz − q M
z

)
− 2v k̄z

)2

X = 8v(1−α)
α

(20)

The quadratic in cz1s is

[
U2

]
c2

z1s −
[
2T U + V 2 X

]
cz1s +

[
T 2 − W V 2

]
= 0 (21)

The above quadratic has either one or two positive real roots (the discriminant is positive).

If there are two, then since the agent prefers more to less, the higher root is optimal. In

either case, the larger root is the optimal choice and

cz1s =
2TU + V 2 X +

√(
2T U + V 2 X

)2
− 4U 2

(
T 2 − W V 2

)
2U2

(22)

This closed-form solution is important since it reduces the amount of numerical compu-

tations needed to solve the model, which makes the solution more accurate. Since two

choices of cz1s may satisfy the first-order conditions, it is important that we determine

the correct root before turning to the numerical solution that is only based on first-order

conditions.
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If the old own k̄z units of durable good, then, since the young are endowed with δωk ,

we know by market clearing that the estates must own
(
ωk −

(
δωk + k̄z

))
units of the

durable good. In equilibrium, the old must begin the period with a positive position in the

reverse mortgages worth exactly the value of the property held by the estates. We therefore

conclude that the quantity of reverse mortgages issued is
(
(1 − δ) ωk − k̄z

)
/ (1 − δ). In

addition, the old own the entire fruit tree (in unit net supply). This argument demonstrates

that the durable holdings of the old are enough to pin down the state of the economy.

That is, once we know the old begin the period with k̄z units of durable good, we are able

to determine the initial holdings of all types of assets for all agents in the economy. In

equilibrium financial wealth for the old will be

Az = (1 + rz) ∗ 0 +
(
dz + q F

z

)
∗ 1 + pz (1 − δ) ∗

[(
(1 − δ) ωk − k̄z

)
/ (1 − δ)

]
(23)

Her wealth is the sum bond holdings (she has none), the cum-dividend value of shares

in the fruit tree (she has the entire unit), and the value of her stake in the reverse mortgage

contracts.

In Economy E1 there were (potentially) two types of agents in the older generation,

those who planned to hold when old and those who planned to sell their durable good

when old. In Economy E2 there is only one type of old agent since all agents in the young

generation will make the same choices. Therefore, all agents must begin the older period

with the same amount of durable good, regardless of the realization of the exogenous state

of nature. For fixed k̄z the older agent’s objective function is concave in λz for each potential

realization of z. It does not matter what value of k̄z the young agent chooses, it is still fixed

when old. We show in Figure 9 that the old agent’s objective function, concentrated in

λz , is concave for each z. The old agent has two wealth accounts that are not perfect

substitutes, one represents financial wealth and the other represents durable wealth, which

is subject to transaction costs. The young agent can directly hedge against fluctuations in

the value her financial account, but she can only indirectly hedge against changes in the

value of her durable account through the purchase of financial assets. A direct hedge for

durable wealth account would allow the agent to wake up in a smaller home (without paying

transaction costs) in the event her wealth declines. The distinction between durable and

financial wealth is the fundamental reason why the agents prefer to randomize consumption

when old.
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The last order of business relating to the older generation’s problem is to determine the

initial conditions for our system consistent with recursive equilibrium. Since we have a

dynamic economy, we need to initialize the system with an initial generation that begins

life as an older person. Their younger period of life is not modeled, and we just assume

the endowment for this initial old generation includes both financial and durable wealth.

An equivalent assumption is that the initial old are endowed only with durable goods, but

only part of her durable stock is subject to transaction costs. For a given value of durable

wealth, the initial old are endowed with the financial wealth Az , described by Equation 23.

