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Abstract

In light of recent events, there have been proposals to establish a theory of financial system risk
management analogous to portfolio risk management. One important aspect of portfolio risk management
is risk attribution, the process of decomposing a risk measure into components that are attributed to
individual assets or activities. The theory of portfolio risk attribution has limited applicability to systemic
risk because systems can have richer structure than portfolios. We take a first step towards a theory of
systemic risk attribution and illuminate the design process for systemic risk attribution by developing
some schemes for attributing systemic risk in an application to deposit insurance.

1 Introduction

Risk attribution can play an important role in systemic risk management, as it does in portfolio risk manage-
ment. In portfolio risk management, risk attribution means decomposing the risk of a portfolio or enterprise
into risk components that are attributed to components of the portfolio. One application is allocating risk
capital to sub-portfolios or businesses (Denault, 2001). Another is computing risk-adjusted performance,
which can be used to provide managers with incentives to consider the risk profile of the whole portfolio
or enterprise when taking risks (Tasche, 2004). In systemic risk management, Gauthier et al. (2010) and
Tarashev et al. (2010) use portfolio risk components as tools for setting capital requirements for banks.

Our primary contribution is to the theory and methodology of systemic risk attribution. We take a first
step towards a theory of systemic risk attribution that is substantively different from the theory of portfolio
risk attribution and is appropriate for use with systemic risk models that include interactions between
components of the system. We concur with Tarashev et al. (2010, pp. 6, 9) that the theory of portfolio
risk attribution, which treats a portfolio as a sum of assets that do not interact, does not fit models of
systemic risk that include interactions. Using simple models of the financial system and a simple measure of
systemic risk, we construct systemic risk attribution schemes that handle the interactions between financial
institutions. In contrast to the literature on portfolio risk components, we see many reasonable ways to
allocate systemic risk in models with interactions. We make a contribution to the design of systemic risk
allocation schemes by discussing design principles and giving examples.
∗The authors thank discussant Myron Kwast, Rosalind Bennett, Ken Jones, Paul Kupiec, Amiyatosh Purnanandam, and

other participants in the 2009 FDIC Center for Financial Research Workshop for their comments. The views expressed are
those of the authors. The second author gratefully acknowledges support from the FDIC Center for Financial Research and an
IBM Faculty Award.
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Our second contribution is to apply systemic risk components to deposit insurance. Acharya et al. (2010)
use a model of bank resolution costs to analyze the implications of systemic risk for deposit insurance premia.
We develop systemic risk attribution schemes in a model inspired by theirs and in a network model of the
financial system, and discuss the use of systemic risk components as deposit insurance premia.

The remaining sections of the introduction discuss systemic risk and systemic risk attribution. Deposit
insurance and responsibility for externalities in deposit insurance are the topic of Section 2. Section 3
develops systemic risk attribution schemes in a model of bank resolution costs. It contains introductions to
the tools we use for creating risk components, the Shapley value (Section 3.2) and Aumann-Shapley value
(Section 3.3). Section 4 develops systemic risk attribution schemes in a network model. Section 5 concludes
and discusses future research directions.

1.1 Systemic Risk

Systemic risk management includes three challenges: modeling systemic risk, defining a measure of systemic
risk, and operationalizing systemic risk measurement by gathering the necessary data. We review some
relevant literature and explain how our methods address these issues.

Systemic risk involves risk that arises because of the structure of the financial system and interactions
between financial institutions. Systemic risk is not the same as systematic risk, which is risk explained by
factors that influence the economy as a whole. Systemic risk includes systematic risk and also risks arising
from phenomena such as contagion, the transmission of losses or distress from one institution to another.
Contagion can take several forms. In asset price contagion, an institution’s sale of assets into an illiquid
market can cause a decline in asset prices and thus losses to others. For example, a fire sale in which a
distressed financial institution is compelled to sell assets can cause losses to other institutions that own similar
assets (Brunnermeier and Pedersen, 2009; Cifuentes et al., 2005; Diamond and Rajan, 2005; Krishnamurthy,
2010; Shin, 2008). The models of bank resolution costs in Section 3, inspired by fire sales and by Acharya
et al. (2010), include effects that a bank has on the value of other banks’ assets due to market illiquidity, as
in asset price contagion. In counterparty contagion, loss transmission occurs when an institution is unable to
make promised payments to others (Eisenberg and Noe, 2001). In Section 4, we use a model of counterparty
contagion that extends the model of Eisenberg and Noe (2001) to include banks’ depositors, and is a special
case of the model of Elsinger (2007).

The systemic risk measure is often taken to be a risk measure, such as value at risk (VaR) or expected
shortfall, applied to the distribution of the aggregate losses in the financial system (Adrian and Brunnermeier,
2009; Gauthier et al., 2010; Tarashev et al., 2010). One alternative measure is the fraction of the banking
system that enters bankruptcy (Lehar, 2005, §5.1). A different approach is to measure systemic risk as a
market price or value. Huang et al. (2009, 2010) measure systemic risk as the price of insurance against losses
in excess of 15% to a portfolio of twelve large banks’ bonds. In measuring systemic risk from the perspective
of a deposit insurer, Lehar (2005, § 5.3) considers the price of a portfolio of put options, each written on the
assets of one insured bank, and the volatility of this price. This price is the expected insured loss where the
probabilities in the expectation come from a pricing measure (see, e.g., Föllmer and Schied, 2004). Under a
pricing measure, the expectation of an asset’s discounted future value equals the asset’s price. This reflects
systematic risk and investors’ preferences. Our systemic risk measure is the deposit insurer’s expected cost.
The expectation may be computed either under the pricing measure or with real-world probabilities.

Systemic risk models involving real-world probabilities require a great deal of data to model systematic
risk and connect it to outcomes for the system. Modeling systematic risk requires a macroeconomic model
and data on each bank’s exposure to risk factors. For example, BankCaR (Frye and Pelz, 2008) models
the joint distribution of U.S. banks’ loan charge-offs using the call report data on banks’ assets. Systematic
risk is modeled in a similar manner in RAMSI (Aikman et al., 2009), which also incorporates fire sales and
counterparty contagion. Modeling fire sales requires a model of how an asset’s price depends on the quantity
that is sold. It would be valuable to have further study of market liquidity when a substantial portion
of the stock of an entire class of assets is sold. Our methods in Section 3 could be operationalized using
BankCaR and a model of illiquidity costs in bank resolution. Modeling counterparty contagion requires data
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on bilateral links among financial institutions that is only available, in imperfect form, to supervisors in
some countries. Elsinger et al. (2006) model systemic risk including counterparty contagion using Austrian
supervisory data on banks’ assets and interbank loans. Using Canadian supervisory data that includes also
cross-shareholdings and derivative securities traded among banks, Gauthier et al. (2010) model systemic risk
including fire sales and counterparty contagion. Our methods in Section 4 could be operationalized using
these supervisory data sets.

Public data on market prices, e.g. of equity, equity options, and credit default swaps, suffices to opera-
tionalize some methods that involve only a pricing measure (Huang et al., 2009, 2010; Lehar, 2005). This
approach is relatively easy to implement, but it does not discriminate between the sources of systemic risk
such as systematic risk and various forms of contagion. To distinguish among these sources of risk in models
that use a pricing measure, one could build a model with real-world probabilities, as described above, and
then choose an equivalent pricing measure (see, e.g., Föllmer and Schied, 2004).

1.2 Systemic Risk Components

To date, schemes for attributing systemic risk to individual institutions have been drawn directly from
the theory of portfolio risk components, with the exception of ∆CoVaR (Adrian and Brunnermeier, 2009).
Gauthier et al. (2010) is the only study to apply these schemes to a model featuring contagion; others have
done systemic risk attribution for models that include only systematic risk. Because the financial system is
not simply a portfolio of institutions, we see a need to develop a new theory of systemic risk attribution,
different from the theory of portfolio risk attribution.

Within the topic of risk attribution, we focus on risk components, which have the property that their
sum equals the risk measure of the portfolio or system. In our case, the systemic risk measure is the deposit
insurer’s expected cost, the aggregate premium required to insure the system. Summing to the required
aggregate premium is a desirable property for systemic risk components to have if they are to be used as
deposit insurance premia.

Several methods have been used to attribute systemic risk to institutions, but not all of them yield risk
components. The ∆CoVaR measure of an institution’s contribution to systemic risk (Adrian and Brunner-
meier, 2009) is not a risk component: the sum of CoVaR or ∆CoVaR over all institutions does not equal VaR
of the whole system (Tarashev et al., 2010, p. 4). Likewise, incremental VaR is not a risk component because
it does not sum to VaR of the whole system (Gauthier et al., 2010, §2.2). Component VaR and Shapley
value have been applied to systemic risk and do yield risk components. Component VaR was applied to
systemic risk by Gauthier et al. (2010) in setting capital requirements and by Lehar (2005, §5.3) in deposit
insurance. Its name is misleading because component VaR is not related to VaR. It is proportional to beta,
the covariance between an asset and the portfolio. Component VaR is the risk component derived from
marginal contribution to risk in the special case that the risk measure is variance (see, e.g., Goldberg et al.,
2009). In general, this method of risk attribution is also known as gradient allocation, Euler allocation, or
the Aumann-Shapley value. Tarashev et al. (2010, p. 1) propose to apply the Shapley value to attribute
systemic risk for “any measure of risk that treats the system as a portfolio of institutions.” Denault (2001)
proposed the Shapley and Aumann-Shapley values as portfolio risk components.

We show how to apply the Shapley and Aumann-Shapley values to models that include interactions
between institutions and do not treat the system as a portfolio of institutions. Tarashev et al. (2010, p. 6)
state that their risk attribution schemes, which we call portfolio Shapley values, do not handle counterparty
contagion. However, Gauthier et al. (2010, §2.4) use a portfolio Shapley value with a model that includes
counterparty contagion. The resulting risk components should be interpreted carefully. In the setting of
systemic risk, the usual interpretation of Shapley value involves the impact on systemic risk of an institution’s
participation in the system, assessed by comparing the risk of a system in which the institution participates
to the risk of a system in which it does not (Section 3.2). Portfolio Shapley values yield portfolio risk
components and assess the impact of an institution’s inclusion in the portfolio by comparing the risk of a
portfolio that includes the institution’s profit or loss to the risk of a portfolio that excludes it. They do
not compare different systems. To interpret portfolio Shapley values as yielding systemic risk components
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that assess the impact of an institution’s participation in the system, one must assume that participating
institutions behave the same way regardless of others’ participation. As Tarashev et al. (2010, p. 9) point
out, this assumption does not fit a model that includes interactions. Gauthier et al. (2010, footnote 4)
recognize the difficulty of assessing the impact of an institution’s participation in the system when modeling
counterparty contagion, stating “removing a bank [from the system] would leave holes in the remaining
banks’ balance sheets.” We address this problem of holes in balance sheets in Section 4.2 and apply the
Shapley and Aumann-Shapley values to a model that includes counterparty contagion in Sections 4.3 and
4.4. We apply them to a simpler model with interactions in Sections 3.2 and 3.3.

Because our systemic risk measure is an expectation, which is linear, our analysis omits an important
feature of the theory of portfolio risk attribution: the non-linearity of the risk measure as a function of
the portfolio value considered as a random variable. We leave for future research the topic of systemic
risk attribution when the systemic risk measure is non-linear. Because of the linearity of the Shapley and
Aumann-Shapley values, our systemic risk components are simply expectations of allocations of the deposit
insurer’s cost in each scenario. We focus on cost allocation in each scenario. Cost allocation via the Shapley
value (Shubik, 1962) and Aumann-Shapley value (Billera and Heath, 1982; Mirman and Tauman, 1982) is
well-established. The cost allocation problem is interesting when cost is a non-linear function of the system
parameters, as is the case in systemic risk: due to interactions, the cost in insuring a system containing
two banks is not necessarily the sum of the costs if each of the two banks existed in isolation. This is the
phenomenon that is absent from portfolio risk theory because, in each scenario, portfolio value is linear in
the portfolio weights.

Cost allocation is also interesting in systemic risk because there is more than one reasonable specification
of cost as a function of system parameters. Different assumptions about responsibility or counterfactuals, i.e.,
what the cost would be if the system parameters were different, lead to different cost allocations. For example:
Who is responsible for a bad loan, the lender, the borrower, or both? How would the system be different
if one institution were absent? This freedom to think differently about responsibility and counterfactuals
creates flexibility for a systemic risk analyst to design a systemic risk allocation scheme to have desired
properties.

2 Deposit Insurance and Responsibility for Contagion

When systemic risk is measured as the deposit insurer’s expected cost, systemic risk components could be
used in two ways. They provide insight into the causes of systemic risk, quantifying such things as how
much systemic risk is due to one particular bank or to loans to a certain industry. For this purpose, the
assumptions about responsibility or counterfactuals are key. For example, one can design a systemic risk
allocation that assigns responsibility to defaulting borrowers, or one that assigns responsibility to leverage
at banks. A belief about what would happen if a particular bank were absent can ground an assessment of
how much systemic risk it causes. A deposit insurer could also use systemic risk components as premia, but
this poses a challenging design problem. It requires an understanding of the incentives that such a deposit
insurance premium scheme would create for participants in the financial system, and the consequences of
those incentives. The potential benefit of such a scheme is that it could provide incentives to act in ways
that lower systemic risk.

In this regard, it could do for systemic risk something similar to what the fair-market deposit insurance
premium scheme (Duffie et al., 2003; Pennachi, 2006) did for systematic risk. In deposit insurance, systematic
risk has to do primarily with the effect of dependence among banks’ assets on the distribution of insured loss
(Bennett et al., 2005; Jarrow et al., 2003; Kuritzkes et al., 2005; Lehar, 2005). The actuarially fair deposit
insurance premium for a bank is the expectation, using real-world probabilities, of the loss in insuring that
bank’s depositors. The fair-market premium is the same except that it uses probabilities that incorporate
the market price of systematic risk due to investors’ risk-aversion. Because insured losses tend to occur in bad
economic scenarios, in which there is high marginal utility of wealth, fair-market premia tend to be higher
than actuarially fair premia. The fair-market premium for a bank with high exposure to systematic risk is
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higher than the premium for a similar bank with low exposure to systematic risk. Pennachi (2006) finds that
in the absence of fair market deposit insurance premia, banks have an incentive to amass a systematically
risky asset portfolio, which increases the variability of insured loss.

It also concentrates insolvencies in bad economic scenarios, in which it can be difficult to resolve insolvent
banks by selling them. Acharya et al. (2010) model resolution costs due to limited liquidity of insolvent banks’
assets. They also show that the possibility that insolvent banks would be bailed out instead of closed during
a systemic crisis creates an incentive for banks to herd and increase systematic risk. To remove this incentive,
they propose deposit insurance premia that increase with systematic risk. They avoid the difficulties of cost
allocation because their model includes only two banks. We explore the allocation of resolution costs in a
model inspired by theirs, but including many banks. In the model of resolution costs in Section 3.1.1, the
picture is fairly clear: each insolvent bank causes and has sole responsibility for its demand for liquidity,
which depletes the common pool of liquidity. The result is a simple cost allocation problem with negative
externalities. The simplicity arises because each bank’s solvency and demand for liquidity can be assessed
in isolation: only the cost of resolution depends on the entire system.

In models of contagion with more complicated interactions among financial institutions, events can have
multiple causes, allowing for multiple perspectives on responsibility. Contagion implies an externality: one
institution’s behavior has a significant impact on others’ survival or value, and it could be held responsible
for that impact (Acharya et al., 2010, §1). However, contagion takes two: one to transmit and one to receive
contagion. The recipient could be held responsible for behavior that created vulnerability to contagion.

Consider fire sales triggered by capital requirements. Suppose that bank A, in distress, conducted a
fire sale, causing the price of an illiquid security to decline, which caused bank B to become insolvent and
experience an insured loss. Who is responsible for the insured loss, bank A, bank B, or both? Bank B’s
behavior is also a cause of the insured loss, which would not have occurred if bank B had had lower leverage
or less exposure to the illiquid security. Is bank A responsible for the negative externality of its fire sale, or is
bank B responsible for its vulnerability to the externality? Is market liquidity a common good, like financial
stability, and are institutions entitled to some normal level of it? In this view, an institution that contributes
to systemic risk is like a polluter, held responsible for the harm that others suffer from its pollution (Acharya
et al., 2010, §6). Or is market liquidity a resource that anyone is free to exploit? Or is it neither a good nor
a resource, but rather a quality describing the competition between sellers to find buyers? In these views,
banks are simply competing businesses, each responsible for ensuring that it has sufficient liquidity, or for
the consequences if it does not.

