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Abstract

In the first portion of this paper, we utilize millions of loan-level servicing records for mortgages
originated between 2004 and 2016 to study the performance of predictive models of mortgage default.
We find that the logistic regression model – the traditional workhorse for consumer credit modeling –
as well as machine learning methods can be very inaccurate when used to predict loan performance in
out-of-time samples. Importantly, we find that this model failure was not unique to the early-2000s
housing boom.

We use the Panel Study of Income Dynamics in the second part of our paper to provide evidence that
this model failure can be attributed to intertemporal heterogeneity in the relationship between variables
that are frequently used to predict mortgage performance and the realized post-origination path of
variables that have been shown to trigger mortgage default. Our findings imply that model instability is
a significant source of risk for lenders, such as financial technology firms, that rely heavily on predictive
statistical models and machine learning algorithms for underwriting and account management.
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1 Introduction

Recent changes in the regulatory environment have opened up the possibility of nearly completely automated
mortgage underwriting. The long-run financial viability of these automated underwriting platforms would
hinge critically on the out-of-sample predictive accuracy of statistical models and machine learning algorithms
that are used in the application decisioning process. The literature on the predictive performance of such
models is limited to two studies [Rajan, Seru and Vig, 2010; An et al., 2012] that argued that predictive
models of mortgage performance will be poor because of factors related to the “Lucas critique” [Lucas, 1983].
Both of these studies suffer from important limitations. First, both of these analyses were limited to loans
that were securitized into private-label mortgage-backed-securities (PLMBS); most of these loans were high-
risk and classified as “subprime” or “Alt-A.” The PLMBS market largely disappeared during the financial
crisis and has yet to recover. That said, it is not clear whether the results from studies that rely solely
on PLMBS data are generalizable to the post-crisis mortgage market. A second limitation of existing work
is that neither of the aforementioned papers studied the predictive accuracy of machine learning methods
which are becoming increasingly popular with financial technology firms (“Fintechs”) [Frame, Wall and
White, 2018; Jagtiani and Lemieux, 2018] and more generally in consumer credit modeling [Khandani, Kim
and Lo, 2010]. Lastly, and perhaps most importantly, previous work has provided little evidence regarding
why models fail.1,2

We address all of these limitations in this study. First, we use data on more than a decade of mortgage
originations from across the credit spectrum to provide the first evidence on the predictive stability of
mortgage default models throughout the credit cycle. We find that performance of both logistic regression
models – the traditional workhorse in consumer credit risk applications – and machine learning methods
deteriorates rapidly when used to predict out-of-sample loan performance. To our knowledge, our analysis
is the first test of whether the Lucas critique in the context of mortgage modeling also applies to machine
learning models. Importantly, our results provide evidence that predictive models are unstable even outside of
regimes where private-label securitization was common in the mortgage market. PLMBS issuance collapsed
around 2008 and has yet to return to any significant level. Focusing on the post-2008 mortgage origination
cohorts thus provides the first evidence on whether the poor performance of predictive default models was
a phenomenon unique to the 2000s credit cycle.

After establishing the extent to which traditional statistical models and machine learning methods fail
at predicting out-of-time mortgage performance, we posit that predictive models of mortgage performance
will be inherently unstable because of intertemporal changes in the relationship between variables used
in predictive credit risk models, borrower expectations for the future path of variables known to trigger
mortgage delinquency, and realized changes in the economic environment.3 We provide support for this
hypothesis using data on household finances derived from the Panel Study of Income Dynamics (PSID).4 In
the last part of our analysis, we study whether using training data drawn from a mix of economic conditions
could potentially alleviate model stability issues; we find that using through-the-cycle data generally reduces
instability in the Logit models but has little effect on the performance of the random forest classifier.

The rest of the paper is structured as follows. Section 2 establishes some context for our analysis by
discussing the role of predictive models, automation, and model risk in the U.S. mortgage market. In Section

1Rajan, Seru and Vig [2010] argue that model failure in the early 2000s was driven by an expansion of private-label
securitization. In the context of the present study, this explanation is unsatisfying as we provide evidence of model failure in
an era where private-label securitization was virtually non-existent.

2An et al. [2012] use a sample of fixed-rate subprime mortgages that were originated in 2003 and securitized into PLMBS to
estimate models of mortgage default. The authors used the estimated parameters from this model to predict mortgage defaults
for a cohort of subprime loans that were originated in 2006 and found that their model underpredicted defaults by roughly
40 percent. Rajan, Seru and Vig [2015] conduct a similar exercise also using PLMBS data and find that a statistical model
estimated using loans issued between 1997 and 2000 systematically underpredicts defaults for PLMBS loans from 2001 onward.
The authors of this study interpret their findings as evidence that the increase in securitization in the early 2000s resulted
lenders collecting less soft information on borrower quality that in turn changed the relationship between borrower observables
and default risk.

3The most recent boom-bust cycle in the housing market provides a nice case in point of how the relationship between
expected and realized house prices moves can change over time. Using survey data, Case, Shiller and Thompson [2012] document
that between 2003 and 2006, household price expectations generally aligned with realized post-survey price appreciation.
Starting in 2007, however, price expectations and actual price movements diverged significantly.

4In Appendix A we also study intertemporal changes in the relationship between borrower leverage and household expecta-
tions for home price appreciation using data from the National Survey of Mortgage Originations.
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3 we analyze the predictive performance of mortgage default models estimated using a rich database of loan-
level servicing records. Section 4 discusses factors likely driving the instability of model performance and
investigates these mechanisms using data from the PSID. In Section 5 we study whether model instability
can be alleviated by using training data drawn from a mix of economic conditions. Section 6 concludes.

2 Automation, Mortgage Lending, and Model Risk

The composition of lenders in the U.S. residential mortgage market has undergone a tremendous amount
of change in recent years. Non-depository financial institutions (“non-banks”) increased their market share
of first-lien mortgage originations from 30 percent in 2007 to 50 percent in 2015, with much of this growth
coming in the market for high-risk loans guaranteed by the Federal Housing Administration (FHA) [Buchak
et al., 2018].5 In addition to differing from banks in how they are funded [Kim et al., 2018], several of these
non-banks are financial technology firms or “Fintechs.”6 There is no agreed-upon definition of a Fintech
in the financial economics literature. Previous work on Fintechs, however, has differentiated these firms
from other financial institutions based on their use of technology for processing mortgage applications.7

While automated mortgage underwriting is certainly not new [Frame, Wall and White, 2018], the extent of
automation among mortgage lenders in recent years has yielded significant improvements to the efficiency
of the loan production process. Fuster, Plosser, Schnabl and Vickery [2018], for instance, find that Fintechs
process mortgage applications about 20 percent faster than non-Fintech lenders.

A key driver of this increase in efficiency has been an expansion in the use of predictive models to
assess the creditworthiness of a loan applicant. In a typical case for an unsecured loan such as a credit card,
historical data would be used to estimate a statistical “scoring” model of loan performance. When a financial
institution receives a loan application, the parameters from the scoring model are applied to variables that
are derived from the loan applicant’s credit bureau files and, now more frequently, other non-bureau data
sources [Berg et al., 2018; Jagtiani and Lemieux, 2018]. The resulting score then serves as an input into a
loan decisioning engine that can automatically approve or reject the application and, if approved, price the
loan. When collateral valuations are not required for underwriting, this entire process can happen almost
instantaneously.

Historically the collateral valuation procedure has served as a limit on the extent to which the mortgage
process can be automated. Between 2010 and 2018, federal regulations required that mortgages with original
outstanding balances in excess of $250,000 be supported by a full appraisal. Residential mortgages with loan
amounts below the $250,000 appraisal threshold could be originated based on an “evaluation” in lieu of
an appraisal [Interagency Appraisal and Evaluation Guidlines, 2010]. The property value used in these
evaluations is frequently an estimate of the property’s value derived from an automated valuation model
(AVM). Like automated decisioning for unsecured lending, AVM-based valuation estimates can be produced
almost instantaneously. Because many first-lien mortgages exceed the appraisal limit and full appraisals
are required by most secondary mortgage market participants, lenders have not typically used AVMs as the
source of valuation for underwriting loans.8

Recent changes to federal regulations and underwriting policies at Fannie Mae and Freddie Mac, however,
suggest that AVM-based first-lien lending may become much more common in the coming years. In 2016 and
2017, Fannie Mae and Freddie Mac introduced appraisal waiver programs that allowed for the use of values
from previous appraisals of the property or AVMs in lieu of full appraisals when certain other conditions
are met [Harney, 2017].9 Even more recently, federal regulators opened the door to the use of AVMs for

5FHA borrowers typically have very low down payments and lower credit scores than prime borrowers. The market share of
FHA loans increased significantly following the financial crisis. It has been argued that FHA loans are substitutes for many of
the high-risk loans colloquially referred to as “subprime” that defaulted at very high rates during the Great Recession [Karikari,
Voicu and Fang, 2011].

6Fuster, Plosser, Schnabl and Vickery [2018] estimate that the market share for Fintech lenders in the mortgage space
quadrupled from 2 percent in 2010 to 8 percent in 2016. They define Fintech lenders as those whose online platforms allow a
prospective borrower to obtain a pre-approval entirely online without having to interact with a loan officer or broker. Rocket
Mortgage from Quicken Loans is arguably the most well-known example of a Fintech mortgage lender.

7For a discussion of recent changes in how mortgage applications are processed, see Rodrigues, Gebre and Liu [2016].
8In home equity lending, in contrast, because second-lien loan amounts are generally much smaller than first liens and home

equity loans are generally held on a lender’s portfolio, AVMs have been used more frequently for originations.
9In January of 2018, of the loans submitted to Freddie Mac’s automated underwriting system (Loan Product Advisor),
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origination even further when, in October of 2019, they increased the residential appraisal threshold from
$250,000 to $400,000 [Final Rule: Real Estate Appraisals, 2019]. An analysis cited in the final rule using 2017
loan originations estimated that this increase in the appraisal threshold would have exempted 72 percent of
regulated mortgage transactions from appraisal requirements from 56 percent previously.10 The appraisal
waiver programs and expected increase in the residential appraisal limit for loans, when combined with
increasing access to public records data used to estimate and test AVMs, have arguably cleared the way for
almost automated first-lien mortgage lending.

The use of statistical models undoubtedly increases the speed at which financial institutions can make
decisions, and this increase in efficiency has the potential to be welfare enhancing for both consumers and
firms. These potential efficiency gains have been the focus of the burgeoning Fintech literature [Fuster,
Plosser, Schnabl and Vickery, 2018; Buchak et al., 2018]. Implicit in much of the discussion of Fintechs,
however, is the assumption that relying more heavily on predictive models enables Fintechs to more accurately
quantify credit risk.11 Model stability clearly plays an important role in ensuring the long run viability of
mortgage market participants that engage in highly automated lending or buy loans from those that do. Very
little attention in the literature, however, has been paid to an important potential downside of the increased
reliance on predictive statistical modeling, namely, an increase in model risk, which the regulatory community
has defined as “the potential for adverse consequences from decisions based on incorrect or misused model
outputs and reports”[Supervisory Guidance on Model Risk Management, 2011, p. 3]. Against this backdrop,
the following analysis provides important information about the role of model risk in the U.S. mortgage
market, the factors that likely drive this risk, and a straightforward way to potentially mitigate such risks.

3 The Failure of Predictive Models of Mortgage Performance

3.1 Data

The primary data source for this portion of our analysis is Black Knight’s McDash servicing database. The
McDash database contains historical monthly loan-level information for more than 180 million mortgages;
since 2004 the McDash data has covered between 37 and 70 percent of the U.S. mortgage market.12 The
McDash data is arguably the premiere source of loan-level mortgage data. Much of the previous literature
that is germane to our analysis has been based on data that was limited to loans that were securitized into
particular types of mortgage-backed securities, such as PLMBS, loans sold to Fannie Mae or Freddie Mac,
or loans packaged into Ginnie Mae securities. Because the mortgage market has changed significantly in
recent years, it is not clear to what extent the results from studies based on data for one type of investor
generalize to the larger post-crisis mortgage market.13 In contrast to these investor-specific data sources, the
McDash database contains loans that were securitized into PLMBS, Ginnie Mae, Fannie Mae, and Freddie
Mac securities as well as loans that lenders chose to retain directly on their portfolios in lieu of securitizing
them.

In addition to the breadth of the market coverage, an additional strength of the McDash data is the
richness of the set of variables that are reported for each loan. The McDash records include an extensive set
of fields capturing the information that was available to market participants at the time that the loan was

approximately 3.7 percent of the loans were eligible for Freddie Mac’s appraisal waiver program known as Automated Collateral
Evaluation (ACE). “ACE assesses whether a property’s estimated value can be used in place of an appraised value to underwrite
a mortgage and is based on Freddie Mac’s proprietary AVM, called Home Value Explorer”[An Overview of Enterprise Appraisal
Waivers, 2018, p. 2].

10In this context, “regulated transactions” are “transactions originated by FDIC-insured institutions or affiliated institutions,
excluding transactions that were sold to the [government sponsered enterprises] GSEs or otherwise insured or guaranteed by a
U.S. government agency.”

11In some cases, the assumption that Fintechs are better able to identify high-quality borrowers is explicit. For example, in a
model of the impact of Fintechs on consumer lending in China, Hau et al. [2019] assume that Fintechs possess a superior credit
technology that enables them to extract more reliable information from noisy signals about borrower quality.

12The first observations in the McDash data are in 1997. In the early years of the data collection, the loans in McDash
represented a small fraction of the larger market. The market coverage of the McDash data increased significantly in 2004 as
more servicers began contributing to the data collection. For this reason we restrict our analysis to loans that were originated
between 2004 and 2016.

13The fraction of all mortgages held in Fannie Mae, Freddie Mac, and Ginnie Mae securities has changed significantly over
time [Housing Finance at a Glance: A Monthly Chartbook, 2018]. The representativity of any analysis based on loans from
just one of these investors has thus likely changed significantly on a year-to-year basis.
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originated. These static origination fields include but are not limited to: the FICO credit scores (“FICO
scores,”) that were used to underwrite the loan; the loan balance at origination; the original loan-to-value
ratio; the appraised value of the property collateralizing the loan; and the schedule of any rate resets.14 For
each month that the loan is active, the McDash data also reports information on the loan’s current balance,
the loan’s delinquency and foreclosure status, and a variable indicating whether a loan was paid off in a
given month.

We use the static variables in the McDash data to estimate statistical models of mortgage default. These
models are discussed in more detail in Section 3.2. We use the dynamic variables in the McDash records
to define the outcome variable for our default models, which is an indicator variable that is equal to one if
a loan ever experiences a delinquency of 90 days-past-due or worse, was charged off, was associated with a
bankruptcy, or entered the foreclosure process at some point in the first 24 months following origination.

Regarding data restrictions, we limit our data to first-lien loans collateralized by single-family residences
that were originated between 2004 and 2016.15 We also eliminate records that do not have valid values for
our explanatory variables from the data. Lastly, we remove loans from the data that have a “boarding age”
in the McDash data that is greater than 2 months.16

3.2 Methodology

Our empirical strategy for studying model failure relies upon using historical data to create different hypo-
thetical information sets on which a statistical model of loan repayment behavior could be estimated. We
then construct predictions of default behavior based on these hypothetical information sets and compare
those predictions against actual loan performance. The deviations between realized and predicted default
behavior reflect the extent to which the predictive model “failed.” In what follows, we use the term “training
data” to refer to the loans that are used to estimate the statistical model that is used to predict borrower
repayment behavior. Intuitively, the training data define the information set on which the predictions are
based. For example, if the training data is defined to be mortgages originated in 2005, then the information
set that is being used to estimate the model reflects that of a booming housing market with rapidly increasing
home values and lax underwriting standards. In contrast, if the training data is defined as loans originated
in 2010, then the data being used to estimate the predictive model reflect lender and borrower behavior in
a market with rapidly declining collateral values and an exceedingly tight credit market. We use the term
“validation sample” to refer to the loans that are not included in the training sample. The validation data is
the set of the loans that we use to assess how well the model estimated using the training data can predict
default.

All of our analyses require that we first generate predictions of default behavior for the validation data. In
Section 3.2.1 and Section 3.2.2, we describe the models that we use to generate these predictions.17 Section
3.3 discusses the performance metrics that we use to discuss the performance of the predictive models, and
Section 3.4 describes how we change the nature of the training data to study the predictive accuracy of
models of loan repayment behavior.

3.2.1 Logistic Regression Models

The first model that we use to study loan repayment behavior is the traditional workhorse in consumer credit
modeling: the logistic regression (or “Logit”) model. Specifically, if i indexes loans, we define the default

14The McDash data does not contain personally identifiable information.
15The property type restriction eliminates loans used to purchase condominiums from our sample.
16Boarding age is defined as the loan’s age at the time that the loan’s repayment activity is first reported in the McDash

records. Because of lags between loan origination and when the loan is added to McDash’s database, boarding ages of 1 or 2
months are not uncommon. A boarding age greater than 2 months, however, suggests that a non-trivial number of monthly
performance observations may be missing. In the context of our analysis, the loans with greater boarding ages are more likely
to be misclassified as non-defaults.

17Our choice of predictive models of mortgage performance is similar to that of Fuster, Goldsmith-Pinkham, Ramadorai and
Walther [2018] who use the logistic regression model and the random forest classifier to study the potential impact of lenders’
adoption of machine learning methods on minority households’ access to credit.
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indicator variables as follows

Di =

{
1 if the loan is ever 90 days-past-due in the 24 months following origination
0 otherwise

Under the Logit specification, the probability that a default is observed is defined as

Pr {Di = 1} =
exp [Xiβ]

1 + exp [Xiβ]
(1)

where Xi is a vector of borrower and loan variables that are known at the time that the loan is originated
and β is a parameter vector. The vector Xi includes variables that are known to be used in underwriting and
have been shown to be predictive of mortgage default in previous work such as the loan’s LTV, the FICO
score used to underwrite the loan, the borrower’s debt-to-income (DTI) ratio, a flag for owner-occupancy,
and an indicator variable that identifies whether a loan had a fixed or variable interest rate. Xi also includes
a set of binary variables that indicate whether a loan was conventional without private mortgage insurance
(PMI), conventional with PMI, guaranteed by the Department of Veterans Affairs, or guaranteed by the
Federal Housing Administration.18

In a second set of models, in addition to the borrower and loan variables that were known at the time
of origination, we include the rolling window growth rate in the following three variables in the 24 months
following origination: the county-level unemployment rate reported by the Bureau of Labor Statistics, the
30-year mortgage rate reported by Freddie Mac, and the unadjusted county-level Case-Shiller house price
index from Moody’s Analytics. While the post-origination path of these factors was clearly not known to the
lender at the time of origination, lenders frequently use forecasts of such variables in the approval and pricing
process as well as for capital and loss reserve planning. That said, the results from models that include the
realized paths of these variables in the set of regressors represent the potential accuracy of models that utilize
forecasts of post-origination risk factors when these forecasts are perfect. In what follows we refer to these
as “perfect foresight” models.

For each of the various definitions of the training data discussed below, we estimate Equation 1 via
maximum likelihood. We then use the estimated parameters from each of these models to predict the
probability of default for each loan in the validation sample. As is common in the literature, we estimate
the model separately for purchase and refinance mortgages.

3.2.2 The Random Forest Classifier

While the Logit model has traditionally been the most commonly used framework for modeling the per-
formance of retail lending products, lenders – and particularly Fintechs – are increasingly using machine
learning methods to model consumer behavior. To see if the results from our analysis using Logit models
generalize to machine learning methods, for each of the different training-validation sample combinations we
also use a common machine learning algorithm – the random forest classifier [Breiman, 2001] – to predict
the probability of default for every loan in the validation sample. In the context of our analysis, the random
forest (RF) algorithm, in essence, takes a weighted average of the votes from many simple default models –
typically referred to as “trees” in the machine learning literature – to produce an overall default probability
that is assigned to the loan [Hastie, Tibshirani and Friedman, 2009].19

The strength of the RF classifier is that it is a nonparametric model that allows the predictors to affect
the outcome variable, which in our case is the occurrence of mortgage default, in a highly non-linear and
potentially interactive fashion. In comparison to the Logit models that rely on strong distributional and
functional form assumptions, the RF classifier can be viewed as a much more flexible way of modeling the
relationship between variables used in loan underwriting and loan repayment behavior. A comparison of the
forecasting accuracy of the RF classifier and the Logit models can thus give us a sense of whether the poor

18Previous work has shown that the relationships between mortgage default and several of the variables in our model are highly
non-linear. For example, default risk increases rapidly as the loan’s LTV approaches unity. To allow for these non-linearities,
these variables enter our model specification in flexible functional forms.

19In our implementation of the RF algorithm, we do not place any limits on the depth of the trees or the number of observations
that must be contained in the final nodes.
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predictive performance of retail mortgage models discussed in the previous literature were at least driven in
part by overly restrictive assumptions about the data generating process.