Program for the Young. The young agent’s value function only depends on the current

state, as we assumed that she is not subject to transaction costs when young. In state z her

endowment is worth ωc + δpzωk and she solves:

V 0 (z) = max
cz0,kz0,θ

B
z0,θ

F
z0,θ

M
z0

log
(

cαz0k1−α
z0

)
+ β

∑J
ẑ=1 π zẑV 1

(
k̄ẑ, Aẑ

)

(objective function)

SUBJECT TO:

cz0 + pzkz0 + θ B
z0 + q F

z θ F
z0 + q M

z θM
z0 ≤ ωc + δpzωk

(budget feasibility when young)

Aẑ = (1 + rz) θ
B
z0 +

(
dẑ + q F

ẑ

)
θ F

z0 + (1 − δ) pẑθ
M
z0

(evolution of financial wealth)

k̄ẑ = (1 − δ) kz0

(evolution of durable wealth)

(24)

Using the budget constraints and the calculation of the initial old from the previous section

we can write this program as:

V 0 (z) = max
kz0,θ

B
z0,θ

F
z0,θ

M
z0

log
((
ωc + δpzωk −

(
pzkz0 + θ B

z0 + q F
z θ F

z0 + q M
z θM

z0

))α
k1−α

z0

)

+ β
J∑

ẑ=1

π zẑV 1 ( (1 − δ) kz0 , (1 + rz) θ
B
z0 +

(
dẑ + q F

ẑ

)
θ F

z0 + (1 − δ) pẑθ
M
z0

)
(25)

Additional closed-form simplifications are not available for the young agent’s problem.

This is not a serious problem as we already have enough results to move forward with a
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highly accurate numerical solution.

3.3 Stationary Markov Equilibrium.

So far, our analysis has basically been static. We asked, for a given state, what are the

agent-optimal choices? The OLG structure allows us to make the preceding static analysis

into a recursive analysis. Time matters only through its infinite horizon. We do not need

to specify time subscripts, we just need to keep track of which variables represent future

values. The entire past history of shocks is conveniently summarized by the state of the

economy. Conditional on the state, a pricing function posts market clearing prices and

the policy function describes the evolution of our system. We stress that the pricing and

policy functions described below hold at all time periods and although our analysis appears

somewhat static, it is actually recursive.

Definition 1 The state of the economy is a vector z ∈ Z = [0, (1 − δ) ∗ ωk] × {1, 2, ...J }.

The first element of this vector is the amount of durable good owned by the older generation

and the second is the exogenous state of the dividend.

Definition 2 The pricing function is a mapping from the current state of the economy to

the price of the durable good, the interest rate, and the prices of the fruit tree and mortgage

contract.

g = (g p, gr , gq F
, gq M

) : Z → R++ × (−1,∞)× R++ × R++ (26)

Definition 3 The policy function is a map from the current endogenous state of the econ-

omy to the endogenous state of the economy next period.16

f k : Z → [0, (1 − δ) ωk] (27)

Definition 4 A stationary Markov equilibrium for Economy E2 is a pricing function and

a policy function such that, for any realization of the exogenous dividend process, agent

optimality, market clearing, and correct expectations are satisfied.

16We could expand the definition of the policy function to include all of the choices variables for both
agents, but we leave it as just f k to emphasize that ¯kz summarizes all of the relevant information about the
endogenous state of the system.
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Market Clearing

ωc + dz = cz0 + λcz1h + (1 − λ) cz1s + (1 − λ)
(
τ k̄z + v

(
k̄z − kz1s

)2
)

(market clearing nondurable goods)

ωk = kz0 + λkz1h + (1 − λ) kz1s

(market clearing durable goods)

0 = θM
z0 + θM

z1

(market clearing reverse mortgages)

0 = θ B
z0

(market clearing risk-free bonds)

1 = θ F
z0

(market clearing fruit tree)

(28)

Optimality of Choices The policy function f k is consistent with optimal choices of all

agents.

Correct Expectations Although implicit in the above definitions, we note here that the

expected prices and interest rates actually do materialize and clear the market.

Existence of Equilibrium. Existence of stationary Markov equilibria is not guaranteed

and Kubler and Polemarchakis (2004) prove the potential for nonexistence by counter-

example. Although a competitive equilibrium will exist, it is not necessary for the com-

petitive prices to be described by (relatively) simple recursive functions. Those authors

go on to describe an equilibrium concept that always exists and relates directly to current

computational routines. The Markov ε-equilibria described by Kubler and Polemarchakis

(2004) are ε close to a stationary Markov equilibrium in the sense that market clearing and

correct expectations are satisfied, but agents need only be within ε of their optimum level

of utility. That is, agents are permitted to make small errors in their decision rules.