Consider counterparty contagion. Suppose that bank B lent to bank A, and then bank A invested in sub-
prime mortgages. When too many of the mortgages defaulted, bank A defaulted, and the loss on the loan to
bank A caused Bank B to become insolvent and experience an insured loss. Who is responsible for it? Among
the causes of the insured loss are bank B’s leverage, its decision to lend to bank A, bank A’s investment
decisions, and the housing market. The effect of bank A’s investment decisions on bank B illustrates the
externality in counterparty risk: after an obligation is undertaken, the obligor’s behavior affects the creditor.
Indeed, a limited-liability borrower that has already obtained a loan has an incentive to pursue higher-risk
strategies: it would capture all the upside, whereas its lender would bear the extreme losses. Debt covenants
are a mechanism for limiting such behavior, which has an attraction for decision-makers only because some
of the negative consequences are borne by others, and which would not be preferred if everyone’s interests
were aligned. Collateral is a mechanism for limiting the damage to the creditor in the event of default.

One might argue that, because creditors can use such mechanisms to protect themselves from the exter-
nalities of their obligors’ behavior, they should be held responsible for doing so. Likewise, one might argue
that, because banks can avoid suffering contagion from fire sales by not investing in illiquid securities, they
should be held responsible for doing so. Applied to a model in which the deposit insurer’s cost is the sum of
insured losses at all banks, these arguments justify the actuarially fair or fair-market premium: each bank
would be responsible for the loss in insuring its own deposits and nothing else.

An objection to this argument is that, considering the complexity of modern finance, the adequacy of the
available mechanisms is questionable. For example, consider over-the-counter derivatives trades. It is not
easy to assess the ability of a large complex financial institution to fulfill its obligation, much less design a
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contract with features that control this ability, similar to what debt covenants do. Data such as the obligor’s
credit ratings and credit default swap rate provide information about its unconditional creditworthiness,
not its ability to pay in those scenarios in which it has an obligation to make a payment on a particular
derivative security. The demand to collateralize derivatives exposures is so great that the supply of high-
quality collateral is insufficient; reliance on lower-quality collateral is itself a source of systemic risk (Gorton,
2009).

When externalities can not be dealt with by other means, one may consider using regulation in an attempt
to reduce their negative consequences. Consider using systemic risk components as deposit insurance premia
that are sensitive to effects of an institution’s behavior on the cost to insure all deposits, whether they are
its deposits or not. At present, we do not have an attractive solution for dealing with contagion in this way.
There are symmetrical objections to deposit insurance premia that hold banks responsible for the loss in
insuring their own deposits and to deposit insurance premia that hold banks responsible for the impact that
their actions have on insured losses anywhere in the system. The former leave banks exposed to externalities
of the behavior of their obligors or of banks that might conduct fire sales; the latter leave banks exposed
to externalities of the behavior of their creditors or of banks that might be harmed by fire sales. Under
the latter scheme, a bank would be charged a higher deposit insurance premium if its creditors or banks
holding the same illiquid assets that it does were to become weaker and their deposits subject to greater
insured losses in case of its own default or distress. Furthermore, the latter scheme has the disadvantage
that it might well allocate positive systemic risk components to non-banks that are sources of contagion.
Even though these institutions might be regarded as responsible for costs to the deposit insurer, charging
them deposit insurance premia seems impractical. Nonetheless, models of contagion could still be useful in
assessing expected costs, and systemic risk components would be useful in analyzing the causes of systemic
risk, even if they were not to be used as deposit insurance premia.

We concur with Acharya et al. (2010) that deposit insurance premia should reflect bank resolution costs.
Using systemic risk components as deposit insurance premia would be a way for the deposit insurer to
recover total expected costs and to give banks an incentive to reduce systemic risk by making investments
that are collectively less likely to result in clustering of bank insolvencies. However, like portfolio risk
components, systemic risk components can be negative. Depending on one’s perspective on responsibility
for bank resolution costs, this might be appropriate in some sense, but negative deposit insurance premia
would entail practical disadvantages. We show how to design schemes that yield non-negative systemic risk
components.

3 Resolution Costs

In this section, we treat models of the deposit insurer’s cost to resolve insolvent banks, inspired by Acharya
et al. (2010). The key feature of the models is that the deposit insurer incurs an extra cost, due to illiquidity
of banks’ assets, in scenarios in which the aggregate assets of insolvent banks are too large. Thus, there
is an interaction among banks: the insolvency of one bank can decrease the value of the assets of another
insolvent bank.

3.1 Models of Bank Resolution Costs

The system contains n banks. Bank i has di in deposits and the rest of its funding is equity. Its assets
have book value ai. Systematic risk enters the model as the randomness of the vector a. The net book
value of bank i is ui = ai − di. Define Ui = sgn(ui), U+

i indicating whether bank i is solvent, and U−i
indicating whether bank i is insolvent. The aggregate book values of solvent banks’ assets and insolvent
banks’ assets are

∑n
i=1 U

+
i ai and

∑n
i=1 U

−
i ai, respectively. The deposit insurer’s cost is the difference

between the total deposits of insolvent banks and the amount for which their assets are sold,
∑n
i=1 U

−
i di −

s
(∑n

i=1 U
−
i ai,

∑n
i=1 U

+
i ai

)
. For any y, s(0, y) = 0 and the function s(·, y) is concave because the average

price per dollar of book value for the assets of insolvent banks decreases as the supply of these assets increases.

6



There is a negative externality of one bank’s insolvency: it can make other insolvent banks worth less. We
decompose the cost to the deposit insurer as

n∑
i=1

U−i di − s

(
n∑
i=1

U−i ai,
n∑
i=1

U+
i ai

)
=

n∑
i=1

`i + c̃

(
n∑
i=1

U−i ai,
n∑
i=1

U+
i ai

)
(1)

where `i = u−i is the book value of insured losses at bank i and the extra cost due to illiquidity is
c̃(
∑n
i=1 U

−
i ai,

∑n
i=1 U

+
i ai) =

∑n
i=1 ai − s(

∑n
i=1 U

−
i ai,

∑n
i=1 U

+
i ai). For any y, the function c̃(·, y) is con-

vex and c̃(0, y) = 0.
We will apply the Shapley and Aumann-Shapley values to allocate the deposit insurer’s cost to banks.

Both cost allocation procedures are additive (see, e.g., Moulin and Sprumont, 2007), which implies that
applying the procedure to the left side of Equation (1) yields the same allocation as applying the procedure
separately to the two terms on the right side and summing the results. The first term on the right side,
the book value of insured losses

∑n
i=1 `i, is separable: it is merely a sum of costs due to each bank and

involves no interactions among them. Both procedures satisfy the principle of separable costs (see, e.g.,
Sudhölter, 1998), which implies that, when applied to

∑n
i=1 `i, they must allocate `i to bank i. Overall, the

cost allocated to bank i is the sum of `i and its component of the illiquidity cost c̃(
∑n
i=1 U

−
i ai,

∑n
i=1 U

+
i ai).

3.1.1 Fire Sale Model.

In this model, the average price per dollar of book value of assets sold is exp(−αx) when the book value
of assets sold is x dollars. This is the functional form used by Cifuentes et al. (2005) in their model of
fire sales. The insolvent banks’ assets are sold for s(x, y) = x exp(−αx) and the illiquidity cost is c̃(x, y) =
x(1 − exp(−αx)). It depends only on the assets of insolvent banks, x, and not on assets of solvent banks,
y, so we define a cost function ĉ by ĉ(x) = c̃(x, y) for any y. Now we have a simple, classic, well-studied
cost allocation problem: allocating the cost required to meet the aggregate demand for a single good to
the individuals who make demands (see, e.g., Moulin and Sprumont, 2007; Sudhölter, 1998). We interpret
zi = U−i ai as the demand for liquidity imposed by bank i, z =

∑n
i=1 zi as the aggregate liquidity demanded,

and ĉ(z) = z(1− exp(−αz)) as the cost of providing it.

3.1.2 Acquisition Model.

This model is more closely related to that of Acharya et al. (2010). Solvent banks offer the highest price for
the assets of insolvent banks, compared to other potential buyers, because they can make the best use of
those assets. If the book value x of insolvent banks’ assets is small enough, the deposit insurer can sell all
of them to solvent banks. If x is too large, some of the assets must be sold to non-bank buyers for a lower
price. Our model is intended merely as an illustration, not as a realistic model of the bargaining process
that occurs when the deposit insurer sells insolvent banks or their assets. We assume that

• solvent banks pay book value for insolvent banks’ assets,

• a solvent bank can at most double its size by acquisition, i.e. its purchases can not exceed its own book
value before it made the purchases,

• an insolvent bank can be divided up and its assets sold to different buyers, and

• non-bank buyers pay 1− β times book value for insolvent banks’ assets, where 0 < β < 1.

If the assets of insolvent banks, x =
∑n
i=1 U

−
i ai, are less than the assets of solvent banks, y =

∑n
i=1 U

+
i ai,

then solvent banks buy all the assets of insolvent banks for s(x, y) = x. Otherwise, the deposit insurer first
sells assets with book value y to solvent banks for y and then sells the remaining assets with book value x−y
to non-bank buyers for (1−β)(x−y). The total proceeds are s(x, y) = y+(1−β)(x−y) = (1−β)x+βy. In
addition to the negative externality, that the insolvency of one bank makes other insolvent banks worth less,
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there is also a positive externality: the existence of a solvent bank makes insolvent banks worth more. The
illiquidity cost is c̃(x, y) = βmax{x−y, 0}. The acquisition model also fits into the univariate cost allocation
framework. The net demand for liquidity imposed by bank i is zi = −Uiai. A solvent bank has negative
demand for liquidity, meaning that it supplies liquidity to the system: if bank i is solvent then it supplies
the deposit insurer with the capacity to sell up to ai of insolvent banks’ assets without incurring a illiquidity
cost. Let z =

∑n
i=1 zi be the aggregate net demand for liquidity. The illiquidity cost is ĉ(z) = βmax{z, 0}.

3.2 The Shapley Value

The Shapley value creates one kind of fairness by using incremental costs and averaging over all possible
orderings of participants in the system. Consider the problem of allocating the cost ĉ(

∑n
i=1 zi) to the

participants’ non-negative demands z1, . . . , zn. One unfair procedure allocates the cost ĉ(z1) to participant 1
and the incremental cost ĉ(

∑i
j=1 zj) − ĉ(

∑i−1
j=1 zj) to participant i for i = 2, . . . , n. If the cost function ĉ

is strictly convex, the marginal cost is increasing in the aggregate demand. This procedure gives an unfair
advantage to participant 1, who is first in line to pay the lowest price per unit, and avoids paying for
any of the negative externalities. The Shapley value gives an equal weight to the incremental cost due to
participant i under any ordering. Let π be a permutation of 1, . . . , n and π(i) be its ith element, i.e. the
identity of the participant who comes ith in this ordering. Then π−1(i) is the position of participant i in
this ordering. The Shapley value allocates to demand zi the cost

1
n!

∑
π

ĉ
π−1(i)∑

h=1

zπ(h)

− ĉ
π−1(i)−1∑

h=1

zπ(h)


where the summation

∑
π is over all n! permutations of 1, . . . , n. For any subset S of {1, . . . , n} that contains

i, there are (n − |S|)!(|S| − 1)! permutations of 1, . . . , n in which i is the |S|th participant and the first |S|
participants are in the set S. Therefore the cost allocation is also equal to

1
n!

∑
S3i

(n− |S|)!(|S| − 1)!

ĉ
∑
j∈S

zj

− ĉ
 ∑
j∈S\{i}

zj

 . (2)

These two formulations of the Shapley value can be found in Moulin and Sprumont (2007) and Denault
(2001), along with further theoretical discussion. Because the summation in Equation (2) is over 2n−1 sets,
it may be computationally infeasible when n is large, but the Shapley value can be approximated by Monte
Carlo (David et al., 2005).

The Shapley value applies to more general cost allocation problems. Call the n participants players.
(The Shapley and Aumann-Shapley values have their roots in cooperative game theory.) Suppose that if
only players in the subset S ⊆ {1, . . . , n} were participating in the system, the cost would be c(S). It is
standard to assume that c(∅) = 0, i.e., there is zero cost for a system with no participants. We represent
the cost function c as a vector c whose 2n elements are the costs associated with all subsets of {1, . . . , n}.
The Shapley value involves a comparison of the actual system to 2n− 1 counterfactual systems in which not
every player is participating. The Shapley value allocates to participant i the cost

(Sc)i =
1
n!

∑
S3i

(n− |S|)!(|S| − 1)! (c(S)− c(S \ {i})) (3)

where S is a matrix of size n × 2n whose coefficients are defined by Equation (3); Sc is the vector of costs
allocated to all n participants.

Because the Shapley value is a linear operator represented by the matrix S, it commutes with expectation:
SE [c] = E [Sc]. That is, the Shapley value of expected cost is the expectation of the Shapley value of cost.
Although it could be more efficient to compute SE [c] than E [Sc], we focus on cost allocation in each scenario.
The interaction among banks is more transparent within a single scenario.
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Designing a cost allocation scheme based on the Shapley value means choosing the players and the cost
function c so that the cost allocation has the desired interpretation or properties. An interpretation of what it
means for a player to participate determines the cost function c and thus the incremental costs for which the
player is responsible. Anything in the system not affected by players’ participation is viewed as immutable
and not responsible for costs. The special case of Equation (3) in which c(S) = ĉ(

∑
j∈S zj) is Equation (2).

This is the natural cost function to use when cost depends only on the sum of non-negative demands from
the system’s participants, as in the fire sale model. In this interpretation, the players are the participants in
the system, and for player i to participate means that he imposes his demand zi on the system; for player i
not to participate means that he imposes zero demand. The acquisition model admits this interpretation,
but also others, leading to different Shapley values. We also consider Shapley values for which the players
are the insolvent banks, or the solvent banks, or banks’ leverage.

3.2.1 All Banks

Let all banks be players and the cost of the system in which players in the set S participate be c(S) =
ĉ
(∑

i∈S zi
)

= c̃
(∑

i∈S U
−
i ai,

∑
i∈S U

+
i ai

)
= βmax

{∑
i∈S Uiai, 0

}
. It is as though a bank that does not

participate does not exist. This scheme holds an insolvent bank responsible for contributing to the deposit
insurer’s cost by requiring liquidation and holds a solvent bank responsible for reducing cost by providing
liquidity. It is non-negative for an insolvent bank and non-positive for a solvent bank.

3.2.2 Insolvent Banks

One might wish to design a scheme yielding a non-negative cost allocation, especially if its expectation is to
be used as a deposit insurance premium. One way to do so is to let the players be only the insolvent banks
and the cost be c(S) = c̃

(∑
i∈S U

−
i ai,

∑n
i=1 U

+
i ai

)
. There is no allocation of cost to solvent banks. This

scheme considers the supply of liquidity to be fixed; it considers only systems in which all the solvent banks
exist and supply liquidity. All it does is hold insolvent banks responsible for contributing to the cost.

3.2.3 Solvent Banks

The preceding scheme only takes account of negative externalities. To design a scheme that only takes
account of positive externalities, we separately allocate to insolvent banks the cost in the absence of positive
externalities and allocate to solvent banks the benefit due to positive externalities. The cost in the absence
of positive externalities is c̃(

∑n
i=1 U

−
i ai, 0) =

∑n
i=1 βU

−
i ai, because all the insolvent banks’ assets would

have to be sold to non-banks. By the principle of separable costs, the allocation of this cost to bank i
is βU−i ai, which is its stand-alone cost, the illiquidity cost of resolving it in the absence of any other
banks. Next we use the Shapley value to allocate the benefit due to positive externalities, taking only
solvent banks as players. The benefit generated by the participation of the set S of solvent banks is b(S) =
c̃(
∑n
i=1 U

−
i ai, 0)− c̃(

∑n
i=1 U

−
i ai,

∑
i∈S U

+
i ai). The cost allocation to a solvent bank i is −(Sb)i.

3.2.4 Leverage

The preceding schemes regarded non-participation as absence from the system, but we can imagine other
kinds of changes to the system. This scheme considers changes in which some banks’ leverage is eliminated
by replacing their deposits with equity. In a system in which player i participates, bank i’s deposits are di.
In a counterfactual system in which player i does not participate, bank i’s deposits are zero and therefore
it is solvent. The cost function is c(S) = c̃(

∑
i∈S U

−
i ai,

∑n
i=1 U

+
i ai +

∑
i∈S U

−
i ai). The cost allocation is

non-negative and holds insolvent banks responsible for the impact on illiquidity cost of their being insolvent
and needing liquidation instead of being solvent and providing liquidity.
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3.3 The Aumann-Shapley Value

The setup for the Aumann-Shapley value is similar to that for the Shapley value except that we replace the
binary distinction between participating or not (i ∈ S or i /∈ S) with a continuous variable, the participation
level λi ∈ [0, 1] of player i. A participation level of 0 means not participating, and a participation level of 1
means participating at the same level as in the actual system. Let c(λ) represent the cost of the system in
which the participation level of player i is λi for λ = 1, . . . , n. Again, it is standard to assume that c(0) = 0:
there is zero cost in a system with no participation. To get a unique Aumann-Shapley value, we also assume
that there is a set D ⊆ [0, 1] of Lebesgue measure one such that c is differentiable at γ1 for all γ ∈ D, and
that the function that maps γ ∈ [0, 1] to c(γ1) is absolutely continuous. That is, the first assumption is that
c is sufficiently smooth around the line segment {γ1 : γ ∈ (0, 1)}, which we call the diagonal, so that its
gradient exists almost everywhere along the diagonal; the second is that the total change in cost along the
diagonal, c(1)− c(0), which equals the cost of the actual system, can be recovered by integrating its rate of
change along the diagonal. Then the Aumann-Shapley value yields the cost allocation

Ac =
∫ 1

0

∇c(γ1) dγ. (4)

The differentiability assumption does not hold for every c of interest. If not, one may consider a set of cost
allocations, each replacing the gradient in Equation (4) with a subgradient of the cost function (Denault,
2001; Tsanakas, 2009). A specific example appears in Section 3.3.1. See also Buch and Dorfleitner (2008)
and Cherny and Orlov (2011) on non-differentiability in the theory of risk components.