Though single decision trees are easy to visualize and understand, they are not robust in the sense
that their accuracy is highly sensitive to noise in the data. Furthermore, single decision trees are prone to
overfitting. The advantage of the RF classifier over the use of a single decision tree is that the RF classifier
has a lower forecast variance. The “forest” component of the RF moniker derives from the fact that the
reduction in variation is achieved by combining the predictions from many individual decision trees. More
specifically, RF combines the output from individual decision trees using a bootstrap aggregation (“bagging”)
procedure [Breiman, 2001]. The tree bagging procedure first draws different bootstrap subsamples from the
data and trains a separate decision tree to each of the subsamples. Because trees are trained on these
subsamples and not the entire sample, the bagging procedure serves to lessen correlation between the trees.
To further reduce correlation between the trees, the RF algorithm randomly selects a subset of predictors at
each split in the decision tree. This feature randomization procedure serves to prevent strong predictors from
appearing in most of the end nodes, thereby reducing the correlation between tree-specific predictions.20

There are several complications associated with using the RF algorithm to predict defaults. First, our
data is “imbalanced” in the sense that non-defaults are far more common than defaults; this imbalance issue
is endemic in credit risk modeling. Classification algorithms like RF are designed to minimize the rate of
misclassification in the full sample. In our application, because defaults are quite rare, the RF algorithm
will have a tendency to focus on predicting the outcome of non-defaults as non-defaults have an outsized
impact on the calculation of the overall error rate. Because of this issue, when machine learning classifiers
like RF are applied to extremely unbalanced data, they will tend to correctly classify very few of the positive
outcomes.

The second issue associated with implementing the RF procedure is computational in nature. The RF
algorithm is very computationally intensive, and implementing the algorithm on the full sample of loans
is computationally infeasible.21 The third and final complication associated with using the RF classifier is
deciding how the tree-specific predictions are aggregated to create a final classification of a loan as a default
or non-default. The default method for aggregating across trees is to simply use “majority rules” in the
sense that the most common classification vote of the individual trees is taken to be the overall classification.
In practice, however, the manner in which tree-level predictions are aggregated will be “tuned” to optimize
measures of classification accuracy.

In our implementation of the RF classifier, we address these three complications as follows. Regarding
the imbalance problem, instead of training the RF algorithm on the raw mortgage data, we utilize the
Synthetic Minority Over-Sampling Technique (SMOTE) to improve balance in our data using “synthetic”
default observations [Chawla et al., 2002].22,23 Specifically, if ND

j and NND
j denote the default and non-

default observations in origination cohort j, we use SMOTE to create ÑD
j synthetic defaults such that the

sum of the true and augmented defaults comprise 20 percent of the “SMOTEd” data for origination cohort
j. That is

ND
j + ÑD

j

ND
j + ÑD

j +NND
j

= 0.2 (2)

20We implement the RF procedure using the “randomForest” package in R. We chose to use 2000 trees in our forest based
on a tuning exercise that demonstrated little improvement in model performance with larger forests. Regarding the other
parameters used to implement the algorithm, in our tuning exercise we conducted a grid search over: the number of variables
randomly sampled as candidates at each split (”MTRY”), the minimum number of terminal nodes, and the size of the sample
used to grow the tree. Based on this grid search, we determined that the optimal value of MTRY was the number of features
in our data divided by 3, a value that coincided with the default value of MTRY in the package. As model performance was
largely insensitive to variation in the minimum node size and sample size, we also set those parameters at their default values.

21The computational environment that we used to conduct this analysis was a high-performance computing cluster with 512
gigabytes of RAM.

22Resampling approaches to addressing class imbalance are often referred to as “data-level” solutions in contrast to “algorithm-
level” solutions in the machine learning literature. See Chawla, Japkowicz and Kotcz [2004] for a discussion of SMOTE and
other resampling methods in applied machine learning.

23In unreported robustness checks, we also trained the RF classifier on the raw mortgage data as well as on an “undersampled”
dataset in which the non-defaults were down-sampled to match the number of defaults in the sample in a given year. The RF
classifier’s predictive accuracy when trained on these alternative training samples was generally worse than the accuracy of the
RF classifier trained on the SMOTE sample. These results are available upon request.

7



The SMOTEd data serves as the sampling base for the bootstrap samples of our RF algorithm. When
defining the training sample for the implementation of the RF algorithm, we first partition the SMOTEd

data into loans from an origination cohort j that default and those that do not. Let SDj = ND
j + ÑD

j and

SNDj = NND
j denote the set of defaulted and non-defaulted loans, respectively. When growing tree b, we

randomly sample 50,000 observations from SDj with replacement to create a sample of defaults denoted SD,bj .

Similarly, we create a sample of non-defaults, denoted SND,bj , by randomly selecting 50,000 observations from

SNDj with replacement. Lastly, we use a sample comprised of the observations in SD,bj and SND,bj to grow tree
b. The resulting dataset is perfectly balanced and small enough to render the algorithm computationally
feasible. This process is repeated B = 2, 000 times, where B denotes the total number of trees in the
random forest. Regarding the aggregation of the tree-specific predictions, we used data from the 2004
origination cohort to tune a voting rule based on several common metrics of classification accuracy. This
tuning procedure led us to classify a loan as a default if at least 70 percent of the tree-specific votes were
default. We discuss the sampling procedure and parameter tuning in more detail in Appendix D.

3.3 Assessing Model Performance

One of the primary goals of our analysis is assessing the out-of-sample predictive performance of statistical
models of loan default. Conducting this analysis thus requires that we adopt an operational definition of
“predictive performance.” One approach to assessing the accuracy of binary dependent variable models
is to report the fraction of observations for which the dependent variable was classified correctly; in such
an exercise, an observation is typically classified as a 1 if its predicted probability from the model exceeds
50 percent, 0 otherwise. Such measures are ill-suited for measuring the performance of consumer credit
models. Even in the most lax of lending environments, defaults are still relatively rare, and the 50-percent
decision boundary will result in very few observations being classified as defaults. A measure of the fraction
of loans correctly classified under this standard would thus tell us little about how well the model actually
predicts failure.24 Lenders thus generally eschew using classification rates under a fixed decision boundary
and instead assess the quality of credit risk models using alternative statistics that summarize a model’s
predictive accuracy.25,26

One of the most widely used methods for quantifying a model’s predictive accuracy is to compare the
expected number of defaults in some sample of loans with the actual number of defaults that were realized in
that subpopulation; such exercises are frequently referred to as “expected-versus-actual” (EvA) analyses and
form the basis for formal goodness-of-fit tests for classification models [Hosmer, Lemeshow and Sturdivant,
2013]. For the Logit model, the standard approach to conducting EvA analyses is to first use the estimated
Logit model to predict the probability that a loan defaults. Let j index the training datasets, k index the
validation datasets of size Nk, and let P̂Dji for i = 1, ..., Nk denote the predicted probability that loan i
defaults based on the Logit model estimated using training data j. The expected number of defaults in the
validation sample based on a Logit model trained on sample j, which we denote EDjk, can be written as

24Wooldridge [2010, p. 574] notes that “while the percent correctly predicted is useful as a goodness-of-fit measure, it can
be misleading. In particular, it is possible to get rather high percentages correctly even when the least likely outcome is very
poorly predicted.” In the context of lending, for example, if the default rate in the population is 10 percent, even if a model
did not predict that a single loan in the sample would default based on the 50 percent decision boundary, the percent correctly
classified would be equal to 90 percent.

25In addition to measuring a model’s predictive accuracy, lenders often also assess a model’s ability to discriminate between
defaults and non-defaults. Two of the most commonly used measures of a model’s discriminatory power are the Komolgorov-
Smirnov (KS) statistic and the Area Under the Receiver Operating Curve (AUROC). For book-length discussions of the use,
development, and testing of predictive models in retail lending, see Anderson [2007] and Thomas [2009]. Classification models
can exhibit strong discriminatory power even when they do a poor job of predicting the overall level of default. For this reason
and because the mechanisms that we discuss in Section 4 primarily concern the ability of models to predict outcomes – not
rank order risk – in our analysis we focus on measures that summarize a model’s ability to predict the prevalence of default.

26It is worth noting that one component of the Basel Accords requires lenders to compare actual defaults in their portfolios
against the number of defaults predicted by their credit risk models as a part of the regulatory capital quantification process
[Thomas, 2009, p. 137]. In this context, the predictive accuracy of the risk models is sometimes referred to as “calibration.”
Other applications of credit risk models that rely on the predictive accuracy of the model output include loan pricing, loss
forecasting, and loan-loss reserve estimation.
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EDjk =

Nk∑
i=1

P̂Dji (3)

where Nk denotes the number of loans in the validation sample.
The RF procedure does not directly produce a predicted probability of default but rather a classification

of whether a loan will or will not default. This classification is achieved by aggregating the votes from all the
individual trees in the forest, where each tree is constructed using a randomly drawn subset of the training
data. Let Ŷjbi denote the vote for loan i from tree b based on training set j, and let Ỹji denote the final
prediction from the RF procedure based on an aggregation of all B of the tree-specific votes.27 The RF
algorithm determines Ỹji as follows

Ỹji =

{
1 (default) if 1

B

∑B
b=1 Ŷjbi > τ

0 (non-default) if 1
B

∑B
b=1 Ŷjbi ≤ τ

(4)

where 1
B

∑B
b=1 Ŷjbi measures the fraction of trees that classify a loan as being in default and τ is a cutoff

threshold that is used in the aggregation.28 As discussed in Section 3.2, based on the results of a parameter
tuning procedure we selected τ = 0.7 as the threshold that determines whether a loan is classified as a default
in our accuracy analysis.29 After using the procedure above to classify the loans in the validation samples
as defaults and non-defaults, we construct the expected number of defaults in validation set k based on the
RF classifier as

EDjk =

Nk∑
i=1

Ỹji (5)

In what follows, we summarize the predictive accuracy of both the Logit and RF models using the
following measure

EvAjk = 100 ∗

(
EDjk −

∑Nk

i=1Di∑Nk

i=1Di

)
(6)

where
∑Nk

i=1Di is the number of actual defaults in validation set k. Large positive values of EvAjk indicate
that when training set j is used to predict the performance of loans in set k, the model is overpredicting
defaults by a significant margin. Likewise negative values of EvAjk indicate that the model is underpredicting
defaults. Because of the large number of different training and validation sets that we use to test model
performance, we use heat maps to summarize EvAjk across various j − k combinations in Section 3.6.

3.4 Changing the Information Set

Our strategy for studying the failure of predictive models relies upon systematically altering the nature of
the training data – and thus the information set that is used to estimate the predictive model – and studying
how these changes to the training data affect the out-of-sample predictive accuracy of the models.30 For
our analysis, we first define the training data as loans that were originated in 2004. The performance of
these loans over the course of the next 24 months is used to estimate the Logit and RF models. The output
from these models is then used to predict mortgage defaults for every loan origination cohort year between

27The number of trees (B) is set to be 2, 000 for all training data sets. The size of the forest is thus not indexed by the
training data.

28In the standard presentation of the RF model, the aggregation is conducted via “majority rule” in the sense that the modal
prediction in the set of T predictions is the final classification that is applied to the loan [Hastie, Tibshirani and Friedman, 2009].
Because of the binary nature of the prediction in our application, this majority rule aggregation is equivalent to setting τ = 0.5
in Equation D.2.

29For details on how this tuning was performed, see Appendix D.
30This strategy is similar to the methodology of testing for model failure advanced by Rajan, Seru and Vig [2015]. In this

study, the authors estimated a logistic regression model using PLMBS data for loans originated between 1997 and 2000. The
parameters from this model were then used to predict defaults on PLMBS loans that were originated between 2001 and 2006.
Based on this methodology, the authors found that their statistical model systematically underpredicted defaults, a finding that
they attributed to a reduction in the amount of soft information that was collected during underwriting in the early 2000s.

9



2004 and 2016, and we construct EvA2004,k for k = 2004 through k = 2016 as in Equation 6. We then
repeat this process by iteratively taking loans originated in each of the years between 2005 and 2016 to
be the training sample. The result of this process is 169 EvAjk measures, which include both in-sample
and out-of-sample predictions. Given the large amount of variation in underwriting standards, house price
dynamics, and adverse shocks to household finances during our sample period, comparing the actual and
predicted default behavior in the validation sample across models estimated using these different training
data samples provides evidence on the net impact of broad intertemporal changes in credit markets on the
predictive accuracy of default models.31

3.5 Descriptive Statistics

In Table 1 and Table 2 we report the average values of the key variables from the McDash data for purchase
and refinance mortgages, respectively, that we use to estimate and test the Logit and RF models. Given
the significant changes that occurred in the mortgage market and the larger economy during our sample
period, we report these averages on a year-by-year basis. Default risk varied enormously over the course
of our sample. For both purchase and refinance mortgages, default rates rose steadily in the early years of
sample, peaking at roughly 12 percent in the 2007 origination cohorts. With tightening mortgage credit and
an improving economy, default rates then declined after 2008, reaching a low of 1.4 percent for purchase
mortgages and 0.5 percent for refinance mortgages in 2015. Interestingly, the 2016 origination cohorts
experienced the first year-on-year increase in delinquencies since 2007.

As expected, the post-origination path of house prices, interest rates, and unemployment rates also
exhibited sizable variation across our loan cohorts. The 2004 and 2005 origination cohorts were characterized
by rising home values, rising interest rates, and declining unemployment rates. In stark contrast, the loans
originated between 2006 and 2008 experienced sharply declining real estate values, falling mortgage rates,
and dramatic increases in the county-level unemployment rate in the two years following origination. The
final cohorts in our sample were typically exposed to increasing home values and declining unemployment
rates.

Regarding loan underwriting variables, the back-end DTI ratio and LTV ratio both remained relatively
stable between 2004 and 2016, as did the fraction of loans that were collateralized by owner-occupied units.
The average FICO score for new originations increased moderately between 2007 and 2008 and remained
elevated for the duration of our sample. Lastly, while loans with variable interest rates were relatively
common in the early years in our sample, starting in 2008 virtually all new originations had fixed rates.

3.6 Results

3.6.1 EvA Analysis

In Figure 1 and Figure 2 we summarize the EvAjk measures defined in Equation 6 for the various training-
validation year combinations for purchase and refinance mortgages, respectively.32,33 The leftmost panel
in each of these figures is a heatmap depicting the EvAjk measures for the Logit model estimated using
the standard mortgage risk factors that are observable at the time a loan is underwritten. The center and
rightmost panels include EvA heatmaps for the Logit and RF models, respectively, that were estimated
using the variables aggregate variation in post-origination dynamics in housing prices, mortgage rates, and
unemployment rates (the “perfect foresight” variables) in addition to the standard mortgage risk factors
that are known at the time of origination. In all of these heatmaps, cells that are close to white in color
represent training-validation combinations where the EvAjk measure was close to zero. Said differently,
the cells that are close to white in color are the training-validation combinations where there was little
difference between the number of defaults predicted by the model and the number of loans that actually
default in that validation cohort. Cells with blue shading in these heat maps represent cases where the
model is underpredicting default behavior, with increasingly darker shades of blue representing worsening

31For example, predicting default behavior for loans originated in 2013 using a model estimated with 2008 development data
provides evidence on the accuracy of default predictions for loans originated during an expansion based on information from a
period of extreme duress in the credit market.

32The full set of EvAjk measures used to construct these figures is available upon request.
33We report the full regression results for the Logit models in Appendix B.
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underpredictions. Similarly, red cells represent cases where the model under consideration is overpredicting
delinquencies, with dark shades of red representing the most significant overpredictions. Diagonal cells in all
of these plots represent the in-sample model fit in terms of the EvAjk measure; for the Logit models, the
prediction error is mechanically zero in these cells [Hosmer, Lemeshow and Sturdivant, 2013, p. 9].

Figure 1: EvA Analysis of Year-by-Year Estimation: Purchase Loans

Turning first to the Logit models that do not include the perfect foresight variables, model performance
deteriorates significantly as the temporal distance between the training and validation sample increases.
Consider the 2007 purchase loan origination cohort, which experienced the highest default rate in our sample.
The Logit model trained using the 2007 origination cohort overpredicted defaults for every out-of-time
validation sample, in many cases by a very wide margin, with EvA2007,k ranging from a low of 12 percent
in 2008 to a high of 363 percent in 2015. We see a similar deterioration in predictive performance when
data from a low-default regime is used to train a predictive model that is used to forecast performance in
a high-default regime. For example, the default rate in the 2007 origination cohort was more than 8 times
higher than the default rate in the 2015 cohort for purchase mortgages, and the model trained using 2015
originations underestimated defaults in the 2007 validation sample by more than 84 percent.

Even small intertemporal deviations between the training and the validation samples can result in large
prediction errors. For example, the models estimated using data on 2006 originations – the cohort with
the second highest default rate – underpredicted defaults in the 2007 cohort by 37 percent for purchase
mortgages and by more than 52 percent for refinance mortgages.

The model fits no better in terms of predictive performance when 2007 originations are used to predict the
performance of 2006 originations, in this case overestimating purchase mortgage defaults by 47 percent and
overestimating refinance mortgage defaults by 113 percent. The wild swings in the out-of-sample performance
when the training data changes by only one year speak to how poorly predictive models of mortgage default
can perform when macroeconomic conditions are changing rapidly.

As expected, increasing the similarity between the macroeconomic conditions in the training data and
those in the validation data increases the predictive accuracy of the forecasts. For example, consider the
case of predictions from the Logit model trained on 2012 purchase mortgage origination data. By 2012,
most of the post-crisis structural changes to the mortgage market that characterize the remaining years in
our sample had taken place, and as summarized in Table 1, the default rates for loans originated between
2012 and 2016 varied little across cohorts. In the post-2013 validation samples, EvA2012,k was quite stable,
ranging from -20 percent in 2016 to 5 percent in 2013.

Comparing the leftmost panels with the corresponding center panels in Figure 1 and Figure 2 summarizes
the extent to which the instability of the Logit models of default could potentially be remedied by including
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Figure 2: EvA Analysis of Year-by-Year Estimation: Refinance Loans

highly accurate forecasts of key risk drivers – mortgage rates, house prices, and unemployment rates – that
previous work has shown to be predictive of mortgage performance. As above, we focus our discussion on
the 2006 and 2007 origination cohorts as this time period was characterized by extreme economic turmoil
and the 2007 training sample had the highest default rate in our sample.

As evidenced by the reduction in dark red cells when comparing the left and center panels, including
the perfect foresight variables does reduce the tendency of the model to overestimate defaults when trained
on data from years with elevated delinquencies. Even with perfect knowledge of the post-origination path
of interest rates, house price indices, and unemployment rates, however, models estimated using the 2006
training data underestimate defaults in the 2007 cohort by 12 percent for purchase loans and by 32 percent
for refinance loans.

Like the “without perfect foresight models,” the predictive performance of the ”with perfect foresight”
models worsens considerably as we move further off the diagonal in Figure 1 and Figure 2. For example, the
perfect foresight models estimated using the 2005 training data overestimate default in the 2015 validation
data by 109 percent for purchase mortgages and 86 percent for refinance mortgages, while the “perfect fore-
sight” models estimated using 2015 training data underestimate default in the 2005 purchase and refinance
samples by 74 percent and 55 percent, respectively. Thus while it appears that including post-origination
forecasts of aggregate economic variables known to drive mortgage performance has the potential to increase
the accuracy of statistical models of default, even in the case where the forecasts of these variable are perfect,
the predictive accuracy of statistical default models deteriorates rapidly with changes in the macroeconomic
environment.

Previously published work on the predictive accuracy of models of mortgage performance was based on
PLMBS loans that were originated in the late 1990s and early 2000s, and the structure of the mortgage
market has undergone extraordinary change since then. In 2006, for example, roughly 42 percent of first-lien
originations were placed in PLMBS, 32 percent of such loans were sold to Fannie Mae or Freddie Mac, 3
percent of loans were packaged into Ginnie Mae securities, and 23 percent of loans were held on portfolio.
Through the end of the third quarter, in contrast, 37 percent of first-lien originations in 2019 were held
on portfolio, 42 percent were sold to Fannie or Freddie, 19 percent were securitized through Ginnie Mae,
and only 2 percent of loans were in PLMBS [Housing Finance at a Glance: A Monthly Chartbook, 2019].
Given the significant differences in the structure of the early-2000s PLMBS deals and the GSE, Ginnie Mae,
and portfolio loan programs, it is not clear that the results from the existing literature would generalize
to the post-crisis lending environment where the originate-to-distribute lending model requires repeatedly
interacting with a very small number of well-informed financial institutions. An important contribution
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of our analysis is thus providing the first evidence that predictive models are unstable in the post-crisis
mortgage market.