Routines for computing Markov ε-equilibria follow the same general steps. First, one

makes a make a guess at the solution and determines the error associated with that guess.

Errors are usually defined via deviations from equality in the agent’s Euler equation. If the

errors associated with the current guess are small the routine stops, otherwise the routine

makes a new guess at the solution and the process repeats. Since we only have finite time
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to make the computations, our final guess for the pricing and policy function does not zero

out the errors. Kubler and Polemarchakis (2004) point out that due to this fact applied

recursive equilibrium papers are indeed computing Markov ε-equilibria.

3.4 Numerical Example and Asset Pricing.

In order to contrast a fixed costs model with a convex costs model we numerically solve

for two examples of Economy E2.17 Many of the values for the exogenous parameters

used in the simulation of Economy E2 are the same as those used in the simulation of

Economy E1. The unchanged parameter values are: α = 0.85 (weight of nondurables

in the utility function), β = 0.95 (subjective discount factor), and ωk = 19.2 (aggregate

stock of durable goods). We will assume three equiprobable future states of the dividend

process, so π zẑ = 1/3 ∀z, ẑ, and we assume the corresponding dividends are 1, 5, or 9 units

of nondurable good. We set ωc = 5, so the expected aggregate amount of nondurable goods

is ten units. The depreciation rate is set to δ = 0.0383. In the model with convex costs we

set v = 0.025 and τ = 0 and for the fixed costs case we set v = 0 and τ = 0.025. Our

transaction cost is a technological assumption, so τ = 0.025 means the agent must “burn”

2.5 units of the nondurable good in order to sell 100 units of the durable good. Since these

relationships do not depend on prices, one cannot calibrate this model to a world where

transaction costs are based on a fraction of value (e.g. commissions). When calculated as

a percent of equilibrium value, the parameters we use for the transaction costs in the fixed

costs case are too high. The recent survey of property by The Economist18 puts the cost

of a real estate transaction in the US at about 10% percent of the value of the home. In

our model, when the price of the durable good is at its lowest point, transaction costs may

reach 50% of value. Although this may seem like an unappealing feature of the model, it

is exactly what fixed costs imply. When the price of the durable good drops, the associated

fixed transaction costs, as measured in value, rise. Since we conclude that fixed transaction

costs have relatively little impact on macroeconomic variables, using transaction costs that

may be too high actually supports this finding. On the other hand, the implications for

individual behavior are probably overstated.

17Appendix A contains all the details. The code is available from the author upon request.
18“Close to Bursting” May 31 2003. See Economist.com/surveys.
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Equilibrium Choices of the Old Agents Figure 5 shows the optimal choice of durable

good for the old agent as a function of the current state for both the fixed and convex costs

case. Since transaction costs are paid by the old agents, this where we should expect to

find the largest differences in behavior. In this graph and in the four subsequent graphs we

want to make clear the interpretation of the x-axis. When the old agent begins the period

with a low level of durable good, this does not mean she is poor. If the old agent owns

a small amount of durable good, then, in equilibrium, the estates must have a relatively

large position in durable goods. The old must have a claim on the value of the durable

goods owned by the estates via the reverse mortgage contract. Low values of durable good

holdings for the old agent therefore imply she is house poor and cash rich. Likewise, we

should associate states when the old own a large amount of durable good as implying the

old are house rich and cash poor.

In the convex costs case the optimal policy is just what we might expect. In the high

dividend state (d = 9) the old agent is relatively more wealthy and she consumes more of

the durable good than she does in the low dividend state. Convex costs make a complete

adjustment too costly and the more housing she owns, the more housing she will consume.

Since our model is calibrated to twenty-year intervals, the effects of depreciation are

substantial. Once the old agent decides to make a transaction, she will purchase additional

durable good to replenish her stock. If our computational routine could accommodate more

trading periods, then we suspect agents might also choose to vary their durable stock, up or

down, with aggregate fluctuations.

With fixed costs, the optimal policy involves the use of proper randomization in some

states of the world. Figure 6 shows the optimal choice of λ as a function of the current

state. When the old are cash rich–this occurs when either their holdings of durable goods

are low or when the dividend realization is high, or both–they always make a transaction.