If the cost function c is positively homogeneous, the gradient is the same for all γ ∈ (0, 1], so Ac = ∇c(1).
That is, the cost allocation to a player equals the sensitivity of cost to the player’s participation level. If c is
not positively homogeneous, (Ac)i can be interpreted as the average sensitivity of cost to the participation
level of player i as all players’ participation levels go from 0 to 1 in lock step.

Because the Aumann-Shapley value in Equation (4) is a linear operator, under appropriate conditions,
it commutes with expectation: AE [c] = E [Ac]. That is, the Aumann-Shapley value of expected cost is the
expectation of the Aumann-Shapley value of cost. Let c(λ, ω) represent the cost of system λ in scenario ω
and P be the probability measure.

Theorem 1. If

1. for almost every γ ∈ (0, 1), there exists a neighborhood Nγ of γ1 and an integrable random variable Lγ
such that, with probability 1, c(·, ω) is differentiable at γ1 and |c(λ′, ω)− c(λ′′, ω)| ≤ Lγ‖λ′ − λ′′‖ for
any λ′,λ′′ ∈ Nγ , and

2. with probability 1, the positive and negative parts of ∇c(·, ω) have finite integrals along the diagonal,

then AE [c] = E [Ac].

Proof. Condition 2 implies that E [Ac] =
∫

Ω

∫ 1

0
∇c(γ1, ω) dγ dP (ω) =

∫ 1

0

∫
Ω
∇c(γ1, ω) dP (ω) dγ by Fubini’s

theorem. It follows from the more general argument in Glasserman (2004, §7.2.2) that Condition 1 implies
that for almost every γ ∈ (0, 1),

∫
Ω
∇c(γ1, ω) dP (ω) = ∇(

∫
Ω
c(γ1, ω) dP (ω)) = ∇E [c(γ1)].

The Aumann-Shapley value provides a different kind of fairness than the Shapley value. Consider again
the problem of allocating the cost ĉ(z) to the demands zi, . . . , zn, where z =

∑n
i=1 zi. With the interpretation

that the participation level λi of player i is the fraction of his actual demand zi that he demands in the
counterfactual system specified by λ, we get c(λ) = ĉ(

∑n
i=1 λizi). The Aumann-Shapley value allocates to

participant i the cost
∫ 1

0
ziĉ
′(γz) dγ = (zi/z)

∫ z
0
ĉ′(u) du = zi(ĉ(z)/z). This allocation is average-cost pricing

because the price all participants pay per unit of demand is the average cost ĉ(z)/z. If the cost function is
positively homogeneous, this allocation is also marginal pricing because ĉ(z) = ĉ′(z)z, so the price equals
the marginal cost ĉ′(z).
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Table 1: Prices associated with bank assets in Aumann-Shapley allocations of illiquidity
cost in the acquisition model.
Allocation Scheme Scenario Price p− for Insolvent Banks Price p+ for Solvent Banks
All Banks x < y 0 0

x = y equal to each other, between 0 and β
x > y β β

Insolvent Banks x ≤ y 0 0
x ≥ y β(1− y/x) 0

Solvent Banks x ≤ y β βx/y
x ≥ y β β

Now suppose that the demands are random. If AE [c] = E [Ac], the Aumann-Shapley value allocates the
expected cost E [(ĉ(z)/z)zi] to participant i. The average cost ĉ(z)/z serves as a state price for each scenario.
For example, in the fire sale model, the average illiquidity cost is 1 − exp(−αz), where z is the aggregate
book value of insolvent banks’ assets. Thus, a bank gets a higher cost allocation if it has a greater tendency
to become insolvent in scenarios in which the aggregate assets of insolvent banks are larger. This provides
an incentive for banks to hold assets with lower systematic risk.

Designing a cost allocation scheme based on the Aumann-Shapley value means identifying players who
bear the responsibility for costs and building a cost function c whose response to the participation level λi of
player i identifies the cost impact for which player i is responsible. Average-cost pricing is a natural choice
in the fire sale model and the acquisition model. In the acquisition model, we might choose to distinguish
between the positive and negative demands, i.e. insolvent and solvent banks, as we did in Section 3.2. This
leads to three schemes, analogous to those in Sections 3.2.1–3.2.3. They all yield a cost allocation to bank i of
the form (p−U−i −p+U

+
i )ai, where p− and p+ are prices of assets for insolvent and solvent banks, respectively.

Table 1 shows these prices, which depend on whether the aggregate assets x in insolvent banks exceed the
aggregate assets y in solvent banks, because the illiquidity cost is zero if x ≤ y and is β(x− y) if x ≥ y.

There is no Aumann-Shapley value scheme analogous to the Shapley value scheme in which leverage is
set to zero (Section 3.2.4). The cost in the acquisition model is discontinuous with respect to the deposits d
at a point where di = ai for any i, meaning that bank i is on the border between solvency and insolvency.
Consequently, we can not find a suitably differentiable cost function c that shows how substituting deposits
for equity is responsible for the illiquidity cost.

3.3.1 All Banks

Let all banks be players and let the participation level λi multiply the size of bank i’s deposits and assets. Par-
ticipation levels have no effect on solvency. Then c(λ) = c̃

(∑n
i=1 λiU

−
i ai,

∑n
i=1 λiU

+
i ai

)
= ĉ (

∑n
i=1 λiUiai) =

βmax {
∑n
i=1 λiUiai, 0} . If the aggregate net demand

∑n
i=1 Uiai is non-zero, the Aumann-Shapley value is

given by average-cost pricing. Because c is positively homogeneous, this is also marginal pricing. The
price is β if the assets of insolvent banks exceed the assets of solvent banks, and 0 if the reverse is true.
This scheme holds banks responsible for demanding or supplying liquidity, but only in scenarios in which a
marginal change in a bank’s size affects the illiquidity cost. If the assets

∑n
i=1 U

−
i ai of insolvent banks and∑n

i=1 U
+
i ai of solvent banks are non-zero and equal to each other, then c is not differentiable at γ1 for any

γ ∈ (0, 1). The set of subgradients at γ1, for any γ ∈ (0, 1), is {−pU : 0 ≤ p ≤ β}, corresponding to a price
p anywhere between 0 and β. When aggregate net demand is zero, the concept of average cost breaks down,
and the concept of marginal cost becomes ill-specified: the marginal cost is β for increases in aggregate net
demand but 0 for decreases in aggregate net demand.
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3.3.2 Insolvent Banks

To get a non-negative cost allocation, we modify the preceding scheme by letting only insolvent banks
be players. Then c(λ) = c̃

(∑n
i=1 λiU

−
i ai,

∑n
i=1 U

+
i ai

)
= βmax

{∑n
i=1 λiU

−
i ai −

∑n
i=1 U

+
i ai, 0

}
. Again,

the Aumann-Shapley value is given by average-cost pricing, but here demand is measured as the assets of
insolvent banks only. The price is βmax

{∑n
i=1 U

−
i ai −

∑n
i=1 U

+
i ai, 0

}
/
∑n
i=1 U

−
i ai. This scheme holds

insolvent banks responsible for demanding liquidity, but only in scenarios in which a marginal change in a
bank’s size affects the illiquidity cost.

3.3.3 Solvent Banks

This scheme is similar to that in Section 3.2.3. To apply the Aumann-Shapley value to the benefit of positive
externalities to solvent banks, we express the benefit as a function of their participation levels: b(λ) =
c̃
(∑n

i=1 U
−
i ai, 0

)
− c̃

(∑n
i=1 U

−
i ai,

∑n
i=1 λiU

+
i ai

)
. The non-negative allocation Ab of the benefit is given by

average-cost pricing in which the price for solvent banks’ assets is βmax
{∑n

i=1 U
−
i ai/

∑n
i=1 U

+
i ai, 1

}
. The

cost allocation to a solvent bank i is −(Ab)i. As in Section 3.2.3, the cost allocation to an insolvent bank is
its stand-alone cost, which corresponds to the price β for insolvent banks’ assets.

3.4 Incentives: Monotonicity and Mergers

There is no perfect cost allocation principle: none satisfies all of the axioms that one might like (Moulin and
Sprumont, 2007, §5). The Shapley value has a monotonicity property that the Aumann-Shapley value lacks;
the Aumann-Shapley value has a property of invariance to mergers and splits that the Shapley value lacks.

Suppose that the system arises from each player’s choice of its participation level. Monotonicity means
that a player can not improve its cost allocation by making a choice that increases the system’s cost.
Lack of monotonicity implies that the cost allocation principle creates an incentive for players to do some-
thing bad for the system as a whole. For example, in the acquisition model, consider a scenario in which∑n
i=2 U

+
i ai <

∑n
i=1 U

−
i ai <

∑n
i=1 U

+
i ai. The illiquidity cost is zero, so the all-banks Aumann-Shapley

scheme (Section 3.3.1) gives bank 1, which is solvent, a zero cost allocation. Consider system λ, where
λj = 1 for all j = 2, . . . , n. This represents a system changed by player 1 alone. In system λ, this scheme
allocates to bank 1 a cost of −βλ1ai if λ1 < (

∑n
i=1 U

−
i ai −

∑n
i=2 U

+
i ai)/ai, or a cost of zero if λ1 exceeds

that threshold. This shows that player 1 could have chosen a participation level λ1, different from the par-
ticipation level λ1 = 1 that it chose in the actual system, that would have resulted in a lower cost allocation
to player 1 but a greater cost to the deposit insurer. The discontinuity in this example also illustrates how
the Aumann-Shapley value can be quite sensitive to changes in the system.

Suppose that it is possible for players to merge or split. The simplest way to think about this, in the
context of our model of bank resolution costs, is not to think of mergers between independent banks, which
have a substantive effect on the system. For example, a merger between a solvent bank and an insolvent bank
changes the aggregate assets of solvent banks. Instead, we think of mergers or splits of players with no effect
on the system, only an effect on how players are counted and on the set or space of counterfactual systems
that we imagine when allocating costs. For example, a split of player i into new players i and n+ 1 replaces
the cost function cn on [0, 1]n with the cost function cn+1 on [0, 1]n+1 given by cn+1(λ) = cn(λ′) such that
λ′i = λi + λn+1 and λ′j = λj for j 6= i. Invariance to mergers and splits means that, whether two players
merge into one or one player splits into two, the sum of the costs allocated to the two parts equals the cost
allocated to the combined player. In the model of bank resolution costs, with banks as players, the split of
one bank into two banks that are smaller but otherwise identical would count as splitting a player. Charging
deposit insurance premia to bank holding companies instead of to banks would be a matter of merging
players. A cost allocation principle that lacks invariance to mergers and splits could create undesirable
incentives for merging and splitting or arguments about the level of consolidation at which deposit insurance
premia should be charged. For example, in the acquisition model, consider a scenario in which there are
three banks: bank A is solvent with assets of $200 million, banks B and C are insolvent with assets of $150
million and $100 million. The illiquidity cost is $10 million, based on β = 0.2. The all-banks Shapley value
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Table 2: Probabilities of bank solvency (+) and insolvency (-) in examples of the acquisition model.
Bank A + + + + - - - -

B + + - - + + - -
C + - + - + - + -

Example Independent 93.5% 2.1% 2.1% 0.05% 2.1% 0.05% 0.05% 0.001%
Equally Correlated 95.0% 1.2% 1.2% 0.4% 1.2% 0.4% 0.4% 0.2%

B,C More Correlated 95.8% 0.4% 0.4% 1.2% 1.5% 0.1% 0.1% 0.5%

Table 3: Allocations of expected illiquidity cost in examples of the acquisition model.
Example Independent Equally Correlated B,C More Correlated

Expected Illiquidity Cost 25.6 354 413
Allocation Scheme and Principle A B C A B C A B C
All Banks Shapley 119 -57 -36 245 69 40 131 156 126

Aumann-Shapley 30.6 -3.0 -2.0 320 20 14 224 113 75
Insolvent Banks Shapley 14.9 6.7 4.0 187 103 64 191 134 88

Aumann-Shapley 15.3 7.4 2.9 191 109 55 192 135 86
Solvent Banks Shapley 228 -100 -103 284 55 16 137 148 127

Aumann-Shapley 156 -35 -95 242 91 20 123 182 107
Leverage Shapley 12.8 8.6 4.2 169 119 66 186 138 89

(Section 3.2.1) allocates costs of about -$21.7 million to bank A, $18.3 million to bank B, and $13.3 million
to bank C. If banks B and C were merged, their cost allocation would be $30 million, less than the $31.7
million total for these two banks when they are separate. This is an incentive for them to merge, which is
not desirable from a systemic perspective.

3.5 Numerical Examples

To illustrate the seven systemic risk component schemes and the differences among them, we use some
simple examples of the acquisition model. The examples all feature three banks called A, B, and C, and
the examples differ only in the correlation among the banks’ asset returns. The initial book values of the
assets of banks A, B, and C are 200, 150, and 100 million dollars, respectively. Each bank is financed by
deposits equal to 95% of its assets and equity equal to 5% of its assets. The interest rate on deposits is zero
and the return on a bank’s assets is 3% with probability 97.8% and is -20% with probability 2.2%. In these
examples, a bank is solvent if its asset return is positive and insolvent if its asset return is negative. The
illiquidity cost ratio β = 0.2. In the first example, the banks’ asset returns are independent. In the second
example, they are correlated in a symmetric manner. The conditional probability that a bank has a loss
is 1.2% given that the other two do not, is 25% given that exactly one of the other two does, and is 33%
given that both the others do. The third example is like the second, but with greater correlation between
banks B and C. Table 2 gives the probabilities for each of the eight scenarios. Table 3 reports systemic risk
components, which are allocations of expected illiquidity cost to banks A, B, and C. All numbers are in
thousands of dollars. The allocations (rows of three numbers) sum to the expected illiquidity cost (number
at the head of the column), up to rounding error. They may be compared to the expected book value of
insured losses at banks A, B, and C, which are 660, 495, and 330 thousand dollars, respectively.

The example of independent banks exhibits dramatic differences among schemes. The all-banks and
solvent-banks schemes, which give credit to banks for supplying liquidity, provide extreme allocations: the
systemic risk components for banks B and C are negative, whereas bank A’s exceeds the systemic risk—by
more than a factor of 8, when using the solvent-banks Shapley value. The reason that bank A fares poorly
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under these schemes is that it is so big that not all of its assets are useful in providing liquidity when it is
solvent and other banks fail. Thus, when computing the Shapley value, the incremental benefit of bank A’s
solvency tends to be a smaller fraction of its size than for other banks; when computing the Aumann-Shapley
value, the conditional expectation of the price of solvent banks’ assets given that bank A is solvent is smaller
than for other banks. The insolvent-banks and deposits schemes exhibit a modest penalty for A’s excessive
size: they allocate 50-60% of systemic risk to bank A, which has 44% of the assets in the system. In the
examples with correlation, there are no negative systemic risk components because banks are less likely to be
solvent when other banks are insolvent, and thus earn less credit for supplying liquidity. Still, the all-banks
and solvent-banks schemes are least favorable to bank A in the equally-correlated example.

The third example illustrates that having higher-than-average systematic risk, as well as being larger
than average, can cause a bank’s systemic risk component to be disproportionately large compared to its
size. Most importantly, comparing the three examples, we see that increasing the correlation between the
assets of banks increases their systemic risk components: they have the correct sensitivity to actions that
increase systemic risk. This illustrates how using the systemic risk components to set deposit insurance
premia would create an incentive not to herd in asset selection.

Comparing the second and third examples, we see that when banks B and C become more correlated,
bank A’s systemic risk component decreases sharply under the all-banks and solvent-banks schemes, but
increases slightly under the other schemes. The former effect occurs because there is an increased probability
of scenario +−−, in which the liquidity that bank A supplies is most valuable. The latter effect has to do
with an increased probability of scenario −−−, in which bank A’s insolvency costs the most, because there
is no solvent bank available to purchase insolvent banks’ assets from the deposit insurer.