Visually, the predictive performance of our models when estimated and validated only on post-crisis data
is summarized in the cells that are above the 2008 line on the “Validation” axis and to the right of the 2008
line on the “Training” axis. As in the pre-2008 years, the predictive performance of our models typically
worsens as the difference in economic conditions between the training and validation samples increases. Using
the 2009 training data, for instance, even when using the perfect foresight model we overestimate defaults
in the 2015 validation data by 42 percent for purchase mortgages and by 52 percent for refinance loans. Our
findings suggest that the poor performance of mortgage default models discussed in previous work was not
a statistical anomaly driven by the quirks of the mid-2000s mortgage market; rather, predictive models of
mortgage default models appear to perform poorly in general when the economic environment characterizing
the training sample diverges from the macroeconomic conditions experienced in the validation sample.

As discussed in Section 1, machine learning techniques have experienced a surge in popularity among
lenders using predictive models to automate decisioning for consumer lending. If the poor performance of
our Logit models is being driven not by factors related to the Lucas critique but rather by statistical model
misspecification, then machine learning methods – which allow for highly complex and flexible relationships
between covariates and the outcome variable – should exhibit superior out-of-sample predictive performance
when compared with the Logit models. The right panels in Figure 1 and Figure 2 that report the predictive
performance of the perfect foresight RF model do not support this hypothesis.

Before discussing the predictive performance of the RF classifier, it should be emphasized that because
of the sampling method we used to balance defaults and non-defaults algorithm and the bootstrapping
procedure that is used when training the RF classifier, the validation sample on the diagonal elements of
the rightmost panels of the heatmaps in Figure 1 and Figure 2 actually differs from the training sample.34

The diagonal results for the Logit models, on the other hand, are mechanically equal to zero and represent
true in-sample predictions in the sense that the set of observations used to construct the EvAjj measures
is identical to the set of observations used to estimate the Logit model. The diagonal cells for the RF and
Logit models are thus not comparable, while the off-diagonal cells are comparable.

In spite of the fact that the RF model allows for far more flexibility in the relationship between the
covariates and mortgage default, the out-of-sample predictive performance of the perfect foresight RF model
is typically worse than that of the perfect foresight Logit models, in some cases significantly so.35 Our finding
that the Logit model outperforms the RF classifier may be due in part to the nature of our prediction problem.
The RF classifier tends to perform well when the feature set contains many variables that are unrelated to the
outcome variable, a situation that is referred to as “sparsity” in the literature [Athey and Imbens, 2019]. Like
all mortgage servicing records, our data contains a relatively limited number of features, so our prediction
problem is not characterized by sparsity. Second, the RF classifier is adept at discovering non-monotonic
relationships between the features and the outcome variables but can struggle with recovering linear and
quadratic relationships. In our application, it is natural to believe that the main drivers of mortgage default
such as LTV and FICO scores have a monotonic impact on default risk, potentially limiting the usefulness
of the RF classifier.

The difference in the predictive performance between the perfect foresight Logit model and perfect fore-
sight RF model is evidenced by a greater share of darker blue and darker red cells in the rightmost panels
in Figure 1 and Figure 2 as compared to the center panels. Interestingly, relative to the Logit model, the
predictive performance of the RF classifier appears to deteriorate much more quickly with slight temporal
deviations between the training and validation sample, especially in time periods where defaults were quite
rare. For example, when the perfect foresight Logit model was trained using 2015 data, it underestimated
defaults in the 2016 validation sample by 53 percent for purchase loans and overestimated defaults by 141
percent for refinance loans. The RF model that was trained using 2016 data, in contrast, underestimated

34The sampling procedures used to implement the RF classifier are discussed in Section 3.2.
35In our preliminary analyses, we trained the RF classifier on the exact same training data that we used to estimate the Logit

model without using the sampling scheme to rebalance the prevalence of defaults and non-defaults. When the RF classifier was
trained in this way, the out-of-sample predictive accuracy of the RF model was even worse than the results presented here as
measured by EvAjk. The superior predictive performance of the Logit model trained on the raw data thus does not appear
to be solely an artifact of the balanced sampling scheme we use when training the RF model. It is worth noting that our
finding that the Logit model outperformed the RF model based on certain measures of prediction accuracy is not unique in the
literature [Kirasich, Smith and Sadler, 2018].
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defaults in the 2015 validation sample by 63 percent for purchase loans and overestimated defaults by 278
percent for refinance loans.

Like the Logit results, our analysis of the RF classifier indicates that the predictive instability of models
of mortgage default was not a phenomenon that was unique to the early-2000s boom-era mortgage market.
In fact, our results suggest that if anything, the RF classifier is an even less accurate predictor of default in
the post-crisis lending environment.

3.6.2 Marginal Effects Analysis

In the context of our analysis, the Lucas critique implies that relationship between the mortgage default
indicator and the regressors in our Logit model will change over time. That is, under the Lucas critique the
estimated parameters on the regressors should exhibit sizable changes as the training data is changed. To get
a sense of the magnitude of intertemporal changes in the relationship between common mortgage risk factors
and loan performance, we constructed the average marginal effects (AME) for the FICO score variables and
LTV ratio variables that were used to generate the out-of-sample predictions discussed in Section 3.6.1.36,37

The results of this analysis are presented in Tables 3 and 4.
Consistent with the Lucas critique, the estimated AMEs change considerably as we change the training

data cohort. Consider first the estimated impact of LTV on default risk. When using the 2007 origination
cohort to estimate the Logit model, we find that relative to loans with an LTV below 60, purchase and
refinance loans with zero down payment (LTV > 99) were roughly 18 percentage points more likely to
default. When estimating the same model using the 2016 origination cohort, the AME on the LTV > 99
term was a mere 0.9 percentage points for purchase loans and 0.8 percentage points for refinance loans. The
relationship between default risk and FICO scores is similarly unstable over time. The estimated AMEs
based on the 2007 cohorts imply that relative to loans with a FICO score of less than 550, purchase and
refinance loans with a FICO score in excess of 800 were 36 and 33 percentage points less likely to default,
respectively. The estimated AME on the FICO > 800 term based on the 2016 training data, in contrast,
is -4.8 percentage points for purchase loans and -2.3 percentage points for refinance loans. In light of the
extreme changes in the estimated AMEs associated with, in some cases, only a one year change in the training
data, the instability of the predictive default models summarized in Figures 1 and 2 is unsurprising.

36The models on which the AMEs are based were estimated using the full set of regressors described in Section 3.2. To
conserve space, we do not report the AMEs for the other variables.

37The analogue to the marginal effects analysis for the Random Forest model is the partial dependence plot (PDP) [Greenwell,
2017]. The PDPs for CLTV and FICO scores for the year-by-year RF models were also unstable across different training samples.
To conserve space, we focus our discussions on the Logit average marginal effects. The PDP plots for the RF model are available
upon request.
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4 Why Do Models That Predict Failure Fail?

4.1 Potential Mechanisms

In Section 3 we provided strong evidence that the accuracy of predictive models of mortgage performance
deteriorates rapidly when the economic environment of the training data differs significantly from that of the
validation data. Additionally, we demonstrated that the estimated relationships between default risk and
two of the most widely-used variables in mortgage risk models – LTV and FICO scores – are wildly unstable
across different training samples. These findings beg an obvious question: why do models that predict failure
fail?

To understand the econometric issues associated with predicting mortgage performance, it is helpful
to first discuss the two leading schools of thought regarding the mechanisms that cause mortgage default.
Under both the “strategic” and “double trigger” models, a consumer defaults on debt when some trigger
event occurs. If Eventi,s,s+t is equal to 1 if loan i experiences an event that leads to default between s and
s + t, 0 otherwise, and NegEquityi,s,s+t and LiquidShocki,s,s+t are indicator variables taking values of 1
if the borrower experiences negative equity or a liquidity shock, respectively, over the performance horizon,
then under the strategic default model,

Eventi,s,s+t =

{
1 if NegEquityi,s,s+t = 1
0 if NegEquityi,s,s+t = 0

(7)

and under the double trigger model

Eventi,s,s+t =

{
1 if NegEquityi,s,s+t × LiquidShocki,s,s+t = 1
0 if NegEquityi,s,s+t × LiquidShocki,s,s+t = 0

(8)

To think about the mechanisms driving the failure of predictive models discussed in Section 3, let us
consider an econometric model of the relationship between a variable indicating default between period s
and s+ t, which we denote Di,s,s+t, and Eventi,s,s+t. To keep the exposition as simple as possible, we limit
our discussion to the context of a linear probability model. In this setting, the empirical analog to both the
“strategic” and “double trigger” models can be written as

Di,s,s+t = β0 + β1Eventi,s,s+t + εi,s,t+s (9)

Note that β0 and β1 in Equation 9 should be time-invariant if either of the theories under consideration
capture the actual mechanism that causes mortgage default.

When building predictive models of mortgage performance, lenders clearly do not know if the borrower
will experience negative equity or a liquidity shock following the loan’s origination. The typical approach
to building predictive models of mortgage performance used in underwriting – one that we have utilized in
Section 3 – is to use measurements of variables that are observable or at least forecastable at the time of
origination to predict the likelihood that the trigger event occurs over the performance horizon.

To understand how model instability can arise when using this approach to predict mortgage performance,
note that we can decompose Eventi,s,s+t as follows

Eventi,s,s+t = E [Eventi,s,s+t|xi,s] + νi,s,s+t (10)

where E [Eventi,s,s+t|xi,s] denotes the conditional expectation of the arrival of the event at time s + t
conditional on the information available at time s, denoted xi,s.

If we express the conditional expectations as a linear function of xi,s, then we can write Equation 10 as

Eventi,s,s+t = δ0s + xi,sδ
1
s + νi,s,s+t (11)

The parameters in the vector δ1s in Equation 11 have an interesting interpretation. Consider, for instance the
parameter – call it δLTVs – on the component of xi,s that measures LTV as of period s. δLTVs captures the
relationship between leverage at the time of origination for loans in origination cohort s and the likelihood
that the loan experiences negative equity between s and s+ t. δLTVs will vary significantly over the economic
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cycle. In a regime where all property values are increasing, δLTVs will be small because regardless of a loan’s
original LTV, very few loans will experience negative equity. When property values are declining, on the
other hand, δLTVs will be large as loans with low levels of initial equity will be highly likely to experience
negative equity.

We can study the impact of changes in the economic environment on the statistical relationship between
the elements in xi,s and default risk by substituting Equation 11 into Equation 9

Di,s,s+t = β0 + β1 Eventi,s,s+t︸ ︷︷ ︸
=δ0s+xi,sδ1s+νi,s,s+t

+ εi,s,t+s (12)

Di,s,s+t =
(
δ0s + β0

)
+ β1xi,sδ

1
s +$i,s,t+s (13)

Di,s,s+t = α0
s + xi,sα

1
s +$i,s,t+s (14)

where $i,s,t+s = β1νi,s,s+t + εi,s,t+s, α
0
s = δ0s + β0, and α1

s = β1δ
1
s .

Within this framework, even if the structural relationship described in Equation 9 is time-invariant in
the sense that β0 and β1 do not change across loan cohorts, the estimated intercept (α̂0

s) and vector of
slope parameters on the covariates (α̂1

s) based on the “plug-in” model will not be intertemporally stable.
The instability in the regression parameters arises because the parameters being estimated are clearly a
function of the economic environment from which the training data were drawn. Specifically, if the data
used to estimate Equation 14 is drawn from a period of rising home values, declining unemployment, and
few defaults, then the absolute magnitude of the components of δ1s will be small, which will in turn attenuate
the components of α1

s, implying a low sensitivity between the components of xi,s and default risk. When the
training data is drawn from a period of declining home values, worsening economic conditions, and rising
default rates, on the other hand, the components of δ1s will be large, as will the components of α1

s, implying
that the factors in xi,s are strong predictors of mortgage default.

While the toy model discussed here is far simpler than the Logit model we discussed in Section 3, the
implications from this framework mirror our finding that the estimated average marginal effects on the LTV
terms vary significantly with the rate of post-origination price appreciation experienced by loans in the train-
ing data. The simple linear probability regression example also suggests that predictive models of mortgage
performance built using variables that proxy for the future arrival of equity and liquidity shocks will be
inherently unstable in terms of their predictive accuracy and that the magnitude of out-of-sample prediction
errors will grow as the macroeconomic conditions in the training data become increasingly dissimilar from
those in the validation sample. One mechanism likely driving the deterioration in the predictive performance
of mortgage default models is thus the fact that such models are typically constructed using proxies for the
arrival of trigger events, and the relationship between these proxies and the actual occurrence of these trigger
events changes significantly over time.

A second potential factor underlying the poor performance of predictive models of mortgage default
concerns the Lucas critique. Lucas [1983] argued that observational data on economic phenomena reflects
optimal decision rules of forward-looking economic agents and that changes in the economic environment –
policy or otherwise – would alter expectations and result in changes in behavior. These changes in behavior,
in turn, would then alter the joint distribution of the outcome variable and the predictors. In the case of
parametric models, changes in the statistical relationship between the dependent variable and the regressors
will manifest themselves in estimated parameters that vary significantly when the model is estimated using
different training data. For non-parametric forecasting methods such as the RF classifier, changes in the joint
distribution between the outcome variables and predictors will result in changes in the predicted outcome
for an observation with a fixed set of values for the predictors.38,39

38In essence, the Lucas critique concerns the the parameter constancy and invariance of an econometric model. The idea of
parameter constancy and invariance can be traced back to Frisch [1938] and Haavelmo [1944]. Hendry [1988] and Engle, Hendry
and Richard [1983] suggested approaches for testing these parameter properties.

39The Lucas critique has found relatively little empirical support, especially among those studies using the concept of su-
perexogeneity for testing the critique. Ericsson and Irons [1995] provides an extensive discussion of previous work on the topic.
In addition to papers studying forward-looking models, there is also a branch of the literature that analyzes the performance
of backward-looking models. See, for example, Ball [1999], Svensson [1997], Rudebusch and Svensson [1999], Taylor [1999],
Estrella and Fuhrer [1999], and Fuhrer [1997]. As an exception, Lindé [2001] identified the relevance of the Lucas critique in
practice by using a real-business cycle model. He further suggested that the superexogeneity test does not have enough power
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Although Lucas [1983] focused his critique on the use of macroeconometric models for predicting policy
responses, the core of his critique can be easily applied to microeconometric models such as those used
to predict mortgage performance.40 Consider, for example, the estimated impact of the LTV ratio – a
variable used in virtually all predictive models of mortgage performance – on default. Recent work [Bailey
et al., 2019] has argued theoretically and demonstrated empirically that mortgage borrower leverage is a
function of borrowers’ expectations for future price appreciation.41,42 If household expectations are leading
indicators of future realized house price appreciation, LTV measured as of time period s will be correlated
with realized home price changes between s and s + t; this implies that borrower house price expectations
as of period s will in part determine whether the borrower is “underwater” in s + t.43 As discussed above,
negative equity plays a critical role in determining whether or not a loan goes into default in both the
“double trigger” and “strategic” models. Thus under both schools of thought concerning the determinants
of mortgage default, Bailey et al.’s [2019] framework, when paired with the assumption that borrower price
expectations are predictive of subsequent house price changes, implies that LTV measured as of time period
s will be correlated with the arrival of default trigger events.44

Importantly, in addition to finding that leverage is a function of borrower price expectations, Bailey et al.
[2019] also provide evidence that the relationship between home price expectations and leverage changes

to test the critique in small samples. Similar to Lindé [2001], Lubik and Surico [2010] found evidence of a small-sample bias
which tends to hide the instability of backward-looking specifications. They demonstrated that when the instability of the
reduced-form error variances is accounted for, the Lucas critique is found to be empirically relevant.

40In the context of the Lucas critique, the “deep parameters” in the linear probability model of default discussed above are
β0 and β1.

41Bailey et al. [2019] model a household’s leverage choice decision when purchasing a home. A loan’s LTV in their theoretical
framework is determined by borrower expectations about the future path of housing values and the extent to which households
can adjust housing consumption. Specifically, Bailey et al. [2019] analyze leverage choice for two different types of households:
households that are free to adjust both their leverage and their level of housing consumption (“variable house size”) and
households whose level of housing consumption is driven by non-financial factors such as family size and can be treated as
independent of leverage choice (“fixed house size”). For variable-house-size households, their theoretical model predicts that
higher levels of expected house price appreciation increase LTV. In contrast, fixed-house-size households reduce LTV when they
have greater expectations for home price gains.

42We also provide empirical evidence linking price expectations to leverage in Appendix A using data from the National
Survey of Mortgage Originations.

43Using survey data, Case, Shiller and Thompson [2012] provide evidence that between 2003 and 2006, household price
expectations did in fact predict post-survey movements in housing values. From 2007 forward, however, household expectations
regarding home price appreciation and actual changes in housing values diverged significantly.

44More formally, Bailey et al.’s [2019] analysis implies that LTVi,s is a function of borrower price expectations. That is,

LTVi,s = fs
(

Price Expectationss,s+t
i

)
(15)

where fs () is indexed by s to allow for the relationship between leverage and expectations to vary over time as in Bailey et al.’s
[2019] empirical work and our findings in Appendix A. Case, Shiller and Thompson’s [2012] findings that expectations are
predictive of house price appreciation – denoted HPAi,s,s+t – and that the relationship between expectations and HPAi,s,s+t

varies over time imply that

HPAi,s,s+t = gs
(

Price Expectationss,s+t
i

)
(16)

Inverting Equation 15 allows us to write

Price Expectationss,s+t
i = f−1

s (LTVi,s) (17)

Substituting Equation 17 into Equation 16, we can express realized house price appreciation as a function of LTVi,s

HPAi,s,s+t = gs
(
f−1
s (LTVi,s)

)
(18)

Lastly, because Eventi,s,s+t is in part determined by whether a borrower has negative equity and negative equity status is
dependent upon house price appreciation, we have

Eventi,s,s+t = φs (HPAi,s,s+t) (19)

The arrival of a trigger event in this framework is thus a time-varying function of LTVi,s

Eventi,s,s+t = φs
(
gs

(
f−1
s (LTVi,s)

))
(20)
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over time with the state of the economy.45,46 This finding is critical for our analysis as it implies that the
relationship between LTV, price expectations, realized house price changes, and thus default risk should vary
over the economic cycle.

For the sake of parsimony, Bailey et al.’s [2019] theoretical model abstracts away from borrower uncer-
tainty about shocks to income and non-housing wealth. In richer models where borrowers also incorporate
affordability considerations into the decision calculus, variables such as DTI and non-housing assets would
likely also reflect borrower expectations for future changes in economic conditions.47

Thus in addition to expectations about the future path of housing values, a loan’s observed LTV and
DTI can be viewed as a function of a borrower’s expectations about future income streams and other
post-origination changes in other measures of financial wellbeing that several papers have documented are
important determinants of default risk [Gerardi et al., 2017; Fuster and Willen, 2017; Hsu, Matsa and
Melzer, 2018]. Intertemporal changes in the relationship between borrowers’ ex ante expectations about
the evolution of these factors and the ex post realized values of these variables as in the example above
would generate intertemporal variation in the estimated relationship between LTV, DTI, and mortgage
performance. Taken as a whole, Bailey et al.’s [2019] framework suggests that the estimated relationship
between mortgage default and variables commonly used in credit risk models will depend heavily on the
macroeconomic conditions that prevailed in the training data; when such models are used to predict loan
performance exposed to much different macroeconomic conditions, the predictive accuracy of these models
will be poor.

The foregoing discussion raises an important question that is straightforward to answer empirically: does
the correlation structure between risk factors observed at the time of origination and the arrival of post-
origination trigger events such as negative equity and income shocks vary over time? This question cannot
be addressed using loan-level servicing records like those we utilized in Section 3 because servicing records do
not report information on post-origination changes in a household’s financial situation. This question can,
however, be addressed using data the Panel Study of Income Dynamics (PSID). We turn now to an analysis
of the intertemporal variation in the correlation between variables that are used to predict default and the
subsequent materialization of adverse financial shocks using the PSID. In the context of our linear probability
framework, this analysis provides direct evidence on the mechanisms causing intertemporal instability in δ0s
and δ1s .

4.2 Panel Study of Income Dynamics (PSID) Analysis

As discussed above, the variables that are traditionally used in models of mortgage performance can be
viewed as predictors of the likelihood that a borrower experiences an adverse event that triggers default at
some point in the future. Administrative servicing records like the McDash files do not report information
on whether borrowers receive adverse shocks following loan origination, so it is not possible to use loan-level
servicing data to study the relationship between the variables used in predictive models of loan performance
and the subsequent arrival of trigger events. For that reason, we turn to the PSID to study the possibility
that intertemporal heterogeneity in the relationship between these proxies and the actual arrival rate of
such shocks could potentially be one of the mechanisms driving model failure and the extreme swings in the
marginal effects discussed in Section 3.6.2.48

45Specifically, in a cross-sectional analysis, Bailey et al. [2019] find that the relationship between house price beliefs and
leverage is stronger for more pessimistic borrowers, a finding that is consistent with the “fixed house size” model of leverage
choice. In the time series, they find a stronger relationship between beliefs and leverage when home values are declining.

