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Abstract 

This paper combines data on current and future property-level physical risk from major climate-related 
perils (severe convective storm, inland floods, hurricane storm surge, hurricane wind, winter storms, and 
wildfires) that single-family residences (SFRs) face with data on local economic characteristics to study 
the geographic and demographic distribution of such risks in the contiguous United States. Current 
expected damage to SFRs from climate-related perils is approximately $39 billion per year and will rise to 
$48 billion by 2050 under a “middle-of-the-road” emissions scenario. Severe convective storms are 
the leading contributor to expected damage, however the riskiest areas are predominantly areas 
facing hurricane and/or inland flood risk on the Gulf and South Atlantic coasts. Higher current physical 
risk is associated with lower household incomes, lower labor market participation rates, lower 
education atainment, higher in-migration, higher increase in expected physical risk by 2050, lower belief 
in climate change, and greater Republican vote shares. Overall, the results suggest that climate risk 
mitigation policies are likely to be progressive now and into the future.   
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For the majority of American homeowners, housing is, by far, the largest component of their net worth.1 
An open question in the climate risk literature is who bears the current and future climate-related 
physical risk to residential properties? Since floods are among the most damaging natural disasters 
related to climate change, the literature has mostly focused on flood risk.2, 3, 4 However, flooding is just 
one of several disasters that are influenced by expected changes in climate paterns.5 Therefore, 
studies that focus exclusively on floods cannot yield a comprehensive picture of the magnitude and 
distribution of climate-related physical risk. 

We fill this gap by using novel data on current and future property-level physical risk from six major 
climate-related perils (severe convective storms, winter storms, inland floods, wildfires, hurricane wind, 
and hurricane storm surge) that single-family residences (SFRs) face in the contiguous U.S. The physical 
risk data are produced by CoreLogic, a major commercial catastrophic risk modeler and property data 
vendor used by private industry and government. CoreLogic’s proprietary models incorporate natural 
hazard information with detailed structure and property characteristics to generate structure-level 
estimates of loss for several different perils.  

Our analysis is based on property-level average annual loss (AAL), provided under 2021 conditions and 
2050 conditions. AAL is the expected annual loss to structure and contents generated by simulating many 
possible iterations of a given year and then calculating the average loss across all iterations. Thus, AALs 
account for the magnitude of damage resulting from events of different severity as well as the likelihood 
of events of different severities occurring. CoreLogic reports AALs as share of total insurable value (TIV), 
which can be understood as the replacement cost of the structure. 

Combining the property-level physical risk data with property-specific transactions data, local economic 
conditions data from the American Community Survey (ACS), and county-level data on climate change 
beliefs and voting behavior allows us to paint a more comprehensive picture of the magnitude and the 
(geographic and demographic) distribution of climate-related physical risk in the U.S. In addition, we can 
identify the specific climate-related perils that are likely to be the costliest now and in the future. The 
knowledge of the distribution of climate-related physical risk along different dimensions informs 
policymakers on the segments of the U.S. population that are likely to benefit from policies that aim to 
mitigate such risks and whether such policies are likely to be regressive or progressive with respect to 
key socioeconomic characteristics such as income and education atainment, which are proxies for 
earning potential.6 

Results 

Who geographically bears the current physical risk? 

Many of the climate-related perils examined in our analysis are geographically concentrated. As shown in 
Table 1, the most concentrated peril is hurricane storm surge, which only affects five percent of SFRs, all 
of which are located near the Gulf and Atlantic coastal waters. Hurricane wind is also concentrated in 
coastal states, but the extent of potential damage extends further inland than it does for hurricane storm 
surge. About half of SFRs in the contiguous U.S. are exposed to some hurricane wind. That is also true to 
for inland flood risk, which is concentrated along rivers, lakes, and streams, as well as in regions that are 
susceptible to flash flooding. Inland flood risk is also present in coastal areas since ground flooding from 
hurricane precipitation and non-hurricane coastal flooding are classified as inland flooding. Wildfires are 
mostly limited to the western half of the country, with the notable exception of Florida. 
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[TABLE 1 HERE] 

In contrast, severe convective storms and winter storms reach a substantially larger share of SFRs in the 
contiguous U.S. Severe convective storms, which include thunderstorms, hailstorms, and tornadoes, are 
the only true nationwide peril — nearly every SFR in the contiguous U.S. has some exposure. Winter 
storm risk is close to nationwide, with 86 percent of SFRs having non-zero expected losses from this 
climate-related peril. However, severe convective storms are the leading risk across much of the 
U.S.; with a few exceptions, winter storms are the leading risk only in parts of New England (see 
Appendix Figure 1). 

The wide geographic reach of severe convective storms plays a key role in them having the highest 
expected loss averaged over all SFRs, which amounts to 0.06 percent of TIV, compared with 0.01 percent 
of TIV for both hurricane storm surge and wildfire. However, when we look at expected losses 
conditional on having some risk of damage, we see that flood- and hurricane-related perils are the most 
damaging in the areas that they can potentially impact. Hurricane storm surge has the largest 
average AAL (0.18 percent) among SFRs with some risk of damage, followed by inland floods (0.10 
percent). The magnitude of the expected damage is driven by the long right tail of the distribution. As 
shown in Table 1, SFRs at the 99th percentile of non-zero AALs for hurricane storm surge and inland 
floods both face expected losses of over 2 percent of TIV. Hurricane wind and wildfire are the next 
closest at 0.60 percent and 0.45 percent, respectively. 

We look at the regional breakdown of expected losses in Table 2. We find that severe convective storms 
are the greatest contributor to overall expected losses in the U.S. and the leading component in four of 
the nine census regions. Inland floods are the second-largest contributor to overall expected losses and 
the leading component in three of the nine regions. Only in the South Atlantic (hurricane wind) and New 
England (winter storm) do different perils play the largest role in expected losses.  

[TABLE 2 HERE] 

The greatest expected losses are in the West South Central (0.32 percent), East South Central (0.21 
percent), West North Central (0.21 percent), and South Atlantic (0.19 percent). Collectively, these regions 
encompass the “tornado alley” in the central U.S., the hurricane-prone Gulf and southern Atlantic coasts, 
and flood-prone Appalachia. The least risky regions, on average, are the Pacific (0.07 percent) and 
Mountain (0.11 percent) regions, where wildfires and inland floods are the main contributors to 
expected losses and severe convective storm risk is relatively low. On average, the West South Central, 
the riskiest region in terms of AAL as a share of TIV, is more than four times riskier than the least risky 
region, the Pacific.   

In Figure 1(a), we take a more granular look at the geographic distribution of risk by sorting Census Tracts 
into deciles of average AAL. Most of the safest tracts are in the Pacific and Mountain regions. In 
fact, 59 percent of Pacific tracts are in the lowest decile of risk, and the Pacific region accounts for 87 
percent of first-decile tracts. Most of the remaining safest tracts are in the Mountain region. The highest-
decile tracts are mostly spread among the West South Central (35 percent), South Atlantic (30 percent), 
and East South Central (9 percent) regions. 

[FIGURE 1(a)(b) HERE] 

The riskiest tracts are distinctive both in terms of their magnitude of expected damage and their peril 
composition. As shown in Figure 1(b), the distribution of tract-level average AALs is highly right-skewed; 
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tracts in the highest deciles of expected losses are over five times as risky as the median tract and more 
than twice as risky as tracts in the ninth decile, on average.  

Tracts in the top decile face a substantially higher level of risk compared with other tracts, largely 
because of hurricane- and inland flood-related damage. Hurricane storm surge and hurricane wind make 
up nearly half of expected losses, on average, in the top decile tracts. These two perils comprise less 
than one-fifth of expected losses, on average, in all other deciles. Together with inland floods, the three 
perils comprise over 80 percent of expected losses in the top decile tracts. Despite severe convective 
storm accounting for the greatest share of expected damage across the country, expected damage in the 
riskiest areas of the U.S. is driven by hurricane and flood risk. 

In fact, if we examine the very top of the risk distribution, the differences in magnitude and composition 
of risk become even starker. Tracts in the top one percent of the distribution have an average AAL of 
1.65 percent of TIV, over 14 times as large as the median tract AAL. Moreover, hurricane storm surge 
makes up 42 percent of expected losses, on average, in these tracts (see Appendix Table 1). Together 
with hurricane wind and inland flood, they comprise 96 percent of expected losses in these very risky 
tracts. The locations of these top one percent tracts are concentrated along the Gulf and South Atlantic 
coasts. Among the top one percent tracts, 30% are in Louisiana, 26% are in Florida, 12% are in Texas, and 
8% are in Mississippi. Nearly half of them are in either New Orleans-Metairie (28%), Miami-Fort 
Lauderdale (12%), or Gulfport-Biloxi (7%). Outside of the Gulf and South Atlantic coasts, areas of 
Appalachia (inland flood) and the northeast Atlantic coast (hurricane and inland flood) have the largest 
presence of very risky tracts. 

We also provide estimates of AAL in 2021 dollars in Table 2. In aggregate, annual expected losses for 
SFRs due to all climate-related perils are $39 billion, based on 2021 conditions (see Methods section 
for full description of methodology). Roughly $12 billion (30 percent) is atributable to severe convective 
storms, $10 billion (25 percent) to inland floods, and $8 billion (20 percent) to hurricane wind. The 
West South Central had the largest average AAL of $648, over 60 percent greater than the U.S. average 
AAL ($410). The full regional and peril breakdown of AALs in terms of dollars is provided in Appendix 
Table 2.  

In Appendix Figure 2, we plot the tract-level average AALs in terms of dollars, by the percentile of 
tract average AAL. We again see the right-skew nature of the distribution as well as the 
dominance of hurricane-related damage in the riskiest tracts. We estimate that the top 1% of 
tracts in terms of expected losses in dollars account for 10% of total expected dollar losses in the US; 
the top 10% of tracts account for 40% of total expected dollar losses.  

Who demographically bears the current physical risk? 

Table 3 shows select tract characteristics by AAL (as percent of TIV) decile based on the 2019 five-year 
ACS. Tracts in the highest-risk decile have, on average, lower education atainments, lower household 
incomes, lower prime age (16 to 54) labor force participation rates, and higher non-seasonal vacancy 
rates, a proxy of neighborhood quality.7 The differences between the highest-risk decile and the fifth 
decile are significant: 18 percent lower higher education atainment rate, 16 percent lower 
household income, 5 percent lower prime age labor participation rate, and 74 percent greater non-
seasonal vacancy rate. The differences are even greater between the highest-risk decile and the lowest-
risk decile. Notably, we do not see a clear patern in White population share across the deciles of 
physical risk. 

[TABLE 3 HERE] 
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Urban status is a contributor to the pattern shown in Table  3. Urban tracts face less physical risk, on 
average, than rural tracts as illustrated by the fact that the share of tracts that are urban core tracts 
decreases across tract AAL deciles, while the share of rural tracts increases. The share of tracts that are 
suburban (not shown in Table 3) also tends to be larger in higher risk tracts. However, the differences in 
tract characteristics remain qualitatively and quantitatively similar when we limit the analysis to only 
urban core tracts (see Appendix Table 3), so the empirical patern that we observe in Table 3 is not purely 
driven by the degree of urbanization. Overall, current climate-related physical risks appear 
to be disproportionately borne by homeowners who live and/or own SFRs in less economically viable 
areas.  

To further investigate the drivers of regressive impact of physical risk, we look at tract average AALs 
broken down by peril for each decile of median household income. Appendix Figure 3(a) shows a 
near-linear decrease in expected losses from the lowest to highest tract income deciles. The highest-
income decile faces only about two-thirds of the risk that the lowest income decile faces, on average. 
Notably, the share of AAL that comes from inland floods increases substantially as we move down the 
income deciles. In fact, in the bottom quintile income tracts, inland floods are the primary contributor to 
average expected losses. We see similar patterns when examining educational attainment, labor 
force participation rate, and vacancy rate (see Appendix Figure 3(b)(c)(d)).  

Additionally, the pattern in local economic characteristics we observe appears to be driven more by cross-
metro than intra-metro differences. The income difference between high- and low-risk tracts attenuates 
when we sort tracts within metropolitan statistical area (MSA) average AAL deciles (see Appendix 
Table 4). The prime age labor force participation rate, vacancy rate, and educational atainment 
patterns show similar attenuation. We do see larger White population share in riskier areas using the 
within-MSA sort. 

Next, we investigate whether climate risk is related to changes in tract characteristics from 2010 to 2019 
across 2021 average tract AAL deciles. Appendix Table 5 shows larger increases in the vacancy rate, 
larger decreases in prime age labor force participation, and smaller increases in education atainment in 
tracts in the upper AAL deciles. We again see similar paterns if we limit to only urban core tracts. The 
findings suggest that currently high-risk tracts are not only just currently less economically vibrant when 
compared with currently low-risk tracts but also that the gap in economic performance between the two 
groups has been increasing over time. The empirical paterns might suggest that climate-
related physical risk itself and/or t h e  realization of such risk may be important determinants of 
economic performance and outcomes, although it is not the focus of the current paper to 
evaluate these mechanisms.8  

While we do see smaller average 2010–2019 total population change in riskier areas (see Appendix Table 
5), we do not find evidence that, in aggregate, people are migrating away from higher-risk areas during 
that period. The results in Appendix Table 6 suggest net movement into higher risk areas based on the 
tract composite AAL (see Methods section for a complete description of methodology). When broken 
down by peril, we see greater average in-migration in the riskiest decile than the safest decile for all 
perils except winter storm. In aggregate, climate-related physical risk does not appear to be a 
significant deterrent of in-migration to high-risk places.9 

Finally, we examine how voting behavior and beliefs about climate change are related to physical risk 
faced across the contiguous U.S. Due to data limitations, we perform this analysis using 
county-level observations. We find that counties with the greatest physical risk were least likely to 
believe global warming is happening (see Appendix Table 7). We also find that a more muted but 
directionally similar patern using the share of respondents in the county who say they have been 
personally affected by global 
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warming. Together, the results suggest that the personal experience of climate-related events as well as 
the real physical risk faced are not deterministic in forming beliefs about whether climate change is 
happening. In addition, local differences in beliefs may contribute to the net migration patern that we 
document. One potential driver to these observed paterns is political beliefs. In Appendix Table 7, we 
find a strong relationship between physical risk and Republican vote share in 2020 – counties with the 
larger AALs, on average, have larger Republican vote share.10  

What does future physical risk look like? 

Physical risk is expected to increase in the future because of climate change. 11 Future climate scenarios 
are characterized by Representative Concentration Pathways (RCPs), which depict different trajectories 
of greenhouse gas emissions that then affect different climate-related outcomes. Under the middle-of-
the-road scenario, RCP 4.5, we estimate that expected losses for SFRs in the contiguous U.S. will 
increase by 3.8 basis points of TIV by 2050 (See Table 4). This represents a 22 percent increase, 
on average. Under a more severe emissions scenario, RCP 8.5, we estimate an average increase in 
expected losses of 5.6 basis points of TIV, a 33 percent increase.  

In dollar terms, we estimate expected damages will increase by 24 percent to $48 billion under RCP 4.5 
and by 36 percent to $53 billion under RCP 8.5. These estimates are based on the 2021 inventory of SFRs 
and therefore do not consider future changes in development and home values. In other words, these 
are estimates of the change in expected dollar losses that are atributable exclusively to the change in 
risk from the six climate-related perils. 

As shown in Table 4, the majority of the increase in physical risk will be due to severe convective storms. 
Severe convective storms will be the largest contributor to the increase in expected losses in all regions 
except the Pacific and Mountain regions, where wildfires are the chief contributor, as well as in the South 
Atlantic, where hurricane wind are the largest component. Overall, hurricane wind will make up 17 
percent of the national increase. Despite its limited geographic scope, hurricane storm surge will 
make also up 19 percent of the national average increase in expected losses.  

[TABLE 4 HERE] 

The largest increases in AAL will occur in the regions where current AALs are the greatest. Figure 2 plots 
the tract-average change in AAL by the tract-average 2021 AAL. There is a clear positive 
relationship — higher-risk tracts today will, on average, experience greater increases in physical risk. 
There is also a right-skew to the distribution of changes in tract-average AALs — tracts in the highest 
2021 AAL decile have an average increase in AAL that is about three times the average increase of 
those in the ninth decile. The changes in AAL in the highest decile are driven more by hurricane wind 
and hurricane storm surge than they are in the other deciles, where severe convective storm dominates.  