4 Counterparty Contagion

In this section, we treat a model of systemic risk with counterparty contagion. It is a generalization of the
model of Eisenberg and Noe (2001) and a special case of the model of Elsinger (2007). There is a network
whose edges represent unsecured liabilities that nodes owe one another. The amount that a node is able to
pay depends on the amount that it receives from other nodes. Thus, there is contagion in the sense that the
default of one node on its liability to a second node can cause the second node to default. If the second node
is a bank, contagion can cause a loss in insuring its depositors.

4.1 A Model with Counterparty Contagion

The financial system contains n nodes. Node i receives a non-negative cashflow of ei. Systematic risk is
present in the model in the randomness of the vector e. If node i is a bank, it has deposits di > 0, all
insured; otherwise, di = 0. Node i also has liabilities to other nodes. They are junior to deposits. Let Lij
represent the liability of node i to node j for all i 6= j, and Lii = 0 for all i. The liabilities of node i sum
to its promised payment p̄i =

∑
j 6=i Lij . Some nodes may be unable to pay their liabilities in full. Let pi be

the total amount that node i pays to other nodes. Because of the equal priority of liabilities to each node, it
is helpful to define Πij = Lij/p̄i, the fraction of the liabilities of node i that are owed to node j. (If p̄i = 0,
let Πij = 0 for all j.) The amount that node i pays to node j is piΠij .

We have a model of network flows: the matrix of flows between nodes is diag(p)Π where p is the payment
vector. The vector of promised payments is p̄ = L1. The vector of total outflows from each node is p and
the vector of total inflows into each node is Π>p, so (Π> − I)p is the vector of net flow into each node.
Define w = e−d, the vector of primary value at each node, before payments are made on liabilities between
nodes. Where u represents terminal value at each node, the balance equation is

u = w + (Π> − I)p. (5)

At node i, the terminal equity value is vi = u+
i and the insured loss is `i = u−i . The flows must also satisfy

the capacity constraints 0 ≤ p ≤ p̄, 0 ≤ ` ≤ d, and v ≥ 0 and the priority constraints vi > 0⇒ pi = p̄i and
pi > 0⇒ `i = 0 for all i = 1, . . . , n.
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Eisenberg and Noe (2001) and Elsinger (2007) discuss the existence, uniqueness, and computation of a
clearing payment vector, which satisfies the balance equation and constraints. We assume that there is a
unique clearing payment vector p∗. Let u∗, v∗, and `∗ represent terminal value, terminal equity, and insured
loss when p = p∗.

The systemic risk measure is the expected insured loss E
[
1>`∗

]
. We use the Shapley and Aumann-

Shapley values to create systemic risk components. The Shapley value commutes with expectation, and so
does the Aumann-Shapley value, under the conditions of Theorem 1. Therefore we focus on allocating the
cost 1>`∗ within a single scenario.

4.2 Bilateral Deals and Financial System Structure

To apply the Shapley or Aumann-Shapley values, we must choose a set of m players to whom cost will be
allocated, and create a cost function that responds to their participation levels. The natural correspondence
between subsets of {1, . . . ,m} and vertices of [0, 1]m allows us to use this cost function for both Shapley
and Aumann-Shapley values. To do this in a way that yields useful interpretations, we create a framework
depicted in (6). In this section, we will describe one way in which the financial network, specified by the
data (e,d,L), can arise as a function Ψ of fundamental data on individual nodes and bilateral deals between
nodes. In Sections 4.3–4.4, we create cost allocation schemes by expressing the fundamental data as a
function Φ of players’ participation levels, thus assigning to players responsibility for the system’s structure.
The composition Ψ ◦ Φ maps a vector λ ∈ [0, 1]m of participation levels to network data e(λ), d(λ), and
L(λ). Finally, the cost c(λ) = 1>`∗(Ψ(Φ(λ))), where `∗(e,d,L) is the vector of insured losses in the financial
network whose data is (e,d,L). The structure of the framework is

[0, 1]m Φ−→ fundamental data Ψ−→ Rn+ × Rn+ × Rn
2

+︸ ︷︷ ︸
network data

1>`∗−−−→ R+. (6)

We next provide a specification of Ψ using two kinds of deals: loans and swaps.

4.2.1 Loans and Swaps

So far, we have discussed only what happens at a single instant when payment on liabilities is due. However,
loans affect the financial system not only when they mature (time 1), but also when they are made (time 0).
Let the loan from node i to node j have principal Dij and per-period interest rate r̄ij . Node j’s time-0
liabilities are

∑
i6=j Dij of borrowing from other nodes, sj of equity, and dj of deposits. (For simplicity, we

assume zero interest on deposits.) Node j’s time-0 assets are
∑
k 6=j Djk of lending to other nodes and tj

of its baseline asset. We distinguish two kinds of nodes, financial and industrial, by their baseline assets.
For financial nodes, the baseline asset is cash. For simplicity, we assume that cash earns a zero rate of
return. Each industrial node invests entirely in its own baseline asset, which is a productive technology with
lifespan of one period. Industrial nodes do not make loans.1 The accounting equation states that assets
equal liabilities: where aj is the time-0 size of node j’s balance sheet,

a = t+ D1 = s+ d+ D>1. (7)

Like loans, each node’s baseline asset matures at time 1. Let ri be the rate of return on the baseline asset
of node i. Then the time-1 cashflows generated by baseline assets are

e = (I + diag(r))t. (8)

In this model, the fundamental data is the payments X owed on swaps, the principal D and interest rates
r̄ on loans between nodes, the rates of return r on baseline assets, and time-0 equity s and deposits d. We

1This inessential assumption leads to a simpler presentation. Counterparty contagion between industrial firms, involving
phenomena such as credit issued by suppliers, has been studied by Kiyotaki and Moore (1997) and many authors since.
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assume that all of this data is non-negative, except for r. We assume that there is no netting agreement or
collateral for swaps. Then

L = X + D ◦ (I + r̄), (9)

where ◦ represents the element-wise product. Equations (7)–(9) specify the function Ψ. Our model assumes
that the equity is held by shareholders outside the financial system and that swap payments, interest pay-
ments, and principal repayments have equal seniority. These assumptions can be dropped using the results
of Elsinger (2007).

We need to imagine systems in which a loan is absent or smaller while avoiding the problem of “holes
in. . . banks’ balance sheets” (Gauthier et al., 2010) in a counterfactual system in which a loan is smaller or
absent. We do this by plugging the holes, adjusting each node’s time-0 balance sheet to maintain equality of
its time-0 assets and liabilities when a loan shrinks. There is more than one way to do this, and, as we shall
see, the scheme for adjusting balance sheets has a profound impact on cost allocations. We consider two
schemes. In both, the time-0 size of the lender’s balance sheet is fixed, and a loan substitutes for the baseline
asset on the lender’s balance sheet: if the loan from node i to node j is eliminated, the investment of node i
in its baseline asset increases to ti + Dij . In the debt/equity scheme, suitable for use with the Shapley or
Aumann-Shapley value, the time-0 size of the borrower’s balance sheet is also fixed, and a loan substitutes
for equity on the balance sheet of the borrower: if the loan from node i to node j is eliminated, the equity
of node j increases to sj +Dij . In the debt/baseline scheme, a loan affects the size of the borrower’s balance
sheet: if the loan from node i to node j is eliminated, the investment of node j in its baseline asset decreases
to tj − Dij . There is a difficulty in using this model with the Shapley value: tj − Dij might be negative,
representing an infeasible system. In Section 4.4.7 we will see that this need not be an obstacle to using the
debt/baseline scheme with the Aumann-Shapley value.

4.2.2 A Simpler System of Loans Only

The cost allocation problem is interesting even in a simple special case of this framework. In this special
case, we can obtain simpler, more illuminating formulae for cost allocations. There are also schemes that
yield non-negative cost allocations in this special case.

Definition 1. A classic lending system has no swaps and no loans between financial nodes, only loans from
financial nodes to industrial nodes.

There are no cycles in the graph of a classic lending system. The debt/baseline scheme can be used with
the Shapley value in a classic lending system because any borrower is an industrial node whose investment
in its baseline asset exceeds its debt.

Definition 2. In a system with competitive rates, interest rates depend only on the borrower: there is a
vector r̄ such that r̄ij = r̄j for all i and j.

In a system with competitive rates, the recovery rate on principal for any loan to node j is ρj = (1 +
r̄j)p∗j/p̄j . In a classic lending system with competitive rates, ρj is 1 + r̄j if node j pays its obligations in full
(i.e., p∗j = p̄j) and ej/

∑
i6=j Dij if it does not, in which case p∗j = ej . The insured loss at bank i is

`∗i =
∑
j 6=i

Dij(1− ρj)+ −
∑
j 6=i

Dij(ρj − 1)+ − si. (10)

The terms are node i’s loan losses, profits on loans, and time-0 equity. The first of these can be interpreted
as a demand for money at bank i, the latter two as a supply of it. Some of the same issues are present in the
cost allocation problem in the counterparty contagion model as in the acquisition model of bank resolution
costs. Which of these three sources of demand and supply do we hold responsible for the insured losses? How
do we handle the indirect interactions among nodes due to their interactions with a common entity? In the
model of bank resolution costs, all banks access a common pool of liquidity; in the counterparty contagion
model, some nodes have creditors or obligors in common.
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4.3 Cost Allocations from the Shapley Value

Who are the players, and what happens to the fundamental data when a player does not participate? An
answer to this question specifies the function Φ in (6).

The Shapley value is based on a fair division among players of the costs due to their interactions. It would
be questionable to seek fairness between, e.g., a swap and a bank’s equity. We consider only schemes in
which all players are nodes or all players are deals. One choice is which type of node or deal is a player, e.g.,
all nodes, only banks, or only industrial nodes. For example, one could design a systemic risk attribution
scheme that identifies the industries that contribute most to systemic risk by using only industrial nodes as
players.

We must also specify what participation means. Based on Equation (9), a swap that does not participate
simply disappears. According to the debt/equity scheme, a loan that does not participate disappears, leaving
in its place cash on the lender’s balance sheet and equity on the borrower’s balance sheet. We consider three
alternatives for nodes’ participation. First, if a bank does not participate in the deposit insurance program,
replace its insured deposits with uninsured deposits. The cost function is simply c(S) =

∑
i∈S `

∗
i because the

deposit insurer pays claims only at banks in S. The cost allocated to bank i is its own depositors’ insured
losses `∗i . Second, if a bank does not participate in the deposit-taking function of the banking system, replace
its deposits with equity. Each bank is responsible for the effect its deposits have on insured losses anywhere in
the system: because of the seniority of deposits to liabilities to other nodes, substituting deposits for equity
at a bank can cause insured losses at its creditors. Third, if a node does not participate in the financial
system, eliminate it and any deal in which it is involved. Each node is responsible for the effects anywhere
in the system of its deposits, equity, and the deals to which it is a party.

Another choice is whether players include all nodes or deals of the chosen type or only a class of bad nodes
or deals. We can design schemes that yield non-negative systemic risk components by choosing only players
that have non-negative incremental costs of participation in Equation (3), while ensuring that the cost of the
system in which none of the players participate is zero. A bank with insured losses has a positive incremental
cost of participation: it adds to the total insured losses, and due to the seniority of deposits, it makes no
payments to other nodes. A loss-making loan is one whose principal exceeds the time-1 payment that the
borrower makes. Its incremental cost of participation is non-negative: deleting it, replacing it with cash on
the lender’s balance sheet and equity on the borrower’s balance sheet as prescribed in Section 4.2, makes both
lender and borrower better able to fulfill their obligations. Analogously, we define a loss-making industrial
node as one whose baseline asset experiences a loss rate exceeding its leverage ratio (time-0 equity to assets),
i.e., for industrial node j to be loss-making means rj < −sj/aj . Such a node imposes a loss on at least one
of its lenders. However, because of the equal priority of swap payments, interest payments, and principal
repayments, some of its counterparties may profit from their deals with it, and some lenders to an industrial
node that is not loss-making may lose from their lending to it. In a classic lending system with competitive
rates, an industrial node is loss-making if and only if its recovery rate is less than 1. All counterparties of
loss-making industrial nodes experience losses in their deals with those nodes, and all counterparties of the
other industrial nodes profit from their deals with those nodes. In such a system, loss-making industrial
nodes have non-negative incremental costs of participation. The system from which they have been deleted
has zero cost because there are no swaps, and all of the assets have non-negative returns. Therefore the
scheme in which the players are the loss-making industrial nodes yields a non-negative allocation.

Combining the considerations above, we describe ten Shapley value schemes in terms of the changes to
the system that they contemplate, i.e., the consequences of players’ non-participation: (1) replace any bank’s
insured deposits with uninsured deposits, (2) replace any bank’s deposits with equity, (3) eliminate any bank
that has insured losses, (4) eliminate any loss-making loan, (5) eliminate any loss-making industrial node,
(6) eliminate any bank, (7) eliminate any loan, (8) eliminate any deal, (9) eliminate any industrial node, and
(10) eliminate any node. Schemes 1–4 yield non-negative cost allocations because they entail non-negative
incremental costs of participation. In a classic lending system with competitive rates, scheme 5 also yields
a non-negative cost allocation. Any scheme that allocates cost to deals, such as schemes 4, 7, and 8, can be
transformed into a scheme that allocates cost to nodes by re-allocating the cost allocated to a deal to the
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Table 4: Aumann-Shapley allocations of insured loss in the contagion model.
Effect of loan Swap payment Xij Loan of Dij at rate r̄ij
on borrower’s Funding of from node i from node i
balance sheet Prices node j to node j to node j
replace equity marginal −ζjqj −θijXij (ζi − θji(1 + r̄ij))Dij

replace equity average −ζ̄jqj −θ̂ijXij (ζ̂i − θ̂ji(1 + r̄ij))Dij

invest in baseline marginal −ζjsj(1 + rj) −θijXij (ζi − θji(1 + r̄ij)− ζj(1 + rj))Dij

nodes that are parties to the deal.

4.4 Cost Allocations from the Aumann-Shapley Value

The same design issues discussed in Section 4.3 apply to schemes based on the Aumann-Shapley value. We
limit our exposition to a few schemes that illustrate the issues particular to applying the Aumann-Shapley
value to the model of counterparty contagion. The scheme that substitutes uninsured deposits for insured
deposits is simple: based on the cost function c(λ) = λ>`∗, the Aumann-Shapley value allocates to bank i its
own depositors’ insured losses `∗i , the same as the corresponding Shapley value scheme. The other Aumann-
Shapley value schemes are not so simple: they involve linear programming (LP) sensitivity analysis. These
schemes can all be seen as allocating costs to nodes and to deals and then re-allocating the cost allocated
to a deal to the nodes that are parties to the deal. In the obligor-responsibility scheme (Section 4.4.2),
the cost allocated to a deal is re-allocated to the obligor, i.e., the borrower in a loan or the party to a
swap who is obligated to make a payment. Based on the obligor-responsibility scheme, in Section 4.4.3 we
construct a scheme analogous to the Shapley value scheme that eliminates loss-making industrial nodes.
This scheme yields a non-negative allocation in a classic lending system with competitive rates. In the
creditor-responsibility scheme (Section 4.4.4), the cost allocated to a deal is re-allocated to the creditor,
i.e., the lender in a loan or the recipient of a swap payment. It involves a more complicated LP sensitivity
analysis than the preceding schemes. The obligor- and creditor-responsibility schemes are extreme in the
way they assign responsibility for cost. The shared-responsibility scheme (Section 4.4.5) re-allocates to each
party to a deal half the cost allocated to the deal: it yields a cost allocation that is the average of those from
the obligor- and creditor-responsibility schemes. Nonetheless, it can still yield an allocation that seems too
extreme. The obligor-, creditor-, and shared-responsibility schemes all use marginal prices (see Section 3.3)
and the debt/equity scheme. In Section 4.4.6 we develop a scheme using average prices instead of marginal
prices; in Section 4.4.7 we use the debt/baseline scheme instead of the debt/equity scheme.

Table 4 shows how these schemes allocate costs to nodes and deals. The marginal prices ζi of money
at node i and θij of the promised payment from node i to node j are given by Equations (13) and (17).
The average-cost scheme uses average prices given in Equations (22)–(24). In the debt/equity scheme, deals
have no impact on balance sheet sizes, so in the absence of deals, each node i would generate the cashflow
ai(1 + ri). The primary value (cashflow minus deposits) attributable to node j is qj = aj(1 + rj) − dj . If
node j is industrial, qj = (sj +

∑
i6=j Dij)(1 + rj) = ej , its actual time-1 cashflow. If node j is financial,

qj = aj − dj = wj +
∑
k 6=j Djk = sj +

∑
i6=j Dij , the portion of its financing that is junior to deposits. To

summarize, the amount of money each node would have had available at time 1 to pay its creditors if it had
not made any loans is

q = diag(1 + r)a− d = diag(1 + r)(s+ D>1) = w + D1. (11)

In the debt/baseline scheme, the cashflow Dij(1 + rj) at node j is attributable to the loan from node i to
node j, so the primary value attributable to node j is (aj −

∑
i6=j Dij)(1 + rj)− dj = sj(1 + rj), the time-1

value of investing its equity in its baseline asset.
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4.4.1 Technical Issues

We require different properties of the cost function c = 1`∗ ◦ Ψ ◦ Φ for the Aumann-Shapley and Shapley
values. For the Shapley value, we need c to be defined on the vertices of a unit hypercube. For the Aumann-
Shapley value, we need c to be defined on an open set containing the diagonal {γ1 : γ ∈ (0, 1)}. We are also
concerned about differentiability properties of c, for the sake of getting a unique Aumann-Shapley value.