46We also provide empirical evidence that the relationship between price expectations and LTV changes over time in Appendix
A using data from the National Survey of Mortgage Originations.

47Developing such a model is outside of the scope of this paper. We could imagine, however, that borrowers that are more
optimistic regarding future income growth would be more apt to take out loans with high DTIs. On the supply side of the
market, lenders offer “physician mortgage” programs based on this very idea. In such programs, borrowers are offered attractive
terms on mortgages with high LTVs and DTIs because the borrowers have high expected income potential. In an economic
sense, expected changes in wealth – for example, because of an inheritance – are simply a component of permanent income. That
said, we would also expect borrowers that anticipate an increase in wealth to take out loans that are riskier along traditional
underwriting dimensions.

48Our use of survey data to study loan performance is not unique in the literature. Several post-crisis papers have utilized
similar data sources to demonstrate that adverse shocks to a household’s financial health such as a sudden reduction in income,
an increase in mortgage payments, or an increase in other financial obligations are key determinants of mortgage default. See,
for example, Gerardi et al. [2017], Fuster and Willen [2017], and Hsu, Matsa and Melzer [2018].
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The PSID is a nationally representative household survey that has been administered since 1968. The
questions in the PSID data are designed to collect information on a wide variety of factors that affect the well
being of U.S. households, such as health indicators, spending behavior, income, wealth.49 Most importantly
for our study, unlike other social surveys that are cross-sectional nature, PSID respondents are followed over
time. It is the panel structure of the PSID that allows us to study the relationship between variables used in
predictive models of mortgage performance and the subsequent arrival of delinquency trigger events. Due to
restrictions on the availability of several key variables, we limit our analysis to the PSID survey waves from
1999 and 2017. During this time period, the PSID was administered on a biennial basis. To align as closely
as possible with the model performance analysis in Section 3, we study the relationship between responses
to survey questions about a household’s finances in a particular survey year (t) and variables characterizing
negative financial shocks in the next survey wave (t+ 2).50 In this portion of our analysis, we “observe the
unobservables” in the sense that, while the trigger events that result in default are not generally observable
in the administrative data that econometricians use to build credit risk models, these events are reported in
the PSID [Gerardi et al., 2017]. Our approach can be contrasted with methodologies that, instead of trying
to collect data on typically unobservable risk factors, attempt to extract information on latent risk factors
by modeling unobservables (e.g., Duffie et al. [2009]).

Our analysis focuses on two variables that are commonly considered in mortgage underwriting: the
combined loan-to-value ratio and the payment-to-income ratio. In what follows, we will refer to these
measures as CLTVPSID and PTIPSID to avoid any possible confusion with the LTV and DTI variables in
the McDash data that we utilized in our model performance analysis. We define CLTVPSID as the sum of
unpaid principal balances on first- and second-lien mortgages divided by the survey respondent’s estimated
value of his or her home as of the survey date. This CLTVPSID measure should closely mirror the LTV
values reported in loan-level servicing records such as those used in Section 3. We construct the PTIPSID

measure by summing the annual payments for first- and second-lien mortgages and dividing this sum by
annual family income; this PTI variable is similar to the front-end debt-to-income ratio that is commonly
used in mortgage underwriting.

Unfortunately, because the PSID does not report required payments on non-mortgage debts, we are un-
able to construct a variable that is comparable to the back-end debt-to-income ratio that is commonly used
as a measure of a borrower’s debt-servicing capacity. The PSID data does, however, report the outstanding
balances on non-mortgage debts such as automobile loans, student loans, medical debt, and credit card bal-
ances. As a compromise, we construct a balance-to-income (BTIPSID) measure by aggregating all mortgage
and non-mortgage debt balances and dividing this sum by the annual income reported in the survey year.
While our BTIPSID measure does arguably capture variation in households’ ability to service their debts,
this variable is not directly comparable to the DTI measure in the McDash data that we utilize in our
prediction accuracy analysis.

To study intertemporal variation in the relationship between variables that are typically used in credit
risk models and the subsequent arrival of trigger events, we ran a series of simple linear regressions of
CLTVPSID, PTIPSID and BTIPSID as measured in period t+ 2 and the value of these variables in period t.
Because theory suggests that negative equity is a critical trigger of mortgage default, in addition to studying
the relationship between CLTVPSID

t and CLTVPSID
t+2 over time, we also estimated a series of regressions in

which an indicator variable that is equal to one if the household reported having a CLTVPSID
t+2 in excess of

one in period t + 2 was regressed on CLTVPSID
t . We estimated all of these regressions using a sample of

observations pooled from 1999 through 2015 as well as on a survey-wave-by-survey-wave basis.
While the discussion in Section 4 focused on changes in the relationship between proxies for trigger events

measured as of the prediction date and the subsequent arrival of trigger events, an additional potential
source of model instability concerns the correlation between these proxies and unobservables that influence
a borrower’s ability to repay the loan. One such unobservable is a borrower’s amount of non-housing wealth:
when a borrower experiences liquidity issues, for example, this wealth can be used to continue to pay
the mortgage even if the borrower is currently “underwater.” If a borrower’s leverage decision depends on
expected changes in non-housing wealth, then CLTVPSID

t would be correlated with future wealth for reasons

49More information on the PSID can be found at https://psidonline.isr.umich.edu/.
50For example, we study the relationship between the CLTV reported by survey respondents in 1999 and the incidence of

negative equity in 2001. Because the 2019 PSID data was not available at the time of this writing, the 2017 PSID wave was
only used to construct the trigger event variables associated with the 2015 survey responses.
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similar to those generate the link between CLTVPSID
t and future trigger events. We study this by regressing

a borrower’s non-housing net worth as of period t+ 2 on the CLTVPSID
t .

We use two distinct samples from the PSID to conduct our analysis: an “all mortgages” sample and
an “originations” sample. To construct the “all mortgages” sample, we identify household heads between
the ages of 24 and 75 in the PSID data that report being homeowners with a positive mortgage balance in
period t. Unlike mortgage servicing data that is structured to follow particular loans over time, the PSID
data is structured to follow people over time. That said, if a household moves between t and t + 2, the
house value reported by the respondent in period t+ 2 may not correspond to the home that the respondent
occupied in period t. The reported CLTVPSID in period t + 2 plays a critical role in our analysis, and
studying changes in the CLTVPSID measure when households are simultaneously changing residences would
significantly complicate the interpretation of findings. To address this issue, we further limit the sample
to households that reported in period t + 2 that they had not moved since the previous survey. Lastly,
we limited the sample to those observations with CLTVPSID values between 0.1 and 2.5, PTIPSID values
less than 0.8, and BTIPSID ratios less than 8.51 The second sample that we construct (the “originations”
sample) is comprised of loans from the “all mortgages” sample that are further limited to observations where
the household reported that its mortgage was originated in the same year that the survey was administered.
While a borrower’s financial health can certainly change over the course of a year, we feel that the financial
data reported in the PSID data for borrowers in the “ originations” sample should be quite similar to the
financial data that was used to underwrite the loans.

We report summary statistics for the “all mortgages” and “originations” samples in Tables 5 and 6,
respectively, while we report the regression results based on these samples in Tables 7 and 8. As evidenced
in Table 5, in the “all mortgages” sample, on average CLTVPSID generally declined between 1999 and
2007, increased between 2007 and 2013, and declined between 2013 and 2015, a pattern that reflected the
impact of national house price trends on measures of homeowner equity. Average PTIPSID, in contrast,
was remarkably stable over the course of our sample, ranging only between 0.15 and 0.18. The average
of our BTIPSID measure – which measures the amount of total debt outstanding to annual income – rose
steadily between 1999 and 2011 before declining in the last two wave years of our sample. The dynamics
of our BTIPSID measure mirror the well-documented leveraging and de-leveraging of American households
over the course of the most recent credit cycle. Based on the changes in our debt measures, these changes
in household indebtedness were driven primarily by changes in mortgage debt, as household income and
non-mortgage debt were quite stable by comparison throughout our sample.

Perhaps most importantly for our analysis, the transition between positive and negative equity varied
enormously over time. In 2005, only 1.56 percent of the households in the “all mortgages” sample reported
owing more on their home than it was worth. By the height of the housing crisis in 2011, 9.57 percent of
households reported having negative equity, an astonishing 6-fold increase in the incidence of negative equity
in a mere 6 years.

There are several similarities between the sample statistics for the “all mortgages” sample and those of
the “originations” sample reported in Table 5. For instance, PTIPSID in the “originations” sample was
also very stable over time, while BTIPSID rose and fell with the ebb and flow of the credit cycle. There
are, however, important differences between the two samples. First, CLTVPSID was, on average, uniformly
higher in the “originations” sample, reflecting the gradual deleveraging that occurs through amortization. A
second noticeable difference between the “originations” and the “all mortgages” samples is that the incidence
of negative equity reported as of the survey date is lower in the former sample than in the latter. This finding
is unsurprising as even during the height of the mortgage boom, mortgages with negative equity at the time
of origination were quite rare.52

The most striking difference between the “originations” and “all mortgages” samples concerns the tran-
sition of households from positive to negative equity during the Great Recession. 2.17 percent of the “all
mortgages” sample reported having negative equity in 2007, while 8.91 percent of this sample reported hav-

51The sample limitations discussed in the main text removed only a small number of observations with seemingly implausible
values.

52Some loan products guaranteed by the Department of Veterans Affairs (VA) do allow homeowners to take out loans that
exceed the value of their home. VA loans make up only a small part of the overall mortgage market. Most of the households
in the “originations” sample that report having negative equity as of the survey date thus likely had zero or positive equity at
the time that their loan was originated but experienced a decline in the value of their property between the origination of the
loan and the survey date.
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ing negative equity when they completed the survey in 2009. In the “originations” sample, in contrast, while
only 2.15 percent of the households reported having negative equity in 2007, a shocking 24.58 percent of
households that reported a newly-originated loan in 2007 had negative equity as of 2009.

The results reported in Table 7 and Table 8 confirm our expectation that variables typically used in
credit risk models of mortgage performance are strongly predictive of future values of these variables. More
importantly, these regressions also reveal that the correlation between credit risk factors observed as of period
t and the arrival of trigger events in t+ 2 varies significantly over the economic cycle.

Consider first the case of the relationship between CLTVPSID
t and the reported incidence of negative

equity in t + 2. When we use the “all mortgages” data from all survey waves between 1999 and 2015 to
estimate this regression, a ten-percentage-point increase in CLTVPSID in period t – say, from 0.8 to 0.9
– is associated with a 2.77 percent higher chance of experiencing negative equity in t + 2.53 As only 5.46
percent of households in this sample report experiencing negative equity in the subsequent survey wave, this
correlation between CLTVPSID

t and the the negative equity indicator is economically as well as statistically
significant. When we estimate the regression using wave-by-wave samples, we find that the magnitude of the
correlation between these two variables exhibited significant variation over time. In the waves from the late
1990s and early 2000s, we estimate that a ten-percentage-point increase in CLTVPSID increased the risk of
subsequently experiencing negative equity by roughly 1 percentage point. The nationwide decline in home
values that began in 2007 fundamentally altered the nature of this correlation: for the 2007, 2009, and 2011
wave years, we find that the same ten-percentage-point increase in CLTVPSID increased the likelihood of
subsequently experiencing negative equity by 3.84 percent, 5.32 percent, and 4.34 percent, respectively. As
expected, the recovery of the housing market that started in 2012 resulted in the coefficient on the CLTVPSID

t

term in our negative equity regressions declining significantly in the final two waves of our sample. These
findings are consistent with our hypothesis that the relationship between CLTVPSID

t and the likelihood of
subsequently experiencing negative equity – the δ1s term in the linear probability model in Section 4 – is
highly unstable over time, particularly when housing price dynamics are changing quickly. It is this kind of
instability that can give rise to the types of fluctuations in the estimated relationship between trigger-event
proxies and realized defaults discussed in Section 3.

In addition to the instability of the relationship between CLTVPSID
t and the negative equity indicator,

we also find evidence that the relationship between CLTVPSID
t+2 and CLTVPSID

t varied significantly across
survey waves. If CLTVPSID

t is a perfect proxy for CLTVPSID
t+2 , then a regression of the latter variable on

the former would have an intercept of approximately zero and a slope of approximately one. The reported
coefficients in the second panel of Table 7 suggest that the actual relationship between CLTVPSID

t and
CLTVPSID

t+2 is quite far from this “perfect proxy” benchmark. To put context around the magnitude of the
wave-to-wave variations in the correlation structure between CLTVPSID

t and CLTVPSID
t+2 , consider a loan

with a CLTVPSID
t value of 0.7, which is roughly the average value of this variable in the “all mortgages”

sample. The regression parameters predict that CLTVPSID
t+2 for such a loan would fall to around 0.6 for

the 1999 through 2005 PSID waves. Thus, even though mortgage balances in this sample were, on average,
increasing during this time period, home values were increasing so rapidly that they more than offset the
run-up in household leverage, resulting in a decline in CLTVPSID

t+2 relative to CLTVPSID
t. The estimated

parameter coefficients for the 2007 and 2009 survey waves reveal that relationship between CLTVPSID
t+2 and

CLTVPSID
t changed radically with the onset of the Great Recession, and for these two waves, a CLTVPSID

t

value of 0.7 was predicted to increase to between 0.71 and 0.74. Finally, as home prices recovered in the final
waves in our sample, the estimated relationship between CLTVPSID

t+2 and CLTVPSID
t was more similar to

what was seen in the pre-crisis period. In light of the discussion in Section 4.1, these findings are consistent
with the large changes in the average marginal effects of the LTV variable reported in Table 3 and Table 4
being driven by significant intertemporal variation in the relationship between current and subsequent values
of LTV.

We report in the third panel of Table 7 the results from regressions where CLTVPSID
t is the lone indepen-

dent variable and the dependent variable is the household’s reported non-housing wealth in period t+ 2. For
every sample wave, we find statistically significant correlation between CLTVPSID

t and future non-housing
wealth. The negative coefficient on the CLTVPSID

t terms in these models implies that homeowners that are
more highly leveraged have fewer non-housing assets that could be used to continue to service debts in the

53The reader is reminded that our CLTV measure takes values between 0 and 2.5.
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face of liquidity pressures. As with the other results, the magnitude of the estimated parameters from these
models varies significantly across the different PSID waves. These findings imply that an additional source
of model instability could be a time-varying relationship between the CLTVPSID terms used in predictive
models and subsequent changes in a borrower’s non-housing wealth.

In contrast to the estimated relationship between CLTVPSID
t and CLTVPSID

t+2 , we find that the relation-
ship between PTIPSIDt and PTIPSIDt+2 was quite stable over time. At the grand PTIPSIDt average of 0.17, for
example, across the different wave-by-wave models, the predicted value of PTIPSIDt+2 was in a narrow range
between 0.152 and 0.164. Thus while CLTVPSID

t appears to be an unstable proxy for a household’s future
home equity, payment-to-income ratios measured as of the prediction date are likely strong predictors of a
borrower’s debt-servicing capacity in the near term.

The results in the final panel of Table 7 indicate that the relationship between BTIPSIDt and BTIPSIDt+2

also varies over time, though the intertemporal heterogeneity in the BTIPSID relationship is less extreme
than what we observe for the CLTVPSID variables. Though our BTIPSID results cannot speak directly
to how well the back-end DTI measure typically used in mortgage underwriting captures variation in a
borrower’s future ability to pay his or her debts, the intertemporal heterogeneity in the relationship between
BTIPSIDt and BTIPSIDt+2 suggests that the relationship between current and future back-end DTI measures
also vary over time.

The regression results for the “originations” sample reported in Table 8 are qualitatively similar to
the results of the “all mortgages” analysis. In the CLTVPSID analysis, the estimated coefficient on the
CLTVPSID

t variable exhibits large changes across the different sample waves in the models where the negative
equity indicator, CLTVPSID

t+2 , and non-housing wealth serve as dependent variables. In some cases, the
estimated coefficients are no longer statistically significant. The reduction in statistical significance as we
move from the “all mortgages” to the “originations” sample is unsurprising given the much smaller size of
the “originations” sample. Also like the “all mortgages” results, the coefficients in the PTIPSID models are
generally stable across waves, while the coefficients in the BTIPSID models exhibit more heterogeneity.
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5 Leave-One-Out Analysis

Previous research has shown that negative equity and adverse financial shocks are the primary determinants
of mortgage delinquency. Because the post-origination path of a borrower’s home value and income are never
known at the time that a loan is originated, credit risk models are typically constructed using variables such
as LTV and DTI measured at the time the loan is originated. In the context of both leading schools of
thought concerning mortgage default, these variables are, in essence, predictors of the likelihood that a
default trigger event occurs at some point in the future. In Section 3 we demonstrated that the estimated
relationship between two of these variables – LTV and FICO score – and default risk varied wildly over time.

The discussion and results in Section 4 suggested that this intertemporal instability is likely attributable
two factors. First, we found one of the most widely-used variables in mortgage credit risk modeling – the
LTV ratio – is strongly correlated with borrowers’ expectations for the future path of variables known to
influence mortgage delinquency, such as housing values. Second, in our PSID analysis we demonstrated
that the relationship between several key credit risk predictors – variables which are functions of borrower
expectations – and the subsequent arrival of trigger events exhibits significant intertemporal heterogeneity.
In the context of our model performance analysis in Section 3, both of these factors imply that the out-
of-sample predictive performance models will be poor when the economic conditions characterizing the
validation sample differ significantly from those experienced by the development sample.

In light of these modeling limitations, it is natural to ask how the predictive performance of these models
might be improved. One possible solution would be to try to train models using data that experienced
similar economic conditions to those that would occur in the out-of-time sample where the predictions are
applied. This solution is, of course, fundamentally infeasible as the economic conditions for the out-of-time
sample will never be known at the time a predictive model is being built. An alternative approach to
addressing model failure that is feasible would be ensuring that the training data contains observations from
a mix of economic conditions: if the poor performance of the predictive models is primarily driven by the
intertemporal instability in the estimated parameters in the regression models, then pooling observations
from many different origination cohorts could possibly stabilize out-of-sample predictive performance.54 To
investigate this possibility, we repeated the prediction exercise described in Section 3 but, instead of using
only data from one origination cohort to construct the training sample, we estimated the Logistic regression
models and trained the RF classifier using the data from every origination cohort in our data except for
the validation or “holdout” cohort. In what follows, we refer to this exercise as the “leave-one-out” (LOO)
analysis.

The LOO analysis clearly predicts performance using information that would not have been available at
the time the loans in the holdout cohort were originated. The performance of loans originated between 2006
and 2016, for example, would not be known in 2005, but in the LOO analysis the performance of the 2006
through 2016 origination cohorts is used to train the models that predict the behavior of loans originated
in 2005. We constructed the sampling for the LOO analysis in this way to allow for the predicted default
behavior of each of the holdout samples to depend on loans originated throughout the credit cycle, not just
those that happened to pre-date the holdout sample. That said, we interpret the results of this analysis as
evidence of the accuracy of predictive models of mortgage performance when such models are trained on a
sample of loans drawn from throughout the credit cycle.

We estimate the Logistic regression models in the LOO analysis using the complete sample of all loans in
all years in our sample, except for loans originated in the holdout year k. We then use the parameters from
the Logit model to predict the probability that each loan in the validation sample defaults, and we construct
our accuracy measure EvA−k,k as in Equation 6, where −k denotes that the training data was comprised of
all origination cohorts except for cohort k.

When constructing the training sample for the LOO analysis using the RF classifier, we first retain all
defaults and non-defaults from all origination cohorts except for cohort k. Let SD−k and SND−k denote the set
of defaults and non-defaults in this sample, respectively. When growing each tree b of the 2, 000 trees in our
random forest, we randomly sample 50,000 observations from SD−k and 50,000 observations from SND−k with
replacement. To remain consistent with the aggregation rule used in the year-by-year analysis, we classify a

54In the context of the Basel regulatory capital framework, our LOO sampling scheme is similar to the use of “through-
the-cycle” (TTC) data for risk parameter quantification, while our initial analysis is similar to using a “point-in-time” (PIT)
approach to quantification.
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loan in the holdout data as a default if at least 70 percent of the tree-specific classifications were default.55,56

We summarize the predictive accuracy results of this analysis in Tables 9 and 10.57 For each of the three
different models, we report under the EvA−k,k column the accuracy measure associated with using the LOO
model to predict mortgage performance in a particular holdout year. To serve as a point of comparison, we
also report for each of these models the average, minimum and maximum values of the EvAj,k measures
from the analysis based on year-by-year (YBY) training samples described in Section 3. The LOO EvA−k,k
measures for both versions of the Logit model are almost uniformly bounded between the minimum and
maximum values from the EvAj,k measures for both purchase and refinance loans. The lone exceptions to
this bounding occur for the LOO perfect foresight Logit model when used to predict the performance of 2014
and 2015 refinance loans. When we alternatively exclude the 2014 and 2015 refinance originations data from
the training sample, the LOO Logit models overpredict defaults in these cohorts by 303 and 563 percent,
respectively. Notably, the 2014 and 2015 refinance origination cohorts had two of the lowest default rates in
our sample. In many cases we also find that EvA−k,k is quite close to the average of the EvAj,k values. We
interpret our results as evidence that using training data from a mix of economic conditions typically bounds
out-of-sample prediction errors for Logit models away from the extremes associated with using training data
drawn from a particular point in the economic cycle.