[FIGURE 2 HERE] 

Discussion 

In this analysis, we provide a comprehensive accounting of the climate-related physical risk to SFRs in the 
contiguous U.S. However, our study has several notable limitations. Because of data limitations, 
we cannot make claims about the expected damage to other property types (e.g., multifamily 
residential properties, commercial properties, public infrastructure, etc.). Additionally, we are 
not capturing non-property or 
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indirect losses, such as loss of business, hardship costs, mortality costs, or the cost of potential lost future 
growth.12 Last, we do not differentiate between the proportion of the cost that will be borne by insurance 
companies and the proportion of the cost that will be borne by homeowners.13  

The 2021 damage estimate of $39 billion is relatively small when compared with the size of the national 
economy — it represents about 0.2 percent of the U.S. gross domestic product (GDP) in 2021. However, 
expected losses should not be confused with realized losses. Realized losses from natural disasters tend 
to be temporally lumpy (see Appendix Figure A1), and they are not evenly distributed across the entire 
U.S. For example, in 2005, the U.S. experienced close to $150 billion in property losses, with most of that 
occurring in a few Gulf Coast states, like Louisiana. 

Our distributional analysis provides insights into where and who bear the physical risk. Geographically, 
the safest areas tend to be in the Pacific and Mountain regions while the riskier areas tend to be in 
the southeastern and central parts of the country. Within those riskier areas, it is the hurricane- and 
flood- exposed areas on the Gulf and South Atlantic coasts that face the greatest risk, along with some 
inland flood exposed areas, like parts of Appalachia. Severe convective storms are estimated to be the 
largest contributor to expected losses across the U.S., but the areas with the largest expected losses are 
largely hurricane- and flood-exposed areas. Demographically, we find that low-income, less educated, 
low labor market participation, and high vacancy rate areas face the greatest physical risk. Inter-metro 
differences in local economic conditions across the distribution of physical risk appear larger than 
intra-metro differences. 

Altogether the results suggest that areas that are already economically struggling face the greatest risk of 
disruption from climate-related perils. Thus, policies that aim to decrease the underlying physical risk (e.g., 
slowing global temperature increases) and/or mitigate the impacts of these climate-related perils will 
likely be progressive now and into the future. With insurance markets in place, realized damages are 
likely to manifest in the form of higher insurance premiums and disruption to general economic activities 
in the affected areas. However, as insurance companies pull out of risky markets, realized damages are 
likely to fall fully on homeowners, or, in the case of rental SFRs, on a combination of homeowners and 
renters.14 

While a full investigation of the mechanisms driving the regressivity of climate-related physical risk is 
beyond the scope of this paper, we do offer a few possibilities for further exploration. First, the income 
pattern we observe is consistent with climate-related physical risk being viewed as a “bad amenity” by 
households.15,16 Second, the strength of the inter-metro differences we observe is consistent with lower 
income households being priced out of more expensive metro areas that tend to face less physical risk. 
Barriers to new housing development (e.g., regulatory and physical constraints) may be of particular 
importance.17,18 Lastly, the relationship between beliefs about climate change and physical risk suggests 
that people may have beliefs about climate change that differ from the objective measure of risk we 
employ. Therefore, the regressivity of climate-related physical risk may be partly driven by the correlation 
between income, education atainment, and access to accurate information. 

Looking to the future, the riskiest areas today will, by and large, still be the riskiest areas in 2050. In fact, 
the changes over the next 30 years will be most dramatic for the areas already facing the highest risk. The 
largest contributors to the change in physical risk are severe convective storms, hurricane storm surge, 
and hurricane wind. Given that the gap in economic performance between high- and low-risk tracts has 
been increasing over time and that aggregate migration paterns do not appear to be sensitive to the 
geographic distribution of climate-related physical risk, it is plausible that policies that aim to mitigate 
such 
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risk will continue to be progressive with respect to local economic conditions and will benefit a larger 
proportion of the U.S. population.19 

In terms of targeting specific perils, we find that inland floods are the largest contributor to expected 
losses in the areas that appear worst off in terms of income, college atainment, vacancy, and labor 
force participation. This finding is relevant to both mitigation investment decisions and insurance 
take-up efforts. Flood insurance take-up through the government-operated National Flood Insurance 
Program (NFIP) is low, particularly in many inland areas that may still face risk of flooding despite being 
outside of the FEMA-designated floodplain.20,21 Moreover, within the FEMA floodplain, NFIP-insured 
homeowners have about 60 percent higher incomes than uninsured homeowners, suggesting that the 
insurance gap is more pronounced among low-income households.22 Consequently, efforts to increase 
flood insurance take-up in areas at risk of flooding will likely be disproportionately beneficial to low-
income households.
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Methods 

Estimates of Average Annual Loss (AAL) 

The AALs used in this analysis are sourced from CoreLogic, which is a major commercial catastrophic risk 
modeler and property data vendor. CoreLogic’s estimates are used in private industry as well as by 
various government agencies.23 CoreLogic’s inland flood and storm surge models were recently used in 
the Federal Emergency Management Agency’s (FEMA’s) “Risk Rating 2.0”, which revamped the 
National Flood Insurance Program’s (NFIP’s) rate-setting procedures to beter align charged insurance 
premiums with property-specific risk.24 

CoreLogic provides AAL estimates for approximately 190 million structures in the contiguous 
United States. AALs are expected losses, meaning they represent the loss per year averaged over many 
possible iterations of that year. Mathematically, the AAL is the area under the exceedance 
probability curve, which, for every possible loss amount, provides a likelihood that the loss 
amount will be met or exceeded for a given structure. Importantly for our multiperil analysis, AALs 
are additive because they are expectations. 

CoreLogic’s AALs are ground-up losses, meaning they represent gross losses to the structure and 
contents prior to applying any insurance policy terms (e.g., deductible). The AALs are expressed as 
a share of total insurable value (TIV), and therefore range from 0 to 1 for any single peril. CoreLogic 
uses replacement cost as its measure of TIV.  

This paper uses AALs based on current conditions (circa 2021) and on conditions in 2050 under two 
different greenhouse gas emissions pathways: Representative Concentration Pathways (RCPs) 4.5 and 
8.5, as specified in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC 
AR5).25 Our main 2050 risk estimates are based on RCP 4.5, which depicts a “middle-of-the-road” climate 
scenario. RCP 4.5 is associated with a global mean surface temperature increase of 0.9–2.0 
degrees Celsius by the mid-21st century (relative to 1986–2005), while the more severe 
business-as-usual scenario, RCP 8.5, is associated with an increase of 1.4–2.6 degrees Celsius. In terms of 
global mean sea level rise, the increase by the mid-21st century under RCP 8.5 is expected to be about 
15 percent larger than it would be under RCP 4.5.26 

The AALs are generated by CoreLogic’s proprietary climate, hazard, and vulnerability models. Inputs 
to CoreLogic’s modeling consist of natural hazard information and “industry-leading property 
data.”27 These models account for future changes to environmental conditions, but they do not 
incorporate any changes to development. All 2050 AAL estimates are based on the current stock of 
structures.  

It is important to note that the AAL estimates are model-generated and, hence, they inherently contain 
a degree of uncertainty around the point estimates that we use in our analyses. The 
sources of uncertainty include CoreLogic’s modeling choices and the choice of historical data sets used 
to feed the models. We cannot assess the degree of uncertainty because CoreLogic does not 
provide the necessary data.  

Validating AAL estimates is difficult because the ground truth is unknown. CoreLogic performs validation 
exercises on its model output to test reasonableness. While specific validation analyses vary by peril, they 
typically involve comparison with data on historical events and, if available, damages from those events. 
In our own validation exercise, we find our national expected loss total to be reasonable when compared 
with long-run historical losses recorded in the Spatial Hazard Events and Losses Database for the United 
States (SHELDUS). The SHELDUS comparison and full methodology is discussed in Appendix A. 
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Additionally, as a robustness check on our distributional analyses, we show that tract-level averages based 
on CoreLogic’s AALs correlate moderately well with tract-level averages based on AAL estimates from a 
different risk modeler for a subset of perils (see Appendix B). Agreement between the two sets of tract-
level estimates is strongest at the top end of the risk distribution.    

Perils 

We focus on AALs for six climate-related perils provided by CoreLogic: inland floods, hurricane wind, 
hurricane storm surge, severe convective storms, winter storms, and wildfires. We selected these perils 
because they are likely to be affected by future environmental changes brought on by climate change. By 
this logic, we ignore data on earthquake-related perils. The perils are defined to be mutually exclusive 
and consistent with insurance industry practices. For example, water damage resulting from hurricane 
wind tearing off part of a roof and allowing for rainfall to enter the home would be considered hurricane 
wind damage and would be covered under a standard homeowner’s insurance policy. However, water 
damage resulting from a stream overflowing because of hurricane precipitation would be considered 
inland flooding damage and would not be covered under a standard homeowner’s insurance policy. 

The peril descriptions from CoreLogic are as follows: 

1. Inland Flooding – Inundation caused by (1) water in an existing waterway (river, stream, or pond) 
rising overtop the normal banks and spreading onto adjacent land, (2) ponding of rainwater in 
low-lying areas, and/or (3) coastal flooding from unusually high tides, strong onshore winds, and 
storm surge associated with a landfalling strong storm (other than a hurricane). Water depth, flow 
velocity, building age, first floor height, construction type, occupancy type, number of stories, and 
presence of a basement are considered in determining damage.

2. Hurricane Wind – Damage caused by sheer force of hurricane wind (>74 mph one-minute 
sustained wind speed at landfall) and any resulting water damage from precipitation entering the 
structure. The peak gust, flood depth and velocity, structure type, occupancy type, and total 
value of the exposure are considered in determining damage.

3. Hurricane Storm Surge – Inundation caused by hurricane-force winds (>74 mph) pushing shallow 
coastal waters in such a way that the sea level rises. Powerful storms can cause up to 30 feet of 
storm surge. Storm surge flood depth and velocity can depend on factors like variations in 
astronomical tides, flood defense systems, and first floor elevation of building. Storm surge flood 
depth and velocity, structure type, occupancy type, and total value of the exposure are considered 
in determining damage.

4. Severe Convective Storm – Damage caused by one of three different types of storms: tornadoes, 
hailstorms, or straight-line winds (e.g., squall or derecho). The hazard intensity, structure type, 
occupancy, building material, cladding, and height of structure are considered in determining 
damage.

5. Winter Storm – Damage caused by winter storm precipitation and prolonged cold temperatures. 
Types of damage include roof damage due to snow accumulation, frozen and ruptured pipes, and 
ice dams on roofs and guters causing flooding from melting snow. Snow depth, snow and ice 
thickness, wind speed, as well as structure and occupancy types are considered in determining 
damage.

6. Wildfire – Damage caused by fire and smoke from combustion of vegetative fuel. Fire behavior is 
modeled considering available fuel load, topography of area, prevailing weather conditions, and
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fire suppression factors, including firefighting resources. Structure type, occupancy type, age of 
structure, number of stories, vegetation clearance, roofing fire class, and the presence of fire 
resistive windows or siding are considered in determining damage. 

Some of the perils are not modeled for the entire contiguous U.S. Hurricane wind and hurricane storm 
surge are only modeled for states on the Gulf and Atlantic coasts. Wildfires are only modeled for the 
western U.S. and Florida. Nonmodeled areas are considered to have negligible risk, according to 
CoreLogic. Consequently, when aggregating the AALs over the different perils, we consider structures in 
nonmodeled areas to have an AAL of zero for the geographically limited perils.   

Sample Construction 

The analyses in this paper are based on property-level estimates of AAL. Thus, we do not aggregate over 
all structures in the CoreLogic data. Instead, we select one structure per property. If a primary structure 
is identifiable, we use that structure. If the primary structure is unknown, we take the structure with the 
largest AAL.  

We then use CoreLogic’s property tax assessment data to identify properties that are single-
family residences (SFRs). To determine SFR status, we use the CoreLogic-standardized land use code. For 
tax year 2021, we identify about 96.7 million SFRs in the contiguous US. 

To generate tract-level average AALs, we identify each property’s census tract by performing a spatial 
join of the chosen properties (using structure-specific coordinates) and 2010-vintage census tracts. We 
find that 70,558 out of the total 72,247 land area tracts in the contiguous US have at least one SFR. 
Then, for each property, we sum the AALs over all perils and calculate the average all-peril AAL for 
properties in the tract. Among the 70,558 tracts, we exclude about 4 percent of the tracts that had 
fewer than 30 non-missing AAL values for SFRs. These are either tracts with a very small number of SFRs 
or tracts where data limitations prevented CoreLogic from providing an AAL estimate for most 
properties. Together, these excluded tracts contain about 0.2 million SFRs. We are left with 67,487 
tracts in the final sample covering 96.5 million SFRs.  

Census Tract Characteristics 

Census tract characteristics are produced using 2019 five-year American Community Survey (ACS) 
estimates. The 2019 ACS was chosen because of the economic activities and migration paterns that were 
driven by the COVID-19 pandemic.28 However, migration and economic shocks related to COVID-19 do not 
materially affect our conclusions. All the results shown in Table 3 are quantitatively and qualitatively 
similar when we use the 2021 five-year ACS estimates, as opposed to the 2019 five-year ACS estimates.29  

The 2019 ACS fields used were: 

1. Median Household Income (B19013_001)
2. Total Households (B17017_001)
3. Total Households – Income in the Past 12 Months Below Poverty Level (B17017_002)
4. Population 25 Years and Over (B15003_001)
5. Population 25 Years and Over – Bachelor’s Degree (B15003_022)
6. Population 25 Years and Over – Master’s Degree (B15003_023)
7. Population 25 Years and Over – Professional Degree (B15003_024)
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8. Population 25 Years and Over – Doctorate Degree (B15003_025)
9. Population 16 Years and Over (B23025_001)
10. Population 16 Years and Over – In Labor Force (B23025_002)
11. Male: 25 to 29 Years: In Labor Force (B23001_025)
12. Male: 30 to 34 Years: In Labor Force (B23001_032)
13. Male: 35 to 44 Years: In Labor Force (B23001_039)
14. Male: 45 to 54 Years: In Labor Force (B23001_046)
15. Female: 25 to 29 Years: In Labor Force (B23001_111)
16. Female: 30 to 34 Years: In Labor Force (B23001_118)
17. Female: 35 to 44 Years: In Labor Force (B23001_125)
18. Female: 45 to 54 Years: In Labor Force (B23001_132)
19. Male: 25 to 29 years (B01001_011)
20. Male: 30 to 34 years (B01001_012)
21. Male: 35 to 39 years (B01001_013)
22. Male: 40 to 44 years (B01001_014)
23. Male: 45 to 49 years (B01001_015)
24. Male: 50 to 54 years (B01001_016)
25. Female: 25 to 29 years (B01001_035)
26. Female: 30 to 34 years (B01001_036)
27. Female: 35 to 39 years (B01001_037)
28. Female: 40 to 44 years (B01001_038)
29. Female: 45 to 49 years (B01001_039)
30. Female: 50 to 54 years (B01001_040)
31. Housing Units (B25002_001)
32. Housing Units — Vacant (B25002_003)
33. Vacant Housing Units – For Seasonal, Recreational, or Occasional Use (B25004_006)
34. Total Population (B03002_001)
35. Total Population – Not Hispanic or Latino: White Alone (B03002_003)
36. Total Population – Not Hispanic or Latino: Black or African American Alone (B03002_004)
37. Total Population – Hispanic or Latino (B03002_012)
38. Total Population – Hispanic or Latino: White Alone (B03002_013)

Urban/Rural Tract Classification 

Tracts are designated as urban core, suburban, or rural based on 2010 Census Urban Areas and Core-
Based Statistical Area (CBSA) definitions. A tract is classified as “urban core” if the tract centroid 
intersects with a Census “Urbanized Area” (not “Urban Cluster”). A tract is defined as “suburban” if it is 
located within a Census CBSA or Census Urban Cluster but not within a Census Urbanized Area. All tracts 
outside CBSAs are considered “rural”.  

Generating Tract Characteristics by Average AAL Decile 

In Table 3, we examine tract characteristics by tract average AAL deciles. We do this as follows. First, we 
sort our sample of 67,487 tracts into deciles based on the tract average AAL. Second, we winsorize the 
distribution of the tract characteristics at 0.01 and 0.99 within each AAL decile to mitigate the influence 
of extreme values. Last, we take averages of the tract characteristics within each decile.  
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Generating AALs in Dollars 

We use the following procedure to convert the property-level CoreLogic AALs, which are normalized by 
TIV, to dollar values.  

We employ several different data sources to estimate AAL in dollars. We first use a combination of 
CoreLogic public records and the Zillow Home Value Index (ZHVI) to calculate home values for each SFR 
in the contiguous US.30 For SFRs where we observe an arm’s length transaction in the CoreLogic 
public records data, we use the latest observed transaction and impute the 2021 home value using 
the ZHVI, which we transform from ZIP code- to tract-level using the Housing and Urban 
Development (HUD) crosswalk.31 We are able to impute the 2021 home value from transaction data 
for just over half of the SFRs in our data. We winsorize the imputed values at the 1st and 99th percentile 
and we top code the values at $10 million to address extreme outliers. For the vast majority of the 
remaining SFRs, we use the December 2021 tract-level ZHVI value as the home value. For the small set 
of remaining SFRs, we use the county-level average home value. The national average and median home 
value from our estimates are $385,000 and $276,000, respectively.  