It is permissible to specify the fundamental data as a function Φ of participation levels in such a way
that system Φ(λ) is infeasible for some λ in the unit hypercube, as long as it is feasible for every λ in an
open set containing the diagonal. For example, some values of λ may specify an infeasible system, violating
constraints such as non-negativity of time-0 equity s(λ) and investment t(λ) in the baseline asset. In the
schemes we investigate, these constraints hold on some open set containing the diagonal if the time-0 equity
and investment in the baseline asset are strictly positive in the actual system.

In the settings we study, getting a unique Aumann-Shapley value depends on differentiability properties
of 1`∗, and positive homogeneity of Ψ is relevant. The cost 1`∗ is positively homogeneous. We assume
that Ψ is differentiable and positively homogeneous, as is true for Ψ specified in Section 4.2. Then positive
homogeneity of Φ implies positive homogeneity of c. If c is positively homogeneous, then differentiability of
c at 1 is sufficient to get a unique Aumann-Shapley value Ac = ∇c(1). If c is not positively homogeneous,
then it is sufficient that c be differentiable at γ1 for all γ ∈ D, where D ⊆ [0, 1] has Lebesgue measure one.
We assume that Φ is differentiable, as is true for all the choices we consider below. Then it is differentiability
properties of 1`∗ on which differentiability of c depends. In Appendix B, we use LP sensitivity analysis to
compute the gradient of 1`∗ where it is differentiable. It is differentiable where the network does not contain
a borderline node.

Definition 3. Node i is borderline if p∗i = p̄∗i > 0 and v∗i = 0 (the borderline of default on liabilities to other
nodes) or p∗i = 0, `∗i = 0, and di > 0 (the borderline of insured loss).

If there is no borderline node, then the LP has a unique dual-optimal solution, which provides the
gradient of 1`∗; if there is a borderline node, then the dual-optimal solutions provide the subgradients of
1`∗. If c is positively homogeneous, then there is a unique Aumann-Shapley value Ac = ∇c(1) if there is no
borderline node; if there is a borderline node, any subgradient of 1`∗ at the actual system Ψ(Φ(1)) yields
a cost allocation. If c is not positively homogeneous and for almost every γ ∈ (0, 1) the network Ψ(Φ(γ1))
has no borderline nodes, then there is a unique Aumann-Shapley value. Henceforth, we focus on the case of
a unique Aumann-Shapley value.

In the model of bank resolution costs, we gave an example in which the Aumann-Shapley value was
discontinuous (Section 3.4). At a point λ at which the cost function was non-differentiable, there was a
discontinuity in its gradient. The same phenomenon occurs in the counterparty contagion model: there can
be a discontinuity in the gradient of the cost function at a point λ at which the network Ψ(Φ(λ)) contains
a borderline node.

4.4.2 Obligor Responsibility

This debt/equity scheme gives responsibility for deals to the obligor. The participation level λj of node j
multiplies the swap payments it has promised to make and everything on the liability side of its time-0 balance
sheet: deposits d(λ) = diag(λ)d, borrowing D(λ) = Ddiag(λ), and equity s(λ) = diag(λ)s. The investment
in baseline assets t(λ) = a(λ) −D(λ)1 = diag(λ)a −Dλ. The liability matrix L(λ) = diag(λ)L, so the
promised payments p̄(λ) = diag(λ)p̄ and the matrix of payment proportions Π(λ) = Π. The primary value
w(λ) = (I + diag(r))t(λ)− d(λ) = (I + diag(r))(diag(λ)a−Dλ)− diag(λ)d. The function Φ is positively
homogeneous.

Our analysis of this scheme is based on a formulation of the cost allocation problem as an LP game in the
formulation of Samet and Zemel (1984).2 They and previous authors showed that cost allocation problems

2Despite the network flows interpretation, this LP game is not a flow game in the formulation of Kalai and Zemel (1982),
because nodes must respect equal priorities in their payments to other nodes.
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Table 5: Node behavior in the counterparty contagion model and marginal prices of resources in
the associated linear programming game.

Behavior of Node i at Time 1 Marginal Prices of Resources
Color Equity v∗i Payment p∗i Insured Loss `∗i Primary Value wi Promised Payment p̄i
green v∗i > 0 p∗i = p̄i `∗i = 0 ζi = 0 0 ≤ ηi ≤ 1
yellow v∗i = 0 0 < p∗i < p̄i `∗i = 0 0 ≤ ζi ≤ 1 ηi = 0

red v∗i = 0 p∗i = 0 `∗i > 0 ζi = 1 ηi = 0

of this type are fruitfully studied in terms of dual-optimal solutions to the LP. The LP we consider can be
formulated as

min
`,p

1>` subject to (I−Π>)p− ` ≤ w, p ≤ p̄, ` ≥ 0, p ≥ 0. (12)

In Appendix A we show that the clearing payment vector p∗ provides an optimal solution to this LP because
the seniority of deposits makes the clearing payment vector minimize insured losses.

In an LP game, non-negative marginal prices are assigned to each of the resources on the right side
of constraints. In the LP (12), the resources are the primary value w, whose marginal prices are ζ, and
the promised payments p̄, whose marginal prices are η. Suppose that there are no borderline nodes. Each
marginal price is the rate of decrease in the optimal value of the objective, 1>`∗, as the amount of the
corresponding resource increases. The marginal prices, given in Equation (13), quantify how valuable the
resources are in mitigation of insured losses, i.e., in the “production” of payments to depositors or the
“transportation” of money to depositors: increasing the money available at some node, or the capacity
for flow out of a node, may increase the amount of money that can be transported to depositors. Table 5
summarizes how the marginal prices of a node’s primary value and promised payments depend on its behavior.
We use colors to denote nodes with different behaviors.

Definition 4. If the terminal equity value v∗i and payment made p∗i are 0 and the insured loss `∗i is positive,
then node i is red. If the terminal equity value v∗i = 0, the payment made p∗i is positive but less than the
promised payment p̄i, and the insured loss `∗i = 0, then node i is yellow. If the terminal equity value v∗i is
positive, the payment made p∗i equals the promised payment p̄i, and the insured loss `∗i = 0, then node i is
green.

Let R, Y, and G indicate the sets of red, yellow, and green nodes, respectively. When a set is used as
a subscript of a vector or matrix, the result is a vector or matrix formed by selecting the rows or columns
whose indices are in the set. Proposition 1, proved in Appendix B, says that the marginal prices are

ζR = 1, ζY = (I−ΠYY)−1ΠYR1, ζG = 0, ηR = ηY = 0, and ηG = ΠG·ζ. (13)

Proposition 1. If there are no borderline nodes, then for all i = 1, . . . , n, ζi = −∂1>`∗/∂wi and ηi =
−∂1>`∗/∂p̄i.

The marginal price ζj of money at node j is the fundamental quantity in our sensitivity analysis. It is
the value, for reducing total insured losses, of an extra dollar available at node j. It is helpful to interpret
ζ as a value function for a discrete-time Markov chain (see, e.g., Nelson, 2002, Ch. 6) in which the states
are nodes and each transition represents a dollar moving from one node to another. Green and red nodes
are absorbing states, because a perturbation of the money available there has no impact on the network
flows. Adding a dollar at a red node reduces its insured loss, so ζR = 1. Adding a dollar at a green node
increases its terminal equity value and has no effect on insured losses, so ζG = 0. Adding a dollar at a yellow
node increases its outflow, the total payment it makes to other nodes. Therefore we use ΠY· as the matrix
of transition probabilities from yellow nodes. If node i is yellow, then Πij is the fraction of its outflow p∗i
that goes to node j, and it is the probability that a randomly selected dollar at node i goes to node j. The
marginal price of money ζi at node i is the fraction of its outflow that is ultimately absorbed by red nodes,
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where it reduces insured losses. Equivalently, ζi is an absorption probability, the probability that a randomly
selected dollar at node i is ultimately absorbed by a red node. It is a continuation value: ζi =

∑n
j=1 Πijζj

is the conditional expectation of the value at the next step in the Markov chain given that the state is
currently i. The formula for ζY in Equation (13) is the solution to the system of equations ζY = ΠY·ζ,
ζR = 1, and ζG = 0. The marginal prices of promised payments from green nodes are also continuation
values: ηG = ΠG·ζ because adding a dollar to the promised payment p̄i of a green node i adds a dollar to
its outflow p∗i .

The last step in LP game cost allocation is to use marginal prices to allocate costs to the game’s players,
who each supply some of the resources. In a typical LP game, players supply non-negative amounts of the
resources. Our LP game is unusual in that some players supply negative amounts of some resources, i.e., they
demand positive amounts, and the net supply of some resources is negative. In particular, the net supply
of primary value at every red bank is negative: its deposits exceed its cash. Supplying a resource results in
a non-positive term in the player’s cost allocation, whereas demanding a resource results in a non-negative
term. This scheme assigns responsibility to obligors, so each node is the supplier of its promised payment.
Because the debt/equity scheme holds each node responsible for reducing its lenders’ cash, node j demands
Dij of the primary value at node i for all i 6= j. Because the net supply of primary value at node j is wj , the
amount supplied by node j is qj = wj +

∑
k 6=j Djk (see the discussion of Table 4). Another way to derive

the resource holdings is ∂p̄j/∂λj = p̄j , ∂wj/∂λj = (1 + rj)aj − dj = qj , and for i 6= j, ∂p̄i/∂λj = 0 and
∂wi/∂λj = −(1 + ri)Dij . The cost allocation to node j is∑

i6=j

ζiDij − ηj p̄j − ζjqj . (14)

Each node is responsible for the principal it borrowed and for the payments it promised to make.
To see more explicitly how this scheme assigns responsibility, consider the special case of a classic lending

system. The cost allocated to financial node i is 0 if it is green and −si if it is red, because a bank’s
initial equity serves as a cushion for its depositors, but the cushion has zero marginal value unless the
bank has insured losses. There is a striking violation of monotonicity (Section 3.4) if we consider changing
leverage (which does not change with participation levels in this scheme): an increase in the initial equity
of a bank could transform it from red to green, which would increase its cost allocation but decrease the
system’s cost. If industrial node j is green, its cost allocation is −

∑
i∈RDij r̄ij , because the loan from

a red bank i to a green node j results in a profit of Dij r̄ij for bank i, which reduces its insured losses.
Suppose further that the system has competitive rates. The cost allocation to a yellow industrial node j is∑
i∈RDij − (

∑
i∈RDij/

∑
h6=j Dhj)ej = (1 − ρj)

∑
i∈RDij , which is the sum of the losses it causes to red

banks. This is negative if 1 < ρj < 1 + r̄j . Equation (10) implies that the sum of the losses on bank i’s
loss-making loans, for which the corresponding borrowers are held responsible, is the sum of the profits on
its other loans, its insured loss `∗i , and its initial equity si.

4.4.3 Loss-Making Industrial Nodes

To design a scheme similar to the obligor-responsibility scheme, but yielding non-negative allocations in a
classic lending system with competitive rates, we make the players the loss-making industrial nodes. The
function Φ is not positively homogeneous: the data is given by the same formulae as in Section 4.4.2, but
with λi replaced by 1 if node i is not a player. Suppose that there are borderline nodes in the network
Ψ(Φ(γ1)) for only finitely many values of γ ∈ (0, 1), and let these values be arranged in the increasing
sequence γ0, . . . , γm, in which γ0 = 0 and γm = 1. For any other value of γ ∈ [0, 1], let ζ(γ) and η(γ)
represent the marginal prices from Proposition 1, but with the data for system Φ(γ1) plugged into the
LP (12). The marginal prices are piecewise constant in γ, with their points of discontinuity contained in
the set {γ1, . . . , γm−1}, and can be found via parametric linear programming (see, e.g., Gass, 2003, Ch. 8).
Define δh = γh − γh−1, the width of the hth interval, and µh = (µh−1 + µh)/2, its midpoint. The cost
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allocation to node j is 0 if node j is not a player. If node j is a player, its cost allocation is

m∑
h=1

δh

∑
i6=j

Dijζi(µh)− p̄jηj(µh)− qjζj(µh)

 , (15)

which follows by replacing Equation (14) with its integral as γ ranges from 0 to 1. The quantities
∑m
h=1 δhζ(µh)

and
∑m
h=1 δhη(µh) can be interpreted as average prices as the loss-making industrial nodes are scaled down

to zero size.
Consider the special case of a classic lending system with competitive rates. For a green financial node i,

let γ̃i = 1. For a red bank i, let γ̃i = (si +
∑
j 6=iDij(ρj − 1)+)/

∑
j 6=iDij(1 − ρj)+. Using Equation (10),

for any financial node i and γ ∈ [0, 1], node i is red in system Φ(γ1) if γ > γ̃i and is green in system Φ(γ1)
if γ < γ̃i, and

∫ 1

0
ζi(γ) dγ = 1 − γ̃i = `∗i /

∑
j 6=iDij(1 − ρj)+, which is the average cost of loan losses at

node i. If node j is a player, then it is yellow in system Φ(γ1) for all γ ∈ [0, 1], so ηj(γ) = 0 and ζj(γ) =∑
i6=j Πjiζi(γ) =

∑
i6=j Dijζi(γ)/

∑
i6=j Dij . The non-negative cost allocation to node j is

∑
i6=j `

∗
iDij(1 −

ρj)+/
∑
k 6=iDik(1− ρk)+. That is, a borrower is responsible for a fraction of the insured losses of each of its

lenders, and this fraction is the fraction of the lender’s loan losses due to lending to this borrower.

4.4.4 Creditor Responsibility

This debt/equity scheme assigns responsibility for deals to the creditor. The participation level λi of node i
multiplies the swap payments promised to node i and everything on the asset side of its time-0 balance
sheet: lending D(λ) = diag(λ)D and the investment in the baseline asset t(λ) = diag(λ)t. Therefore the
time-0 balance sheet size a(λ) = diag(λ)a and the liability matrix L(λ) = Ldiag(λ). As in the obligor-
responsibility scheme, λi also multiplies node i’s deposits d(λ) = diag(λ)d. Therefore the primary value
w(λ) = diag(λ)w and the function Φ is positively homogeneous.

The payment proportions Π(λ) vary with λ in a complicated way, which makes the LP (12) inconvenient
for analyzing this scheme. We reformulate the LP by defining fi to be the fraction of node i’s liabilities that
it pays. If p̄i > 0, then fi = pi/p̄i. If node i has no promised payments, then the payment fraction fi is
indeterminate in a sense, but we choose the payment fraction to be consistent with the priority constraints
vi > 0⇒ fi = 1 and fi > 0⇒ `i = 0, as follows. Let f∗ denote the vector of payment fractions corresponding
to the clearing payment vector p∗. If node i is green, f∗i = 1; if node i is yellow, p̄i > 0 and 0 < f∗i < 1; and
if node i is red, f∗i = 0. The reformulated LP is

min
`,f

1>` subject to (diag(L1)− L>)f − ` ≤ w, f ≤ 1, ` ≥ 0, f ≥ 0. (16)

Suppose there are no borderline nodes. Then Proposition 1 gives the marginal prices ζ for w, and Proposi-
tion 2, proved in Appendix B, says that the marginal prices Θ for L are given by

θij = f∗i (ζj − ζi). (17)

The interpretation of this formula is that node i pays the fraction f∗i of its liabilities, and ζi − ζj is the
marginal cost of moving money from node i to node j. The relationship between the marginal prices θij for
promised payments from node i to other nodes and the marginal price ηi for its total promised payments is

ηi =
∑
j 6=i

Πijθij . (18)

Proposition 2. If there are no borderline nodes, then for all i 6= j, θij = −∂1>`∗/∂Lij.

For all j and i 6= j, ∂wj/∂λj = wj , ∂Lij/∂λj = Lij , and ∂wj/∂λi = ∂Lij/∂λi = 0. Therefore the cost
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allocation to node j is

−
∑
i6=j

θijLij − ζjwj = ζj
∑
k 6=j

Djk −
∑
i6=j

θijLij − ζjqj (19)

=
∑
i6=j

ζif
∗
i Lij − ζj

wj +
∑
i6=j

f∗i Lij

 =
∑
i6=j

ζip
∗
iΠij − ζj

wj +
∑
i6=j

p∗iΠij

 .(20)

Equation (19) follows from Equation (11) and shows that each node is responsible for the principal it has lent
and for the payments it is supposed to receive. Equation (20) follows by using Equation (17) and observing
that f∗i Lij = p∗iΠij is the amount paid by node i to node j. The amount of money available at node j after
receiving payments from other nodes is wj +

∑
i6=j p

∗
iΠij , and its marginal price is ζj . In Equation (20), the

term −ζj(wj +
∑
i6=j p

∗
iΠij) is the insured loss `∗j if node j is red, 0 if node j is green, and −ζjp∗j if node j

is yellow. The term
∑
i6=j ζip

∗
iΠij =

∑
i∈Y ζip

∗
iΠij because ζip∗i = 0 unless node i is yellow. It is a cost

allocated to node j as a creditor: the scheme holds it responsible for taking money from obligors who can
pay something but can not pay in full. The sum of the costs allocated to all nodes for receiving payments
from yellow nodes equals the sum of the negative cost allocations to all yellow nodes for the payments they
make:

∑n
j=1

∑
i∈Y ζip

∗
iΠij =

∑
i∈Y ζip

∗
i .