Conversely, when the old are cash poor–this occurs when their holdings of durable goods

are high and the dividend realization is medium to low–they are less likely to make a

transaction.

Returning to Figure 5 we can clearly see the effects of fixed costs and randomization

on the optimal policies. The easiest case to describe is the line showing the optimal policy

in the high dividend (d = 9) state. When the dividend is high, the old agent is cash rich

and she makes a transaction with probability one. Next, we consider the optimal policy in
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the low dividend (d = 1) state. We represent this policy as a correspondence of state of the

economy. Areas where the correspondence is single-valued refer to situations where the

agent is either deterministically holding or selling. Where there are two values for a given

level of durable good, the higher value represents the bundle conditional on selling while

the lower value represents the bundle conditional on holding. For simplicity, we have not

shown the associated probability weights. The optimal policies conditional on the hold or

sell decision are dramatically different, and she clearly prefers the outcome of the lottery

in which she consumes more. Purchasing a random bundle is a way to possibly get the

benefits of adjustment while avoiding some of the transaction costs.

Prices Figure 7 shows the equilibrium price functions and annualized interest rate func-

tion in the fixed cost model. Since the lines describing these functions are not monotonic,

they beg for an explanation. In the fixed costs model when the agent is making a trans-

action with probability one, prices are relatively insensitive to the endogenous state. The

reason for this is that fixed costs no longer affect marginal decisions (λ is at a corner) and

the agent’s location within the endogenous state space only matters through a small im-

pact on wealth (more wealth held as durable goods implies more transaction costs). Next

consider the regions where the old agent chooses a proper lottery. In these cases, fixed

costs matter for marginal decisions. The agent responds to increased holdings of durable

goods by increasing the probability of not making a transaction, thus avoiding some of the

increased transaction costs. This action reveals itself as a decline in the price of durable

goods, as demand by the old declines (the agent consumes less when holding than when

selling) as the probability of holding, λ, ranges from zero to one. Once the agent is holding

with probability one, fixed costs no longer affect marginal decisions, but the location of

the old agent within the endogenous state space determines her consumption. The more

durable good she has, the more she must consume (this is the definition of holding). This

implies that demand for durable goods by the old is increasing over this range of the state

space, causing an increase in the price of durable goods.

The interest rate and the prices of the fruit tree and reverse mortgage contract also

respond to the choices of the old agent. The intuition is a mirror of the intuition provided

above for the price of the durable good. When the old purchase less durable good, the

young must, in equilibrium, purchase more. The more the young spend on durable goods,

35



the less they have to spend on financial assets. Thus our intuition suggests that declines

in the price of the durable good (caused by reduced demand from the old) should coincide

with declines in the prices of other assets. Since the quantity of the reverse mortgage

contract traded varies with the state of the economy, these interpretations may not hold for

this asset.

In Figure 8 we observe that convex costs always impact marginal decisions and we

see a noticeable dependence over the entire range of the endogenous state. One curious

feature of equilibrium in the convex costs case is that the equilibrium price of the fruit tree

is actually higher in the recession than in the boom. We expect asset prices should fall in

the recession, and when we solve the model with a much lower level of convex transaction

costs, this is indeed what occurs. We are willing to accept this behavior as accurate for

two reasons. First, the numerical errors of our solution are smaller than generally accepted

practice, and, second, the quantity of reverse mortgages issued is smaller in a recessions

and thus makes a price rise plausible.

Asset Pricing Implications of Fixed vs. Convex Transaction Costs. To conclude this

section we consider the impact of transaction costs on the risk-reward profile of financial

assets. Before we contrast the results, we need a framework within which we can make the

comparison. As stressed by Cochrane (2001)19 all asset pricing models are of the form

q = E [mx] (29)

where q is the price of the asset, x is the numeraire payoff of the asset, and m > 0 is

a random variable20 known as the stochastic discount factor that prices all assets. If we

want to compare asset pricing models, then we have to make a comparison of the implied

stochastic discount factors. How should we compare random variables (the m’s) generated

from theoretical models to the data? In the paper of Hansen and Jagannathan (1991) the

authors show that the ratio of the standard deviation of the stochastic discount factor to its

mean must be greater than the Sharpe ratio of the market return (the market we have in

mind the US equity market). The Sharpe ratio of the market is defined as the market return