The behavior of the LOO RF classifier differs significantly from that of the LOO Logit models. Most
notably, for purchase loans, EvA−k,k from the RF LOO model frequently exceeded the maximum value of
EvAj,k associated with training the RF classifier on the YBY data in the 2007 through 2010 validation
cohorts, while in the refinance population EvA−k,k from the RF LOO model exceeded the largest overpre-
dictions from the YBY models between 2006 and 2010. In some cases, the difference between the RF LOO
and YBY results was quite extreme. For instance, consider the accuracy of the predictions for 2007 purchase
loan cohort. The LOO RF model overpredicts defaults by roughly 216 percent. When the RF model was
iteratively trained using the YBY samples, in contrast, EvAj,k ranged from -95.65 to 55.36.

Introducing macroeconomic heterogeneity into the training data for the RF classifier does, however,
appear to have some benefits regarding underpredictions. EvAj,k is bounded below at -100, a bound which
is realized when the model predicts no defaults in a particular validation cohort. Several of the minimum
values of EvAj,k for the RF classifier reported in Tables 9 and 10 are close to this lower bound of -100
when the RF classifier was trained using data from a high-default regime and predictions were made in a
low-default regimes.58 All of the EvA−k,k measures from the LOO RF model exceed the minimum values of
EvAj,k. Thus while we find no evidence that training the RF classifier on data from a mix of macroeconomic
conditions reduces the likelihood of experiencing extreme overpredictions of default activity, our exercise does
suggest that including data from a wide sample of time periods bounds RF prediction errors away from the
most severe underpredictions.

To get a better sense of what might be driving the improved predictive performance of the LOO models
relative to the YBY models, we estimated the average marginal effects (AMEs) associated with the LTV and
FICO variables that enter our Logit model. The AMEs for each of the holdout years are reported in Tables
11 and 12.59 Relative to the AMEs reported for the YBY models in Tables 3 and 4 that varied enormously
across different training samples, the AMEs from the LOO analysis are quite stable across different samples.
This stability is unsurprising given the nature of the LOO exercise. The composition of the training data
changes little as we change the holdout years.

Taken as a whole, the results of our LOO exercise suggest that when a Logit model is trained using data
drawn from a wide variety of economic conditions, the out-of-sample forecast errors will be bounded away
from some of the extreme overpredictions and underpredictions that we witnessed when the Logit model was

55See Appendix D for more detail on how this threshold was selected.
56Note that we do not use the SMOTE procedure in the construction of the LOO training samples for two reasons. First,

SDefault
−k for the LOO analysis contained far more defaults than any of the year-by-year samples for each training year k. There

was thus limited value in adding synthetic defaults to any of the training samples. Second, the sheer size of the training sample
for the LOO analysis rendered the SMOTE procedure computationally infeasible.

57We report the full regression results for these Logit models in Appendix C
58For instance, the RF model that was trained using purchase loans originated in 2007 –the cohort with the highest default

rate in our sample –predicted that there would be only 543 defaults in the 2015 origination cohort, which is the cohort with the
lowest default rate in our sample. There were 9619 defaults in the 2015 validation sample, and the prediction error measure in
this case was EvA2007,2015 = 100 ∗

(
543−9619

9619

)
= −94.36.

59We report the full set of estimated parameters for the Logit LOO analysis in Appendix C.
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trained using only data from one particular origination cohort. Based on the results from our marginal effects
analysis, it appears that the less extreme forecast errors for the LOO models stems from the stability of the
estimated parameters across the different LOO models. In Section 4 we posited that one of the mechanisms
underlying the poor out-of-sample predictive performance of mortgage default models is likely due to a highly
unstable relationship between variables typically used in credit risk models and the arrival rate of trigger
events following origination. In the context of this argument, the results of our LOO analysis suggest that
training predictive Logit models on data drawn from a wide variety of macroeconomic conditions smooths
over the volatility in the parameter estimates seen in the YBY analysis, and this increased parameter stability
bounds the forecasts of mortgage performance away from extreme underpredictions and overpredictions. If
we view the parameters estimated using data from throughout the economic cycle as a type of averaging of
the parameters associated with using only particular cohorts to train the data, then our finding that using
“average” parameters reduces forecast volatility is conceptually similar to results in the time series literature
suggesting that averaging over many different forecasts can improve forecast accuracy [Timmerman, 2006].
It is worth noting that the averaging associated with using through-the-cycle data does not produce out-of-
sample forecasts that are uniformly superior to those based on training data from a specific point in time.
It may thus be possible to improve out-of-sample model performance further by limiting the training data
to loans originated during time periods most similar in terms of economic conditions to those experienced
by the validation data.

Notably, our findings in the LOO analysis that using data from a wide variety of macroeconomic conditions
bounds prediction errors does not appear to generalize to the RF classifier. While we find that training the RF
classifier using data from throughout the economic cycle reduces the frequency of extreme underpredictions of
delinquency, in many cases using this through-the-cycle data to train the RF classifier resulted overpredictions
that exceeded those produced by the RF model using the YBY training samples. The non-parametric nature
of the RF classifier makes identifying the mechanisms underlying the differences in the performance of the
LOO Logit model and LOO RF classifier extremely difficult and beyond the scope of this paper.

6 Conclusion

While components of the mortgage approval process have long been automated, recent changes in lending
regulations have rapidly expanded the portion of the first-lien mortgage market that could qualify for nearly
completely automated underwriting; this automation relies heavily on the outputs of statistical and machine
learning models that are designed to predict loan performance. Understanding the risk associated with using
outputs from these models to make decisions (i.e.,“model risk”) will thus be of paramount importance for
ensuring safe and sound mortgage lending practices in the years to come. Previously published work on the
extent of model risk in the mortgage market was limited to the subprime lending boom and did not utilize
machine learning methods that have become increasingly popular for predictive analytics in consumer finance
in recent years. One of the primary contributions of this paper is thus providing evidence on the performance
of both traditional statistical models and machine learning methods in the post-crisis lending environment.
For both types of models, we find that predictive accuracy deteriorates rapidly when models that are trained
in one type of macroeconomic environment are used to predict loan performance in out-of-time samples
characterized by much different economic conditions.

The second major contribution of our paper is studying why this deterioration in predictive accuracy
occurs. Using data from the Panel Study of Income Dynamics reveals that the relationship between predic-
tors typically used to predict mortgage performance and the subsequent arrival of mortgage default trigger
events has exhibited significant intertemporal heterogeneity. These findings imply that the failure of mod-
els documented in previous research was not simply a by-product of information asymmetries in boom-era
mortgage lending; rather, our results suggest that the poor out-of-time performance of both statistical and
machine learning methods is structural in nature. While systematically investigating possible “fixes” for
this model failure is beyond the scope of this paper, we do provide evidence that model instability can be
at least partially alleviated for traditional statistical models through the use of data from a wide mix of
economic conditions. Interestingly, diversifying the macroeconomic conditions from which the training data
are sampled did not generally improve the out-of-time performance of the machine learning methods that
we considered. We leave further investigation of how the out-of-time performance of statistical models and
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machine learning models alike might be improved to future work.
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A National Survey of Mortgage Originations (NSMO) Analysis

Previous work suggests that one of the mechanisms potentially driving the failure of predictive models of
mortgage performance concerns the forward-looking nature of consumers. Specifically, Bailey et al. [2019]
provide evidence that loan-to-value ratios (LTV) reflect borrowers’ expectations for future house-price growth
and that the relationship between price expectations and leverage changes over time with the state of the
economy. If the relationship between expected house price growth and realized house price appreciation also
changes over the course of the economic cycle, then predictive models constructed using variables that reflect
borrower expectations will be inherently unstable.60

More formally, Bailey et al.’s [2019] analysis implies that LTVi,s is a function of borrower price expecta-
tions between time period s and s+ t. That is,

LTVi,s = fs
(
Price Expectationss,s+ti

)
(A.1)

where i indexes borrowers. fs () is indexed by s to allow for the relationship between leverage and expectations
to vary over time as in Bailey et al.’s [2019] empirical work. Case, Shiller and Thompson’s [2012] findings
that expectations are predictive of house price appreciation – denoted HPAi,s,s+t – and that the relationship
between expectations and HPAi,s,s+t varies over time imply that

HPAi,s,s+t = gs
(
Price Expectationss,s+ti

)
(A.2)

Inverting Equation A.1 allows us to write

Price Expectationss,s+ti = f−1
s (LTVi,s) (A.3)

Substituting Equation A.3 into Equation A.2, we can express realized house price appreciation as a function
of LTVi,s

HPAi,s,s+t = gs
(
f−1
s (LTVi,s)

)
(A.4)

Lastly, because default trigger events, denoted Eventi,s,s+t, are in part determined by whether a borrower
has negative equity and negative equity status is dependent upon house price appreciation, we have

Eventi,s,s+t = φs (HPAi,s,s+t) (A.5)

The arrival of a trigger event in this framework is thus a time-varying function of LTVi,s

Eventi,s,s+t = φs
(
gs
(
f−1
s (LTVi,s)

))
(A.6)

The framework above suggests two approaches for studying the mechanisms that drive model failure.
First, Equation A.6 can be estimated using data on borrower leverage choice and the subsequent arrival of
trigger events; we conduct this analysis in the main text in Section 4.2. Second, Equation A.2 implies that
a model’s predictive accuracy will deteriorate if the relationship between borrower home-price expectations
and LTV is unstable over time. Testing this hypothesis is the goal of this appendix. Because servicing
records do not report information on borrower expectations, this analysis cannot be conducted using tra-
ditional administrative mortgage performance records like those that comprise the McDash database. This
intertemporal stability of the relationship borrower leverage and price expectations can, however, be studied
using data from the National Survey of Mortgage Originations (NSMO).

The Housing and Economic Recovery Act (HERA) of 2008 required that the Federal Housing Finance
Agency (FHFA) “must, through a monthly survey of the mortgage market, collect data on the characteristics

60The most recent boom-bust cycle in the housing market provides a nice case in point of how the relationship between
expected and realized house prices moves can change over time. Using survey data, Case, Shiller and Thompson [2012] document
that between 2003 and 2006, household price expectations generally aligned with realized post-survey price appreciation.
Starting in 2007, however, price expectations and actual price movements diverged significantly.
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of individual mortgages, including those eligible for purchase by Fannie Mae and Freddie Mac and those that
are not, and including subprime and nontraditional mortgages. In addition, FHFA must collect information
on the creditworthiness of borrowers, including a determination of whether subprime and nontraditional bor-
rowers would have qualified for prime lending”[Avery et al., 2018, p. 1]. In response to this requirement, the
FHFA, jointly with the Consumer Financial Protection Bureau (CFPB), constructed the National Mortgage
Database (NMDB).

There are three primary components to the NMDB. The first component is a database that reports
information derived from credit bureau records on the characteristics of a nationally representative sample of
first-lien mortgage originations. The second component of the NMDB is the American Survey of Mortgage
Borrowers (ASMB), which was designed to collect information on borrowers’ experiences repaying their
mortgage loans.

The third component of the NMDB is the NSMO data.61 Beginning in 2013, roughly 1 in every 15
loan originations that were included in the NMDB were selected to receive a survey soliciting information
on borrowers related to their financial health, mortgage shopping behavior, and, most importantly for our
purposes, borrower expectations for future house price growth. We use the NSMO data to test the hypothesis
that the LTV variables used in mortgage performance models are systematically correlated with borrowers’
expectations. The specific version of the NSMO data that we use in our analysis contains responses from
borrowers that took our first-lien mortgages between January of 2013 and December of 2016.

While the NSMO records contain an incredibly rich set of variables describing a borrower’s creditworthi-
ness, loan characteristics, and shopping behavior, our analysis focuses on 3 specific variables. The variable
that we use to measure borrower expectations for house price growth is based on the following question in
NSMO: “What do you think will happen to the prices of homes in this neighborhood over the next couple
of years?” Respondents were given the option of choosing one of the following five responses: increase a
lot; increase a little; remain about the same; decrease a little; decrease a lot [Avery et al., 2019]. The
variable from NSMO that we use to measure household leverage is the combined loan-to-value (CLTV) as
of origination. To measure a borrower’s creditworthiness, which in turn determines lender CLTV limits, we
use a field in NSMO that reports the respondent’s VantageScore 3.0 credit score at the time that the loan
was originated.62

We limit the data in our analysis to purchase and refinance loans with a valid VantageScore value and a
back-end debt-to-income ratio of less than 55. For the summary statistics and regression results, observations
were weighted using the NSMO “analysis weight” field. We report in Table 13 the sample means of the
variables that we used in our analysis both for the full NSMO sample as well as by loan origination year. On
average, CLTV and VantageScore changed little over the course of our sample. Borrowers’ expectations for
post-origination property price changes, however, did shift over the course of our data frame. In 2013, for
example, 15 percent of borrowers expected property values in their neighborhood to increase “a lot over the
next couple of years.” The fraction of borrowers in this category increased monotonically over the course of
the sample, peaking at 22 percent in 2016. This increase in expectations for home price growth primarily
came from fewer borrowers indicating that they expected property prices to “remain about the same” or
“increase a little.” In every year in the NSMO sample, less than 5 percent of borrowers indicated that they
expected property values to decline at all.

We use the full sample of originations to study whether CLTV is correlated with borrower house price
expectations and thus potentially a source of model instability by estimating a regression of the CLTV
variable on the price expectations variables, dummy variables created using the VantageScore variables that
mimic the FICO score buckets utilized in Section 3, and an indicator variable that is equal to one if the loan
was used to refinance existing debt on the borrower’s home. The results of this regression are reported in
the first column in Table 14. Then, to get a sense of whether the nature of the correlation between leverage
and expectations changes over time, we estimated the same regression on a year-by-year basis; the results of
this analysis are reported in the second through fifth columns of Table 14.

In the regression on the pooled sample, price expectations cleanly rank order CLTV.63 Specifically, we

61More information on the structure of the NSMO data is available at https://www.fhfa.gov/DataTools/Downloads/Pages/National-
Survey-of-Mortgage-Originations-Public-Use-File.aspx.

62VantageScore 3.0 ranges from 300 to 850, which is the same range as the Base FICO scores that we use in our mortgage
performance analysis.

63This finding is consistent with Bailey et al.’s [2019] theoretical model for “fixed house size” households whose demand for
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Table 13: Summary Statistics for the National Survey of Mortgage Originations Data

Average Values
Price Expectations3

Origination Vantage Loan Type Increase Increase Stay The Decrease Decrease
Year Obs.1 CLTV2 Score Purchase Refinance A Lot A Little Same A Little A Lot

2013 5411 76.68 743.05 0.40 0.60 0.15 0.63 0.18 0.03 0.01
2014 5583 78.69 734.07 0.60 0.40 0.17 0.62 0.18 0.02 0.01
2015 5599 77.51 732.12 0.53 0.47 0.20 0.60 0.18 0.02 0.00
2016 5742 76.46 734.05 0.51 0.49 0.22 0.61 0.15 0.02 0.00

All Years 22335 77.19 736.22 0.50 0.50 0.18 0.62 0.17 0.02 0.01
1 While we utilize the analysis weight field to construct the sample means, the observation count reported here corresponds to the unweighted
number of cases from the survey that were used.
2 CLTV denotes the combined loan-to-value ratio at the time of origination.
3 The Price Expectations variables are based on respondents’ answers to the following question: “What do you think will happen to the prices
of homes in this neighborhood over the next couple of years?”

Table 14: Borrower Price Expectations and CLTV Regression Results

Dependent Variable: CLTV1

Origination Year
Variable All Years 2013 2014 2015 2016

Price Expectations2

Increase a Lot -8.050 -10.59 -4.597 -5.620 -6.256
(2.074)*** (3.849)*** (3.534) (2.893)* (3.312)*

Increase a Little -6.570 -8.605 -3.623 -4.196 -5.353
(2.061)*** (3.806)** (3.499) (2.865) (3.287)

Remain About the Same -5.622 -7.040 -2.824 -3.307 -5.165
(2.076)*** (3.842)* (3.529) (2.899) (3.323)

Decrease a Little -4.477 -6.367 -0.0285 -2.531 -5.592
(2.265)** (4.146) (4.128) (3.205) (3.949)

VantageScore Buckets
550 < V antageScore ≤ 650 5.114 3.732 22.42 3.139 -3.034

(3.143) (4.697) (5.965)*** (4.877) (6.390)
650 < V antageScore ≤ 700 2.801 0.979 22.05 0.481 -6.202

(3.134) (4.654) (5.934)*** (4.862) (6.379)
700 < V antageScore ≤ 750 -0.344 -2.128 17.68 -1.813 -9.499

(3.129) (4.639) (5.928)*** (4.851) (6.370)
750 < V antageScore ≤ 800 -5.065 -6.951 12.52 -6.741 -13.78

(3.127) (4.631) (5.927)** (4.849) (6.364)**
V antageScore > 800 -12.97 -16.23 6.451 -14.55 -21.55

(3.132)*** (4.643)*** (5.936) (4.863)*** (6.371)***
Refinance Loan? -13.11 -11.29 -13.00 -13.81 -14.92

(0.249)*** (0.515)*** (0.480)*** (0.458)*** (0.476)***
Intercept 93.25 97.52 71.95 92.56 100.8

(3.736)*** (5.966)*** (6.902)*** (5.618)*** (7.133)***
Observations 22335 5411 5583 5599 5742

1 CLTV denotes the combined loan-to-value ratio at the time of origination.
2 The Price Expectations variables are based on respondents’ answers to the following question:
“What do you think will happen to the prices of homes in this neighborhood over the next couple
of years?” The reference category for the Price Expectations variables is “Decline a Lot.”
All regressions utilize the “analysis weights” reported in the NSMO data.
Robust standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

find that as expectations for price growth increase, CLTV declines. These findings support the primary

housing consumption is primarily driven by non-financial factors.
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hypothesis from Bailey et al.’s [2019] theoretical framework.
The estimated relationship between expectations and leverage is economically as well as statistically

significant: relative to borrowers that expect property prices to “ decrease a lot,” the CLTV for borrowers
that expect home values to “increase a lot” is predicted to be 8 percentage points lower, a sizable decline
relative to the average CLTV of 77 in the sample. When we estimate the regression model on a year-by-
year basis, the estimated parameters change significantly across origination cohorts in terms of both their
magnitude and statistical significance. We interpret these results as evidence that borrower expectations are
correlated with a measure of leverage that is universally used in predictive models of mortgage default and
that the relationship between CLTV and price expectations changes over time. Intertemporal heterogeneity in
the relationship between borrower house price expectations and leverage may thus be one of the mechanisms
driving the failure of predictive models of mortgage performance.
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B Full Logistic Regression Estimation Results: Year-by-Year

Table 15: Full “Perfect Foresight” Logistic Regression Model Results: Purchase Loans, Year-by-Year
Estimation

Dependent Variable: Di
1

Training Year
Variable 2004 2005 2006 2007 2008 2009 2010

∆HPIi
2 -0.0207 -0.0227 -0.0355 -0.0397 -0.0346 -0.0226 -0.0184

(0.0009)*** (0.0007)*** (0.0005)*** (0.0003)*** (0.0004)*** (0.0009)*** (0.0010)***
∆Ratei

3 -0.0001 -0.0133 0.0034 -0.0039 0.0081 0.0161 -0.0041
(0.0040) (0.0008)*** (0.0014)** (0.0024)* (0.0005)*** (0.0008)*** (0.0024)*

∆Unempi
4 -0.0053 -0.0005 0.0023 0.0015 0.0020 0.0002 -0.0009

(0.0009)*** (0.0004) (0.0002)*** (0.0001)*** (0.0001)*** (0.0004)*** (0.0006)
Non-Owner Occupied?5 -0.2065 -0.4900 -0.2205 0.0579 -0.1691 -0.1519 -0.6731

(0.0634)*** (0.0297)*** (0.0223)*** (0.0158)** (0.0139)*** (0.0276)*** (0.0485)***
Adjustable Rate?6 0.1632 0.7169 1.0959 0.9546 0.3363 0.0722 0.0949

(0.0244)*** (0.0141)*** (0.0120)*** (0.0111)** (0.0201)*** (0.0593) (0.0373)**
Product Type7