Consider the special case of a classic lending system. The cost allocation to green industrial nodes is 0.
If industrial node i is yellow, its cost allocation is −ζip∗i = −p∗i

∑
j∈RΠij , the negative of the sum of the

payments it makes to red banks. There is a striking violation of monotonicity: an increase in the initial
equity of a borrower could transform it from yellow to green, which would increase its cost allocation but
decrease the system’s cost. Cf. the similar violation of monotonicity in increasing the initial equity of a
lender in Section 4.4.2.

4.4.5 Shared Responsibility

This debt/equity scheme shares the responsibility for deals equally between the parties to the deal. Any
deal between nodes i and j is multiplied by the geometric average

√
λiλj of their participation levels. We

choose the function that maps (λ1, λ2) to
√
λ1λ2 because it is positively homogeneous, symmetric, and,

like the Shapley value scheme that eliminates a deal whenever either party to the deal is not participating,
it maps (1, 1) to 1 but (λ, 0) and (0, λ) to 0 for any λ. The use of the geometric average leads to an
arithmetic average in Equation (21) that entails equal sharing of responsibility between creditor and obligor.
We have D(λ) =

√
diag(λ)D

√
diag(λ) and L(λ) =

√
diag(λ)L

√
diag(λ). As in the obligor- and creditor-

responsibility schemes, a(λ) = diag(λ)a and d(λ) = diag(λ)d. The investment in baseline assets t(λ) =
a(λ) − D(λ)1 and the cashflow e(λ) = (I + diag(r))t(λ). Because industrial nodes do not lend or take
deposits and financial nodes’ baseline asset is cash, which has a zero rate of return, the primary value
w(λ) = (I+diag(r))(a(λ)−D(λ)1)−d(λ) = diag(λ)w+diag(λ)D1−D(λ)1. The function Φ is positively
homogeneous.

For all j and i 6= j, ∂Lij/∂λi = ∂Lij/∂λj = Lij/2, ∂wi/∂λj = −Dij/2, and ∂wj/∂λj = wj+
∑
k 6=j Djk/2.

Equation (11) defined qj = wj +
∑
k 6=j Djk, the primary value that node j would have had if there were no

lending. If there are no borderline nodes, the cost allocated to node j is

1
2

∑
i6=j

(ζiDij − θijLij) +
∑
k 6=j

(ζjDjk − θjkLjk)

− ζjqj . (21)

From Equations (14), (18), and (19), it follows that this is the average of the costs allocated to node j by the
obligor- and creditor-responsibility schemes. Another interpretation is that the shared-responsibility scheme
equally shares costs allocated to each deal between the deal’s creditor and obligor. The cost allocated to a
swap that results in a promised payment of Xij from node i to node j is −θijXij . The cost allocated to a
loan of Dij at rate r̄ij from node i to node j is ζiDij − θjiDij(1 + r̄ij), where the first term is for removing
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the principal from node i and the second term is for the promised repayment of principal with interest by
node j to node i. Because this is a debt/equity scheme, there is no term for moving the principal to node j:
the assumption is that, in the absence of this loan, node j would have replaced the debt with equity.

4.4.6 An Average-Cost Scheme

Because the obligor-, creditor-, and shared-responsibility schemes all use the same marginal prices, which
produce allocations that are discontinuous as functions of the system data and may be extreme, we develop
a debt/equity scheme based on shared responsibility but using average prices. As in previous schemes, the
participation level λi of node i multiplies its deposits and time-0 balance sheet size: d(λ) = diag(λ)d and
a(λ) = diag(λ)a. Any deal between nodes i and j is multiplied by the product λiλj of their participation
levels: D(λ) = diag(λ)Ddiag(λ) and L(λ) = diag(λ)Ldiag(λ). Although we use sensitivities to pertur-
bations that change the matrix Π(λ) of payment proportions, along the diagonal, this matrix is constant:
L(γ1) = γ2L, so Π(γ1) = Π. The investment in baseline assets t(λ) = a(λ)−D(λ)1 = diag(λ)(t+D(1−λ))
and the cashflow e(λ) = (I + diag(r))t(λ). The primary value w(λ) = diag(λ)((I + diag(r))(t + D(1 −
λ))−d) = diag(λ)(w+D(1−λ)) because industrial nodes do not lend or take deposits and financial nodes’
baseline asset is cash, which has a zero rate of return. The function that maps (λ1, λ2) to λ1λ2 is symmetric
and maps (1, 1) to 1 and (λ, 0) and (0, λ) to 0 for any λ, but it is not positively homogeneous; accordingly,
Φ is not positively homogeneous. Loosely speaking, it becomes easier for nodes to fulfill their obligations in
system Φ(γ1) as γ decreases, as can be seen by comparing the primary value w(γ1) = γ(w + (1 − γ)D1)
to 0, the boundary of insured loss, and to p̄(γ1) = γ2p̄, the boundary of default. Alternatively, one may
observe that the leverage ratio in system Φ(γ1), diag(a(γ1))−1s(γ1) = diag(a)−1(s+(1−γ)D>1), increases
as γ decreases. The intent of the scheme’s design is to make the Aumann-Shapley value use prices averaged
over a range of systems in which there are fewer or milder defaults and insured losses. This happens in a
classic lending system: see Proposition 3.

As in Section 4.4.3, suppose {γ1, . . . , γm−1} are the only values of γ ∈ (0, 1) such that there are borderline
nodes in the network Ψ(Φ(γ1)), let γ0 = 0 and γm = 1, and let δh be the width and µh be the midpoint
of (γh−1, γh). For any value of γ ∈ [0, 1] \ {γ0, . . . , γm}, the marginal prices ζ(γ) and Θ(γ) are as described
in Propositions 1 and 2, but with w(γ1) and L(γ1) plugged into the LP (16). Let HR(i) be the set of all
h such that node i is red in system Φ(µh1), and define HY(i) and HG(i) similarly for yellow and green.
Appendix B.3 shows that, for all i and j, the average prices∫ 1

0

ζi(γ) dγ = ζ̄i =
∑

h∈HR(i)

δh +
∑

h∈HY(i)

δhζi(µh), (22)

2
∫ 1

0

γζi(γ) dγ = ζ̂i =
∑

h∈HR(i)

(γ2
h − γ2

h−1) +
∑

h∈HY(i)

(γ2
h − γ2

h−1)ζi(µh), and (23)

2
∫ 1

0

γθij(γ) dγ = θ̂ij =
∑

h∈HG(i)

(γ2
h − γ2

h−1)ζj(µh) +
∑

h∈HY(i)

(γ2
h − γ2

h−1)θij(µh). (24)

The non-zero sensitivities of the LP data to participation level λj are, for any γ ∈ (0, 1) and any i, k 6= j,

∂Lij
∂λj

(γ1) = γLij ,
∂Ljk
∂λj

(γ1) = γLjk,
∂wj
∂λj

(γ1) = wj + (1− γ)
∑
k 6=j

Djk, and
∂wi
∂λj

(γ1) = −γDij .

The cost allocated to node j is

1
2

∑
i6=j

(
ζ̂iDij − θ̂ijLij

)
+
∑
k 6=j

(
ζ̂jDjk − θ̂jkLjk

)− ζ̄jqj , (25)
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where qj = wj +
∑
k 6=j Djk as in Equation (11). Like the shared-responsibility scheme of Section 4.4.5, this

scheme equally shares costs allocated to each deal between the deal’s creditor and obligor. As illustrated in
Table 4, the cost allocations to deals are similar, but with the average prices ζ̂ and Θ̂ replacing the marginal
prices ζ and Θ.

Consider the special case of a classic lending system. In system Φ(γ1), an industrial node j has promised
to pay γ2p̄j and has γej available to pay it, so it pays the fraction f∗j (γ) = min{1, ej/γp̄j} of its obligations.
This fraction is non-decreasing as a function of γ ∈ [0, 1]. Let γ̃j = min{1, ej/p̄j} for an industrial node j.
In system Φ(γ1), industrial node j is yellow if γ > γ̃j and is green if γ < γ̃j . For a green financial node i, let
γ̃i = 1. For a red bank i, γ̃i is described by Lemma 1, whose proof shows that node i’s initial equity equals
the loss on its loans in system Φ(γ̃i1).

Lemma 1. In a classic lending system, if node i is a red bank with time-0 equity si > 0, then there is a
unique value γ̃i of γ ∈ (0, 1) that solves

si = γ
∑
j 6=i

Dij(1− (1 + r̄ij)f∗j (γ)). (26)

In system Φ(γ1), node i is red if γ > γ̃i and green if γ < γ̃i.

Proof. Denote the right side of Equation (26) as υ(γ). In system Φ(γ1), node i’s loss on its loans is γυ(γ)
and its initial equity is γsi, so it is red if υ(γ) > si and green if υ(γ) < si.

The function υ is continuous in γ, υ(0) = 0 < si, and υ(1) =
∑
j 6=i(Dij − p∗jΠji). Because node i is a red

bank, wi +
∑
j 6=i p

∗
jΠji = −`∗i < 0. From this and

∑
j 6=iDij = ai − ti = (si + di) − ei = si − wi, it follows

that υ(1) > si. Therefore there exists a solution γ̃i in (0, 1) to υ(γ) = si.
For all γ ∈ [0, 1]\{γ0, . . . , γm}, we have υ(γ) =

∑
j 6=i 1{γ>γ̃j}Dij(γ−(1+r̄ij)ej/p̄j)−γ

∑
j 6=i 1{γ<γ̃j}Dij r̄ij

and υ′(γ) =
∑
j 6=iDij(1{γ>γ̃j} − r̄ij1{γ<γ̃j}). The function υ′ is non-decreasing. From

∫ γ̃i

0
υ′(γ) dγ =

υ(γ̃i) − υ(0) = si > 0, it follows that υ′(γ̃i) > 0. Therefore υ(γ) > si if γ > γ̃i. Because υ is convex, it
achieves its maximum on [0, γ̃i] at a single point, 0 or γ̃i; because υ(γ̃i) = si > 0 = υ(0), the maximum is si
achieved at γ̃i. Therefore υ(γ) < si if γ < γ̃i.

By Lemma 1, for a classic lending system whose red banks all have strictly positive time-0 equity, the
average prices in Equations (22)–(24) are as follows. If node i is financial, then ζ̄i = 1− γ̃i and ζ̂i = 1− γ̃2

i .
Define γ̃ij = max{γ̃i, γ̃j}. If node i is industrial,

ζ̄i =
∫ 1

γ̃i

∑
j 6=i

Πijζj(γ) dγ =
∑
j 6=i

Πij(1− γ̃ij),

ζ̂i = 2
∫ 1

γ̃i

γ
∑
j 6=i

Πijζj(γ) dγ =
∑
j 6=i

Πij(1− γ̃2
ij), and

θ̂ij = 2
∫ γ̃i

0

γζj(γ) dγ + 2
∫ 1

γ̃i

γf∗i (γ)(ζj(γ)− ζi(γ)) dγ = γ̃2
ij − γ̃2

j + 2
ei
p̄i

(1− γ̃ij − ζ̄i)

because γf∗i (γ) = ei/p̄i for γ > γ̃i. Furthermore, the average prices ζ̄ and ζ̂ for money at each node are less
than the corresponding marginal prices ζ in the actual system Φ(1).

Proposition 3. In a classic lending system whose red banks all have strictly positive time-0 equity, 0 ≤ ζ̄ ≤
ζ, 0 ≤ ζ̂ ≤ ζ, and the marginal prices ζ(γ) are non-decreasing as a function of γ on [0, 1].

Proof. By Lemma 1, the set of red financial nodes in system Φ(γ1) is non-decreasing as a function of γ.
By the analysis preceding Lemma 1, the set of yellow industrial nodes in system Φ(γ1) is non-decreasing
as a function of γ. From Equation (13), ζi(γ) =

∑
j 6=i Πij(γ1)ζj(γ) for all i ∈ Y, and Π(γ1) = Π for all

γ ∈ (0, 1], it follows that ζ(γ) is a non-negative, non-decreasing function of γ. Because ζ̄ and ζ̂ are weighted
averages of ζ(γ), they are non-negative and do not exceed ζ = ζ(1).

25



To see more explicitly how this scheme assigns responsibility, consider a classic lending system with
competitive rates. In system Φ(γ1), the recovery rate on lending to node j is ρj(γ) = (1 + r̄j)f∗j (γ) =
min{1 + r̄j , ρj/γ}. The cost allocated to an industrial node j is

∫ 1

0
(γ
∑
i6=j Dij(ζi(γ)− θjiLji)− ejζj(γ)) dγ.

Because Lji = Dij(1 + r̄j) and ρj(γ) = (1 + r̄j)f∗j (γ), from Equation (17) it follows that θji(γ)Lji =
ρj(γ)Dij(ζi(γ) − ζj(γ)). Because ζj(γ) = 0 for γ ∈ (0, γ̃j) and

∑
i6=j Dijγρj(γ) =

∑
i6=j Dijρj = ej for

γ ∈ (γ̃j , 1], ζj(γ)(
∑
i6=j Dijγρj(γ)− ej) = 0 for almost every γ ∈ [0, 1]. The cost allocation is∫ 1

0

∑
i6=j

Dijγ(ζi(γ)(1− ρj(γ)) + ζj(γ)ρj(γ))− ejζj(γ)

 dγ =
∑
i6=j

Dij

∫ 1

0

γζi(γ)(1− ρj(γ)) dγ

=
1
2

∑
i6=j

Dijαij ,

where

αij = 2
∫ 1

0

γζi(γ)(1− ρj(γ)) dγ = 2
∫ 1

γ̃i

γ(1− ρj(γ)) dγ

= 2
∫ γ̃ij

γ̃i

(−γr̄j) dγ + 2
∫ 1

γ̃ij

(γ − ρj) dγ = −(γ̃2
ij − γ̃2

i )r̄j + (1− γ̃2
ij)− 2(1− γ̃ij)ρj

= −r̄j(γ̃2
ij − γ̃2

i ) + (1− γ̃ij)(1 + γ̃ij − 2ρj).

The terms relate to the profit or loss on the loan. The first term is for systems Φ(γ1) in which node j is green
and the second is for systems Φ(γ1) in which node j is yellow. For bank i, qi = si, and the cost allocation is∫ 1

0

∑
j 6=i

Dijγ(ζi(γ)(1− ρj(γ)) + ζj(γ)ρj(γ))− siζi(γ)

 dγ =
∑
j 6=i

Dij

(
1
2
αij + βj

)
− si(1− γ̃i)

where

βj =
∫ 1

0

γζj(γ)ρj(γ) dγ = ρj

∫ 1

γ̃j

ζj(γ) dγ = ρj

∫ 1

γ̃j

∑
i6=j Dijζi(γ)∑

i6=j Dij
dγ = ρj

∑
i6=j Dij(1− γ̃ij)∑

i6=j Dij

follows from ζj(γ) =
∑
i6=j Πjiζi(γ) and Πji = Dij/

∑
h6=j Dhj . The cost βj is allocated to a creditor for the

payments it collects from its obligor. Like the obligor-responsibility scheme, this scheme allocates a negative
cost to red banks’ equity and a cost to a red bank’s loss on its loans (or negative cost to its profit), but this
scheme splits this cost between lender and borrower instead of allocating it all to the borrower. Like the
creditor-responsibility scheme, this scheme allocates a cost to payments received from yellow nodes, but it
does not give a corresponding negative cost allocation to the yellow nodes.

4.4.7 A Debt/Baseline Scheme

This debt/baseline scheme is based on shared responsibility and marginal prices, but it uses the marginal
prices to allocate costs to loans differently than the shared-responsibility scheme of Section 4.4.5. As in
Section 4.4.5, D(λ) =

√
diag(λ)D

√
diag(λ), L(λ) =

√
diag(λ)L

√
diag(λ), and d(λ) = diag(λ)d. Using

the debt/baseline scheme, a(λ) = s(λ) + d(λ) + D(λ)>1, s(λ) = diag(λ)s, and t(λ) = a(λ)−D(λ)1. The
cashflow e(λ) = (I+diag(r))t(λ). Because industrial nodes do not lend or take deposits and financial nodes’
baseline asset is cash, which has a zero rate of return, the primary value w(λ) = (I + diag(r))t(λ)−d(λ) =
diag(λ)(I+diag(r))s+

√
diag(λ)((I+diag(r))D>−D)

√
diag(λ)1. The function Φ is positively homogeneous.