Next, we merge in land value share of home value estimates from Davis et al. (2021), which provides, to 
our knowledge, the most granular estimates of land value shares. 32 Davis et al. provides tract-level 
measures for over three-quarters of tracts in the U.S. When a tract measure is not available, we use the 
most granular option available among ZIP code-, county-, or state-level measure.   

We then calculate the AAL in dollars for each SFR as AAL*Home Value*(1 – Land Share of Home Value). 

Net Migration by Tract AAL Decile 

We examine net migration between 2010 and 2019 for areas of different climate risk levels using the 
anonymized FRBNY Consumer Credit Panel /Equifax data (CCP) (see Appendix Table 6). The CCP is a 5 
percent random sample that is representative of all U.S. individuals who have a credit history. It is widely 
used in consumer finance research, but it has also been used in several studies of mobility and 
migration.33 We use the CCP because its size (about 10 million borrowers per year) enables us to 
generate more granular migration estimates than some other sources of migration data allow. For 
example, ACS data only provide county-level flows based on five years of pooled data. We provide a 
county-level comparison of those sources below to help validate our CCP-derived migration estimates in 
Appendix C. 

Using the CCP, we generate census tract-level net migration estimates and then group tracts by the same 
AAL deciles that are used in the main analyses. The migration estimation proceeds as follows. 

1. Identify individuals in the CCP who have a different reported street address and zip code in year t 
compared with year t-1 for t = 2010 to t = 2019 and generate counts by 2000 census block. The 
CCP provides a scrambled address where the trailing characters are affected by small variations 
such as whether “Unit” or “Apt” is used. To deal with this issue, we only use the first five 
characters of the scrambled address in conjunction with the zip code to avoid falsely identifying 
movers that result from small variations in address syntax.

2. Merge counts with the National Historical Geographic Information System (NHGIS) 2000–2010 
block crosswalk to convert to 2010 census geography definitions.34 Using the weights provided in 
the crosswalk, we allocate each 2000 block migration count to a 2000 block to a 2010 block 
pair. Then we aggregate to the 2010 block level.
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3. Aggregate counts to the 2010 tract level.
4. Multiply counts by 22 because the CCP is a 5 percent nationally representative sample among 

those with credit histories. We multiply by 22 instead of 20 to account for individuals without 
credit histories. We implicitly assume that the migration patern of individuals who lack credit 
histories is similar to that of individuals who have credit histories.

5. Scale migration counts by 2010 tract population.
6. Group tracts by AAL decile and winsorize the distribution of net migration at 1st and 99th 

percentiles within each decile.
7. Calculate average net migration as share of 2010 population within AAL tract deciles.

We also consider migration within MSAs to investigate if people are moving to or away from riskier areas 
within their original MSA. In this case, we generate AAL deciles within the MSAs instead of across all 
tracts. We also calculate the average net migration among movers who moved within the same MSA, 
excluding the relatively small percentage of movers who move across different MSAs. 

Climate Change Beliefs and Voting Data 

Climate change beliefs survey data is sourced from the Yale Climate Opinion Map 2021, which is based on 
the methodology developed in Howe et al. (2015).35 We draw on county-level results for two survey 
questions:  

1. “Recently, you may have noticed that global warming has been getting some atention in the news. 
Global warming refers to the idea that the world’s average temperature has been increasing over 
the past 150 years, may be increasing more in the future, and that the world’s climate may change 
as a result. What do you think: Do you think that global warming is happening?” RESPONSES: Yes, 
No, Don’t Know.

2. “How much do you agree or disagree with the following statement: “I have personally 
experienced the effects of global warming”?” RESPONSES: Strongly agree, Somewhat agree, 
Somewhat disagree, Strongly disagree.

In the first question we use the share of respondents who responded “Yes”. In the second question, we 
use the share of respondents who responded, “Strongly agree” or “Somewhat agree”.  

The county-level 2020 voting data is sourced from the MIT Election and Science Lab.36 
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Tables 

Table 1. Average Annual Loss (AAL) for Single-Family Residences (SFRs) in 2021, by Peril 

AAL Among SFRs with >0 AAL 

Peril 
Average AAL 

Among All SFRs 

Percent of 
SFRs with >0 

AAL 

Average AAL 
Among SFRs with 

>0 AAL p10 p25 Median p75 p90 p99 

Severe Convective Storm 0.06% 99.8% 0.06% * 0.01% 0.04% 0.08% 0.12% 0.26% 

Inland Flood 0.05% 47.6% 0.10% * * 0.01% 0.03% 0.13% 2.46% 

Hurricane Wind 0.03% 48.0% 0.07% * * 0.02% 0.07% 0.19% 0.60% 

Winter Storm 0.02% 86.4% 0.02% * 0.01% 0.02% 0.03% 0.04% 0.09% 

Hurricane Storm Surge 0.01% 5.2% 0.18% * * 0.01% 0.11% 0.50% 2.16% 

Wildfire 0.01% 27.2% 0.03% * * * 0.01% 0.05% 0.45% 
Note: The table shows summary statistics of AAL by peril. AAL is presented as percentage of total insurable value. Asterisks indicate values greater than 0% but 
less than 0.005%. 
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Table 2. Average Annual Loss (AAL) for SFRs in 2021, by Census Region Division and Peril 

Percent of Census Region Division's Average AAL 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm 53% 36% 19% 24% 13% 2% 23% 56% 40% 33% 
Inland Flood  26% 40% 35% 39% 19% 52% 19% 33% 25% 28% 
Hurricane Wind 0% 16% 10% 0% 17% 0% 39% 0% 24% 19% 
Winter Storm 21% 5% 28% 7% 46% 6% 7% 11% 3% 11% 
Hurricane Storm Surge  0% 3% 8% 0% 5% 0% 11% 0% 7% 6% 
Wildfire  0% 0% 0% 30% 0% 40% 1% 0% 2% 4% 
Avg AAL (% of TIV) 0.12% 0.21% 0.14% 0.11% 0.15% 0.07% 0.19% 0.21% 0.32% 0.17% 

Property Exposure 
Count SFRs (millions) 14.2 7.3 10.0 7.6 3.7 11.8 21.9 7.1 12.9 96.5 
Avg Structure Value ($) 172,861 188,445 252,229 365,063 269,502 413,085 257,413 193,591 211,948 256,423 

Expected Loss in Dollars 
Avg AAL ($) 192 342 350 385 411 267 513 392 649 401 
Total AAL ($ Billions) 2.7 2.5 3.5 2.9 1.5 3.2 11.2 2.8 8.4 39 

Note: By-peril contribution to average AAL in 2021, measured as share of total insurable value (TIV). Results shown by Census Region Division. Structure value 
does not include land value. Dollar values are shown in 2021 dollars. 
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Table 3. 2019 Census Tract Characteristics by Tract AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL (measured as % of TIV) 

Description 
Percent White 

1 2 3 4 5 6 7 8 9 10 
62.3 45.2 56.7 65.4 64.0 66.1 68.6 68.3 66.5 63.4 

Percent with Bachelor's 
(0.3) (0.4) (0.4) (0.4) (0.3) (0.3) (0.3) (0.3) (0.4) (0.4) 

26.1 34.4 33.3 31.4 31.9 31.8 31.0 29.8 27.2 26.1 
Degree or Higher 

Median Household Income 
(0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) 

60,906 84,244 78,522 72,682 73,289 72,185 70,578 68,947 65,684 63,161 

Home Value 
(477) (481) (433) (418) (401) (386) (384) (362) (344) (331)

343,244 838,602 491,514 353,840 388,196 353,773 333,720 343,697 317,659 282,167 

Percent Prime Age Labor 
Force Participation 

Percent Vacant (Excluding 
Seasonal Units) 

Percent of Tracts Rural 
Percent of Tracts Urban Core 

(6,983) (4,767) (3,005) (3,267) (2,934) (2,658) (3,296) (2,950) (2,436) (3,869) 
78.9 
(0.1) 
11.3 

(0.08) 
12.5 
50.9 

82.7 
(0.1) 

82.4 
(0.1) 

82.5 
(0.1) 

82.6 
(0.1) 

83.0 
(0.1) 

82.8 
(0.1) 

82.3 
(0.1) 

81.3 
(0.1) 

80.4 
(0.1) 

5.0 
(0.04) 

7.6 
(0.09) 

8.2 
(0.08) 

7.9 
(0.07) 

8.3 
(0.07) 

8.2 
(0.07) 

8.7 
(0.07) 

9.4 
(0.07) 

10.1 
(0.07) 

0.5 2.3 3.9 4.3 4.8 7.0 9.1 11.7 12.7 
90.1 76.5 69.5 68.6 64.5 59.5 54.2 49.3 50.1 

Note: Census tract average characteristics by tract-level average AAL decile. Dollar values are in 2021 dollars. 
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Table 4. Change in Average Annual Loss (AAL) 2021–2050 Under RCP 4.5 and RCP 8.5, by Census Region Division 

Panel A: Change in AAL 2021-2050 Under RCP 4.5  
  Percent of Change in AAL by Census Region Division 

  

East 
North 

Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm  83% 68% 40% 37% 36% 2% 33% 90% 56% 51% 
Inland Flood  15% 8% 8% 3% 6% 32% 3% 8% -2% 6% 
Hurricane Wind 0% 15% 10% 0% 23% 0% 35% 0% 19% 17% 
Winter Storm 3% -1% 5% -1% 14% -2% -1% 1% -1% 1% 
Hurricane Storm Surge  0% 10% 36% 0% 21% 0% 29% 0% 26% 19% 
Wildfire  0% 0% 0% 60% 0% 68% 1% 0% 2% 6% 
Avg Change in AAL (bps of TIV) 2.7 3.9 2.8 2.2 2.4 1.4 4.9 4.8 7.0 3.8 
                      

Panel B: Change in AAL 2021-2050 Under RCP 8.5  
  Percent of Change in AAL by Census Region Division 

  

East 
North 

Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm  77% 65% 33% 40% 28% 3% 26% 87% 50% 45% 
Inland Flood  19% 2% 9% 0% 4% 17% 1% 11% -2% 4% 
Hurricane Wind 0% 22% 13% 0% 28% 0% 44% 0% 25% 23% 
Winter Storm 4% 0% 8% 0% 21% -1% 0% 2% 0% 2% 
Hurricane Storm Surge  0% 11% 36% 0% 19% 0% 29% 0% 26% 20% 
Wildfire  0% 0% 0% 60% 0% 82% 1% 0% 2% 6% 
Avg Change in AAL (bps of TIV) 3.8 5.2 4.2 2.9 3.8 1.5 7.9 6.7 10.4 5.6 
Count SFRs (millions) 14.2 7.3 10.0 7.6 3.7 11.8 21.9 7.1 12.9 96.5 

Note: By-peril contribution to change in average AAL, measured as share of total insurable value (TIV), from 2021 and 2050 under RCP 4.5 and RCP 8.5. Results 
shown by Census Region Division. Negative value indicates a decrease in average AAL. RCP = Representative Concentration Pathway. 
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Figures 

Figure 1(a)(b). Deciles of Tract Average AAL for SFRs in 2021 and By-Peril Contribution Within Each 

Decile 

(a) Tract-level average composite AAL. Tracts without sufficient data to calculate an average AAL are shown in dark gray. (b) By-peril contribution of average
AAL in each decile of tract average AAL. Ninety-five percent confidence intervals for decile average AALs appear in gray. The confidence intervals characterize
the cross-sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not provide sufficient information for
us to account for such uncertainty; TIV = total insurable value.
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Figure 2. Average Change in AAL 2021–2050, by 2021 Tract AAL Decile  

 

Average change in AAL between 2021 and 2050 sorted by 2021 average tract AAL decile. Ninety-five percent confidence intervals for decile average AALs appear 
in gray. The confidence intervals characterize the cross-sectional variation in tract-level average AALs and do not account for model uncertainty because 
CoreLogic does not provide sufficient information for us to account for such uncertainty. 
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Appendix Tables 

Appendix Table 1. By-Peril, By-State, and By-MSA Summary of Tracts in Top 1% of Tract AAL 

By-Peril By-State By-MSA 
Peril Percent of AAL State Percent of Tracts MSA Percent of Tracts 
Hurricane Storm Surge  42% LA 30% New Orleans-Metairie, LA 28% 
Inland Flood 28% FL 26% Miami-Fort Lauderdale-Pompano Beach, FL 12% 
Hurricane Wind 25% TX 12% Gulfport-Biloxi, MS 7% 
Severe Convective Storm 3% MS 8% Houston-The Woodlands-Sugar Land, TX 6% 
Wildfire  1% WV 5% Tampa-St. Petersburg-Clearwater, FL 5% 
Winter Storm 0.4% NY 5% New York-Newark-Jersey City, NY-NJ-PA 4% 

KY 2% Key West, FL 3% 
CA 2% Beaumont-Port Arthur, TX 3% 
AL 1% Charleston, WV 2% 
NJ 1% Sebastian-Vero Beach, FL 2% 

Note: By-peril contribution and top geographic locations of the top one percent of riskiest tracts in the U.S. based on AALs measured as share of total insurable 
value. 

Appendix Table 2. AAL in Dollars for SFRs in 2021, by Peril 

Percent of Census Region’s Expected Losses (in terms of dollars) 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
55% 42% 18% 24% 13% 1% 21% 58% 43% 30% 
23% 32% 28% 36% 17% 52% 14% 32% 23% 25% 
0% 15% 14% 0% 18% 0% 43% 0% 23% 20% 

22% 6% 28% 8% 46% 6% 6% 11% 3% 10% 
0% 4% 13% 0% 5% 0% 15% 0% 7% 8% 

Severe Convective 
Storm Inland Flood  
Hurricane Wind 
Winter Storm 
Hurricane Storm Surge 
Wildfire  0% 0% 0% 31% 0% 41% 1% 0% 1% 6% 
Avg AAL ($) 192 342 350 385 411 267 513 392 649 401 
Total AAL ($ Billions) 2.7 2.5 3.5 2.9 1.5 3.2 11.2 2.8 8.4 39 

Note: By-peril contribution to average dollar-value AAL. Dollar values are shown in 2021 dollars. 
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Appendix Table 3. Urban Core 2019 Census Tract Characteristics by Tract AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL (% of TIV) 

Description 1 2 3 4 5 6 7 8 9 10 
Percent White 43.7 51.1 57.4 55.7 57.4 59.8 58.2 55.4 51.4 49.7 

(0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.5) (0.5) (0.5) (0.5) 
Percent with Bachelor's 
Degree or Higher 

35.1 34.5 33.4 34.8 35.6 35.9 35.4 32.3 30.6 31.0 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

Median Household Income 85,026 78,720 73,430 75,757 75,287 74,487 73,645 70,334 66,651 63,905 
(505) (573) (556) (543) (547) (552) (591) (593) (571) (523)

Home Value 866,904 506,944 371,729 431,469 399,194 386,362 419,675 384,883 330,175 424,745 
(7,457) (5,661) (3,813) (4,193) (3,985) (3,669) (4,948) (4,612) (3,750) (6,042) 

Percent Prime Age Labor 
Force Participation  

83.0 82.7 82.9 83.3 83.8 83.9 83.6 82.9 82.0 81.5 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Vacant (Excluding 
Seasonal Units) 

4.9 7.8 8.4 7.7 8.1 7.7 8.0 8.2 9.0 10.0 
(0.05) (0.11) (0.10) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10) (0.11) 

Number of Urban Core Tracts 6,084 5,166 4,689 4,628 4,352 4,016 3,655 3,325 3,378 3,437 
Note: Urban core census tract average characteristics by tract-level average AAL decile. Dollar values are in 2021 dollars. 