19See also Harrison and Kreps (1979).
20The notation m > 0 means m (ω) > 0 for almost all ω ∈ �, where the random variable m lives on some

probability space (�, F,P).
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less the risk-free rate of return (denoted by Re below) divided by the standard deviation of

the market return.
σ (m)

E [m]
≥

|E
[
Re

]
|

σ (Re)
(30)

According to Cochrane (2001) the Sharpe ratio for the U.S. market is roughly 0.5 and

the gross risk-free rate is 1.01. In short, σ(m)
E(m)

≥ 0.5 and R f ≈ 1.01 are two quick checks

on the plausibility of an asset pricing model. A quick way to compare stochastic discount

factors across models is to check their performance in these dimensions.

A short argument reveals the form of m in our model. The young agent is free so save

ε units if numeraire today for ε ∗ (1 + r) units of numeraire tomorrow. In equilibrium, this

deviation must yield no extra utility, therefore

α

cz0
= βE0

[
α (1 + rz)

cẑ1s

]
(31)

Since the payoff (1 + r) is not random, the stochastic discount factor must satisfy 1
1+r =

E0 [m], so

m = β
cz0

cẑ1s
(32)

The quantity m is random since future consumption cẑ1s will depend on the realization

of the exogenous dividend from the fruit tree. Consider below the key moments of the

stochastic discount factor implied by our model21.

σ(m)
E[m] (1 + r)

Convex Costs Model 0.0296 1.065

Fixed Costs Model 0.0294 1.061

(33)

Our model suffers from the same calibration failure as most other general equilibrium mod-

els. Fixed costs in the housing market have a large impact on the optimal policies of indi-

vidual agents, but they explain little of the observed asset market returns. To be sure, the

logarithmic utility function

21This model is roughly calibrated to twenty-year intervals and if we assume that m is generated by an
i.i.d. process, then the annualized stochastic discount factor implied by the model is m1/20. The moments
reported in the paper are unconditional averages of the annualized calculations. As an aside, we note that
the annalized stochastic discount factor need not price the annualized returns generated by our equilibrium
model.
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4 Conclusions.

Before we conclude, we need to step back and consider the broader trajectory in recursive

equilibrium research. The trend is, and should be, to construct ever more realistic descrip-

tions of the economy. Nobody knows how useful a detailed recursive equilibrium model

of the economy would be to policy makers because none has been solved. Since the curse

of dimensionality stands in the way of progress, papers that develop enhanced numeri-

cal techniques for high-dimensional functional approximation or circumvent the problem

with closed-form solutions would dramatically extend the research frontier. For now, re-

searchers must formulate their models with a small number of state variables and focus on

some particular aspect of the economy.

We have examined fixed transaction costs in the housing market within the context of

an OLG model. Our methodological contribution is to show that the lottery framework of

Prescott and Townsend (1984a) fits naturally into an OLG model since the heterogeneity

generated by the lotteries is eventually eliminated from the model through the finite life-

times of the agents. Controlling heterogeneity is one way to control the number of state

variables, and thus keep the model numerically tractable. Lotteries themselves are useful

since randomization at the level of individual agents is one way to overcome noncovexities

such as those generated by fixed costs.

Fixed costs in the housing market have a large impact on the optimal policies of individ-

ual agents, but they have little impact on the characteristics of financial assets. This result is

somewhat driven by our assumption of a utility function that is separable in nondurable and

durable goods. Our goal, however, was not to construct solutions to asset pricing puzzles

with imaginative utility functions. Rather, we seek to identify fundamental constraints at

the level of individual agents that could have macroeconomic consequences. It is in this

spirit that we chose to examine fixed costs in the housing market. The importance of the

housing market is determined by its size relative to the economy, its large contribution to

the net worth of many older Americans, and the demographic forces that will almost dou-

ble the number of older Americans in the coming generation. Reverse mortgages are not

widely used in the US, but we have seen how important they are to a life-cycle model of

housing, suggesting this market may continue to develop in the coming years.
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A Numerical Methodology

EconomyE1 : No Aggregate Uncertainty. In the nonstochastic we solve the program

by suggesting values for γ (fraction who are assigned to hold by the auctioneer) and then

computing the market clearing prices and choices assuming agents take this value of γ as

given. We repeat this step, adjusting the value of γ each time, until Equation 10 is satisfied.