For all j and i 6= j, ∂Lij/∂λi = ∂Lij/∂λj = Lij/2, ∂wi/∂λj = ((1 + ri)Dji − Dij)/2, and ∂wj/∂λj =
sj + ((1 + rj)

∑
i6=j Dij −

∑
k 6=j Djk)/2. If there are no borderline nodes, the cost allocated to node j is

1
2

∑
i6=j

((ζi − ζj(1 + rj))Dij − θijLij) +
∑
k 6=j

((ζj − ζk(1 + rk))Djk − θjkLjk)

− ζj(1 + rj)sj . (27)
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The scheme equally shares costs allocated to each deal between the creditor and obligor in the deal. The
cost allocated to a swap that results in a promised payment of Xij from node i to node j is −θijXij , just
as in Section 4.4.5. The difference is in the cost allocated to a loan of Dij at rate r̄ij from node i to node j,
which is

(ζi − ζj(1 + rj)− θji(1 + r̄ij))Dij = ζi(1− f∗j (1 + r̄ij))Dij + ζj(f∗j (1 + r̄ij)− (1 + rj))Dij . (28)

Compared to Section 4.4.5, the left side of Equation (28) has an extra term, −ζj(1 + rj)Dij . In the
debt/baseline scheme, the loan makes node j’s time-0 balance sheet larger by Dij , and (1 + rj)Dij is the
increase in node j’s time-1 cashflow. To compensate for this difference from the debt/equity scheme, in the
debt/baseline scheme, node j receives a negative cost allocation only for the time-1 value of the investment
of its equity in its baseline asset, (1 + rj)sj , not for qj = (1 + rj)aj − dj . On the right side of Equation (28),
the factor multiplying ζi is node i’s loss on the loan and the factor multiplying ζj is the loss the loan causes
for node j: its payment to node i minus the time-1 value of its time-0 investment of Dij in its baseline asset.
Both factors may be positive or negative. The loan’s cost allocation is 0 if nodes i and j are both green or
both red. If there is no default on the loan (i.e., node j is green), the cost allocation is −ζir̄ijDij , the benefit
of the profit earned by node i. If the borrower, node j, is a red bank, the cost allocation is −(1− ζi)Dij , the
benefit of moving the principal Dij from node i to node j, where it protects node j’s depositors.

Consider the special case of a classic lending system with competitive rates. The cost allocated to the
loan from bank i to industrial node j is ζi(1− ρj)Dij + ζj(ρj − (1 + rj))Dij . The first term in the loan’s cost
allocation, ζi(1 − ρj)Dij , is a cost for the loss on the loan, which is negative if the loan is profitable. The
sum of the second term over all loans to node j is

∑
i6=j ζj(ρj − (1 + rj))Dij = ζj(ρj − (1 + rj))

∑
i6=j Dij ,

which is 0 if node j is green and is ζjsj(1 + rj) if node j is yellow, because ρj
∑
i6=j Dij = aj(1 + rj) =

(sj +
∑
i6=j Dij)(1 + rj). Thus, the second term in the loan’s cost allocation is ζjsj(1 + rj)Dij/

∑
h6=j Dhj .

If node j is yellow, this term is the cost of using up a fraction of node j’s equity, and this fraction is the
fraction of node j’s debt that comes from bank i.

4.5 Numerical Examples

We first examine the behavior of several schemes in a single scenario. In this example, banks 1 and 2 have
deposits d1 = d2 = 480 and equity s1 = 64 and s2 = 32, all figures being quoted in millions of dollars. There
are four industrial nodes, j = 3, 4, 5, and 6, each with equity sj = 80 and D1j +D2j = 320 in bank debt, on
which they pay r̄j = 5% interest. The bank debt is D13 = D26 = 320 and D14 = D24 = D15 = D25 = 160.
Consider the scenario in which nodes 3 and 4 pay their obligations in full, while nodes 5 and 6 experience a
return of r5 = r6 = −30% on their assets and can only repay p∗5 = p∗6 = 280. Bank 1 makes a profit and pays
its depositors in full. Bank 2 earns 4 on its loan to node 4 but loses 10 and 20 on its loans to nodes 5 and
6, resulting in an insured loss of `∗2 = 20. Table 6 shows several schemes’ cost allocations. The allocations
(rows) sum to the total insured loss, which is 20.

In this simple example, with no direct links between banks, several schemes (the Shapley and Aumann-
Shapley values for schemes that replace insured deposits with uninsured deposits, or replace deposits with
equity, or eliminate banks with insured losses) yield the “standard” allocation, in which bank 2 is responsible
for its own insured loss `∗2 = 20. Some schemes allocate a positive cost to bank 1, because they assign it
responsibility for the bad effect of its loan to node 5 on bank 2: bank 1’s claim on node 5 impairs node 5’s
ability to repay bank 2. Some schemes allocate a positive cost to bank 2 because it has an insured loss, but
the obligor-responsibility scheme allocates it a negative loss because its equity reduces its insured loss, and
the obligor-responsibility scheme assigns responsibility for its loan losses entirely to the borrowers. All the
schemes allocate zero cost to node 3, whose presence has no impact on insured losses. Some schemes allocate
a negative cost to node 4 because the profit that bank 2 earns on the loan to node 4 reduces bank 2’s insured
loss. Some schemes allocate a positive cost to the defaulting nodes 5 and 6 because of their responsibility
for bank 2’s loan losses, but others allocate a negative cost to them because their equity or the payments
they make to bank 2 reduce its insured loss.
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Table 6: Allocations of total insured loss in one scenario to nodes.
Banks Industrial Nodes

Allocation Scheme and Principle 1 2 3 4 5 6
Standard both 0 20 0 0 0 0
Banks Shapley 10 10 0 0 0 0
All Nodes Shapley 5.4 6.1 0 -2.3 4.7 6.1
Obligor Responsibility Aumann-Shapley 0 -32 0 -8 20 40
Creditor Responsibility Aumann-Shapley 70 370 0 0 -140 -280
Shared Responsibility Aumann-Shapley 35 169 0 -4 -60 -120
Average Cost Aumann-Shapley 3.0 15.3 0 -0.3 0.7 1.4
Debt/Baseline Aumann-Shapley 7 29 0 -4 -4 -8
Industrial Nodes Shapley 0 0 0 -4 10 14
Loss-Making Industrial Nodes Shapley 0 0 0 0 10 10

Aumann-Shapley 0 0 0 0 6.7 13.3

Table 7: Aumann-Shapley allocations of total insured loss in one scenario to nodes and loans.
Funding of node j Loan from node i to node j

Scheme for Loans Prices 2 5 6 1 to 5 2 to 4 2 to 5 2 to 6
debt/equity marginal -32 -140 -280 70 -8 90 320
debt/equity average -1.4 -5.9 -11.9 5.9 -0.7 7.3 26.5

debt/baseline marginal -32 -28 -56 14 -8 34 96

The Shapley value demonstrates its propensity for fairness as equality: in the schemes that allocate costs
only to banks or only to loss-making industrial nodes, it allocates equal costs to the two banks or the two
loss-making industrial nodes because there is zero insured loss unless both are present. In contrast, in all
the schemes here, the ratio of the Aumann-Shapley value’s allocations to nodes 6 and 5 equals the 2:1 ratio
of bank 2’s loss on the loan to node 6 to that on the loan to node 5.

The obligor- and creditor-responsibility schemes are extreme, with multiple nodes receiving cost alloca-
tions whose absolute value exceeds the total insured loss. What they accomplish is to show where scarce
resources are produced and consumed: money at banks with insured losses, in the obligor-responsibility
scheme, and money at defaulting industrial nodes, in the creditor-responsibility scheme. Although it is an
average between schemes with opposite behavior, the shared-responsibility scheme is also extreme. The
average-cost and debt/baseline schemes are more moderate.

Table 7 shows how the Aumann-Shapley value schemes allocate costs to nodes’ funding and loans. It
presents the non-zero numerical values in this scenario of the entries of Table 4. The obligor-, creditor-, and
shared-responsibility schemes all allocate to funding and loans the costs given on the first row of the table;
they differ only in how they re-allocate the costs of loans to the lender and borrower. This allocation of
costs to funding and loans is extreme because the marginal prices are large (ζ2 = 1 for money at bank 2,
ζ5 = Π52ζ2 = 1/2 for money at node 5, and ζ6 = Π62ζ2 = 1 for money at node 6) and the debt/equity scheme
assigns responsibility to loans for removing principal from the lender but not for the cashflow generated by
the borrower’s investment. The average-cost scheme generates a more moderate allocation by using average
prices, which are much smaller than the marginal prices because bank 2 is close to the boundary of insured
loss. The debt/baseline scheme generates a more moderate allocation by assigning loans responsibility for
increasing the borrower’s cashflow and holding each node responsible only for its equity funding.

Next we consider some related examples which have four scenarios because each of two industrial nodes
independently has a return on assets of 10% with probability 90% or -50% with probability 10%. The
scenarios are denoted ++, +−, −+, and −−, where the first and second symbols indicate whether the asset
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Table 8: Allocations of expected total insured loss in examples of the counterparty contagion model.
Example No Swap Node 2 Owes Node 1 Node 3 Owes Node 4

Expected Total Insured Loss 112 76 139
Allocation Scheme and Principle 1&2 3&4 1 2 3 4 1 2 3 4

Insured vs. Uninsured both 56 0 20 56 0 0 86 53 0 0
Deposits vs. Equity S 56 0 14 62 0 0 86 53 0 0
Banks With Insured Losses S 56 0 20 56 0 0 87 52 0 0
Banks S 56 0 38 38 0 0 87 52 0 0
All Nodes S 28 28 17 17 17 25 38 27 37 37
Obligor Responsibility A-S -24 80 -24 -46 80 66 -24 -24 107 80
Creditor Responsibility A-S 296 -240 296 260 -240 -240 272 296 -213 -216
Shared Responsibility A-S 136 -80 136 107 -80 -87 124 136 -53 -68
Average Cost A-S 47 9 18 45 4 8 59 45 18 18
Debt/Baseline A-S 56 0 56 27 0 -7 53 56 18 12
Industrial Nodes S 0 56 0 0 26 50 0 0 70 70
Loss-Making Industrial Nodes S 0 56 0 0 19 57 0 0 83 56

returns r3 and r4, respectively, are positive or negative. Bank 1 has deposits d1 = 3200 and equity s1 = 240,
and has lent D13 = 3200 to industrial node 3, which has equity s3 = 1600, all figures being quoted in millions
of dollars. Bank 2 and industrial node 4 are identical. The interest rates are 5%. There are no other deals in
the first example. Each bank has a loan loss of 800 and an insured loss of 560 when its borrower defaults due
to a return on assets of -50%. In the second example, there is also a swap resulting in a promised payment
L21 = 480 from bank 2 to bank 1 in scenarios −+ and −−. This swap reduces total insured loss. In scenario
−+, bank 2 defaults and pays to bank 1 only p∗2 = 400, of which 240 is its own equity and 160 is the profit
earned on its loan to node 4. This leaves bank 1 with an insured loss of 160. In scenario −−, bank 2 pays
nothing and both banks’ insured losses are 560. In the third example, instead there is a swap resulting in
a promised payment L34 = 480 from node 3 to node 4 in scenarios −+ and −−. This swap increases the
total insured loss because it has equal priority with loan repayments: in scenarios −+ and −−, node 3’s
total payment p∗3 = 2400 is split in the proportions Π31 = 0.875 and Π34 = 0.125, so node 1’s insured loss
is `∗3 = 860. In scenario −−, this increase of 300 in insured loss is counterbalanced by a decrease of 300 in
node 2’s insured loss, but not in scenario −+, in which case `∗4 = 0 whether or not this swap exists. Table 8
presents systemic risk components from several schemes applied to these examples.

Including the promised swap payment from bank 2 to bank 1 in moving from the first to second example
decreases systemic risk, i.e., expected total insured loss, by 36. In the schemes that replace insured with
uninsured deposits or delete banks with insured losses, this decrease is felt entirely in the risk allocated to
bank 1, which experiences the reduction in expected insured loss. The scheme that deletes any bank shares
the reduction equally between the two banks’ risk components, because the participation of both banks is
necessary for the benefit to occur. According to the scheme that substitutes equity for deposits, the presence
of the swap increases the risk component of bank 2, whose deposits prevent it from making its promised
payment to bank 1 and thus are responsible for some of bank 1’s insured loss. For a similar reason, when
the swap is present, node 4 has a slightly higher risk component under the scheme that allocates risk to
loss-making industrial nodes. Node 4’s risk component decreases under schemes that give it credit for the
profit bank 2 earns in lending to it, which enables bank 2 to pay more to bank 1 on the swap. In the
obligor-responsibility scheme, the decrease in systemic risk is split (unequally) between bank 2 and node 4,
because they are the obligors whose additional payments reduce the insured loss at bank 1. The same
thing happens in the debt/baseline scheme for different reasons: bank 2’s equity is more valuable because
it also mitigates insured loss at bank 1, and the loan from bank 2 to node 4 is more valuable because the
profits it generates flow through bank 2 to reduce bank 1’s insured loss in scenario −+. Even though the
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swap decreases systemic risk, it has zero marginal value in the debt/baseline scheme, because the promised
payment is already so large that bank 2 can never make it. For this reason, bank 2’s risk component is
the only one to decrease under the creditor-responsibility scheme: in scenario −+, bank 2 is yellow and
receives credit for the payments it makes to bank 1, which is red. Under the all-nodes scheme, every risk
component decreases, but node 4’s decreases the least. This is because it contributes less money than bank 2
to mitigating the insured loss at bank 1 and because its participation has no value without the participation
of bank 2: without bank 2, node 4 is disconnected from bank 1. Under the average-cost scheme, every risk
component decreases, but those of nodes 2 and 4 do not decrease much. In scenario −+, nodes 2 and 4
receive only a modest negative cost allocation because bank 1 is not far from the boundary of default and
this scheme uses average prices, not marginal prices.

Comparing the first and third examples, the promised swap payment from node 3 to node 4 increases
systemic risk by 27. The payment node 3 makes to node 4 increases the insured loss of bank 1 in scenarios −+
and −−, and decreases the insured loss of bank 2 in scenario −−, which is reflected in the risk components
generated by the two schemes that replace insured deposits with another source of funding. Compared to
these schemes, the risk component of bank 1 is slightly higher under the schemes that eliminate banks or
banks with insured losses. The reason is that, in scenario −−, eliminating bank 1 enables node 3 to make
its entire promised payment to node 4, which increases node 4’s payment to bank 2 and decreases bank 2’s
insured loss. The obligor-responsibility scheme holds node 3 entirely responsible for the increase in risk due
to the swap, which comes about because node 3 pays less to bank 1. The scheme that allocates risk to loss-
making industrial nodes does the same, because the increased risk comes entirely from an increase in total
insured loss in scenario −+. The schemes that allocate risk to industrial nodes or to all nodes hold nodes 3
and 4 equally responsible for the effects of the swap between them. The all-nodes scheme also allocates some
of the additional risk to bank 1, which is harmed by the swap, and slightly decreases the risk component
of bank 2, which experiences a small reduction in expected insured loss due to the swap. The average-
cost scheme behaves similarly, although its risk components for nodes 3 and 4 are not exactly equal. The
introduction of the swap reduces the price ζ3 of money at node 3 in scenario −+ from 1 to 0.875. Therefore,
in the creditor-responsibility scheme, bank 1 gets a smaller and node 3 gets a larger allocation. Node 4 gets
a larger allocation because it receives money from node 3 when the swap is present. Similar effects occur
in the debt/baseline scheme, because the lower price of money at node 3 in scenario −+ decreases the risk
allocation to the loan from bank 1 to node 3, while the swap itself has a positive risk allocation. Even
though node 3 never makes the full promised payment on the swap, the swap has a positive marginal cost
in scenario −+, because increasing the promised swap payment reduces the fraction of the money at node 3
that goes to bank 1.