PERSONAL/NONWORK // EXTERNAL 

Appendix Table 4. 2019 Census Tract Characteristics by Tract AAL Decile Sorted Within MSA 

Mean (Standard Error) 
Decile of Tract Average AAL (% of TIV) within MSA 

Description 1 2 3 4 5 6 7 8 9 10 
Percent White 59.2 56.8 57.1 56.9 56.4 57.7 59.0 61.2 63.2 64.6 

(0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) 
Percent with Bachelor's 
Degree or Higher 

33.8 33.1 33.2 32.7 32.7 32.2 32.2 32.3 31.8 30.7 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

Median Household Income 75,302 74,338 74,052 74,013 73,898 74,558 75,300 76,488 76,259 73,852 
(474) (468) (466) (465) (475) (475) (480) (486) (488) (482)

Home Value 439,936 435,164 443,989 436,560 440,513 436,495 448,987 448,828 454,085 473,207 
(4,450) (4,336) (4,605) (4,567) (4,716) (4,575) (5,032) (4,853) (5,120) (5,823) 

Percent Prime Age Labor 
Force Participation  

83.1 82.9 82.8 82.8 83 82.8 82.6 82.6 82.5 81.4 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Vacant (Excluding 
Seasonal) 

7.4 7.8 7.7 7.8 7.8 7.7 7.7 7.6 7.9 8.6 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Note: Census tract average characteristics by within-MSA tract-level average AAL decile. Dollar values are in 2021 dollars. 
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Appendix Table 5. Change in Census Tract Characteristics (2010–2019) by Tract AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Change in Percent with Bachelor's 
Degree or Higher 

4.2 3.7 3.8 3.9 3.9 3.8 3.5 3.3 2.8 3.3 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Change Median Household 
Income 

9.5 4.3 4.1 4.3 4.0 4.3 4.9 5.4 4.3 4.3 
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) 

Change in Percent Prime Age Labor 
Force Participation  

0.7 0.1 0.2 0.1 0.0 -0.2 -0.4 -0.4 -0.7 -0.5
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Change in Percent Vacant (Excluding 
Seasonal Units) 

-0.9 -0.6 -0.4 -0.1 -0.2 -0.2 -0.1 0.2 0.4 0.2 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Change in Total Population 8.4 7.0 4.6 4.7 5.5 6.3 6.9 6.6 6.9 5.5 
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.2) 

Note: Average change in select census tract characteristics by 2021 tract average AAL decile. 
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Appendix Table 6. Net Migration (2010–2019) by Tract Average AAL Decile and Tract Average AAL Decile Sorted Within MSA 

Panel A: Mean Tract Net Migration (2010-2019) as % of 2010 Population 
Decile of Tract Average AAL 

1 2 3 4 5 6 7 8 9 10 
All Perils -1.7 -1.0 -1.3 -1.8 -0.9 0.1 0.3 0.8 1.0 0.6 

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) 
Severe Convective Storm -1.5 2.7 1.8 -2.2 -3.2 -1.7 0.5 0.7 -1.2 0.4 

(0.2) (0.3) (0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) 
Inland Flood -2.7 -1.3 -0.2 -0.1 0.4 0.2 0.1 0.9 0.3 -1.4

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
Hurricane Wind -2.7 -0.7 0.3 0.4 0.1 -3.2 -2.5 0.2 6.3 2.9 

(0.2) (0.3) (0.4) (0.4) (0.3) (0.3) (0.3) (0.4) (0.5) (0.4) 
Winter Storm -3.4 7.1 3.6 2.8 -0.4 0.0 -1.7 -3.3 -3.7 -4.1

(0.2) (0.3) (0.3) (0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
Hurricane Storm Surge 2.4 1.2 -4.4 -6.9 0.5 -2.0 1.8 1.9 1.1 5.9 

(0.4) (0.3) (0.2) (0.2) (0.3) (0.2) (0.5) (0.4) (0.4) (0.4) 
Wildfire 3.4 -0.8 1.8 4.8 0.2 -0.5 2.0 5.7 6.3 4.6 

(0.5) (0.5) (0.5) (0.6) (0.5) (0.5) (0.5) (0.5) (0.5) (0.4) 

Panel B: Mean Tract Net Migration (2010-2019) as % of 2010 Population Within MSA 
Decile of Tract Average AAL Within MSA 

1 2 3 4 5 6 7 8 9 10 
All Perils -0.8 -1.3 -0.4 -0.4 -0.7 -0.7 -0.2 0.6 0.4 -0.3

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)
Standard errors in parentheses. Panel A:  Average tract net in-migration during 2010–2019 by decile of tract composite peril average AAL and decile of tract sub-
peril average AAL. Perils with non-modeled areas (Wildfire, Hurricane Storm Surge, and Hurricane Wind) exclude tracts outside the modeled area. For example, 
Hurricane Wind only includes tracts in states on the Gulf and Atlantic coasts. Panel B: Average tract net in-migration during 2010–2019 among the set of movers 
who moved within the same MSA by decile of tract composite peril average AAL sorted within MSA. 



PERSONAL/NONWORK // EXTERNAL 

Appendix Table 7. Climate Change Beliefs and 2020 Voting Behavior by County AAL Decile 

Mean (Standard Error) 

Decile of County Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Percent Believe Global 
Warming is Happening 

69.9 66.6 66.4 65.2 64.8 64.9 63.9 64.3 62.7 63.1 
(0.4) (0.4) (0.4) (0.4) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

Percent Said Personally 
Affected by Global Warming 

44.4 42.0 41.5 40.5 40.7 41.0 40.4 40.8 39.8 40.5 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.2) (0.3) (0.3) (0.3) 

Percent Voted Republican in 
2020 

54.7 61.2 61.4 64.4 65.7 67.2 70.0 70.9 73.8 72.7 
(1.0) (1.0) (0.9) (0.8) (0.9) (0.9) (0.7) (0.8) (0.8) (0.8) 

Note: Average county climate change beliefs survey response and 2020 voting behavior by 2021 tract average AAL decile. AALs measured as share of total insurable 
value.  
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Appendix Figure 1. Peril with Largest Proportion of All-Peril Tract AAL, 2021 

The peril or set of perils that make largest contribution to tract average all-peril AAL in 2021. AAL measured as share 
of total insurable value.  
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Appendix Figure 2. By-Peril Contribution to AAL in Dollars by Percentile of Tract AAL in Dollars 

By-peril contribution of average AAL in dollars in each percentile of tract average AAL in dollars. 
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Appendix Figure 3(a)(b)(c)(d). By-Peril AAL by Deciles of Median Household Income, Bachelor’s Degree 
or Higher Share, Vacancy Rate, and Prime Age Labor Force Participation Rate  

Note: (a) By-peril average contribution to tract-level average AAL sorted by 2019 median household income. (b) By-
peril average contribution to tract-level average AAL sorted by average 2019 share of adults with bachelor’s degree 
or higher decile. (c) By-peril average contribution to tract-level average AAL sorted by average 2019 percent vacant 
home (excluding seasonal units) decile. (d) By-peril average contribution to tract-level average AAL sorted by average 
2019 prime age labor force participation decile. Ninety-five percent confidence intervals for decile average AALs 
appear in gray. The intervals characterize the cross-sectional variation in tract-level average AALs and do not account 
for model uncertainty because CoreLogic does not provide sufficient information for us to account for such 
uncertainty.  
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Appendix A: Comparing Expected Dollar Losses with Realized Historical Losses in SHELDUS 

One way to assess the reasonableness of our estimates of expected losses is to compare them 
with historical losses. SHELDUS is a public database of historical direct losses caused by natural disasters 
in the U.S. The database contains county-level information on property and crop losses as well 
as injuries and fatalities from 1960 to the present for a wide selection of hazards. The data are 
primarily sourced from the National Centers for Environmental Information (NCEI) Storm Data 
publication, which catalogs information on “storm paths, deaths, injuries, and property 
damage.”37 SHELDUS is updated regularly with data additions and corrections. The subsequent 
analysis is based on SHELDUS 21. 

We expect SHELDUS to systemically underreport losses because, when the original data source reports a 
loss estimate as a range, SHELDUS uses the lower bound of that estimate. In fact, prior to 1994, all NCEI 
Storm Data estimates were reported as logarithmic ranges ($<50, $50-500, 
$500-5,000, $5,000-50,000, $50,000-500,000, $500,000-$5 million, $5 million-50 million, $50 million 
to 500 million, $500 million to 5 billion).38  

There are several additional considerations when trying to compare our expected losses for 2021 with 
historical losses in SHELDUS. The main ones are hazard types, property types, and time frame. Regarding 
hazard types, SHELDUS classifications allow us to construct a collection of hazards that are comparable 
in the aggregate with the set of hazards included in our expected loss estimates. We exclude losses from 
the following SHELDUS hazard types: heat, tsunamis/seiches, earthquakes, volcanoes, avalanches, fog, 
droughts, and landslides. 

Regarding property types, our estimate of expected losses is for SFRs only. SHELDUS 
property losses include damages to all property types as well as damage to vehicles and 
infrastructure like roads and power lines.39 We cannot isolate types of property losses in 
SHELDUS and so this feature will be a countervailing force against the underestimation 
stemming from SHELDUS using lower bound estimates. 

The trickiest consideration is time frame. CoreLogic AALs are based on many simulations of a given year 
and therefore represent a large-sample average for a given point in time. The same quantitative exercise 
cannot be applied to the SHELDUS data. If conditions were held constant, we could “observe” annual 
expected loss by averaging across a very long period of historical losses. However, conditions are not held 
constant, which leaves a fundamental tradeoff between getting a historical average that is “longer-run” 
and one that better reflects current conditions. Thus, on one hand, we would like to go as far back in time 
as possible to avoid being misled by “lucky” or “unlucky” periods. On the other hand, environmental 
conditions and property exposure are not held constant over time, so the underlying risk may be less 
reflective of current conditions as one looks further into the past. 

To address this issue, we examine multiple time frames and explicitly adjust for changes in exposure. The 
exposure adjustment accounts for the fact that the number of properties that is exposed to losses from 
hazards has increased over time. If we are trying to make a comparison between SHELDUS losses and 
expected losses in 2021, we want SHELDUS losses to be scaled to 2021 exposure. Consequently, we 
perform an exposure adjustment similar to the one performed in Wiese (2020).40 In short, we construct 
county-year-level aggregate housing values using county-level data on total housing units for census years 
1970, 1980, 1990, 2000, 2010, and 2020; county-level housing values for 2021 derived from our estimates 
described in methods section; the state-level Federal Housing Finance Agency (FHFA) All-Transactions 
House Price Index for the period from 1970 to 2022; and the GDP Price Deflator for the period from 1960 
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to 2021.41, 42 We then use the ratio of the real housing exposure values with the 2021 housing exposure 
value to inflate the SHELDUS county-year damages, which are adjusted to 2021 dollars using the GDP price 
deflator. 

Appendix Figure A1. SHELDUS Property Losses (1960–2021) 

Note: SHELDUS property losses (1960–2021): exposure-adjusted and not exposure-adjusted. 

The exposure-adjusted property damages for the entire history of SHELDUS (1960–2021) and for the 
post-2000 period are shown in Appendix Table A1. The average annual damage recorded in SHELDUS 
for 1960–2021 and for 2000–2021 are $23 billion and $33 billion, respectively, when adjusted for 
exposure. Given worsening environmental conditions and the underestimation built into 
SHELDUS estimates, it is not surprising our 2021 expected damage estimate of $39 billion for SFRs is 
larger than the SHLEDUS annual averages but is closer to the 2000-2021 annual average than the 
1960-2021 annual average. Overall, we assess our current expected damage estimate of $39 billion 
to be in a reasonable range of exposure-adjusted average historical losses. 

Appendix Table A1. Exposure-Adjusted SHELDUS Damages (1960–2021 and 2000–2021) 

SHELDUS Hazard 

Exposure-Adjusted 
Damage 1960-2021 
(Billions of 2021 $) 

% of Damage 
1960-2021 

Exposure-Adjusted 
Damage 2000-2021 
(Billions of 2021 $) 

% of Damage 
2000-2021 

Hurricane/Tropical Storm 495 34.5% 265 36.0% 
Flooding 424 29.5% 266 36.2% 
Tornado 111 7.7% 51 6.9% 
Severe Storm/Thunder Storm 94 6.5% 7 1.0% 
Wildfire 84 5.9% 48 6.5% 
Hail 83 5.8% 48 6.6% 
Wind 81 5.6% 32 4.3% 
Winter Weather 55 3.8% 17 2.3% 
Lightning 7 0.5% 1 0.2% 
Coastal 4 0.3% 0.5 0.1% 
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Total 1,437 100% 736 100% 
Annual Average 23 N/A 33 N/A 

Note: By-hazard exposure-adjusted SHELDUS property losses for 1960-2021 and 2000-2021. “Hurricane/Tropical 
Storm” category includes some flooding from hurricanes and tropical storms.  
 
In addition to assessing the aggregate damage estimate, we can also compare the breakdown of historical 
losses among hazards with the breakdown of our estimated expected losses by hazard. In this case, the 
best comparison is with the peril shares provided in Appendix Table 2 because those shares were 
determined using dollar-value AALs instead of AALs as a share of TIV. The crosswalk between SHELDUS 
hazards and CoreLogic perils is provided in Appendix Table A2. In the case of “hurricane/tropical storm”, 
there is no clear 1:1 match to a CoreLogic peril. For example, some non-surge hurricane-related ground 
flooding is counted as “hurricane/tropical storm” in SHELDUS, while some is counted as “flooding”.27 Non-
surge hurricane-related ground flooding (as well as non-hurricane coastal flooding) is classified as inland 
flooding in the CoreLogic data. Thus, the hurricane/tropical storm category is somewhat inflated relative 
to what it would be under CoreLogic classifications. For the same reason, flooding is smaller than what it 
would be under CoreLogic classifications.  

Appendix Table A2. Crosswalk of SHELDUS Hazards and CoreLogic Perils 

SHELDUS Hazard CoreLogic Peril 
Hurricane/tropical storm Hurricane wind/inland flooding/hurricane storm surge 
Flooding Inland flooding 
Tornado Severe convective storm 
Severe storm/Thunderstorm Severe convective storm 
Hail Severe convective storm 
Wind  Severe convective storm 
Wildfire Wildfire 
Winter weather Winter storm 
Lightning Severe convective storm 
Coastal Inland flooding 

Note: Crosswalk between SHELDUS hazard names and CoreLogic perils. 

One way to deal with this problem is to combine hurricane and flooding categories. For SHELDUS, this 
would include hurricane/tropical storm, flooding, and coastal (non-hurricane coastal flooding); for 
CoreLogic, it would include hurricane wind, hurricane storm surge, and inland flooding. Over the entire 
SHELDUS history, hurricane and flooding damages have been 65 percent of damages, while they are 53 
percent of our estimate of 2021 expected losses (see Appendix Table A3). The difference suggests that we 
may be understating the influence of hurricanes and flooding. Conversely, the SHELDUS data suggest that 
we overstate the role of severe convective storms as well as winter storm. The damage share for wildfires 
lines up exactly. Overall, the by-peril share of expected damage from CoreLogic appears to be qualitatively 
similar to the realized damage share from SHELDUS. 

Appendix Table A3. Hazard Shares of SHELDUS Damages and Our Estimate of Expected Losses  

Hazard Category SHELDUS Damage Share (1960–
2021) 

Estimated 2021 Expected Loss Share 
Based on CoreLogic AALs  

Hurricane and flooding 65% 53% 
Severe convective storm 25% 30% 
Winter storm 4% 10% 
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Wildfire 6% 6% 
Note: Comparison of peril share of property losses recorded in SHELDUS (1960–2021) and peril share of estimated 
2021 expected losses based on CoreLogic AALs translated to dollar values. 

We posit that there are several factors contributing to the observed differences. First, to the extent that 
environmental conditions have changed from 1960 to 2021, they may differentially impact the 
contribution of individual hazards. (Of course, if one thinks that hurricanes and flooding have been most 
acutely affected by environmental changes over the 1960–2021 period, then this explanation only 
exacerbates the difference). Similarly, it’s possible that hazards have differential impacts on property 
types that may drive the differences because of the difference in property types included in our expected 
loss estimate compared with SHELDUS losses. For example, if hurricanes and flooding have a 
disproportionate impact on public infrastructure, then that would drive up the SHELDUS share compared 
with the share we estimate based on SFRs. Third, there is very likely overreporting of flood events in 
SHELDUS data relative to other hazards due to the collection procedure requirement that a monetary loss 
amount be provided for all flood events, even if it is a “guesstimate.” For other events, the reporting entity 
is allowed to provide an unknown amount if they cannot provide a monetary loss estimate based on 
authoritative data.43 Fourth, hurricane wind is only modeled by CoreLogic for states on the Gulf and 
Atlantic coasts. Elsewhere, we assume hurricane wind damage is zero. To the extent that hurricane winds 
have the potential to reach areas further inland, this assumption would cause us to underestimate the 
expected losses from hurricane wind. 
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Appendix B: Analyzing CoreLogic Risk Estimates Using Alternative Risk Estimates 

Validating the average annual loss (AAL) values from CoreLogic, in the context of using these values for 
our research, is inherently difficult because the ground truth is unknown. One check of reasonableness is 
to compare to historical loss data, which we do in Appendix A. In that check we focus on the level of 
aggregate damage and the by-peril contribution to aggregate damage. However, our distributional 
analysis relies on the risk estimates from CoreLogic being ordinally accurate across geographies. One 
way to assess that is to examine how well CoreLogic’s AAL estimates correlate with estimates from 
another catastrophic risk modeler. While we take no position on whether estimates from a different 
modeler are more or less accurate, we think rank-order agreement among the different sets of estimates 
provides more confidence in our distributional analyses.  