Conventional with PMI -0.1584 -0.2095 -0.0604 0.3763 0.4253 0.2106 -0.3509
(0.0355)*** (0.0200)*** (0.0155)*** (0.0103)** (0.0132)*** (0.0260)*** (0.0525)***

FHA 0.2118 0.3070 0.0372 -0.0735 0.0254 0.4005 0.3745
(0.0388)*** (0.0228)*** (0.0186)*** (0.0136)** (0.0136)*** (0.0204)*** (0.0237)***

VA -0.6422 -0.5964 -0.6799 -0.7728 -0.6043 -0.0729 -0.2308
(0.0702)*** (0.0381)*** (0.0283)*** (0.0211)** (0.0210)*** (0.0242)*** (0.0229)***

DTI Buckets8

0 < DTI ≤ 20 -0.5751 -0.7196 -0.7158 -0.1983 -0.1496 -0.6186 -0.8373
(0.0391)*** (0.0283)*** (0.0233)*** (0.0183)*** (0.0186)*** (0.0330)*** (0.0457)***

20 < DTI ≤ 30 -0.4577 -0.3620 -0.5169 -0.0294 -0.0087 -0.5473 -0.6014
(0.0364)*** (0.0219)*** (0.0179)*** (0.0153)*** (0.0132) (0.0205)*** (0.0239)***

30 < DTI ≤ 40 -0.0882 -0.1192 -0.2831 0.1764 0.1114 -0.3125 -0.3002
(0.0359)*** (0.0194)*** (0.0157)*** (0.0140)*** (0.0115)*** (0.0161)*** (0.0179)***

DTI > 40 0.2975 0.1826 -0.0616 0.3321 0.3399 0.0567 0.0416
(0.0341)*** (0.0178)*** (0.0147)*** (0.0132)*** (0.0103)*** (0.0139) (0.0153)***

Observations 306651 743497 734438 906161 1157604 1189008 1095221
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with bankruptcy
proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price index from
Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by the Bureau of
Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly debt payments,such
as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The reference category for our DTI
variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by the
lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 15 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Purchase
Loans, Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2011 2012 2013 2014 2015 2016

∆HPIi
2 -0.0145 -0.0146 -0.0295 -0.0290 -0.0188 -0.0157

(0.0008)*** (0.0008)*** (0.0014)*** (0.0021)*** (0.0022)*** (0.0020)***
∆Ratei

3 -0.0002 -0.0144 0.0019 0.0046 0.0045 -0.0013
(0.0004) (0.0022)*** (0.0010)* (0.0015)*** (0.0018)** (0.0010)

∆Unempi
4 0.0019 0.0027 -0.0033 0.0005 -0.0001 -0.0100

(0.0008)** (0.0009)*** (0.0008)*** (0.0006) (0.0008) (0.0008)***
Non-Owner Occupied?5 -1.0475 -0.9600 -0.6652 -0.3707 -0.0877 -0.0244

(0.0719)*** (0.1095)*** (0.1015)*** (0.1089)*** (0.1038) (0.0614)
Adjustable Rate?6 0.0606 -0.3245 -0.4907 -0.4377 -0.5917 -1.2978

(0.0389) (0.0815)*** (0.0892)*** (0.0906)*** (0.1325)*** (0.1782)***
Product Type7

Conventional with PMI -0.1007 -0.4352 -0.7567 -0.2369 0.3449 0.3638
(0.0350)*** (0.0433)*** (0.0477) (0.0544)*** (0.0674)*** (0.0459)***

FHA 0.4030 0.2543 0.1314 0.5658 1.0874 0.7238
(0.0253)*** (0.0284)*** (0.0283) (0.0436)*** (0.0640)*** (0.0469)***

VA -0.3133 -0.2816 -0.2636 0.1924 0.7366 0.2780
(0.0247)*** (0.0299)*** (0.0298) (0.0476)*** (0.0766)*** (0.0627)***

DTI Buckets8

0 < DTI ≤ 20 -0.9850 -0.9868 -0.4536 0.9055 -0.3742 -0.3274
(0.0485)*** (0.0629)*** (0.0697)*** (0.1210)*** (0.0973)*** (0.1369)**

20 < DTI ≤ 30 -0.6620 -0.6217 -0.1681 1.0845 -0.3008 -0.1078
(0.0255)*** (0.0308)*** (0.0468)*** (0.1061)*** (0.0805)*** (0.1258)

30 < DTI ≤ 40 -0.3247 -0.2181 0.1957 1.5103 0.1028 0.2253
(0.0190)*** (0.0215)*** (0.0419)*** (0.1027)*** (0.0756) (0.1236)*

DTI > 40 0.0724 0.1697 0.6213 1.8701 0.4543 0.6211
(0.0162)*** (0.0181)*** (0.0404)*** (0.1019)*** (0.0746)*** (0.1231)***

Observations 1046435 945750 944053 685955 678931 690784
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated
with bankruptcy proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price
index from Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by
the Bureau of Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero
otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero
otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan
without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly
debt payments,such as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The
reference category for our DTI variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 15 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Purchase Loans,
Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2004 2005 2006 2007 2008 2009 2010

LTV Buckets2

60 < LTV ≤ 70 0.8125 0.6027 0.7491 0.8344 0.5680 0.0150 0.2431
(0.1150)*** (0.0638)*** (0.0522)*** (0.0371)*** (0.0340)*** (0.0516) (0.0871)***

70 < LTV ≤ 80 1.2343 1.1894 1.5030 1.2646 0.8130 0.0885 0.4991
(0.0964)*** (0.0523)*** (0.0438)*** (0.0318)*** (0.0292)*** (0.0420)** (0.0715)***

80 < LTV ≤ 90 1.5651 1.5932 1.9188 1.5472 1.1064 0.3184 0.8310
(0.0965)*** (0.0524)*** (0.0440)*** (0.0319)*** (0.0288)*** (0.0400)*** (0.0689)***

90 < LTV ≤ 95 1.9514 1.7810 2.0412 1.7906 1.2351 0.3972 1.0415
(0.1012)*** (0.0556)*** (0.0467)*** (0.0329)*** (0.0294)*** (0.0404)*** (0.0690)***

95 < LTV ≤ 99 2.0823 1.8468 2.1533 1.9160 1.2903 0.4353 1.0851
(0.1000)*** (0.0550)*** (0.0459)*** (0.0325)*** (0.0291)*** (0.0391)*** (0.0678)***

LTV > 99 2.4221 2.2548 2.3824 2.0245 1.3625 0.7928 1.6257
(0.1018)*** (0.0552)*** (0.0458)*** (0.0325)*** (0.0301)*** (0.0394)*** (0.0672)***

LTV Missing 2.0823 1.7836 0.7462 0.1403 0.2974 0.4016 0.7865
(0.2496)*** (0.1223)*** (0.1409)*** (0.2108) (0.1439)** (0.2526)*** (0.2418)***

FICO Buckets
550 < FICO ≤ 650 -1.0043 -0.8946 -0.9993 -1.1143 -0.8422 -0.7249 -0.6317

(0.0372)*** (0.0232)*** (0.0220)*** (0.0174)*** (0.0219)*** (0.0725)*** (0.1507)***
650 < FICO ≤ 700 -2.0799 -1.9058 -1.9253 -1.9750 -1.7265 -1.6344 -1.4843

(0.0420)*** (0.0251)*** (0.0232)*** (0.0185)*** (0.0226)*** (0.0727)*** (0.1508)***
700 < FICO ≤ 750 -2.9039 -2.7015 -2.6285 -2.5330 -2.3575 -2.5107 -2.3717

(0.0492)*** (0.0285)*** (0.0247)*** (0.0194)*** (0.0235)*** (0.0735)*** (0.1513)***
750 < FICO ≤ 800 -3.7909 -3.6548 -3.6214 -3.4530 -3.2747 -3.4792 -3.3100

(0.0670)*** (0.0373)*** (0.0297)*** (0.0217)*** (0.0255)*** (0.0757)*** (0.1526)***
FICO > 800 -3.7707 -3.8048 -4.0873 -4.1448 -4.0193 -4.0272 -3.5205

(0.1933)*** (0.0908)*** (0.0702)*** (0.0468)*** (0.0488)*** (0.1023)*** (0.1652)***
FICO Missing -1.7524 -1.2893 -1.5194 -1.6478 -1.4817 -1.2788 -1.2052

(0.0577)*** (0.0360)*** (0.0342)*** (0.0321)*** (0.0363)*** (0.0903)*** (0.1657)***
Intercept -2.5002 -2.4804 -2.5987 -2.7727 -2.2265 -1.8776 -2.8921

(0.1121)*** (0.0581)*** (0.0502)*** (0.0607)*** (0.0389)*** (0.0815)*** (0.1736)***
Observations 306651 743497 734438 906161 1157604 1189008 1095221

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with
bankruptcy proceedings within 24 months of origination.
2 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by
the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 15 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Purchase
Loans, Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2011 2012 2013 2014 2015 2016

LTV Buckets2

60 < LTV ≤ 70 0.3918 0.3540 0.4135 0.3783 0.2289 -0.0468
(0.0936)*** (0.1182)*** (0.1373)*** (0.1505)** (0.1431) (0.0911)

70 < LTV ≤ 80 0.4736 0.3529 0.4981 0.4955 0.2198 0.0621
(0.0795)*** (0.0993)*** (0.1149)*** (0.1251)*** (0.1182)* (0.0709)

80 < LTV ≤ 90 0.7388 0.8767 1.2128 0.8907 0.4071 0.0971
(0.0767)*** (0.0953)*** (0.1111)*** (0.1231)*** (0.1184)*** (0.0737)

90 < LTV ≤ 95 0.9523 1.1479 1.5358 1.1149 0.6348 0.2363
(0.0765)*** (0.0951)*** (0.1111)*** (0.1235)*** (0.1199)*** (0.0766)***

95 < LTV ≤ 99 1.0316 1.1829 1.6692 1.2848 0.7486 0.2911
(0.0755)*** (0.0939)*** (0.1097)*** (0.1218)*** (0.1181)*** (0.0753)***

LTV > 99 1.6184 1.6374 1.9293 1.3856 0.7377 0.5378
(0.0748)*** (0.0934)*** (0.1094)*** (0.1236)*** (0.1285)*** (0.0899)***

LTV Missing 0.6114 1.7075 2.6402 0.8592 1.8433 2.9534
(0.2796)** (0.3816)*** (0.3879)*** (1.0212) (0.5377)*** (0.6816)***

FICO Buckets
550 < FICO ≤ 650 -0.8448 -0.6858 -1.2452 -1.5964 -1.4889 -0.6247

(0.2785)*** (0.3157)*** (0.3600)*** (0.3818)*** (0.4591)*** (0.7437)
650 < FICO ≤ 700 -1.6412 -1.4434 -1.9348 -2.2139 -2.1355 -1.2948

(0.2785)*** (0.3157)*** (0.3599)*** (0.3816)*** (0.4589)*** (0.7436)*
700 < FICO ≤ 750 -2.6046 -2.4256 -2.9365 -3.2058 -3.1219 -2.0736

(0.2789)*** (0.3161)*** (0.3604)*** (0.3823)*** (0.4594)*** (0.7437)***
750 < FICO ≤ 800 -3.5681 -3.4509 -3.9708 -4.1637 -4.0060 -2.7716

(0.2797)*** (0.3173)*** (0.3617)*** (0.3841)*** (0.4606)*** (0.7439)***
FICO > 800 -3.9597 -3.8227 -4.5592 -4.2956 -4.2914 -2.7883

(0.2900)*** (0.3296)*** (0.3784)*** (0.3966)*** (0.4718)*** (0.7457)***
FICO Missing -1.3135 -1.0965 -1.7000 -1.9228 -1.9608 -2.1711

(0.2868)*** (0.3252)*** (0.3693)*** (0.3926)*** (0.4686)*** (0.7630)***
Intercept -2.4060 -2.5371 -3.0486 -3.9624 -2.8047 -3.0643

(0.2885)*** (0.3305)*** (0.3784)*** (0.4120)*** (0.4749)*** (0.7565)***
Observations 1046435 945750 944053 685955 678931 690784

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is
associated with bankruptcy proceedings within 24 months of origination.
2 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 16: Full “Perfect Foresight” Logistic Regression Model Results: Refinance Loans, Year-by-Year
Estimation

Dependent Variable: Di
1

Training Year
Variable 2004 2005 2006 2007 2008 2009 2010

∆HPIi
2 -0.0243 -0.0181 -0.0238 -0.0327 -0.0366 -0.0311 -0.0308

(0.0011)*** (0.0008)*** (0.0005)*** (0.0003)*** (0.0004)*** (0.0010)*** (0.0014)***
∆Ratei

3 -0.0106 -0.0116 0.0029 -0.0433 -0.0010 0.0071 -0.0068
(0.0045)** (0.0010)*** (0.0013)** (0.0021)*** (0.0005)** (0.0008)*** (0.0029)***

∆Unempi
4 -0.0007 -0.0010 0.0038 0.0010 0.0004 0.0028 -0.0031

(0.0010) (0.0005)** (0.0001)*** (0.0001)*** (0.0001)*** (0.0004)*** (0.0008)***
Non-Owner Occupied?5 -0.0314 0.0445 0.3465 0.3813 -0.0705 -0.0440 -0.2073

(0.0611) (0.0303) (0.0195)*** (0.0126)*** (0.0129)*** (0.0338) (0.0451)***
Adjustable Rate?6 0.0747 0.4518 0.7494 0.9126 0.4970 0.5340 0.3433

(0.0250)*** (0.0140)*** (0.0102)*** (0.0082)*** (0.0148)*** (0.0432)*** (0.0397)***
Product Type7

Conventional with PMI 0.0562 -0.1929 -0.1932 0.2568 0.3601 0.2459 0.0742
(0.0412) (0.0238)*** (0.0183)*** (0.0108)*** (0.0112)*** (0.0275)*** (0.0390)*

FHA 0.2230 0.2330 -0.1116 -0.1822 -0.0875 0.5522 0.2329
(0.0579)*** (0.0374)*** (0.0246)*** (0.0143)*** (0.0117)*** (0.0193)*** (0.0211)***

VA 0.1001 0.0867 -0.3138 -0.2779 -0.3097 0.1138 -0.2064
(0.1525) (0.1005) (0.0817)*** (0.0551)*** (0.0362)*** (0.0315)*** (0.0399)***

DTI Buckets8

0 < DTI ≤ 20 -0.2728 -0.3821 -0.4316 -0.4270 -0.3548 -0.9985 -1.0811
(0.0444)*** (0.0298)*** (0.0235)*** (0.0171)*** (0.0178)*** (0.0312)*** (0.0413)***

20 < DTI ≤ 30 -0.2711 -0.3823 -0.4566 -0.4126 -0.2383 -0.8071 -1.0397
(0.0438)*** (0.0256)*** (0.0185)*** (0.0141)*** (0.0137)*** (0.0221)*** (0.0321)***

30 < DTI ≤ 40 -0.1649 -0.2357 -0.2846 -0.1946 -0.0030 -0.4840 -0.6672
(0.0436)*** (0.0227)*** (0.0159)*** (0.0127)*** (0.0124) (0.0189)*** (0.0276)***

DTI > 40 0.0502 -0.0039 -0.1246 0.0464 0.3400 0.0376 -0.1124
(0.0393) (0.0211) (0.0150)*** (0.0121)*** (0.0114) (0.0159)** (0.0239)***

Observations 483952 1022559 883143 1043423 1199856 1680750 1439271
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with bankruptcy
proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price index from
Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by the Bureau of
Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly debt payments,such
as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The reference category for our DTI
variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by the
lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 16 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Refinance
Loans, Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2011 2012 2013 2014 2015 2016

∆HPIi
2 -0.0170 -0.0078 -0.0227 -0.0425 -0.0333 -0.0236

(0.0013)*** (0.0012)*** (0.0016)*** (0.0038)*** (0.0045)*** (0.0034)***
∆Ratei

3 -0.0062 -0.0060 0.0033 -0.0053 -0.0127 -0.0005
(0.0006)*** (0.0032)* (0.0013)** (0.0028)* (0.0036)*** (0.0017)

∆Unempi
4 -0.0052 -0.0009 -0.0041 -0.0012 0.0043 -0.0117

(0.0011)*** (0.0013) (0.0012)*** (0.0014) (0.0018)** (0.0014)***
Non-Owner Occupied?5 -0.0099 0.0552 0.0601 0.1914 -0.0183 -0.2041

(0.0380) (0.0418) (0.0326)* (0.0602)*** (0.0865) (0.0785)***
Adjustable Rate?6 0.1596 -0.1535 -0.8106 -0.5851 -0.6047 -1.5039

(0.0406)*** (0.0764)** (0.1112)*** (0.1341)*** (0.1537)*** (0.1812)***
Product Type7

Conventional with PMI 0.0046 -0.0473 -0.0328 0.0532 -0.0293 0.0778
(0.0376) (0.0410) (0.0346) (0.0664) (0.0999) (0.0743)

FHA 0.1710 0.5146 0.2426 0.1963 0.5898 0.4048
(0.0254)*** (0.0329)*** (0.0341)*** (0.0628)*** (0.0664)*** (0.0589)***

VA -0.5471 0.1230 0.1393 -0.1356 -0.2071 -0.1530
(0.0452)*** (0.0455)*** (0.0415)*** (0.0813)* (0.0985)** (0.0748)**

DTI Buckets8

0 < DTI ≤ 20 -1.4317 -0.2974 -0.2088 0.3035 -0.0908 -0.6862
(0.0483)*** (0.0427)*** (0.0407)*** (0.0879)*** (0.1107) (0.0875)***

20 < DTI ≤ 30 -1.1997 -0.2061 -0.1726 0.1774 -0.1487 -0.6271
(0.0341)*** (0.0386)*** (0.0399)*** (0.0862)** (0.1056) (0.0782)***

30 < DTI ≤ 40 -0.7547 -0.0639 -0.1155 0.3278 0.0236 -0.3037
(0.0278)*** (0.0367)* (0.0392)*** (0.0828)*** (0.1018) (0.0729)***

DTI > 40 -0.1957 0.4644 0.4252 0.8827 0.5224 0.1002
(0.0225)*** (0.0321)*** (0.0342)*** (0.0768)*** (0.0971)* (0.0701)

Observations 1250577 1222559 1159307 367232 455509 537799
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated
with bankruptcy proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price
index from Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by
the Bureau of Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero
otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero
otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan
without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly
debt payments,such as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The
reference category for our DTI variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 16 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Refinance Loans,
Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2004 2005 2006 2007 2008 2009 2010

LTV Buckets2

60 < LTV ≤ 70 0.5233 0.3766 0.6671 0.7905 0.7109 0.5752 0.5832
(0.0464)*** (0.0278)*** (0.0214)*** (0.0145)*** (0.0154)*** (0.0319)*** (0.0404)***

70 < LTV ≤ 80 0.7557 0.7391 1.1903 1.2943 1.1110 0.9723 0.8548
(0.0414)*** (0.0242)*** (0.0188)*** (0.0129)*** (0.0136)*** (0.0275)*** (0.0350)***

80 < LTV ≤ 90 1.2518 1.2295 1.7584 1.6278 1.3108 1.3072 1.4137
(0.0426)*** (0.0240)*** (0.0185)*** (0.0130)*** (0.0140)*** (0.0275)*** (0.0335)***

90 < LTV ≤ 95 1.5776 1.6904 2.0904 1.8148 1.4177 1.5142 1.6889
(0.0587)*** (0.0326)*** (0.0254)*** (0.0171)*** (0.0168)*** (0.0312)*** (0.0392)***

95 < LTV ≤ 99 1.9185 1.8813 2.1683 1.9316 1.5111 1.7086 1.8080
(0.0753)*** (0.0444)*** (0.0321)*** (0.0198)*** (0.0166)*** (0.0296)*** (0.0391)***

LTV > 99 2.1753 2.1601 2.2870 2.0468 1.6127 1.7822 2.1889
(0.1127)*** (0.0671)*** (0.0550)*** (0.0364)*** (0.0261)*** (0.0320)*** (0.0375)***

LTV Missing 1.6602 1.0138 -0.3286 0.5396 0.1305 0.6682 0.2675
(0.1872)*** (0.1125)*** (0.1562)*** (0.0951)*** (0.1071) (0.2049)*** (0.2393)

FICO Buckets
550 < FICO ≤ 650 -1.4267 -1.1136 -0.9994 -0.9297 -0.7208 -1.0769 -1.3220

(0.0372)*** (0.0230)*** (0.0200)*** (0.0157)*** (0.0179)*** (0.0493)*** (0.0782)***
650 < FICO ≤ 700 -2.3330 -1.9865 -1.7455 -1.5905 -1.4460 -1.6019 -1.8538

(0.0411)*** (0.0245)*** (0.0206)*** (0.0164)*** (0.0187)*** (0.0491)*** (0.0770)***
700 < FICO ≤ 750 -3.1343 -2.8453 -2.3960 -2.1069 -2.0338 -2.3559 -2.4431