5 Conclusions and Research Directions

We can draw some lessons about design principles from our exploration of systemic risk attribution schemes.
Working with expected cost as our risk measure, we focused on designing a cost function to which to
apply the Shapley or Aumann-Shapley values to allocate cost in each scenario. The first step is to decide
which entities should receive a cost allocation. The second step is to design a cost function: the way
that cost varies with the entities’ levels of participation in the system is the way that the function assigns
responsibility for cost to those entities. This requires imagining counterfactual systems in which some of
the entities are not participating fully, e.g., are smaller, weaker, or less connected. The counterfactual
systems should be feasible. For example, we showed how to generate feasible counterfactual systems in a
model that includes lending, without leaving holes in other banks’ balance sheets when one bank shrinks.
We also showed how to design schemes that yield non-negative systemic risk components, by attributing
systemic risk only to entities that increase systemic risk. A third step in designing an attribution scheme
is choosing between the Shapley and Aumann-Shapley values. The Shapley value allocates equally among
participants the costs of their interactions, whereas the Aumann-Shapley value can be interpreted in terms
of unit prices and equality on a per-unit basis. The Shapley value quantifies global contributions to risk:
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it considers large changes in the system that would occur if some entities did not participate in the system
at all. The Aumann-Shapley value is based on local contributions to risk: it considers marginal changes in
the system that would occur if participation levels were perturbed. Indeed, if the cost function is positively
homogeneous, the Aumann-Shapley value consists of sensitivities of cost to perturbations, and we saw that
they can be discontinuous as a function of system data. If the cost function is not positively homogeneous,
the Aumann-Shapley value consists of sensitivities averaged across counterfactual systems. These average
sensitivities were continuous in the examples we considered. Smoothing can also result from taking an
expectation, i.e. averaging across scenarios. If participants in the system have incentives to lower their
systemic risk components, the designer of a systemic risk attribution scheme should be aware of vulnerabilities
to counterproductive strategic behavior: the Shapley value to mergers and splits of participants, and the
Aumann-Shapley value to unilateral actions (Section 3.4).

In models of bank resolution costs (Section 3.1), we found schemes for creating systemic risk components
that are worthy of consideration in setting deposit insurance premia (Sections 3.2–3.3). In the fire sale
model, they are the natural Shapley and Aumann-Shapley schemes. In the acquisition model, they are the
insolvent-banks Shapley and Aumann-Shapley schemes and the leverage Shapley scheme.

One task for future research is theoretical investigation of systemic risk components based on non-linear
risk measures. Another is the application of systemic risk components to more models of systemic risk,
e.g., of fire sales driven by capital requirements, of funding liquidity, or of counterparty contagion with
more detailed features, such as multiple levels of seniority, netting arrangements, or collateral. More applied
work will need to be done to design systemic risk attribution schemes for various purposes in systemic risk
management.
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A Linear Programming and the Clearing Payment Vector

In the counterparty contagion model (Section 4.1), we assume that there is a unique clearing payment vector;
sufficient conditions are discussed by Eisenberg and Noe (2001) and Elsinger (2007). Eisenberg and Noe show
that in their model, which is a special case of ours, the clearing payment vector is the optimal solution of
an LP similar to our LP (12). Elsinger, whose model is more general than ours, provides algorithms for
computing the clearing payment vector, but does not discuss LPs. We show that in our model of counterparty
contagion, the clearing payment vector provides an optimal solution of our LP (12), which we reformulate
here as

min 1>` subject to v − `+ (I−Π>)p = w, p ≤ p̄, v ≥ 0, ` ≥ 0, p ≥ 0. (29)

By way of doing so, we provide an LP-based method for computing the clearing payment vector.
The clearing payment vector p∗ satisfies, with some v∗ and `∗,
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• the balance equation v∗ − `∗ = u∗ = w + (Π> − I)p∗,

• the capacity constraints 0 ≤ p∗ ≤ p̄, 0 ≤ `∗ ≤ d, and v∗ ≥ 0, and

• the priority constraints v∗i > 0⇒ p∗i = p̄i and p∗i > 0⇒ `∗i = 0 for all i = 1, . . . , n.

It is a consequence of the priority constraints that v∗i > 0 ⇒ `∗i = 0 for all i = 1, . . . , n. Together with
v∗− `∗ = u∗ and the capacity constraint v∗ ≥ 0, this implies that the insured loss `∗i and terminal equity v∗i
are the negative and positive parts, respectively, of u∗i ; they can be computed from p∗. Thus, the clearing
payment vector p∗ is in one-to-one correspondence with the solution (p∗,v∗, `∗) of LP (29).

Because the objective of LP (29) is to minimize 1>`, the upper bound `∗ ≤ d is not needed. The only
difference between the LP (29) and the definition of the clearing payment vector is that (29) lacks the priority
constraints, while the definition of the clearing payment vector makes no mention of minimizing insured loss.
Therefore the clearing payment vector corresponds to a feasible solution (p∗,v∗, `∗) of LP (29). It remains
to show that this solution is optimal. There may be other optimal solutions that do not correspond to the
clearing payment vector. This is not a problem because we only use LP (29) to study the sensitivity of the
optimal objective. To show that (p∗,v∗, `∗) is an optimal solution of (29), we use a three-step procedure for
calculating the clearing payment vector:

1. Solve LP (29) and record the optimal objective value as `−.

2. Solve the LP

min 1>p s.t. v − `+ (I−Π>)p = w, 0 ≤ v, 0 ≤ `, 0 ≤ p ≤ p̄, 1>` ≤ `−. (30)

Record an optimal solution as (p(2),v(2), `∗). Let U− be the vector whose ith entry is 1 if `∗i > 0 and
0 otherwise.

3. Solve the LP

max 1>p s.t. v − `∗ + (I−Π>)p = w, 0 ≤ v, 0 ≤ p ≤ p̄, diag(U−)(p+ v) = 0. (31)

Call the optimal solution (p∗,v∗). The clearing payment vector is p∗.

As a preliminary, we remark that all three LPs have optimal solutions because they are bounded and feasible.
LP (29) is bounded by zero and a feasible solution can be generated by taking p = 0. LP (30) is bounded
by zero and the optimal solution of LP (29) is a feasible solution for LP (30). LP (31) is bounded by 1>p̄
and (p(2), `(2)) is a feasible solution: Lemma 3 shows that the constraint diag(U−)(p+ v) = 0 is satisfied.

The purpose of LP (30) is to find a payment vector that results in the smallest possible insured loss while
ensuring that the nodes with insured losses respect the priority constraints: they do not make any payments
to other nodes and have zero terminal value. The next two lemmas show that LP (30) accomplishes this.

Lemma 2. The optimal solutions of LPs (29) and (30) have the same cost: 1>`∗ = `−.

Proof. The optimal solution of LP (30) is a feasible solution of LP (29), so `− ≤ 1>`∗. Also, 1>`∗ ≤ `−
follows from a constraint in (30).

Lemma 3. For all i such that `∗i > 0, v(2)
i = 0 and p(2)

i = 0.

Proof. Consider a solution (p,v, `) to LP (30) such that `i > 0.
First, suppose that vi > 0. Let ε = min{`i, vi}. Define `′i = `i − ε and v′i = vi − ε, whereas for all

j 6= i, `′j = `j and v′i = vi. The solutions (p,v, `) and (p,v′, `′) are either both feasible or both infeasible
for LP (29). If they are both infeasible for LP (29), then (p,v, `) is infeasible for LP (30). Suppose instead
that both are feasible for LP (29). Because 1>`′ < 1>`, while the optimal value of LP (29) is `−, it follows
that `− ≤ 1>`′ < 1>`. Thus (p,v, `) is infeasible for LP (30). Therefore the optimal solution of LP (30),
being feasible, must satisfy v(2)

i = 0.
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Next, suppose instead that pi > 0. Let ε = min{`i, pi}. Define `′i = `i − ε and p′i = pi − ε, whereas for
all j 6= i, p′j = pj and `′j = `j + εΠij . Because

∑
j 6=i Πij = 1, 1>`′ = 1>`. Therefore the solutions (p,v, `)

and (p′,v, `′) are either both feasible or both infeasible for LP (30). Because 1>p′ < 1>p, (p,v, `) is not
an optimal solution of LP (30). Therefore the optimal solution of LP (30) must satisfy p(2)

i = 0.

Proposition 4. Where (p∗,v∗, `∗) is computed by the three-step procedure, p∗ is the clearing payment vector
and 1>`∗ is the optimal objective value of LP (29).

Proof. It suffices to show that the procedure’s output (p∗,v∗, `∗) satisfies the balance equation, capacity
constraints, and priority constraints. Then p∗ is the clearing payment vector and Lemma 2 implies that
1>`∗ is the optimal objective value of the LP (29). Consequently, comparing (29), (30), and (31), we
can see that (p∗,v∗, `∗) is an optimal solution to LP (29). As discussed previously, LP (29) includes the
balance equation and capacity constraints, so it remains only to show that (p∗,v∗, `∗) satisfies the priority
constraints. Because of the constraint diag(U−)(p+ v) = 0 in (31), the priority constraints are satisfied for
i such that `∗i > 0. For i such that `∗i = 0, the only priority constraint to consider is v∗i > 0⇒ p∗i = 1.

Suppose that (p,v) is feasible for LP (31). Then (p,v, `∗) is feasible for LPs (29) and (30). Further
suppose that for some i, pi < p̄i, vi > 0, and `∗i = 0. Let ε = min{p̄i − pi, vi}. Define p′i = pi + ε and, for all
j 6= i, p′j = pj . Define v′i = vi − ε and `′i = 0. For all j 6= i, define u′j = vj − `j + εΠij , v′j = max{u′j , 0}, and
`′j = max{−u′j , 0}. Then (p′,v′, `′) is feasible for LP (29). Because `′ ≤ `∗, (p′,v′, `′) is also feasible for
LP (30). Then Lemma 2 implies 1>`′ ≥ 1>`∗, so `′ = `∗. Therefore (p′,v′) is feasible for LP (31). Because
1>p′ > 1>p, (p,v) is not an optimal solution of LP (31).

B Linear Programming Sensitivity Analysis

We use LP sensitivity analysis to find the sensitivity of cost, i.e., total insured loss, in the counterparty
contagion model (Section 4.1), proving Propositions 1 and 2. For background material on LP sensitivity
analysis, see, e.g., Gass (2003, §8.3). As in Appendix A, we assume that there is a unique clearing payment
vector p∗, and let v∗ and `∗ be the corresponding vectors of terminal equity and insured losses. Compared
to the sensitivity analysis of the Eisenberg and Noe (2001) model in Liu and Staum (2010), here we obtain
more explicit formulae for a more general model, but we do not treat the case in which there are borderline
nodes (Def. 3). In the absence of borderline nodes, the cost 1>`∗ is a differentiable function of the financial
network data at the point being considered (Section 4.2). Then each sensitivity is a partial derivative of cost
with respect to one parameter of the financial network. Borderline nodes can be handled with an approach
similar to that of Liu and Staum (2010). Left and right derivatives may differ; multiple subgradients may
exist. One must choose an appropriate basis to compute the sensitivity of cost to perturbations in each
direction. For example, a right derivative with respect to wj is computed using a basis that remains a basis
when wj is increased.

B.1 Proof of Proposition 1

First we reformulate LP (12) as

min c>x subject to Ax = b, x ≥ 0 (32)

where

x =


p
q
v
`

 , c =


0
0
0
1

 , A =
[

I−Π> 0 I −I
I I 0 0

]
, and b =

[
w
p̄

]
.

It follows from Appendix A that x∗ = (p∗, p̄ − p∗,v∗, `∗) is an optimal solution of LP (32). If there are
borderline nodes, x∗ is a degenerate solution and has multiple bases. Suppose there are no borderline nodes.
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Then x∗ is non-degenerate and its unique basis B is constructed as follows, in terms of the classification of
nodes as green, yellow, and red (Def. 4).

• If node i is red, the variables qi and `i are in the basis.

• If node i is yellow, the variables pi and qi are in the basis.

• If node i is green, the variables pi and vi are in the basis.

The absence of borderline nodes implies that b can be perturbed in any direction without changing the basis.
The basic matrix B = A·B is formed by selecting the 2n columns of A corresponding to B. The optimal
solution is x∗ = B−1b. The cost 1>`∗ is the optimal objective value c>BB−1b, so the dual-optimal solution
y∗ = c>BB−1 provides the sensitivities of cost to b. We must demonstrate that [−ζ −η] = y∗, equivalently,
[−ζ −η]B = c>B , the row vector whose first 2n− |R| elements are zero and whose last |R| elements are one,
corresponding to the variable `i for each i ∈ R. The element corresponding to pi is −ζi+

∑
j 6=i Πijζj−ηi. The

vector of such elements for green nodes is −ζG + ΠG·ζ−ηG = 0 +ηG −ηG = 0. The vector of such elements
for yellow nodes is −ζY+ΠY·ζ−ηY = −ζY+ΠYRζR+ΠYYζY+ΠYGζG−0 = ΠYR1−(I−ΠYY)ζY+0 = 0.
The element corresponding to qi for a yellow or red node is −ηi = 0. The element corresponding to vi for a
green node is −ζi = 0. The element corresponding to `i for a red node is ζi = 1.

B.2 Proof of Proposition 2

To handle changes to the liability matrix L that change Π, we reformulate LP (16) as

min c>x̃ subject to Ãx̃ = b̃, x̃ ≥ 0 (33)

where

x̃ =


f
g
v
`

 , c =


0
0
0
1

 , Ã =
[

diag(L1)− L> 0 I −I
I I 0 0

]
, and b̃ =

[
w
1

]
.

The optimal solution to LP (33) has the same basis B as the optimal solution to LP (32), if we regard fi
and gi as corresponding to pi and qi, respectively, for all i = 1, . . . , n. Thus B̃ = Ã·B is the basic matrix
of LP (33), the optimal solution x̃∗ = B̃−1b̃, and the dual-optimal solution ỹ∗ = c>B B̃−1 provides the
sensitivities of cost to b̃. Therefore ỹ∗i = ∂1>`∗/∂wi = y∗i = −ζi for all i = 1, . . . , n. The sensitivity of cost
to the entry ãkl of the constraint matrix Ã is −ỹ∗kf∗l . Recall that diagonal entries of L are zero. For i 6= j,
the sensitivity of ãkl to Lij is 1 if k = l = i, −1 if k = j and l = i, and 0 otherwise. Therefore the sensitivity
of cost to Lij is ỹ∗j f

∗
i − ỹ∗i f∗i = f∗i (ζi − ζj).

B.3 Derivation of Equations (22)–(24)

Here we derive the average prices used in Section 4.4.6. The marginal prices ζ(γ) are piecewise constant in γ,
with their points of discontinuity contained in the set {γ1, . . . , γm−1}. Therefore

∫ 1

0
ζi(γ) dγ =

∑m
h=1 δhζi(µh)

and 2
∫ 1

0
γζi(γ) dγ =

∑m
h=1(γ2

h − γ2
h−1)ζi(µh). Equations (22)–(23) follow because ζi(γ) = 0 if node i

is green in system Φ(γ1) and ζi(γ) = 1 if node i is red in system Φ(γ1). Similarly, θij(γ) = ζj(γ) if
node i is green in system Φ(γ1) and θij(γ) = 0 if node i is red in system Φ(γ1). It remains to show that
2
∫ γh

γh−1
γθij(γ) dγ = (γ2

h − γ2
h−1)θij(µh) if node i is yellow in system Φ(γ1) for all γ ∈ (γh−1, γ).

We have parameterized families of LPs given by (32) and (33) with w(γ1) = γ(w + (1 − γ)D1) and
L(γ1) = γ2L plugged in for w and L, respectively. For all h = 1, . . . ,m, the basis B(γ) is the same for
any γ ∈ (γh−1, γh). Also, Π(γ1) = Π for any γ ∈ (0, 1]. Consider h such that Gi < h ≤ Yi. For all
γ ∈ (γh−1, γh), the basic matrix B(γ) of the optimal solution x∗(γ) = (p∗(γ), p̄(γ) − p∗(γ),v∗(γ), `∗(γ))
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is the same. The payment p∗i (γ) made by node i in system Φ(γ1) forms a piecewise linear function of γ.
Consider any γ ∈ (γh−1, γh). In system Φ(γ1), node i’s payment p∗i (γ) = ((B(µh))−1b(γ))i = ψi(µh)b(γ),
where ψi(µh) is the ith row of (B(µh))−1. Its promised payment is p̄i(γ) = γ2p̄i and its payment fraction
f∗i (γ) = p∗i (γ)/p̄i(γ). Therefore

θij(γ) = f∗i (γ)(ζj(γ)− ζi(γ)) = (ζj(µh)− ζi(µh))
ψi(µh)b(γ)

p̄iγ2
.

The integral ∫ γh

γh−1

γθij(γ) dγ = (ζj(µh)− ζi(µh))
ψi(µh)
p̄i

∫ γh

γh−1

1
γ
b(γ) dγ,

and ∫ γh

γh−1

1
γ
b(γ) dγ =

∫ γh

γh−1

[
w + (1− γ)D1

γp̄

]
dγ

=
[

(w + D1)(γh − γh−1)−D1(γ2
h − γ2

h−1)/2
p̄(γ2

h − γ2
h−1)/2

]
=

[
w + (1− µh)D1

µhp̄

]
δh

=
1
µh
b(µh)δh.

Therefore ψi(µh)
∫ γh

γh−1

1
γ b(γ) dγ = ψi(µh)b(µh)δh/µh = p∗i (µh)δh/µh, so∫ γh

γh−1

γθij(γ) dγ = (ζj(µh)− ζi(µh))
p∗i (µh)
p̄iµh

δh = θij(µh)δhµh =
1
2

(γ2
h − γ2

h−1)θij(µh).
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