We are able to perform this exercise for a subset of perils in our analysis using property-level AAL 
estimates from First Street Foundation (FSF). FSF is a non-profit organization that models flood, 
hurricane wind, wildfire, and extreme heat risk for the contiguous U.S. FSF’s “flood” peril is equivalent to 
the combination of CoreLogic’s Inland Flooding and Hurricane Storm Surge perils. Detailed 
methodology for all of First Street Foundation’s models can be found on their website.44 

We compare the rank-order of AAL estimates between CoreLogic and FSF for Inland Flooding and 
Hurricane Storm Surge (together referred to as “Flood”), Hurricane Wind, and Wildfire. We compare 
tract-level average AALs among SFRs. In order to conduct the comparison, we match the SFRs identified 
in the CoreLogic data to properties in the FSF data using a nearest-neighbor geospatial match. Like in the 
main analysis, we limit the comparison to tracts where at least 30 SFRs have a non-missing AAL value 
reported in the CoreLogic and First Street Foundation data. We normalize the nominal AALs provided by 
FSF by their estimate of rebuilding cost in order to be consistent with how CoreLogic expresses AAL 
values. Because nominal AAL values can infrequently exceed FSF’s rebuilding cost measure, we top-code 
AAL values at 1. Note that because we have to normalize FSF’s AALs, differences between each entity’s 
AAL estimates could be driven by the underlying the hazard risk estimates, FSF’s rebuilding cost estimate, 
or a combination of both.  

There are a few notable differences between the two data sources beyond the inherent differences in their 
risk modeling approaches. First, the climate modeling data and emissions pathways underlying the risk 
modeling are of slightly different vintages. The CoreLogic estimates used in this analysis are based on the 
climate modeling data featured in the Intergovernmental Panel on Climate Change’s (IPCC) 
Fifth Assessment Report (AR5) completed in 2014. Consequently, their baseline estimate is 
based on Representative Concentration Pathway (RCP) 4.5, which is the “middle-of-the-road” 
emission pathways featured in AR5. The FSF estimates used in this analysis rely on the latest climate 
modeling data from the IPCC’s Sixth Assessment Report (AR6), which was completed in 2022. Therefore, 
their baseline estimates are based on Shared Socioeconomic Pathway (SSP) 2-4.5, which is 
the “middle-of-the-road” emission pathways featured in AR6.  

Second, FSF and CoreLogic have different sources of property data that feed into their risk modeling. FSF 
licenses property data from the company LightBox. CoreLogic uses its own proprietary property 
data collection.  

Third, the modeled areas for some perils differ between CoreLogic and FSF. As noted in the Methods 
section, CoreLogic only models Wildfire for the western half of the country plus Florida and only models 
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Hurricane Wind risk for states on the Gulf and Atlantic coasts. FSF estimates non-zero Hurricane Wind risk 
further inland, including properties in states like Tennessee, Arkansas, and Oklahoma. Similarly, FSF 
models wildfire risk for the entire contiguous U.S. and finds non-zero wildfire risk for properties 
outside of the CoreLogic modeled area. According to First Street Foundation’s estimates, the areas 
with the greatest wildfire risk outside of CoreLogic’s modeled area are Oklahoma, South Dakota, and 
parts of West Virginia, Kentucky, North Carolina, and Georgia.  

Lastly, FSF does not provide an AAL estimate for wildfire. However, they provide a “destruction 
probability”, which represents the annual likelihood of a structure being destroyed. Given that 
conditional on a structure combusting, it is very likely to be completely destroyed, the 
destruction probability can substitute well as an approximation of the AAL (as share of rebuilding cost).45 

With those caveats in mind, Appendix Table B1 provides the correlation between the average tract AALs 
and average tract AAL deciles from CoreLogic and FSF. In constructing the composite AAL (Flood + 
Hurricane Wind + Wildfire), we assume the expected loss is zero if it is outside the CoreLogic modeled area 
for Hurricane Wind and Wildfire. The composite AAL deciles correlate moderately well at r = 0.58. The 
tract average AAL values correlate similarly at r = 0.49. The by-peril correlations suggest that there is 
greater rank-order agreement for Hurricane Wind damage than for Flood and Wildfire damage.  

Appendix Table B1. Correlation Between CoreLogic and First Street Foundation Tract Average AALs 

Peril 
Correlation of Tract 
Average AAL Decile 

Correlation of Tract 
Average AAL 

Flood 0.41 0.37 
Hurricane Wind 0.88 0.82 
Wildfire 0.56 0.34 
Composite (Flood + Hurricane Wind + Wildfire) 0.58 0.49 

Note: In the case of Hurricane Wind and Wildfire, analysis limited to areas modeled by both CoreLogic and First Street 
Foundation. Tracts outside of peril’s modeled area are considered to have no risk for that peril when generating 
composite AAL. 

Notably, agreement between the two sets of composite AAL estimates is strongest among the riskiest 
tracts – 54 percent of tracts in the 10th decile of AAL according to CoreLogic were also in the 10th decile of 
AAL according to FSF. Another 21 percent of CoreLogic’s 10th decile tracts were in FSF’s 9th decile. This is 
evident in Appendix Figure B1, which maps the difference in tract AAL decile, and shows strong 
agreement along the Gulf and southern Atlantic coasts, where many of the riskiest tracts are located.  
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Appendix Figure B1. Difference between CoreLogic and First Street Foundation Tract Average 
AAL Decile for Flood, Hurricane Wind, and Wildfire  

Note: Difference between tract average AAL decile using CoreLogic and First Street Foundation data. Positive number 
(red) indicates the CoreLogic decile is greater than the First Street Foundation decile. The maximum difference in 
decile placement is nine. Tracts in grey have fewer than 30 single-family residences with AAL estimates in CoreLogic 
and/or First Street Foundation data. 
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                  ACS County Net Migration Deciles CCP County Net Migration Deciles 

Appendix  C: Validating the CCP  Migration Measure  Against  ACS  County-to-County Flows Data  

We   examine   net   migration   between   2010   and   2019   for   areas   of   different   climate   risk   using   the   FRB 
NY/Equifax CCP data  (see  Appendix  Table 6).   One concern with using the CCP data set is  its selection  
criteria of individuals with credit  histories, which skews the sample  towards  older and  more financially  
sophisticated individuals. Thus, CCP-based migration estimates  would be  biased to the  extent  that  
migration patterns systematically  differ between those with and  without credit histories.   

We  test the reasonableness of the CCP-based migration measure  by comparing its county-level migration  
estimates  with  the ACS county-to-county  migration flows for 2010–2019.  For this comparison,  we perform  
steps (1)-(4) from above using the CCP, except that we aggregate to the county  level, which precludes the 
need to convert to 2010 census tract definitions. For the ACS-based measure,  we use the 2010–2014 
and 2015–2019 county-to-county flows data and sum the values to generate a total  2010–2019 net 
migration estimate for each county.   

The ACS and the CCP net migration counts correlate relatively strongly (r = 0.84), which lends support to 
use  of  the  CCP-based   net   migration   estimates   at   the   tract   level. This result is consistent with more 
comprehensive assessments of migration estimates from  the  CCP  using   different   sources   of   data, 
including the ACS data.46  

The   deciles   of   ACS   and   CCP   county   net   migration   counts   are   shown   in   Appendix   Figure   C1. The highest 
decile represents the counties with the most net in-migration.   The   CCP-based deciles suggest more 
severe out-migration in the Northeast than the ACS-based deciles, but overall, the deciles are consistent 
with one another. 

Appendix Figure  C1. Comparison of ACS and CCP County-Level   Net   Migration   Estimates,   2010–2019 

Note:  Deciles   of   county-level   net  in-migration during 2010–2019   using  ACS   (left)   and CCP   (right) data.  
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	Table 1. Average Annual Loss (AAL) for Single-Family Residences (SFRs) in 2021, by Peril 
	  
	  
	  
	  

	  
	  

	  
	  

	  
	  

	AAL Among SFRs with >0 AAL 
	AAL Among SFRs with >0 AAL 


	Peril 
	Peril 
	Peril 

	Average AAL Among All SFRs 
	Average AAL Among All SFRs 

	Percent of SFRs with >0 AAL 
	Percent of SFRs with >0 AAL 

	Average AAL Among SFRs with >0 AAL 
	Average AAL Among SFRs with >0 AAL 

	p10 
	p10 

	p25 
	p25 

	Median 
	Median 

	p75 
	p75 

	p90 
	p90 

	p99 
	p99 


	Severe Convective Storm 
	Severe Convective Storm 
	Severe Convective Storm 

	0.06% 
	0.06% 

	99.8% 
	99.8% 

	0.06% 
	0.06% 

	* 
	* 

	0.01% 
	0.01% 

	0.04% 
	0.04% 

	0.08% 
	0.08% 

	0.12% 
	0.12% 

	0.26% 
	0.26% 


	Inland Flood 
	Inland Flood 
	Inland Flood 

	0.05% 
	0.05% 

	47.6% 
	47.6% 

	0.10% 
	0.10% 

	* 
	* 

	* 
	* 

	0.01% 
	0.01% 

	0.03% 
	0.03% 

	0.13% 
	0.13% 

	2.46% 
	2.46% 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	0.03% 
	0.03% 

	48.0% 
	48.0% 

	0.07% 
	0.07% 

	* 
	* 

	* 
	* 

	0.02% 
	0.02% 

	0.07% 
	0.07% 

	0.19% 
	0.19% 

	0.60% 
	0.60% 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	0.02% 
	0.02% 

	86.4% 
	86.4% 

	0.02% 
	0.02% 

	* 
	* 

	0.01% 
	0.01% 

	0.02% 
	0.02% 

	0.03% 
	0.03% 

	0.04% 
	0.04% 

	0.09% 
	0.09% 


	Hurricane Storm Surge 
	Hurricane Storm Surge 
	Hurricane Storm Surge 

	0.01% 
	0.01% 

	5.2% 
	5.2% 

	0.18% 
	0.18% 

	* 
	* 

	* 
	* 

	0.01% 
	0.01% 

	0.11% 
	0.11% 

	0.50% 
	0.50% 

	2.16% 
	2.16% 


	Wildfire 
	Wildfire 
	Wildfire 

	0.01% 
	0.01% 

	27.2% 
	27.2% 

	0.03% 
	0.03% 

	* 
	* 

	* 
	* 

	* 
	* 

	0.01% 
	0.01% 

	0.05% 
	0.05% 

	0.45% 
	0.45% 



	Note: The table shows summary statistics of AAL by peril. AAL is presented as percentage of total insurable value. Asterisks indicate values greater than 0% but less than 0.005%. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table 2. Average Annual Loss (AAL) for SFRs in 2021, by Census Region Division and Peril 
	  
	  
	  
	  

	Percent of Census Region Division's Average AAL  
	Percent of Census Region Division's Average AAL  


	  
	  
	  

	East North Central 
	East North Central 

	East South Central 
	East South Central 

	Middle Atlantic 
	Middle Atlantic 

	Mountain 
	Mountain 

	New England 
	New England 

	Pacific 
	Pacific 

	South Atlantic 
	South Atlantic 

	West North Central 
	West North Central 

	West South Central 
	West South Central 

	U.S. 
	U.S. 


	Severe Convective Storm  
	Severe Convective Storm  
	Severe Convective Storm  

	53% 
	53% 

	36% 
	36% 

	19% 
	19% 

	24% 
	24% 

	13% 
	13% 

	2% 
	2% 

	23% 
	23% 

	56% 
	56% 

	40% 
	40% 

	33% 
	33% 


	Inland Flood  
	Inland Flood  
	Inland Flood  

	26% 
	26% 

	40% 
	40% 

	35% 
	35% 

	39% 
	39% 

	19% 
	19% 

	52% 
	52% 

	19% 
	19% 

	33% 
	33% 

	25% 
	25% 

	28% 
	28% 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	0% 
	0% 

	16% 
	16% 

	10% 
	10% 

	0% 
	0% 

	17% 
	17% 

	0% 
	0% 

	39% 
	39% 

	0% 
	0% 

	24% 
	24% 

	19% 
	19% 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	21% 
	21% 

	5% 
	5% 

	28% 
	28% 

	7% 
	7% 

	46% 
	46% 

	6% 
	6% 

	7% 
	7% 

	11% 
	11% 

	3% 
	3% 

	11% 
	11% 


	Hurricane Storm Surge  
	Hurricane Storm Surge  
	Hurricane Storm Surge  

	0% 
	0% 

	3% 
	3% 

	8% 
	8% 

	0% 
	0% 

	5% 
	5% 

	0% 
	0% 

	11% 
	11% 

	0% 
	0% 

	7% 
	7% 

	6% 
	6% 


	Wildfire  
	Wildfire  
	Wildfire  

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 

	30% 
	30% 

	0% 
	0% 

	40% 
	40% 

	1% 
	1% 

	0% 
	0% 

	2% 
	2% 

	4% 
	4% 


	Avg AAL (% of TIV) 
	Avg AAL (% of TIV) 
	Avg AAL (% of TIV) 

	0.12% 
	0.12% 

	0.21% 
	0.21% 

	0.14% 
	0.14% 

	0.11% 
	0.11% 

	0.15% 
	0.15% 

	0.07% 
	0.07% 

	0.19% 
	0.19% 

	0.21% 
	0.21% 

	0.32% 
	0.32% 

	0.17% 
	0.17% 


	 
	 
	 

	Property Exposure  
	Property Exposure  


	Count SFRs (millions) 
	Count SFRs (millions) 
	Count SFRs (millions) 

	14.2 
	14.2 

	7.3 
	7.3 

	10.0 
	10.0 

	7.6 
	7.6 

	3.7 
	3.7 

	11.8 
	11.8 

	21.9 
	21.9 

	7.1 
	7.1 

	12.9 
	12.9 

	96.5 
	96.5 


	Avg Structure Value ($) 
	Avg Structure Value ($) 
	Avg Structure Value ($) 

	172,861 
	172,861 

	188,445 
	188,445 

	252,229 
	252,229 

	365,063 
	365,063 

	269,502 
	269,502 

	413,085 
	413,085 

	257,413 
	257,413 

	193,591 
	193,591 

	211,948 
	211,948 

	256,423 
	256,423 


	 
	 
	 

	Expected Loss in Dollars  
	Expected Loss in Dollars  


	Avg AAL ($) 
	Avg AAL ($) 
	Avg AAL ($) 

	192 
	192 

	342 
	342 

	350 
	350 

	385 
	385 

	411 
	411 

	267 
	267 

	513 
	513 

	392 
	392 

	649 
	649 

	401 
	401 


	Total AAL ($ Billions) 
	Total AAL ($ Billions) 
	Total AAL ($ Billions) 

	2.7 
	2.7 

	2.5 
	2.5 

	3.5 
	3.5 

	2.9 
	2.9 

	1.5 
	1.5 

	3.2 
	3.2 

	11.2 
	11.2 

	2.8 
	2.8 

	8.4 
	8.4 

	39 
	39 



	Note: By-peril contribution to average AAL in 2021, measured as share of total insurable value (TIV). Results shown by Census Region Division. Structure value does not include land value. Dollar values are shown in 2021 dollars. 
	 