Conditional on γ , we have closed-form solutions for the optimal choices, therefore the

numerical errors are negligible and are not reported.

EconomyE2 : Aggregate Uncertainty. We solve one program where v > 0 and τ = 0

and a separate program where v = 0 and τ > 0. In an slight abuse of notation, let

V 0
(
z|kz0, θ

B
z0, θ

F
z0, θ

M
z0

)
be the objective function of the young agent, so

V 0 (z) = max
kz0,θ

B
z0,θ

F
z0,θ

M
z0

V 0 (z|kz0, θ
B
z0, θ

F
z0, θ

M
z0

)
(34)

and let V 1
(
k̄z, Az|λz

)
be the objective function of the old agent concentrated in λ (the

choices other than λ are known in closed form). We have

V 1 (k̄z, Az
)
= max

λz
V 1 (k̄z, Az|λz

)
(35)

In the v = 0 and τ > 0 case we search for a solution to the following system of equations

∂V 0
(
z|kz0, θ

B
z0, θ

F
z0, θ

M
z0

)
/∂k0 = 0

∂V 0
(
z|kz0, θ

B
z0, θ

F
z0, θ

M
z0

)
/∂θ B

0 = 0

∂V 0
(
z|kz0, θ

B
z0, θ

F
z0, θ

M
z0

)
/∂θ F

0 = 0

∂V 0
(
z|kz0, θ

B
z0, θ

F
z0, θ

M
z0

)
/∂θM

0 = 0

∂V 1
(
k̄z, Az|λz

)
/∂λz +

(
max

[
0, µ1

])2
−
(
max

[
0, µ2

])2
= 0

λz −
(
max

[
0,−µ1

])2
= 0

1 − λz −
(
max

[
0,−µ2

])2
= 0

(36)
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The first four equations are the first-order conditions of the young agent. The fifth condition

is the first order condition for the older agent with respect to λz and the final two restrictions

come from the complementary slackness conditions for 0 ≤ λz ≤ 1. As is described in

Judd, Kubler, and Schmedders (2003) we have already transformed to the system of Kuhn-

Tucker inequalities into a system of differentiable equations. This transformation makes

for a slightly convoluted presentation, but we solve the system using a set of routines that

can only solve a system of equalities. For a particular state these are seven equations in

seven unknowns, pz, rz, q F
z ,q M

z , λz, µ1, µ2. For given prices and an optimal choice of λz ,

the optimal choices for the older agent are known in closed form. Market clearing then

implies all of the choices for the younger agent. Therefore, we will not have a numerical

approximation to f k . Instead, we have an exact solution for f k given the approximations

to the functions describing pz, rz, q F
z , q M

z , λz, µ1, µ2. In the case that τ = 0 we know that,

optimally, λ = 0 (everyone sells) and we need not account for the last three equations.

We use the time iteration method as described in Judd, Kubler, and Schmedders (2003).

We approximate the functions using linear interpolation. Numerical errors in the stochastic

case are also negligible. This is not too surprising given that we have closed-form solutions

for the equilibrium values conditional on prices (this is part of the payoff from choosing

logarithmic utility). In contrast, a typical system of equations defining a recursive equilib-

rium are the Euler equations that only implicitly define the equilibrium values. In addition,

our model had only a single continuous state variable, which further simplifies the numeri-

cal routines. Suppose we define the numerical errors as relative error in the young agent’s

first order condition with respect to bond holdings.

Error V ecz =

1
cz0

− E

[
β (1 + r) 1

cẑ1s

]
1

cz0

(37)

We could look at other dimensions, but if we consider the table below we see the numerical

errors are extremely small.

Numerical Errors Fixed Costs Model Convex Costs Model

maxz∈Z (ErrorV ecz) 6 × 10−16 2 × 10−15
(38)
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Figure 9: This is a graph of the second derivative of the old agent’s objective function
with respect to λ. The value is negative over the entire state space (at equilibrium prices).
Therefore agent’s objective function, concentrated in λ, is concave and the agents may
optimally choose nondegenerate lotteries.
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