(0.0491)*** (0.0294)*** (0.0225)*** (0.0172)*** (0.0195)*** (0.0503)*** (0.0770)***
750 < FICO ≤ 800 -3.9861 -3.7853 -3.2873 -2.9064 -2.9636 -3.4190 -3.4160

(0.0712)*** (0.0441)*** (0.0299)*** (0.0197)*** (0.0215)*** (0.0525)*** (0.0783)***
FICO > 800 -4.3382 -3.9937 -3.7097 -3.6070 -3.7465 -4.1638 -4.0432

(0.2532)*** (0.1283)*** (0.0886)*** (0.0502)*** (0.0463)*** (0.0765)*** (0.0921)***
FICO Missing -2.3327 -1.7665 -1.7362 -1.7021 -0.8244 -1.4648 -1.8644

(0.0607)*** (0.0495)*** (0.0511) (0.0369)*** (0.0301)*** (0.0562)*** (0.1231)***
Intercept -1.8858 -2.3050 -2.6775 -3.2925 -2.3045 -2.6677 -2.7067

(0.0756)*** (0.0356)*** (0.0291)*** (0.0477)*** (0.0277)*** (0.0564)*** (0.1074)***
Observations 483952 1022559 883143 1043423 1199856 1680750 1439271

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with
bankruptcy proceedings within 24 months of origination.
2 For refinance mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by
the property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 16 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Refinance
Loans, Year-by-Year Estimation

Dependent Variable: Di
1

Training Year
Variable 2011 2012 2013 2014 2015 2016

LTV Buckets2

60 < LTV ≤ 70 0.4409 0.3739 0.2388 0.1599 0.1610 0.2660
(0.0427)*** (0.0556)*** (0.0427)*** (0.0703)** (0.0754)** (0.0540)***

70 < LTV ≤ 80 0.7720 0.6053 0.4216 0.3282 0.3699 0.3729
(0.0365)*** (0.0481)*** (0.0378)*** (0.0617)*** (0.0666)*** (0.0490)***

80 < LTV ≤ 90 1.3294 1.1782 0.7875 0.7309 0.7595 0.6056
(0.0347)*** (0.0452)*** (0.0366)*** (0.0616)*** (0.0692)*** (0.0540)***

90 < LTV ≤ 95 1.6399 1.3979 0.9517 0.9542 1.0724 0.8376
(0.0416)*** (0.0516)*** (0.0440)*** (0.0835)*** (0.1035)*** (0.0886)***

95 < LTV ≤ 99 1.7408 1.4902 1.0862 0.8929 1.0064 0.8483
(0.0422)*** (0.0530)*** (0.0502)*** (0.1125)*** (0.1245)*** (0.1071)***

LTV > 99 2.2972 2.0869 1.4742 1.3633 1.4041 1.1039
(0.0381)*** (0.0442)*** (0.0368)*** (0.0753)*** (0.1095)*** (0.1045)***

LTV Missing -0.0512 1.9877 1.5045 -9.8467 0.4123 0.5192
(0.3356) (0.4580)*** (0.3451)*** (111.2448) (1.0101) (0.2367)**

FICO Buckets *
550 < FICO ≤ 650 -0.9585 -1.1189 -1.0121 -1.1162 -1.2680 -1.0173

(0.0726)*** (0.0665)*** (0.0431)*** (0.0848)*** (0.1213)*** (0.1488)***
650 < FICO ≤ 700 -1.5416 -1.7134 -1.6936 -1.7870 -1.9929 -1.6969

(0.0706)*** (0.0646)*** (0.0426)*** (0.0838)*** (0.1187)*** (0.1469)***
700 < FICO ≤ 750 -2.1101 -2.4105 -2.3216 -2.4861 -2.8163 -2.3321

(0.0705)*** (0.0649)*** (0.0440)*** (0.0878)*** (0.1218)*** (0.1475)***
750 < FICO ≤ 800 -3.0879 -3.5222 -3.4465 -3.2952 -3.7816 -2.9632

(0.0721)*** (0.0678)*** (0.0497)*** (0.0955)*** (0.1289)*** (0.1489)***
FICO > 800 -3.6887 -4.0072 -3.8018 -3.7721 -3.8565 -3.1813

(0.0869)*** (0.0903)*** (0.0782)*** (0.1534)*** (0.1663)*** (0.1645)***
FICO Missing -1.7353 -2.2321 -1.7889 -1.6948 -1.7029 -1.1243

(0.1533)*** (0.1408)*** (0.1747)*** (0.4202)*** (0.2955)*** (0.1896)***
Intercept -2.7142 -3.1890 -2.9641 -3.1056 -2.6259 -2.6203

(0.0773)*** (0.0955)*** (0.0661)*** (0.1291)*** (0.1582)*** (0.1635)***
Observations 1250577 1222559 1159307 367232 455509 537799

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is
associated with bankruptcy proceedings within 24 months of origination.
2 For refinance mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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C Full Logistic Regression Estimation Results: Leave-One-Out

Table 17: Full “Perfect Foresight” Logistic Regression Model Results: Purchase Loans, “Leave-One-Out”
Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2004 2005 2006 2007 2008 2009 2010

∆HPIi
2 -0.0332 -0.0337 -0.0311 -0.0290 -0.0317 -0.0352 -0.0333

(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***
∆Ratei

3 0.0047 0.0049 0.0048 0.0057 0.0062 0.0045 0.0036
(0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)***

∆Unempi
4 0.0054 0.0054 0.0057 0.0065 0.0059 0.0048 0.0050

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
Non-Owner Occupied?5 -0.2324 -0.1970 -0.2148 -0.3306 -0.2328 -0.2336 -0.2155

(0.0080)*** (0.0083)*** (0.0085)*** (0.0093)*** (0.0098)*** (0.0083)*** (0.0081)***
Adjustable Rate?6 0.9229 0.9196 0.7806 0.8642 0.9653 0.8760 0.9110

(0.0053)*** (0.0058)*** (0.0060)*** (0.0059)*** (0.0055)*** (0.0053)*** (0.0053)***
Product Type7

Conventional with PMI 0.1850 0.2091 0.2375 0.0752 0.1137 0.1666 0.1799
(0.0054)*** (0.0056)*** (0.0058)*** (0.0065)*** (0.0060)*** (0.0055)*** (0.0055)***

FHA 0.0386 0.0359 0.0811 0.0581 0.0622 0.0316 0.0295
(0.0055)*** (0.0056)*** (0.0058)*** (0.0061)*** (0.0061)*** (0.0057)*** (0.0057)***

VA -0.4916 -0.4819 -0.4554 -0.4581 -0.4872 -0.5332 -0.5197
(0.0077)*** (0.0078)*** (0.0080)*** (0.0083)*** (0.0082)*** (0.0081)*** (0.0081)***

DTI Buckets8

0 < DTI ≤ 20 -0.5156 -0.4876 -0.4814 -0.5860 -0.6038 -0.5007 -0.4892
(0.0087)*** (0.0089)*** (0.0091)*** (0.0098)*** (0.0095)*** (0.0088)*** (0.0086)***

20 < DTI ≤ 30 -0.3429 -0.3448 -0.3220 -0.3990 -0.4340 -0.3258 -0.3170
(0.0062)*** (0.0063)*** (0.0065)*** (0.0067)*** (0.0069)*** (0.0064)*** (0.0063)***

30 < DTI ≤ 40 -0.1203 -0.1207 -0.0999 -0.1663 -0.1846 -0.1024 -0.0968
(0.0052)*** (0.0054)*** (0.0055)*** (0.0056)*** (0.0058)*** (0.0055)*** (0.0054)***

DTI > 40 0.1782 0.1782 0.2111 0.1570 0.1231 0.1911 0.1969
(0.0047)*** (0.0049)*** (0.0050)*** (0.0050)*** (0.0053)*** (0.0050)*** (0.0049)***

Observations 10,817,837 10,380,991 10,390,050 10,218,327 9,966,884 9,935,480 10,029,267
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with bankruptcy
proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price index from
Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by the Bureau of
Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly debt payments,such
as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The reference category for our DTI
variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by the
lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 18: Full “Perfect Foresight” Logistic Regression Model Results: Purchase
Loans, “Leave-One-Out” Estimation (Continued)

Dependent Variable: Di
1

Holdout Year
Variable 2012 2013 2014 2015 2016

∆HPIi
2 -0.0335 -0.0326 -0.0322 -0.0324 -0.0328

(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***
∆Ratei

3 0.0050 0.0049 0.0044 0.0052 0.0053
(0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)***

∆Unempi
4 0.0053 0.0054 0.0053 0.0054 0.0054

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
Non-Owner Occupied?5 -0.2215 -0.2292 -0.2341 -0.2328 -0.2332

(0.0080)*** (0.0080)*** (0.0080) (0.0080)*** (0.0080)***
Adjustable Rate?6 0.8994 0.8976 0.8992 0.8908 0.8956

(0.0052)*** (0.0052)*** (0.0052)*** (0.0052)*** (0.0052)***
Product Type7

Conventional with PMI 0.1927 0.1939 0.1897 0.1910 0.1862
(0.0054)*** (0.0054)*** (0.0054)*** (0.0054)*** (0.0054)***

FHA 0.0291 0.0294 0.0232 0.0283 0.0272
(0.0055)*** (0.0055)*** (0.0055)*** (0.0054)*** (0.0055)***

VA -0.5148 -0.5156 -0.5118 -0.5040 -0.5114
(0.0079)*** (0.0079)*** (0.0078)*** (0.0077)*** (0.0078)***

DTI Buckets8

0 < DTI ≤ 20 -0.4801 -0.5073 -0.5113 -0.5057 -0.5070
(0.0086)*** (0.0085)*** (0.0085)*** (0.0085)*** (0.0085)***

20 < DTI ≤ 30 -0.3125 -0.3370 -0.3394 -0.3330 -0.3369
(0.0063)*** (0.0062)*** (0.0061)*** (0.0061)*** (0.0061)***

30 < DTI ≤ 40 -0.0962 -0.1188 -0.1196 -0.1126 -0.1158
(0.0054)*** (0.0052)*** (0.0052)*** (0.0052)*** (0.0052)***

DTI > 40 0.1956 0.1693 0.1717 0.1800 0.1757
(0.0049)*** (0.0047)*** (0.0047)*** (0.0047)*** (0.0047)***

Observations 10,178,738 10,180,435 10,438,533 10,445,557 10,433,704
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process,
or is associated with bankruptcy proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller
house price index from Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by
Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate
reported by the Bureau of Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-
occupied, zero otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of
the loan, zero otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conven-
tional loan without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required
monthly debt payments,such as mortgage debt, automotive debt, and student loans - divided by
monthly gross income. The reference category for our DTI variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s
origination divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised
value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 17 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Purchase Loans,
“Leave-One-Out” Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2004 2005 2006 2007 2008 2009 2010

LTV Buckets2

60 < LTV ≤ 70 0.5324 0.5347 0.5114 0.4510 0.5254 0.6091 0.5484
(0.0177)*** (0.0182)*** (0.0185)*** (0.0198)*** (0.0203)*** (0.0187)*** (0.0178)***

70 < LTV ≤ 80 0.9403 0.9254 0.8342 0.8497 0.9905 1.0345 0.9554
(0.0146)*** (0.0150)*** (0.0154)*** (0.0162)*** (0.0167)*** (0.0156)*** (0.0147)***

80 < LTV ≤ 90 1.2683 1.2437 1.1461 1.1921 1.3122 1.3709 1.2849
(0.0145)*** (0.0150)*** (0.0152)*** (0.0161)*** (0.0167)*** (0.0155)*** (0.0147)***

90 < LTV ≤ 95 1.4034 1.3847 1.2968 1.3010 1.4668 1.5177 1.4208
(0.0150)*** (0.0154)*** (0.0156)*** (0.0166)*** (0.0172)*** (0.0160)*** (0.0152)***

95 < LTV ≤ 99 1.4978 1.4824 1.3915 1.3840 1.5800 1.6258 1.5238
(0.0147)*** (0.0151)*** (0.0154)*** (0.0163)*** (0.0169)*** (0.0158)*** (0.0149)***

LTV > 99 1.7300 1.6986 1.6328 1.6474 1.8700 1.8556 1.7508
(0.0148)*** (0.0152)*** (0.0154)*** (0.0163)*** (0.0169)*** (0.0158)*** (0.0150)***

LTV Missing 0.7276 0.5845 0.8507 0.8558 0.8899 0.8548 0.7857
(0.0617)*** (0.0701)*** (0.0658)*** (0.0622)*** (0.0661)*** (0.0616)*** (0.0617)***

FICO Buckets
550 < FICO ≤ 650 -1.0494 -1.0438 -1.0565 -1.0657 -1.1162 -1.0615 -1.0652

(0.0100)*** (0.0106)*** (0.0108)*** (0.0117)*** (0.0107) (0.0098)*** (0.0097)***
650 < FICO ≤ 700 -1.9154 -1.8972 -1.9180 -1.9436 -1.9923 -1.9337 -1.9397

(0.0101)*** (0.0108)*** (0.0109)*** (0.0118)*** (0.0109)*** (0.0099)*** (0.0098)***
700 < FICO ≤ 750 -2.7294 -2.7158 -2.7388 -2.8082 -2.8454 -2.7338 -2.7419

(0.0106)*** (0.0112)*** (0.0114)*** (0.0123)*** (0.0114)*** (0.0104)*** (0.0103)***
750 < FICO ≤ 800 -3.7328 -3.7229 -3.7306 -3.8239 -3.8637 -3.7318 -3.7393

(0.0117)*** (0.0123)*** (0.0125)*** (0.0136)*** (0.0128)*** (0.0116)*** (0.0115)***
FICO > 800 -4.2716 -4.2757 -4.2659 -4.3088 -4.3329 -4.2638 -4.2924

(0.0219)*** (0.0225)*** (0.0230)*** (0.0246)*** (0.0242)*** (0.0224)*** (0.0224)***
FICO Missing -1.5836 -1.6245 -1.6005 -1.5869 -1.6241 -1.5990 -1.5974

(0.0158)*** (0.0168)*** (0.0170)*** (0.0175)*** (0.0167)*** (0.0155)*** (0.0154)***
Intercept -2.3725 -2.3714 -2.3235 -2.2023 -2.3229 -2.4251 -2.3671

(0.0176)*** (0.0184)*** (0.0186)*** (0.0197)*** (0.0198)*** (0.0184)*** (0.0176)***
Observations 10,817,837 10,380,991 10,390,050 10,218,327 9,966,884 9,935,480 10,029,267

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with
bankruptcy proceedings within 24 months of origination.
2 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by
the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 17 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Purchase
Loans, “Leave-One-Out” Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2011 2012 2013 2014 2015 2016

LTV Buckets2

60 < LTV ≤ 70 0.5417 0.5434 0.5428 0.5418 0.5437 0.5602
(0.0178)*** (0.0176)*** (0.0176)*** (0.0176)*** (0.0176)*** (0.0178)***

70 < LTV ≤ 80 0.9573 0.9570 0.9529 0.9513 0.9543 0.9731
(0.0147)*** (0.0146)*** (0.0145)*** (0.0145)*** (0.0145)*** (0.0147)***

80 < LTV ≤ 90 1.2847 1.2815 1.2759 1.2774 1.2801 1.3034
(0.0146)*** (0.0145)*** (0.0145)*** (0.0145)*** (0.0145)*** (0.0147)***

90 < LTV ≤ 95 1.4195 1.4168 1.4121 1.4170 1.4164 1.4412
(0.0151)*** (0.0150)*** (0.0150)*** (0.0149)*** (0.0149)*** (0.0151)***

95 < LTV ≤ 99 1.5178 1.5127 1.5007 1.5045 1.5068 1.5350
(0.0149)*** (0.0148)*** (0.0147)*** (0.0147)*** (0.0147)*** (0.0149)***

LTV > 99 1.7435 1.7429 1.7316 1.7353 1.7360 1.7642
(0.0150)*** (0.0148)*** (0.0148)*** (0.0147)*** (0.0147)*** (0.0149)***

LTV Missing 0.7792 0.7654 0.7537 0.7787 0.7709 0.7967
(0.0612)*** (0.0605)*** (0.0605)*** (0.0599)*** (0.0601)*** (0.0601)***

FICO Buckets
550 < FICO ≤ 650 -1.0746 -1.0693 -1.0651 -1.0628 -1.0620 -1.0633

(0.0097)*** (0.0097)*** (0.0096)*** (0.0096)*** (0.0096)*** (0.0096)***
650 < FICO ≤ 700 -1.9598 -1.9521 -1.9474 -1.9404 -1.9388 -1.9411

(0.0098)*** (0.0098)*** (0.0098)*** (0.0098)*** (0.0098)*** (0.0098)***
700 < FICO ≤ 750 -2.7584 -2.7517 -2.7433 -2.7428 -2.7398 -2.7498

(0.0103)*** (0.0103)*** (0.0103)*** (0.0103)*** (0.0103)*** (0.0103)***
750 < FICO ≤ 800 -3.7550 -3.7460 -3.7362 -3.7409 -3.7368 -3.7608

(0.0115)*** (0.0115)*** (0.0114)*** (0.0114)*** (0.0114)*** (0.0115)***
FICO > 800 -4.2921 -4.2825 -4.2660 -4.2827 -4.2726 -4.3439

(0.0222)*** (0.0220)*** (0.0219)*** (0.0219)*** (0.0219)*** (0.0227)***
FICO Missing -1.6082 -1.6035 -1.6043 -1.6022 -1.5992 -1.5943

(0.0154)*** (0.0153)*** (0.0153)*** (0.0153)*** (0.0153)*** (0.0152)***
Intercept -2.3750 -2.3653 -2.3360 -2.3379 -2.3435 -2.3671

(0.0175)*** (0.0175)*** (0.0174)*** (0.0174)*** (0.0174)*** (0.0175)***
Observations 10,078,053 10,178,738 10,180,435 10,438,533 10,445,557 10,433,704

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is
associated with bankruptcy proceedings within 24 months of origination.
2 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

57



Table 19: Full “Perfect Foresight” Logistic Regression Model Results: Refinance Loans, “Leave-One-Out”
Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2004 2005 2006 2007 2008 2009 2010

∆HPIi
2 -0.0313 -0.0316 -0.0336 -0.0270 -0.0304 -0.0306 -0.0310

(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***
∆Ratei

3 -0.0113 -0.0100 -0.0092 -0.0084 -0.0079 -0.0127 -0.0145
(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***

∆Unempi
4 0.0053 0.0053 0.0052 0.0069 0.0056 0.0052 0.0046

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
Non-Owner Occupied?5 0.1506 0.1648 0.1187 0.0351 0.2137 0.1543 0.1492

(0.0069)*** (0.0071)*** (0.0073)*** (0.0083)*** (0.0081)*** (0.0070)*** (0.0069)***
Adjustable Rate?6 0.6899 0.7118 0.6671 0.5393 0.7366 0.6705 0.6752

(0.0047)*** (0.0050)*** (0.0053)*** (0.0057)*** (0.0050)*** (0.0047)*** (0.0047)***
Product Type7

Conventional with PMI 0.2214 0.2507 0.2617 0.1873 0.1001 0.2162 0.2107
(0.0060)*** (0.0061)*** (0.0063)*** (0.0072)*** (0.0070)*** (0.0061)*** (0.0060)***

FHA 0.0631 0.0755 0.0776 0.0995 0.0657 -0.0128 0.0447
(0.0056)*** (0.0056)*** (0.0058)*** (0.0063)*** (0.0065)*** (0.0061)*** (0.0058)***

VA -0.2729 -0.2695 -0.2592 -0.2641 -0.3132 -0.2986 -0.2703
(0.0129)*** (0.0130)*** (0.0131)*** (0.0134)*** (0.0138)*** (0.0145)*** (0.0137)***

DTI Buckets8

0 < DTI ≤ 20 -0.5571 -0.5546 -0.5582 -0.5758 -0.6106 -0.4925 -0.5177
(0.0084)*** (0.0086)*** (0.0088)*** (0.0095)*** (0.0093)*** (0.0086)*** (0.0084)***

20 < DTI ≤ 30 -0.5038 -0.5026 -0.5026 -0.5117 -0.5849 -0.4496 -0.4668
(0.0068)*** (0.0070)*** (0.0072)*** (0.0077)*** (0.0077)*** (0.0071)*** (0.0069)***

30 < DTI ≤ 40 -0.2680 -0.2641 -0.2625 -0.2775 -0.3503 -0.2272 -0.2414
(0.0060)*** (0.0062)*** (0.0065)*** (0.0069)*** (0.0068)*** (0.0064)*** (0.0061)***

DTI > 40 0.0768 0.0837 0.1041 0.1024 -0.0196 0.0954 0.0906
(0.0056)*** (0.0057)*** (0.0059)*** (0.0062)*** (0.0063)*** (0.0059)*** (0.0056)***