	 
	 
	 
	 
	 
	Table 3. 2019 Census Tract Characteristics by Tract AAL Decile 
	Table
	TR
	TH
	P

	Mean (Standard Error) 
	Mean (Standard Error) 


	TR
	TH
	P

	Decile of Tract Average AAL (measured as % of TIV) 
	Decile of Tract Average AAL (measured as % of TIV) 


	Description 
	Description 
	Description 

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	Percent White 
	Percent White 
	Percent White 

	45.2 
	45.2 

	56.7 
	56.7 

	65.4 
	65.4 

	64.0 
	64.0 

	66.1 
	66.1 

	68.6 
	68.6 

	68.3 
	68.3 

	66.5 
	66.5 

	63.4 
	63.4 

	62.3 
	62.3 


	TR
	TH
	P

	(0.3) 
	(0.3) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 


	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 

	34.4 
	34.4 

	33.3 
	33.3 

	31.4 
	31.4 

	31.9 
	31.9 

	31.8 
	31.8 

	31.0 
	31.0 

	29.8 
	29.8 

	27.2 
	27.2 

	26.1 
	26.1 

	26.1 
	26.1 


	(0.3) 
	(0.3) 
	(0.3) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 


	Median Household Income 
	Median Household Income 
	Median Household Income 

	84,244 
	84,244 

	78,522 
	78,522 

	72,682 
	72,682 

	73,289 
	73,289 

	72,185 
	72,185 

	70,578 
	70,578 

	68,947 
	68,947 

	65,684 
	65,684 

	63,161 
	63,161 

	60,906 
	60,906 


	TR
	TH
	P

	(477)
	(477)

	(481)
	(481)

	(433)
	(433)

	(418)
	(418)

	(401)
	(401)

	(386)
	(386)

	(384)
	(384)

	(362)
	(362)

	(344)
	(344)

	(331)
	(331)


	Home Value 
	Home Value 
	Home Value 

	838,602 
	838,602 

	491,514 
	491,514 

	353,840 
	353,840 

	388,196 
	388,196 

	353,773 
	353,773 

	333,720 
	333,720 

	343,697 
	343,697 

	317,659 
	317,659 

	282,167 
	282,167 

	343,244 
	343,244 


	TR
	TH
	P

	(6,983) 
	(6,983) 

	(4,767) 
	(4,767) 

	(3,005) 
	(3,005) 

	(3,267) 
	(3,267) 

	(2,934) 
	(2,934) 

	(2,658) 
	(2,658) 

	(3,296) 
	(3,296) 

	(2,950) 
	(2,950) 

	(2,436) 
	(2,436) 

	(3,869) 
	(3,869) 


	Percent Prime Age Labor Force Participation 
	Percent Prime Age Labor Force Participation 
	Percent Prime Age Labor Force Participation 

	82.7 
	82.7 

	82.4 
	82.4 

	82.5 
	82.5 

	82.6 
	82.6 

	83.0 
	83.0 

	82.8 
	82.8 

	82.3 
	82.3 

	81.3 
	81.3 

	80.4 
	80.4 

	78.9 
	78.9 


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 


	Percent Vacant (Excluding Seasonal Units) 
	Percent Vacant (Excluding Seasonal Units) 
	Percent Vacant (Excluding Seasonal Units) 

	5.0 
	5.0 

	7.6 
	7.6 

	8.2 
	8.2 

	7.9 
	7.9 

	8.3 
	8.3 

	8.2 
	8.2 

	8.7 
	8.7 

	9.4 
	9.4 

	10.1 
	10.1 

	11.3 
	11.3 


	(0.04) 
	(0.04) 
	(0.04) 

	(0.09) 
	(0.09) 

	(0.08) 
	(0.08) 

	(0.07) 
	(0.07) 

	(0.07) 
	(0.07) 

	(0.07) 
	(0.07) 

	(0.07) 
	(0.07) 

	(0.07) 
	(0.07) 

	(0.07) 
	(0.07) 

	(0.08) 
	(0.08) 


	Percent of Tracts Rural 
	Percent of Tracts Rural 
	Percent of Tracts Rural 

	0.5 
	0.5 

	2.3 
	2.3 

	3.9 
	3.9 

	4.3 
	4.3 

	4.8 
	4.8 

	7.0 
	7.0 

	9.1 
	9.1 

	11.7 
	11.7 

	12.7 
	12.7 

	12.5 
	12.5 


	Percent of Tracts Urban Core 
	Percent of Tracts Urban Core 
	Percent of Tracts Urban Core 

	90.1 
	90.1 

	76.5 
	76.5 

	69.5 
	69.5 

	68.6 
	68.6 

	64.5 
	64.5 

	59.5 
	59.5 

	54.2 
	54.2 

	49.3 
	49.3 

	50.1 
	50.1 

	50.9 
	50.9 



	Note: Census tract average characteristics by tract-level average AAL decile. Dollar values are in 2021 dollars. 
	P
	P
	P
	P
	P
	Table 4. Change in Average Annual Loss (AAL) 2021–2050 Under RCP 4.5 and RCP 8.5, by Census Region Division 
	Panel A: Change in AAL 2021-2050 Under RCP 4.5  
	Panel A: Change in AAL 2021-2050 Under RCP 4.5  
	Panel A: Change in AAL 2021-2050 Under RCP 4.5  
	Panel A: Change in AAL 2021-2050 Under RCP 4.5  


	  
	  
	  

	Percent of Change in AAL by Census Region Division 
	Percent of Change in AAL by Census Region Division 


	  
	  
	  

	East North Central 
	East North Central 

	East South Central 
	East South Central 

	Middle Atlantic 
	Middle Atlantic 

	Mountain 
	Mountain 

	New England 
	New England 

	Pacific 
	Pacific 

	South Atlantic 
	South Atlantic 

	West North Central 
	West North Central 

	West South Central 
	West South Central 

	U.S. 
	U.S. 


	Severe Convective Storm  
	Severe Convective Storm  
	Severe Convective Storm  

	83% 
	83% 

	68% 
	68% 

	40% 
	40% 

	37% 
	37% 

	36% 
	36% 

	2% 
	2% 

	33% 
	33% 

	90% 
	90% 

	56% 
	56% 

	51% 
	51% 


	Inland Flood  
	Inland Flood  
	Inland Flood  

	15% 
	15% 

	8% 
	8% 

	8% 
	8% 

	3% 
	3% 

	6% 
	6% 

	32% 
	32% 

	3% 
	3% 

	8% 
	8% 

	-2% 
	-2% 

	6% 
	6% 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	0% 
	0% 

	15% 
	15% 

	10% 
	10% 

	0% 
	0% 

	23% 
	23% 

	0% 
	0% 

	35% 
	35% 

	0% 
	0% 

	19% 
	19% 

	17% 
	17% 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	3% 
	3% 

	-1% 
	-1% 

	5% 
	5% 

	-1% 
	-1% 

	14% 
	14% 

	-2% 
	-2% 

	-1% 
	-1% 

	1% 
	1% 

	-1% 
	-1% 

	1% 
	1% 


	Hurricane Storm Surge  
	Hurricane Storm Surge  
	Hurricane Storm Surge  

	0% 
	0% 

	10% 
	10% 

	36% 
	36% 

	0% 
	0% 

	21% 
	21% 

	0% 
	0% 

	29% 
	29% 

	0% 
	0% 

	26% 
	26% 

	19% 
	19% 


	Wildfire  
	Wildfire  
	Wildfire  

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 

	60% 
	60% 

	0% 
	0% 

	68% 
	68% 

	1% 
	1% 

	0% 
	0% 

	2% 
	2% 

	6% 
	6% 


	Avg Change in AAL (bps of TIV) 
	Avg Change in AAL (bps of TIV) 
	Avg Change in AAL (bps of TIV) 

	2.7 
	2.7 

	3.9 
	3.9 

	2.8 
	2.8 

	2.2 
	2.2 

	2.4 
	2.4 

	1.4 
	1.4 

	4.9 
	4.9 

	4.8 
	4.8 

	7.0 
	7.0 

	3.8 
	3.8 


	  
	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  


	Panel B: Change in AAL 2021-2050 Under RCP 8.5  
	Panel B: Change in AAL 2021-2050 Under RCP 8.5  
	Panel B: Change in AAL 2021-2050 Under RCP 8.5  


	  
	  
	  

	Percent of Change in AAL by Census Region Division 
	Percent of Change in AAL by Census Region Division 


	  
	  
	  

	East North Central 
	East North Central 

	East South Central 
	East South Central 

	Middle Atlantic 
	Middle Atlantic 

	Mountain 
	Mountain 

	New England 
	New England 

	Pacific 
	Pacific 

	South Atlantic 
	South Atlantic 

	West North Central 
	West North Central 

	West South Central 
	West South Central 

	U.S. 
	U.S. 


	Severe Convective Storm  
	Severe Convective Storm  
	Severe Convective Storm  

	77% 
	77% 

	65% 
	65% 

	33% 
	33% 

	40% 
	40% 

	28% 
	28% 

	3% 
	3% 

	26% 
	26% 

	87% 
	87% 

	50% 
	50% 

	45% 
	45% 


	Inland Flood  
	Inland Flood  
	Inland Flood  

	19% 
	19% 

	2% 
	2% 

	9% 
	9% 

	0% 
	0% 

	4% 
	4% 

	17% 
	17% 

	1% 
	1% 

	11% 
	11% 

	-2% 
	-2% 

	4% 
	4% 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	0% 
	0% 

	22% 
	22% 

	13% 
	13% 

	0% 
	0% 

	28% 
	28% 

	0% 
	0% 

	44% 
	44% 

	0% 
	0% 

	25% 
	25% 

	23% 
	23% 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	4% 
	4% 

	0% 
	0% 

	8% 
	8% 

	0% 
	0% 

	21% 
	21% 

	-1% 
	-1% 

	0% 
	0% 

	2% 
	2% 

	0% 
	0% 

	2% 
	2% 


	Hurricane Storm Surge  
	Hurricane Storm Surge  
	Hurricane Storm Surge  

	0% 
	0% 

	11% 
	11% 

	36% 
	36% 

	0% 
	0% 

	19% 
	19% 

	0% 
	0% 

	29% 
	29% 

	0% 
	0% 

	26% 
	26% 

	20% 
	20% 


	Wildfire  
	Wildfire  
	Wildfire  

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 

	60% 
	60% 

	0% 
	0% 

	82% 
	82% 

	1% 
	1% 

	0% 
	0% 

	2% 
	2% 

	6% 
	6% 


	Avg Change in AAL (bps of TIV) 
	Avg Change in AAL (bps of TIV) 
	Avg Change in AAL (bps of TIV) 

	3.8 
	3.8 

	5.2 
	5.2 

	4.2 
	4.2 

	2.9 
	2.9 

	3.8 
	3.8 

	1.5 
	1.5 

	7.9 
	7.9 

	6.7 
	6.7 

	10.4 
	10.4 

	5.6 
	5.6 


	Count SFRs (millions) 
	Count SFRs (millions) 
	Count SFRs (millions) 

	14.2 
	14.2 

	7.3 
	7.3 

	10.0 
	10.0 

	7.6 
	7.6 

	3.7 
	3.7 

	11.8 
	11.8 

	21.9 
	21.9 

	7.1 
	7.1 

	12.9 
	12.9 

	96.5 
	96.5 



	Note: By-peril contribution to change in average AAL, measured as share of total insurable value (TIV), from 2021 and 2050 under RCP 4.5 and RCP 8.5. Results shown by Census Region Division. Negative value indicates a decrease in average AAL. RCP = Representative Concentration Pathway. 
	 
	 
	P
	Figures Figure 1(a)(b). Deciles of Tract Average AAL for SFRs in 2021 and By-Peril Contribution Within Each Decile 
	P
	(a)Tract-level average composite AAL. Tracts without suﬃcient data to calculate an average AAL are shown in dark gray. (b) By-peril contribution of averageAAL in each decile of tract average AAL. Ninety-ﬁve percent conﬁdence intervals for decile average AALs appear in gray. The conﬁdence intervals characterizethe cross-sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not provide suﬃcient information forus to account for such uncertainty; TIV = t
	P
	P
	P
	P
	P
	Figure 2. Average Change in AAL 2021–2050, by 2021 Tract AAL Decile  
	 
	Average change in AAL between 2021 and 2050 sorted by 2021 average tract AAL decile. Ninety-ﬁve percent conﬁdence intervals for decile average AALs appear in gray. The conﬁdence intervals characterize the cross-sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not provide suﬃcient information for us to account for such uncertainty. 
	Appendix Tables 
	Appendix Table 1. By-Peril, By-State, and By-MSA Summary of Tracts in Top 1% of Tract AAL 
	By-Peril 
	By-Peril 
	By-Peril 
	By-Peril 

	TH
	P

	By-State 
	By-State 

	TH
	P

	By-MSA 
	By-MSA 


	Peril 
	Peril 
	Peril 

	Percent of AAL 
	Percent of AAL 

	TD
	P

	State 
	State 

	Percent of Tracts 
	Percent of Tracts 

	TD
	P

	MSA 
	MSA 

	Percent of Tracts 
	Percent of Tracts 


	Hurricane Storm Surge  
	Hurricane Storm Surge  
	Hurricane Storm Surge  

	42% 
	42% 

	TD
	P

	LA 
	LA 

	30% 
	30% 

	TD
	P

	New Orleans-Metairie, LA 
	New Orleans-Metairie, LA 

	28% 
	28% 


	Inland Flood 
	Inland Flood 
	Inland Flood 

	28% 
	28% 

	TD
	P

	FL 
	FL 

	26% 
	26% 

	TD
	P

	Miami-Fort Lauderdale-Pompano Beach, FL 
	Miami-Fort Lauderdale-Pompano Beach, FL 

	12% 
	12% 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	25% 
	25% 

	TD
	P

	TX 
	TX 

	12% 
	12% 

	TD
	P

	Gulfport-Biloxi, MS 
	Gulfport-Biloxi, MS 

	7% 
	7% 


	Severe Convective Storm 
	Severe Convective Storm 
	Severe Convective Storm 

	3% 
	3% 

	TD
	P

	MS 
	MS 

	8% 
	8% 

	TD
	P

	Houston-The Woodlands-Sugar Land, TX 
	Houston-The Woodlands-Sugar Land, TX 

	6% 
	6% 


	Wildfire  
	Wildfire  
	Wildfire  

	1% 
	1% 

	TD
	P

	WV 
	WV 

	5% 
	5% 

	TD
	P

	Tampa-St. Petersburg-Clearwater, FL 
	Tampa-St. Petersburg-Clearwater, FL 

	5% 
	5% 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	0.4% 
	0.4% 

	TD
	P

	NY 
	NY 

	5% 
	5% 

	TD
	P

	New York-Newark-Jersey City, NY-NJ-PA 
	New York-Newark-Jersey City, NY-NJ-PA 

	4% 
	4% 


	TR
	TH
	P

	TD
	P

	TD
	P

	KY 
	KY 

	2% 
	2% 

	TD
	P

	Key West, FL 
	Key West, FL 

	3% 
	3% 


	TR
	TH
	P

	TD
	P

	TD
	P

	CA 
	CA 

	2% 
	2% 

	TD
	P

	Beaumont-Port Arthur, TX 
	Beaumont-Port Arthur, TX 

	3% 
	3% 


	TR
	TH
	P

	TD
	P

	TD
	P

	AL 
	AL 

	1% 
	1% 

	TD
	P

	Charleston, WV 
	Charleston, WV 

	2% 
	2% 


	TR
	TH
	P

	TD
	P

	TD
	P

	NJ 
	NJ 

	1% 
	1% 

	TD
	P

	Sebastian-Vero Beach, FL 
	Sebastian-Vero Beach, FL 

	2% 
	2% 



	Note: By-peril contribution and top geographic locations of the top one percent of riskiest tracts in the U.S. based on AALs measured as share of total insurable value. 
	P
	Appendix Table 2. AAL in Dollars for SFRs in 2021, by Peril 
	Table
	TR
	TH
	P

	Percent of Census Region’s Expected Losses (in terms of dollars) 
	Percent of Census Region’s Expected Losses (in terms of dollars) 


	TR
	TH
	P

	East North Central 
	East North Central 

	East South Central 
	East South Central 

	Middle Atlantic 
	Middle Atlantic 

	Mountain 
	Mountain 

	New England 
	New England 

	Pacific 
	Pacific 

	South Atlantic 
	South Atlantic 

	West North Central 
	West North Central 

	West South Central 
	West South Central 

	U.S. 
	U.S. 


	TR
	TH
	P

	55% 
	55% 

	42% 
	42% 

	18% 
	18% 

	24% 
	24% 

	13% 
	13% 

	1% 
	1% 

	21% 
	21% 

	58% 
	58% 

	43% 
	43% 

	30% 
	30% 


	TR
	TH
	P

	23% 
	23% 

	32% 
	32% 

	28% 
	28% 

	36% 
	36% 

	17% 
	17% 

	52% 
	52% 

	14% 
	14% 

	32% 
	32% 

	23% 
	23% 

	25% 
	25% 


	TR
	TH
	P

	0% 
	0% 

	15% 
	15% 

	14% 
	14% 

	0% 
	0% 

	18% 
	18% 

	0% 
	0% 

	43% 
	43% 

	0% 
	0% 

	23% 
	23% 

	20% 
	20% 


	TR
	TH
	P

	22% 
	22% 

	6% 
	6% 

	28% 
	28% 

	8% 
	8% 

	46% 
	46% 

	6% 
	6% 

	6% 
	6% 

	11% 
	11% 

	3% 
	3% 

	10% 
	10% 


	TR
	TH
	P

	0% 
	0% 

	4% 
	4% 

	13% 
	13% 

	0% 
	0% 

	5% 
	5% 

	0% 
	0% 

	15% 
	15% 

	0% 
	0% 

	7% 
	7% 

	8% 
	8% 


	Severe Convective Storm Inland Flood  Hurricane Wind Winter Storm Hurricane Storm Surge  Wildﬁre  
	Severe Convective Storm Inland Flood  Hurricane Wind Winter Storm Hurricane Storm Surge  Wildﬁre  
	Severe Convective Storm Inland Flood  Hurricane Wind Winter Storm Hurricane Storm Surge  Wildﬁre  

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 

	31% 
	31% 

	0% 
	0% 

	41% 
	41% 

	1% 
	1% 

	0% 
	0% 

	1% 
	1% 

	6% 
	6% 


	Avg AAL ($) 
	Avg AAL ($) 
	Avg AAL ($) 

	192 
	192 

	342 
	342 

	350 
	350 

	385 
	385 

	411 
	411 

	267 
	267 

	513 
	513 

	392 
	392 

	649 
	649 

	401 
	401 


	Total AAL ($ Billions) 
	Total AAL ($ Billions) 
	Total AAL ($ Billions) 

	2.7 
	2.7 

	2.5 
	2.5 

	3.5 
	3.5 

	2.9 
	2.9 

	1.5 
	1.5 

	3.2 
	3.2 

	11.2 
	11.2 

	2.8 
	2.8 

	8.4 
	8.4 

	39 
	39 



	Note: By-peril contribution to average dollar-value AAL. Dollar values are shown in 2021 dollars. 
	Appendix Table 3. Urban Core 2019 Census Tract Characteristics by Tract AAL Decile 
	Table
	TR
	TH
	P

	Mean (Standard Error) 
	Mean (Standard Error) 


	TR
	TH
	P

	Decile of Tract Average AAL (% of TIV) 
	Decile of Tract Average AAL (% of TIV) 


	Description 
	Description 
	Description 

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	Percent White 
	Percent White 
	Percent White 

	43.7 
	43.7 

	51.1 
	51.1 

	57.4 
	57.4 

	55.7 
	55.7 

	57.4 
	57.4 

	59.8 
	59.8 

	58.2 
	58.2 

	55.4 
	55.4 

	51.4 
	51.4 

	49.7 
	49.7 


	TR
	TH
	P

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.5) 
	(0.5) 

	(0.5) 
	(0.5) 

	(0.5) 
	(0.5) 

	(0.5) 
	(0.5) 


	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 

	35.1 
	35.1 

	34.5 
	34.5 

	33.4 
	33.4 

	34.8 
	34.8 

	35.6 
	35.6 

	35.9 
	35.9 

	35.4 
	35.4 

	32.3 
	32.3 

	30.6 
	30.6 

	31.0 
	31.0 


	(0.3) 
	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 


	Median Household Income 
	Median Household Income 
	Median Household Income 

	85,026 
	85,026 

	78,720 
	78,720 

	73,430 
	73,430 

	75,757 
	75,757 

	75,287 
	75,287 

	74,487 
	74,487 

	73,645 
	73,645 

	70,334 
	70,334 

	66,651 
	66,651 

	63,905 
	63,905 


	TR
	TH
	P

	(505)
	(505)

	(573)
	(573)

	(556)
	(556)

	(543)
	(543)

	(547)
	(547)

	(552)
	(552)

	(591)
	(591)

	(593)
	(593)

	(571)
	(571)

	(523)
	(523)


	Home Value 
	Home Value 
	Home Value 

	866,904 
	866,904 

	506,944 
	506,944 

	371,729 
	371,729 

	431,469 
	431,469 

	399,194 
	399,194 

	386,362 
	386,362 

	419,675 
	419,675 

	384,883 
	384,883 

	330,175 
	330,175 

	424,745 
	424,745 


	TR
	TH
	P

	(7,457) 
	(7,457) 

	(5,661) 
	(5,661) 

	(3,813) 
	(3,813) 

	(4,193) 
	(4,193) 

	(3,985) 
	(3,985) 

	(3,669) 
	(3,669) 

	(4,948) 
	(4,948) 

	(4,612) 
	(4,612) 

	(3,750) 
	(3,750) 

	(6,042) 
	(6,042) 


	Percent Prime Age Labor Force Participation  
	Percent Prime Age Labor Force Participation  
	Percent Prime Age Labor Force Participation  

	83.0 
	83.0 

	82.7 
	82.7 

	82.9 
	82.9 

	83.3 
	83.3 

	83.8 
	83.8 

	83.9 
	83.9 

	83.6 
	83.6 

	82.9 
	82.9 

	82.0 
	82.0 

	81.5 
	81.5 


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 


	Percent Vacant (Excluding Seasonal Units) 
	Percent Vacant (Excluding Seasonal Units) 
	Percent Vacant (Excluding Seasonal Units) 

	4.9 
	4.9 

	7.8 
	7.8 

	8.4 
	8.4 

	7.7 
	7.7 

	8.1 
	8.1 

	7.7 
	7.7 

	8.0 
	8.0 

	8.2 
	8.2 

	9.0 
	9.0 

	10.0 
	10.0 


	(0.05) 
	(0.05) 
	(0.05) 

	(0.11) 
	(0.11) 

	(0.10) 
	(0.10) 

	(0.09) 
	(0.09) 

	(0.10) 
	(0.10) 

	(0.10) 
	(0.10) 

	(0.10) 
	(0.10) 

	(0.10) 
	(0.10) 

	(0.10) 
	(0.10) 

	(0.11) 
	(0.11) 


	Number of Urban Core Tracts 
	Number of Urban Core Tracts 
	Number of Urban Core Tracts 

	6,084 
	6,084 

	5,166 
	5,166 

	4,689 
	4,689 

	4,628 
	4,628 

	4,352 
	4,352 

	4,016 
	4,016 

	3,655 
	3,655 

	3,325 
	3,325 

	3,378 
	3,378 

	3,437 
	3,437 



	Note: Urban core census tract average characteristics by tract-level average AAL decile. Dollar values are in 2021 dollars. 
	P
	P
	P
	P
	P
	P
	P
	P
	Appendix Table 4. 2019 Census Tract Characteristics by Tract AAL Decile Sorted Within MSA 
	Table
	TR
	TH
	P

	Mean (Standard Error) 
	Mean (Standard Error) 


	TR
	TH
	P

	Decile of Tract Average AAL (% of TIV) within MSA 
	Decile of Tract Average AAL (% of TIV) within MSA 


	Description 
	Description 
	Description 

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	Percent White 
	Percent White 
	Percent White 

	59.2 
	59.2 

	56.8 
	56.8 

	57.1 
	57.1 

	56.9 
	56.9 

	56.4 
	56.4 

	57.7 
	57.7 

	59.0 
	59.0 

	61.2 
	61.2 

	63.2 
	63.2 

	64.6 
	64.6 


	TR
	TH
	P

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 


	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 
	Percent with Bachelor's Degree or Higher 

	33.8 
	33.8 

	33.1 
	33.1 

	33.2 
	33.2 

	32.7 
	32.7 

	32.7 
	32.7 

	32.2 
	32.2 

	32.2 
	32.2 

	32.3 
	32.3 

	31.8 
	31.8 

	30.7 
	30.7 


	(0.3) 
	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 


	Median Household Income 
	Median Household Income 
	Median Household Income 

	75,302 
	75,302 

	74,338 
	74,338 

	74,052 
	74,052 

	74,013 
	74,013 

	73,898 
	73,898 

	74,558 
	74,558 

	75,300 
	75,300 

	76,488 
	76,488 

	76,259 
	76,259 

	73,852 
	73,852 


	TR
	TH
	P

	(474)
	(474)

	(468)
	(468)

	(466)
	(466)

	(465)
	(465)

	(475)
	(475)

	(475)
	(475)

	(480)
	(480)

	(486)
	(486)

	(488)
	(488)

	(482)
	(482)


	Home Value 
	Home Value 
	Home Value 

	439,936 
	439,936 

	435,164 
	435,164 

	443,989 
	443,989 

	436,560 
	436,560 

	440,513 
	440,513 

	436,495 
	436,495 

	448,987 
	448,987 

	448,828 
	448,828 

	454,085 
	454,085 

	473,207 
	473,207 


	TR
	TH
	P

	(4,450) 
	(4,450) 

	(4,336) 
	(4,336) 

	(4,605) 
	(4,605) 

	(4,567) 
	(4,567) 

	(4,716) 
	(4,716) 

	(4,575) 
	(4,575) 

	(5,032) 
	(5,032) 

	(4,853) 
	(4,853) 

	(5,120) 
	(5,120) 

	(5,823) 
	(5,823) 


	Percent Prime Age Labor Force Participation  
	Percent Prime Age Labor Force Participation  
	Percent Prime Age Labor Force Participation  

	83.1 
	83.1 

	82.9 
	82.9 

	82.8 
	82.8 

	82.8 
	82.8 

	83 
	83 

	82.8 
	82.8 

	82.6 
	82.6 

	82.6 
	82.6 

	82.5 
	82.5 

	81.4 
	81.4 


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 


	Percent Vacant (Excluding Seasonal) 
	Percent Vacant (Excluding Seasonal) 
	Percent Vacant (Excluding Seasonal) 

	7.4 
	7.4 

	7.8 
	7.8 

	7.7 
	7.7 

	7.8 
	7.8 

	7.8 
	7.8 

	7.7 
	7.7 

	7.7 
	7.7 

	7.6 
	7.6 

	7.9 
	7.9 

	8.6 
	8.6 


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 



	Note: Census tract average characteristics by within-MSA tract-level average AAL decile. Dollar values are in 2021 dollars. 
	P
	P
	P
	P
	P
	P
	P
	P
	P
	Appendix Table 5. Change in Census Tract Characteristics (2010–2019) by Tract AAL Decile 
	Table
	TR
	TH
	P

	Mean (Standard Error) 
	Mean (Standard Error) 


	TR
	TH
	P

	Decile of Tract Average AAL 
	Decile of Tract Average AAL 


	Description 
	Description 
	Description 

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	Change in Percent with Bachelor's Degree or Higher 
	Change in Percent with Bachelor's Degree or Higher 
	Change in Percent with Bachelor's Degree or Higher 

	4.2 
	4.2 

	3.7 
	3.7 

	3.8 
	3.8 

	3.9 
	3.9 

	3.9 
	3.9 

	3.8 
	3.8 

	3.5 
	3.5 

	3.3 
	3.3 

	2.8 
	2.8 

	3.3 
	3.3 


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 


	Percent Change Median Household Income 
	Percent Change Median Household Income 
	Percent Change Median Household Income 

	9.5 
	9.5 

	4.3 
	4.3 

	4.1 
	4.1 

	4.3 
	4.3 

	4.0 
	4.0 

	4.3 
	4.3 

	4.9 
	4.9 

	5.4 
	5.4 

	4.3 
	4.3 

	4.3 
	4.3 


	(0.2) 
	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.3) 
	(0.3) 


	Change in Percent Prime Age Labor Force Participation  
	Change in Percent Prime Age Labor Force Participation  
	Change in Percent Prime Age Labor Force Participation  

	0.7 
	0.7 

	0.1 
	0.1 

	0.2 
	0.2 

	0.1 
	0.1 

	0.0 
	0.0 

	-0.2
	-0.2

	-0.4
	-0.4

	-0.4
	-0.4

	-0.7
	-0.7

	-0.5
	-0.5


	(0.1) 
	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)


	Change in Percent Vacant (Excluding Seasonal Units) 
	Change in Percent Vacant (Excluding Seasonal Units) 
	Change in Percent Vacant (Excluding Seasonal Units) 

	-0.9
	-0.9

	-0.6
	-0.6

	-0.4
	-0.4

	-0.1
	-0.1

	-0.2
	-0.2

	-0.2
	-0.2

	-0.1
	-0.1

	0.2 
	0.2 

	0.4 
	0.4 

	0.2 
	0.2 


	(0.1)
	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1)
	(0.1)

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 

	(0.1) 
	(0.1) 


	Percent Change in Total Population 
	Percent Change in Total Population 
	Percent Change in Total Population 

	8.4 
	8.4 

	7.0 
	7.0 

	4.6 
	4.6 

	4.7 
	4.7 

	5.5 
	5.5 

	6.3 
	6.3 

	6.9 
	6.9 

	6.6 
	6.6 

	6.9 
	6.9 

	5.5 
	5.5 


	(0.2) 
	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.3) 
	(0.3) 

	(0.2) 
	(0.2) 



	Note: Average change in select census tract characteristics by 2021 tract average AAL decile. 
	P
	P
	P
	P
	P
	P
	Figure
	Figure
	P
	P
	P
	P
	P
	P
	Appendix Table 6. Net Migration (2010–2019) by Tract Average AAL Decile and Tract Average AAL Decile Sorted Within MSA 
	Panel A: Mean Tract Net Migration (2010-2019) as % of 2010 Population 
	Panel A: Mean Tract Net Migration (2010-2019) as % of 2010 Population 
	Panel A: Mean Tract Net Migration (2010-2019) as % of 2010 Population 
	Panel A: Mean Tract Net Migration (2010-2019) as % of 2010 Population 


	TR
	TH
	P

	Decile of Tract Average AAL 
	Decile of Tract Average AAL 


	TR
	TH
	P

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	All Perils 
	All Perils 
	All Perils 

	-1.7
	-1.7

	-1.0
	-1.0

	-1.3
	-1.3

	-1.8
	-1.8

	-0.9
	-0.9

	0.1 
	0.1 

	0.3 
	0.3 

	0.8 
	0.8 

	1.0 
	1.0 

	0.6 
	0.6 


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 


	Severe Convective Storm 
	Severe Convective Storm 
	Severe Convective Storm 

	-1.5
	-1.5

	2.7 
	2.7 

	1.8 
	1.8 

	-2.2
	-2.2

	-3.2
	-3.2

	-1.7
	-1.7

	0.5 
	0.5 

	0.7 
	0.7 

	-1.2
	-1.2

	0.4 
	0.4 


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2)
	(0.2)

	(0.3) 
	(0.3) 


	Inland Flood 
	Inland Flood 
	Inland Flood 

	-2.7
	-2.7

	-1.3
	-1.3

	-0.2
	-0.2

	-0.1
	-0.1

	0.4 
	0.4 

	0.2 
	0.2 

	0.1 
	0.1 

	0.9 
	0.9 

	0.3 
	0.3 

	-1.4
	-1.4


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2)
	(0.2)


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	-2.7
	-2.7

	-0.7
	-0.7

	0.3 
	0.3 

	0.4 
	0.4 

	0.1 
	0.1 

	-3.2
	-3.2

	-2.5
	-2.5

	0.2 
	0.2 

	6.3 
	6.3 

	2.9 
	2.9 


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.3)
	(0.3)

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.3) 
	(0.3) 

	(0.3)
	(0.3)

	(0.3)
	(0.3)

	(0.4) 
	(0.4) 

	(0.5) 
	(0.5) 

	(0.4) 
	(0.4) 


	Winter Storm 
	Winter Storm 
	Winter Storm 

	-3.4
	-3.4

	7.1 
	7.1 

	3.6 
	3.6 

	2.8 
	2.8 

	-0.4
	-0.4

	0.0 
	0.0 

	-1.7
	-1.7

	-3.3
	-3.3

	-3.7
	-3.7

	-4.1
	-4.1


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.2)
	(0.2)

	(0.2) 
	(0.2) 

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)


	Hurricane Storm Surge 
	Hurricane Storm Surge 
	Hurricane Storm Surge 

	2.4 
	2.4 

	1.2 
	1.2 

	-4.4
	-4.4

	-6.9
	-6.9

	0.5 
	0.5 

	-2.0
	-2.0

	1.8 
	1.8 

	1.9 
	1.9 

	1.1 
	1.1 

	5.9 
	5.9 


	TR
	TH
	P

	(0.4) 
	(0.4) 

	(0.3) 
	(0.3) 

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.3) 
	(0.3) 

	(0.2)
	(0.2)

	(0.5) 
	(0.5) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 


	Wildfire 
	Wildfire 
	Wildfire 

	3.4 
	3.4 

	-0.8
	-0.8

	1.8 
	1.8 

	4.8 
	4.8 

	0.2 
	0.2 

	-0.5
	-0.5

	2.0 
	2.0 

	5.7 
	5.7 

	6.3 
	6.3 

	4.6 
	4.6 


	TR
	TH
	P

	(0.5) 
	(0.5) 

	(0.5)
	(0.5)

	(0.5) 
	(0.5) 

	(0.6) 
	(0.6) 

	(0.5) 
	(0.5) 

	(0.5)
	(0.5)

	(0.5) 
	(0.5) 

	(0.5) 
	(0.5) 

	(0.5) 
	(0.5) 

	(0.4) 
	(0.4) 


	TR
	TH
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P

	TD
	P


	Panel B: Mean Tract Net Migration (2010-2019) as % of 2010 Population Within MSA 
	Panel B: Mean Tract Net Migration (2010-2019) as % of 2010 Population Within MSA 
	Panel B: Mean Tract Net Migration (2010-2019) as % of 2010 Population Within MSA 


	TR
	TH
	P

	Decile of Tract Average AAL Within MSA 
	Decile of Tract Average AAL Within MSA 


	TR
	TH
	P

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	All Perils 
	All Perils 
	All Perils 