Observations 12,261,985 11,723,378 11,862,794 11,702,514 11,546,081 11,065,187 11,306,666
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with bankruptcy
proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price index from
Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by the Bureau of
Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly debt payments,such
as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The reference category for our DTI
variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by the
lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 20: Full “Perfect Foresight” Logistic Regression Model Results: Refinance Loans,
“Leave-One-Out” Estimation (Continued)

Dependent Variable: Di
1

Holdout Year
Variable 2011 2012 2013 2014 2015 2016

∆HPIi
2 -0.0310 -0.0314 -0.0307 -0.0305 -0.0307 -0.0309

(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***
∆Ratei

3 -0.0119 -0.0116 -0.0111 -0.0114 -0.0107 -0.0119
(0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)*** (0.0002)***

∆Unempi
4 0.0052 0.0052 0.0052 0.0053 0.0053 0.0053

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
Non-Owner Occupied?5 0.1537 0.1470 0.1560 0.1475 0.1480 0.1497

(0.0070)*** (0.0070)*** (0.0070)*** (0.0069)*** (0.0069)*** (0.0069)***
Adjustable Rate?6 0.6879 0.6833 0.6750 0.6775 0.6747 0.6871

(0.0047)*** (0.0047)*** (0.0047)*** (0.0046)*** (0.0046)*** (0.0047)***
Product Type7

Conventional with PMI 0.2262 0.2289 0.2261 0.2193 0.2174 0.2189
(0.0060)*** (0.0060)*** (0.0060)*** (0.0059)*** (0.0059)*** (0.0059)***

FHA 0.0622 0.0564 0.0479 0.0508 0.0560 0.0519
(0.0057)*** (0.0056)*** (0.0057)*** (0.0056)*** (0.0056)*** (0.0056)***

VA -0.2433 -0.2804 -0.2990 -0.2680 -0.2697 -0.2835
(0.0134)*** (0.0135)*** (0.0137)*** (0.0130)*** (0.0130)*** (0.0131)***

DTI Buckets8

0 < DTI ≤ 20 -0.5039 -0.5488 -0.5556 -0.5531 -0.5474 -0.5461
(0.0084)*** (0.0084)*** (0.0085)*** (0.0083)*** (0.0083)*** (0.0083)***

20 < DTI ≤ 30 -0.4628 -0.5031 -0.5093 -0.5036 -0.4979 -0.5000
(0.0069)*** (0.0068)*** (0.0068)*** (0.0067)*** (0.0067)*** (0.0068)***

30 < DTI ≤ 40 -0.2384 -0.2699 -0.2736 -0.2705 -0.2649 -0.2696
(0.0062)*** (0.0061)*** (0.0061)*** (0.0060)*** (0.0060)*** (0.0060)***

DTI > 40 0.0977 0.0684 0.0637 0.0693 0.0755 0.0722
(0.0057)*** (0.0056)*** (0.0056)*** (0.0055)*** (0.0055)*** (0.0055)***

Observations 11,495,360 11,523,378 11,586,630 12,378,705 12,290,428 12,208,138
1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated
with bankruptcy proceedings within 24 months of origination.
2 ∆HPIi denotes the 24-month rolling window growth rate in the unadjusted county-level Case-Shiller house price
index from Moody’s Analytics.
3 ∆Ratei denotes the 24-month rolling window growth rate in the 30-year mortgage rate reported by Freddie Mac.
4 ∆Unempi denotes the 24-month rolling window growth rate in the county-level unemployment rate reported by
the Bureau of Labor Statistics.
5 ”Owner Occupied?” is equal to one if the loan was used to finance a property that will be owner-occupied, zero
otherwise.
6 ”Fixed Rate?” is equal to one if the loan’s interest rate is fixed for the entire scheduled duration of the loan, zero
otherwise.
7 “PMI” stands for “Private Mortgage Insurance.” The reference category product type is a conventional loan
without PMI.
7 DTI denotes the borrower’s back-end debt-to-income ratio, which is defined as the sum of all required monthly
debt payments,such as mortgage debt, automotive debt, and student loans - divided by monthly gross income. The
reference category for our DTI variable is “DTI Missing.”
8 For purchase mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the lesser of the: (1) the property’s sales price and (2) property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 19 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Refinance Loans,
“Leave-One-Out” Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2004 2005 2006 2007 2008 2009 2010

LTV Buckets2

60 < LTV ≤ 70 0.6385 0.6557 0.6335 0.5717 0.6098 0.6376 0.6365
(0.0078)*** (0.0080)*** (0.0083)*** (0.0091)*** (0.0089)*** (0.0080)*** (0.0079)***

70 < LTV ≤ 80 1.0674 1.0834 1.0371 0.9546 1.0479 1.0598 1.0629
(0.0068)*** (0.0070)*** (0.0072)*** (0.0080)*** (0.0078)*** (0.0070)*** (0.0069)***

80 < LTV ≤ 90 1.4484 1.4538 1.3864 1.3568 1.5057 1.4423 1.4426
(0.0068)*** (0.0070)*** (0.0073)*** (0.0079)*** (0.0077)*** (0.0070)*** (0.0069)***

90 < LTV ≤ 95 1.6435 1.6351 1.5762 1.5567 1.7511 1.6349 1.6336
(0.0086)*** (0.0088)*** (0.0090)*** (0.0098)*** (0.0099)*** (0.0089)*** (0.0087)***

95 < LTV ≤ 99 1.7622 1.7597 1.7002 1.6754 1.8785 1.7322 1.7427
(0.0089)*** (0.0090)*** (0.0092)*** (0.0099)*** (0.0105)*** (0.0094)*** (0.0091)***

LTV > 99 2.0237 2.0137 1.9684 1.9551 2.1473 2.0025 1.9996
(0.0103)*** (0.0104)*** (0.0105)*** (0.0110)*** (0.0112)*** (0.0111)*** (0.0108)***

LTV Missing 0.3205 0.2604 0.5078 0.4424 0.4653 0.3894 0.4148
(0.0488)*** (0.0522)*** (0.0494)*** (0.0545)*** (0.0522)*** (0.0482)*** (0.0479)***

FICO Buckets
550 < FICO ≤ 650 -0.9190 -0.9134 -0.9239 -0.9913 -1.0020 -0.9489 -0.9374

(0.0086)*** (0.0090)*** (0.0092)*** (0.0099)*** (0.0094)*** (0.0085)*** (0.0084)***
650 < FICO ≤ 700 -1.5993 -1.5852 -1.5995 -1.6958 -1.6784 -1.6558 -1.6182

(0.0087)*** (0.0091)*** (0.0094)*** (0.0100)*** (0.0095)*** (0.0086)*** (0.0085)***
700 < FICO ≤ 750 -2.2277 -2.2123 -2.2339 -2.3653 -2.3358 -2.2566 -2.2408

(0.0091)*** (0.0095)*** (0.0097)*** (0.0105)*** (0.0100)*** (0.0090)*** (0.0090)***
750 < FICO ≤ 800 -3.2004 -3.1919 -3.2171 -3.3658 -3.3181 -3.2003 -3.1951

(0.0102)*** (0.0105)*** (0.0108)*** (0.0117)*** (0.0113)*** (0.0103)*** (0.0102)***
FICO > 800 -3.8567 -3.8577 -3.8855 -3.9819 -3.9202 -3.8422 -3.8393

(0.0202)*** (0.0205)*** (0.0209)*** (0.0221)*** (0.0223)*** (0.0210)*** (0.0213)***
FICO Missing -1.3702 -1.3784 -1.3791 -1.4309 -1.5886 -1.4520 -1.3959

(0.0160)*** (0.0163)*** (0.0164)*** (0.0172)*** (0.0183)*** (0.0169)*** (0.0155)***
Intercept -2.8503 -2.8551 -2.7892 -2.6472 -2.7535 -2.8137 -2.8115

(0.0113)*** (0.0118)*** (0.0121)*** (0.0128)*** (0.0125)*** (0.0114)*** (0.0112)***
Observations 12,261,985 11,723,378 11,862,794 11,702,514 11,546,081 11,065,187 11,306,666

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is associated with
bankruptcy proceedings within 24 months of origination.
2 For refinance mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination divided by
the property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 19 (Continued): Full “Perfect Foresight” Logistic Regression Model Results: Refinance
Loans, “Leave-One-Out” Estimation

Dependent Variable: Di
1

Holdout Year
Variable 2011 2012 2013 2014 2015 2016

LTV Buckets2

60 < LTV ≤ 70 0.6430 0.6425 0.6516 0.6421 0.6412 0.6437
(0.0078)*** (0.0078)*** (0.0078)*** (0.0078)*** (0.0078)*** (0.0078)***

70 < LTV ≤ 80 1.0666 1.0679 1.0780 1.0655 1.0639 1.0701
(0.0069)*** (0.0068)*** (0.0069)*** (0.0068)*** (0.0068)*** (0.0068)***

80 < LTV ≤ 90 1.4443 1.4471 1.4630 1.4492 1.4471 1.4558
(0.0069)*** (0.0068)*** (0.0069)*** (0.0068)*** (0.0068)*** (0.0068)***

90 < LTV ≤ 95 1.6345 1.6385 1.6636 1.6437 1.6415 1.6522
(0.0087)*** (0.0086)*** (0.0086)*** (0.0085)*** (0.0085)*** (0.0085)***

95 < LTV ≤ 99 1.7512 1.7578 1.7806 1.7620 1.7608 1.7713
(0.0090)*** (0.0089)*** (0.0090)*** (0.0088)*** (0.0088)*** (0.0088)***

LTV > 99 1.9768 1.9701 2.0577 2.0251 2.0176 2.0331
(0.0106)*** (0.0107)*** (0.0107)*** (0.0103)*** (0.0102)*** (0.0102)***

LTV Missing 0.3883 0.3747 0.3911 0.3925 0.3878 0.3684
(0.0474)*** (0.0472)*** (0.0473)*** (0.0469)*** (0.0470)*** (0.0480)***

FICO Buckets
550 < FICO ≤ 650 -0.9421 -0.9424 -0.9461 -0.9426 -0.9409 -0.9458

(0.0084)*** (0.0084)*** (0.0085)*** (0.0084)*** (0.0084)*** (0.0084)***
650 < FICO ≤ 700 -1.6278 -1.6328 -1.6312 -1.6265 -1.6241 -1.6318

(0.0086)*** (0.0086)*** (0.0087)*** (0.0085)*** (0.0085)*** (0.0085)***
700 < FICO ≤ 750 -2.2604 -2.2618 -2.2607 -2.2567 -2.2510 -2.2627

(0.0090)*** (0.0090)*** (0.0091)*** (0.0089)*** (0.0089)*** (0.0089)***
750 < FICO ≤ 800 -3.2302 -3.2260 -3.2264 -3.2319 -3.2221 -3.2423

(0.0102)*** (0.0101)*** (0.0102)*** (0.0100)*** (0.0100)*** (0.0101)***
FICO > 800 -3.9000 -3.8952 -3.9048 -3.8946 -3.8901 -3.9244

(0.0212)*** (0.0208)*** (0.0208)*** (0.0203)*** (0.0203)*** (0.0206)***
FICO Missing -1.3918 -1.3924 -1.4210 -1.4194 -1.4127 -1.4155

(0.0155)*** (0.0155)*** (0.0156)*** (0.0154)*** (0.0154)*** (0.0155)***
Intercept -2.8388 -2.8162 -2.8018 -2.8008 -2.8056 -2.8247

(0.0113)*** (0.0112)*** (0.0113)*** (0.0111)*** (0.0111)*** (0.0111)***
Observations 11,495,360 11,523,378 11,586,630 12,378,705 12,290,428 12,208,138

1 Di is equal to one if the mortgage is ever 90 days-past-due or worse, enters the foreclosure process, or is
associated with bankruptcy proceedings within 24 months of origination.
2 For refinance mortgages, LTV is defined as the outstanding principal balance at the time of the loan’s origination
divided by the property’s appraised value.
Standard errors are reported in parentheses.
* , **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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D Sampling and Parameter Tuning for the Random Forest Clas-
sifier

Aggregating the output from the Logistic regression models to predict the number of defaults in a particular
validation sample is very straightforward: because the output from the Logit model is a predicted probability,
to calculate the number of predicted defaults in a given set of loans, we simply need to sum over all of the
predicted probabilities in that set.64

Using the random forest (RF) model to predict defaults, in contrast, is complicated by two issues. The
first complication is that our data is “imbalanced” in the sense that non-default observations are far more
common in our data than observations that default. Classification algorithms typically seek to minimize the
rate of misclassification in the full sample. When there are few positive outcomes in the data – defaults in
our case – classifiers will have a tendency to focus on predicting the outcome of non-positive outcomes as
the non-positive outcomes have an outsized impact on the calculation of the overall error rate. Because of
this issue, when classifiers are applied to extremely unbalanced data they will tend to correctly classify very
few of the positive outcomes.

There are two common approaches for addressing the imbalance issue when implementing the RF classifier
[Chen, Liaw and Breiman, 2004]. One approach is to reconfigure the objective function underlying the
classifier to assign a high cost to misclassifying non-positive cases. A second approach is to either oversample
the positive outcomes or downsample the non-positive outcomes when constructing the training data; under
this type of sampling scheme, the classifier will naturally give more weight to correctly classifying positive
cases than it would when trained using a random sample from the population. In our implementation of the
RF classifier in Section 3, we use the Synthetic Minority Over-Sampling Technique (SMOTE) to address the
imbalance problem [Chawla et al., 2002]. Specifically, if ND

j and NND
j denote the default and non-default

observations in origination cohort j, we use SMOTE to create ÑD
j synthetic defaults such that the sum of

the true and augmented defaults comprise 20 percent of the “SMOTEd” data for origination cohort j. That
is

SDj
SNDj

=
ND
j + ÑD

j

ND
j + ÑD

j +NND
j

= 0.2

where SDj and SNDj denote the set of defaulted and non-defaulted loans, respectively.
The SMOTEd data serves as the sampling base for the bootstrap samples of our RF algorithm. When

defining the training sample for each tree grown using the RF algorithm, we first partition the SMOTEd
data into loans from an origination cohort j that default and those that do not. When growing a tree that
is indexed by b, we randomly sample 50,000 observations from SDj with replacement to create a sample of

defaults denoted SD,bj . Similarly, we create a sample of non-defaults, denoted SND,bj , by randomly 50,000

observations from SNDj with replacement. Lastly, we use a sample comprised of the observations in SD,bj and

SND,bj to grow tree b using the Classification and Regression Trees (CART) algorithm. The resulting dataset
is perfectly balanced and small enough to render the algorithm computationally feasible. This process is
repeated B = 2, 000 times, where B denotes the total number of trees in the random forest. Chen, Liaw and
Breiman [2004] refer to this approach as “ balanced random forest” (BRF).

The second complication with the implementation of the RF algorithm concerns aggregation. For any
given observation, the RF algorithm produces B different predictions of whether the loan is a default or
non-default, and the user of the RF algorithm is tasked with determining how to aggregate these B different
predictions to create a final prediction. To conduct this aggregation, we will use information on fraction of
the B trees that classify a loan as being a default. Formally, define Ŷbi as

Ŷbi =

{
1 if loan i is classified as a default by tree b

0 if loan i is classified as a non-default by tree b
(D.1)

Now let Ỹi denote the final prediction from the RF procedure based on an aggregation of all B of the

64While estimates of the probability of default can in principle be constructed based on the Random Forest procedure,
estimating these probabilities is not trivial. For a discussion of this issue, see Niculescu-Mizil and Caruana [2005].
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tree-specific predictions. We construct Ỹi as follows

Ỹi =

{
1 (default) if 1

B

∑B
b=1 Ŷbi > τ

0 (non-default) if 1
B

∑B
b=1 Ŷbi ≤ τ

(D.2)

where 1
B

∑B
b=1 Ŷbi measures the fraction of trees that classify a loan as being in default and τ is a cutoff

threshold that is used in the aggregation. In the standard presentation of the RF model, the aggregation
is conducted via “ majority rule” in the sense that the modal prediction in the set of B predictions is the
final classification that is applied to the loan [Hastie, Tibshirani and Friedman, 2009]. Because of the binary
nature of the prediction in our application, this majority rule aggregation is equivalent to setting τ = 0.5 in
Equation D.2. In many applications, instead of simply using majority rule to choose the final classification,
the users of the RF algorithm “tune” the τ parameter to optimize particular performance measures.

That said, because the goal of our prediction exercise is to get a sense of the RF procedure’s predictive
accuracy in a production environment where tuning is common, instead of simply using the majority voting
rule, we tuned the τ parameter as follows. First, we created a master training dataset comprised of loans
that were originated in 2004. Then, we defined the following set G of candidate thresholds

G = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

For each τ ∈ G, we then trained the RF classifier on the 2004 data using τ to define the voting rule defined
above. Then, we used the RF classifier to produce predictions of loan performance for every origination year
(2004 through 2016) in our sample based on the voting rule under the threshold τ .

The results of the final predictions can be summarized in a “ confusion matrix” as follows

Actual Class
Yi = 1 Yi = 0

Predicted Ỹi = 1 True Positives (TP) False Positives (FP)

Class Ỹi = 0 False Negatives (FN) True Negatives (TN)

We use the entries in the confusion matrix to construct the following model performance measures separately
for each year j in our data. Note that all of these measures are functions of the threshold τ .

Recallj(τ) =
TPj

TPj + FNj

Specificityj(τ) =
TNj

TNj + FPj

Precisionj(τ) =
TPj

TPj + FPj

Balanced Accuracyj(τ) =
Specificityj(τ) + Recallj(τ)

2

Fj(τ) =
2Precisionj(τ)Recallj(τ)

Precisionj(τ) + Recallj(τ)

EvAj(τ) = 100 ∗
(

(TPj + FPj)− (TPj + FNj)

(TPj + FNj)

)
Lastly, we averaged these performance measures over all J separate sample years to create
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Recall(τ) =
1

J

2016∑
j=2004

Recallj(τ)

Specificity(τ) =
1

J

2016∑
j=2004

Specificityj(τ)

Precision(τ) =
1

J

2016∑
j=2004

Precisionj(τ)

Balanced Accuracy(τ) =
1

J

2016∑
j=2004

Balanced Accuracyj(τ)

F (τ) =
1

J

2016∑
j=2004

Fj(τ)

EvA(τ) =
1

J

2016∑
j=2004

EvAj(τ)

The results of this exercise are summarized in Table 21. For the purchase loans, the absolute value of the
prediction error rate – EvA(τ) – is minimized at τ = 0.7, while for the refinance loans the absolute value of
EvA(τ) is minimized at τ = 0.9. When looking at the year-by-year components of the EvA(τ) measure for
the refinance loans, we discovered that while EvA(τ) was lowest in absolute value for τ = 0.9 and τ = 0.8,
these averages were driven down by extreme underpredictions of defaults in several of the validation sample
years. Because our primary analysis focuses on EvA(τ) and this measure appears to be roughly maximized
around a value of τ = 0.7 while still avoiding extreme underpredictions, we chose τ = 0.7 as the threshold
used for the voting rule in our implementation of the random forest classifier.

Note that there is a mechanical relationship between τ , recall, and specificity: as τ increases, fewer
observations are classified as defaults, decreasing the fraction of defaults that are correctly classified (recall)
while increasing the fraction of non-defaults that are correctly classified (specificity).
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Table 21: Parameter Tuning Results

Purchase Loans
Performance Measure

τ1 EvA(τ) Recall(τ) Specificity(τ) Balanced Accuracy(τ) F (τ)

0.9 -87.10 1.36 99.67 50.52 2.34
0.8 -40.33 5.84 98.52 52.18 6.96
0.7 34.16 12.68 96.78 54.73 11.16
0.6 226.87 23.78 91.93 57.85 14.50
0.5 617.28 47.32 80.91 64.11 18.14
0.4 1299.90 74.09 61.24 67.66 15.27
0.3 2094.20 90.47 38.71 64.59 12.37
0.2 2742.76 97.69 20.46 59.08 10.28
0.1 3217.42 99.71 8.45 54.08 9.00

Refinance Loans
Performance Measure

τ EvA(τ) Recall(τ) Specificity(τ) Balanced Accuracy(τ) F (τ)

0.9 -26.84 2.28 99.28 50.78 2.17
0.8 106.26 6.43 97.85 52.14 4.35
0.7 300.70 12.08 95.53 53.81 6.38
0.6 711.54 25.14 90.77 57.95 10.14
0.5 1214.59 43.82 83.73 63.78 12.77
0.4 1769.09 60.69 75.28 67.99 12.34
0.3 2996.57 79.35 57.25 68.30 10.13
0.2 5307.29 92.61 26.81 59.71 7.42
0.1 6884.03 98.07 12.27 55.17 6.45

1 τ denotes the cutoff used to train the Random Forest model and calculate the
performance measures.
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