	-0.8
	-0.8

	-1.3
	-1.3

	-0.4
	-0.4

	-0.4
	-0.4

	-0.7
	-0.7

	-0.7
	-0.7

	-0.2
	-0.2

	0.6 
	0.6 

	0.4 
	0.4 

	-0.3
	-0.3


	TR
	TH
	P

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2)
	(0.2)

	(0.2) 
	(0.2) 

	(0.2) 
	(0.2) 

	(0.2)
	(0.2)



	Standard errors in parentheses. Panel A:  Average tract net in-migration during 2010–2019 by decile of tract composite peril average AAL and decile of tract sub-peril average AAL. Perils with non-modeled areas (Wildﬁre, Hurricane Storm Surge, and Hurricane Wind) exclude tracts outside the modeled area. For example, Hurricane Wind only includes tracts in states on the Gulf and Atlantic coasts. Panel B: Average tract net in-migration during 2010–2019 among the set of movers who moved within the same MSA by de
	Figure
	P
	P
	P
	Appendix Table 7. Climate Change Beliefs and 2020 Voting Behavior by County AAL Decile 
	Table
	TR
	TH
	P

	Mean (Standard Error) 
	Mean (Standard Error) 


	TR
	TH
	P

	Decile of County Average AAL 
	Decile of County Average AAL 


	Description 
	Description 
	Description 

	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 

	9 
	9 

	10 
	10 


	Percent Believe Global Warming is Happening 
	Percent Believe Global Warming is Happening 
	Percent Believe Global Warming is Happening 

	69.9 
	69.9 

	66.6 
	66.6 

	66.4 
	66.4 

	65.2 
	65.2 

	64.8 
	64.8 

	64.9 
	64.9 

	63.9 
	63.9 

	64.3 
	64.3 

	62.7 
	62.7 

	63.1 
	63.1 


	(0.4) 
	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.4) 
	(0.4) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 


	Percent Said Personally Affected by Global Warming 
	Percent Said Personally Affected by Global Warming 
	Percent Said Personally Affected by Global Warming 

	44.4 
	44.4 

	42.0 
	42.0 

	41.5 
	41.5 

	40.5 
	40.5 

	40.7 
	40.7 

	41.0 
	41.0 

	40.4 
	40.4 

	40.8 
	40.8 

	39.8 
	39.8 

	40.5 
	40.5 


	(0.3) 
	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.2) 
	(0.2) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 

	(0.3) 
	(0.3) 


	Percent Voted Republican in 2020 
	Percent Voted Republican in 2020 
	Percent Voted Republican in 2020 

	54.7 
	54.7 

	61.2 
	61.2 

	61.4 
	61.4 

	64.4 
	64.4 

	65.7 
	65.7 

	67.2 
	67.2 

	70.0 
	70.0 

	70.9 
	70.9 

	73.8 
	73.8 

	72.7 
	72.7 


	(1.0) 
	(1.0) 
	(1.0) 

	(1.0) 
	(1.0) 

	(0.9) 
	(0.9) 

	(0.8) 
	(0.8) 

	(0.9) 
	(0.9) 

	(0.9) 
	(0.9) 

	(0.7) 
	(0.7) 

	(0.8) 
	(0.8) 

	(0.8) 
	(0.8) 

	(0.8) 
	(0.8) 



	Note: Average county climate change beliefs survey response and 2020 voting behavior by 2021 tract average AAL decile. AALs measured as share of total insurable value.  
	P
	Appendix Figure 1. Peril with Largest Proportion of All-Peril Tract AAL, 2021 
	P
	Figure
	The peril or set of perils that make largest contribution to tract average all-peril AAL in 2021. AAL measured as share of total insurable value.  
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	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	Appendix Figure 2. By-Peril Contribution to AAL in Dollars by Percentile of Tract AAL in Dollars 
	P
	Figure
	By-peril contribution of average AAL in dollars in each percentile of tract average AAL in dollars. 
	P
	P
	P
	P
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	P
	P
	P
	P
	P
	P
	P
	P
	P
	Appendix Figure 3(a)(b)(c)(d). By-Peril AAL by Deciles of Median Household Income, Bachelor’s Degree or Higher Share, Vacancy Rate, and Prime Age Labor Force Participation Rate  
	P
	Figure
	Figure
	P
	Figure
	Figure
	Note: (a) By-peril average contribution to tract-level average AAL sorted by 2019 median household income. (b) By-peril average contribution to tract-level average AAL sorted by average 2019 share of adults with bachelor’s degree or higher decile. (c) By-peril average contribution to tract-level average AAL sorted by average 2019 percent vacant home (excluding seasonal units) decile. (d) By-peril average contribution to tract-level average AAL sorted by average 2019 prime age labor force participation decil
	P
	P
	Link

	Endnote
	P
	P
	P
	Link

	P
	Link

	P
	Link

	P
	P
	Link

	P
	Link

	P
	P
	Link

	P
	References (Appendices) 37 National Centers for Environmental Information. Storm Data (Accessed August 2023). www.ncdc.noaa.gov/IPS/sd/sd.html. 38 Arizona State University, Center for Emergency Management and Homeland Security. SHELDUS Metadata (Accessed August 2023). cemhs.asu.edu/sheldus/metadata. 39 Arizona State University, Center for Emergency Management and Homeland Security. SHELDUS Metadata (Accessed August 2023). cemhs.asu.edu/sheldus/metadata. 40 Wiese, P. Trends in Normalized Weather-Related Prop

	P
	Link

	P
	P
	Link

	P
	Appendix A: Comparing Expected Dollar Losses with Realized Historical Losses in SHELDUS One way to assess the reasonableness of our estimates of expected losses is to compare them with historical losses. SHELDUS is a public database of historical direct losses caused by natural disasters in the U.S. The database contains county-level information on property and crop losses as well as injuries and fatalities from 1960 to the present for a wide selection of hazards. The data are primarily sourced from the Nat
	Link

	to 2021.,  We then use the ratio of the real housing exposure values with the 2021 housing exposure value to inflate the SHELDUS county-year damages, which are adjusted to 2021 dollars using the GDP price deflator. 
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	Appendix Figure A1. SHELDUS Property Losses (1960–2021) 
	P
	Figure
	P
	P
	P
	Note: SHELDUS property losses (1960–2021): exposure-adjusted and not exposure-adjusted. The exposure-adjusted property damages for the entire history of SHELDUS (1960–2021) and for the post-2000 period are shown in Appendix Table A1. The average annual damage recorded in SHELDUS for 1960–2021 and for 2000–2021 are $23 billion and $33 billion, respectively, when adjusted for exposure. Given worsening environmental conditions and the underestimation built into SHELDUS estimates, it is not surprising our 2021 
	SHELDUS Hazard 
	SHELDUS Hazard 
	SHELDUS Hazard 
	SHELDUS Hazard 

	Exposure-Adjusted Damage 1960-2021 (Billions of 2021 $) 
	Exposure-Adjusted Damage 1960-2021 (Billions of 2021 $) 

	% of Damage 1960-2021 
	% of Damage 1960-2021 

	Exposure-Adjusted Damage 2000-2021 (Billions of 2021 $) 
	Exposure-Adjusted Damage 2000-2021 (Billions of 2021 $) 

	% of Damage 2000-2021 
	% of Damage 2000-2021 


	Hurricane/Tropical Storm 
	Hurricane/Tropical Storm 
	Hurricane/Tropical Storm 

	495 
	495 

	34.5% 
	34.5% 

	265 
	265 

	36.0% 
	36.0% 


	Flooding 
	Flooding 
	Flooding 

	424 
	424 

	29.5% 
	29.5% 

	266 
	266 

	36.2% 
	36.2% 


	Tornado 
	Tornado 
	Tornado 

	111 
	111 

	7.7% 
	7.7% 

	51 
	51 

	6.9% 
	6.9% 


	Severe Storm/Thunder Storm 
	Severe Storm/Thunder Storm 
	Severe Storm/Thunder Storm 

	94 
	94 

	6.5% 
	6.5% 

	7 
	7 

	1.0% 
	1.0% 


	Wildﬁre 
	Wildﬁre 
	Wildﬁre 

	84 
	84 

	5.9% 
	5.9% 

	48 
	48 

	6.5% 
	6.5% 


	Hail 
	Hail 
	Hail 

	83 
	83 

	5.8% 
	5.8% 

	48 
	48 

	6.6% 
	6.6% 


	Wind 
	Wind 
	Wind 

	81 
	81 

	5.6% 
	5.6% 

	32 
	32 

	4.3% 
	4.3% 


	Winter Weather 
	Winter Weather 
	Winter Weather 

	55 
	55 

	3.8% 
	3.8% 

	17 
	17 

	2.3% 
	2.3% 


	Lightning 
	Lightning 
	Lightning 

	7 
	7 

	0.5% 
	0.5% 

	1 
	1 

	0.2% 
	0.2% 


	Coastal 
	Coastal 
	Coastal 

	4 
	4 

	0.3% 
	0.3% 

	0.5 
	0.5 

	0.1% 
	0.1% 


	Total 
	Total 
	Total 

	1,437 
	1,437 

	100% 
	100% 

	736 
	736 

	100% 
	100% 


	Annual Average 
	Annual Average 
	Annual Average 

	23 
	23 

	N/A 
	N/A 

	33 
	33 

	N/A 
	N/A 



	Note: By-hazard exposure-adjusted SHELDUS property losses for 1960-2021 and 2000-2021. “Hurricane/Tropical Storm” category includes some ﬂooding from hurricanes and tropical storms.  
	 
	In addition to assessing the aggregate damage estimate, we can also compare the breakdown of historical losses among hazards with the breakdown of our estimated expected losses by hazard. In this case, the best comparison is with the peril shares provided in Appendix Table 2 because those shares were determined using dollar-value AALs instead of AALs as a share of TIV. The crosswalk between SHELDUS hazards and CoreLogic perils is provided in Appendix Table A2. In the case of “hurricane/tropical storm”, ther
	Appendix Table A2. Crosswalk of SHELDUS Hazards and CoreLogic Perils 
	SHELDUS Hazard 
	SHELDUS Hazard 
	SHELDUS Hazard 
	SHELDUS Hazard 

	CoreLogic Peril 
	CoreLogic Peril 


	Hurricane/tropical storm 
	Hurricane/tropical storm 
	Hurricane/tropical storm 

	Hurricane wind/inland flooding/hurricane storm surge 
	Hurricane wind/inland flooding/hurricane storm surge 


	Flooding 
	Flooding 
	Flooding 

	Inland flooding 
	Inland flooding 


	Tornado 
	Tornado 
	Tornado 

	Severe convective storm 
	Severe convective storm 


	Severe storm/Thunderstorm 
	Severe storm/Thunderstorm 
	Severe storm/Thunderstorm 

	Severe convective storm 
	Severe convective storm 


	Hail 
	Hail 
	Hail 

	Severe convective storm 
	Severe convective storm 


	Wind  
	Wind  
	Wind  

	Severe convective storm 
	Severe convective storm 


	Wildfire 
	Wildfire 
	Wildfire 

	Wildfire 
	Wildfire 


	Winter weather 
	Winter weather 
	Winter weather 

	Winter storm 
	Winter storm 


	Lightning 
	Lightning 
	Lightning 

	Severe convective storm 
	Severe convective storm 


	Coastal 
	Coastal 
	Coastal 

	Inland flooding 
	Inland flooding 



	Note: Crosswalk between SHELDUS hazard names and CoreLogic perils. 
	One way to deal with this problem is to combine hurricane and flooding categories. For SHELDUS, this would include hurricane/tropical storm, flooding, and coastal (non-hurricane coastal flooding); for CoreLogic, it would include hurricane wind, hurricane storm surge, and inland flooding. Over the entire SHELDUS history, hurricane and flooding damages have been 65 percent of damages, while they are 53 percent of our estimate of 2021 expected losses (see Appendix Table A3). The difference suggests that we may
	Appendix Table A3. Hazard Shares of SHELDUS Damages and Our Estimate of Expected Losses  
	Hazard Category 
	Hazard Category 
	Hazard Category 
	Hazard Category 

	SHELDUS Damage Share (1960–2021) 
	SHELDUS Damage Share (1960–2021) 

	Estimated 2021 Expected Loss Share Based on CoreLogic AALs  
	Estimated 2021 Expected Loss Share Based on CoreLogic AALs  


	Hurricane and flooding 
	Hurricane and flooding 
	Hurricane and flooding 

	65% 
	65% 

	53% 
	53% 


	Severe convective storm 
	Severe convective storm 
	Severe convective storm 

	25% 
	25% 

	30% 
	30% 


	Winter storm 
	Winter storm 
	Winter storm 

	4% 
	4% 

	10% 
	10% 


	Wildfire 
	Wildfire 
	Wildfire 

	6% 
	6% 

	6% 
	6% 



	Note: Comparison of peril share of property losses recorded in SHELDUS (1960–2021) and peril share of estimated 2021 expected losses based on CoreLogic AALs translated to dollar values. 
	We posit that there are several factors contributing to the observed differences. First, to the extent that environmental conditions have changed from 1960 to 2021, they may differentially impact the contribution of individual hazards. (Of course, if one thinks that hurricanes and flooding have been most acutely affected by environmental changes over the 1960–2021 period, then this explanation only exacerbates the difference). Similarly, it’s possible that hazards have differential impacts on property types
	43
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	P
	Appendix B: Analyzing CoreLogic Risk Estimates Using Alternative Risk Estimates Validating the average annual loss (AAL) values from CoreLogic, in the context of using these values for our research, is inherently diﬃcult because the ground truth is unknown. One check of reasonableness is to compare to historical loss data, which we do in Appendix A. In that check we focus on the level of aggregate damage and the by-peril contribution to aggregate damage. However, our distributional analysis relies on the ri
	P
	P
	Link

	P
	Hurricane Wind risk for states on the Gulf and Atlantic coasts. FSF estimates non-zero Hurricane Wind risk further inland, including properties in states like Tennessee, Arkansas, and Oklahoma. Similarly, FSF models wildﬁre risk for the entire contiguous U.S. and ﬁnds non-zero wildﬁre risk for properties outside of the CoreLogic modeled area. According to First Street Foundation’s estimates, the areas with the greatest wildﬁre risk outside of CoreLogic’s modeled area are Oklahoma, South Dakota, and parts of
	Peril 
	Peril 
	Peril 
	Peril 

	Correlation of Tract Average AAL Decile 
	Correlation of Tract Average AAL Decile 

	Correlation of Tract Average AAL 
	Correlation of Tract Average AAL 


	Flood 
	Flood 
	Flood 

	0.41 
	0.41 

	0.37 
	0.37 


	Hurricane Wind 
	Hurricane Wind 
	Hurricane Wind 

	0.88 
	0.88 

	0.82 
	0.82 


	Wildfire 
	Wildfire 
	Wildfire 

	0.56 
	0.56 

	0.34 
	0.34 


	Composite (Flood + Hurricane Wind + Wildfire) 
	Composite (Flood + Hurricane Wind + Wildfire) 
	Composite (Flood + Hurricane Wind + Wildfire) 

	0.58 
	0.58 

	0.49 
	0.49 



	P
	Note: In the case of Hurricane Wind and Wildﬁre, analysis limited to areas modeled by both CoreLogic and First Street Foundation. Tracts outside of peril’s modeled area are considered to have no risk for that peril when generating composite AAL. Notably, agreement between the two sets of composite AAL estimates is strongest among the riskiest tracts – 54 percent of tracts in the 10th decile of AAL according to CoreLogic were also in the 10th decile of AAL according to FSF. Another 21 percent of CoreLogic’s 
	P
	P
	P
	P
	P
	P
	P
	Appendix Figure B1. Diﬀerence between CoreLogic and First Street Foundation Tract Average AAL Decile for Flood, Hurricane Wind, and Wildﬁre  
	P
	Figure
	Note: Diﬀerence between tract average AAL decile using CoreLogic and First Street Foundation data. Positive number (red) indicates the CoreLogic decile is greater than the First Street Foundation decile. The maximum diﬀerence in decile placement is nine. Tracts in grey have fewer than 30 single-family residences with AAL estimates in CoreLogic and/or First Street Foundation data. 
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	P
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	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	Link

	P
	Appendix C: Validating the CCP Migration Measure Against ACS County-to-County Flows Data We examine net migration between 2010 and 2019 for areas of diﬀerent climate risk using the FRB NY/Equifax CCP data (see Appendix Table 6). One concern with using the CCP data set is its selection criteria of individuals with credit histories, which skews the sample towards older and more financially sophisticated individuals. Thus, CCP-based migration estimates would be biased to the extent that migration patterns syst
	P
	ACS County Net Migration DecilesCCP County Net Migration Deciles
	Note: Deciles of county-level net in-migration during 2010–2019 using ACS (left) and CCP (right) data. 
	P






