FDIC Center for Financial Research Working Paper

No. 2010-08

Originate-to-Distribute Model and the Subprime Mortgage Crisis

August 2010

Originate-to-Distribute Model and the Subprime

Mortgage Crisis

Amiyatosh Purnanandam *

August 9, 2010

^{*}Amiyatosh Purnanandam can be reached at Ross School of Business, University of Michigan, Ann Arbor, MI 48109, Phone: (734) 764-6886, E-mail: amiyatos@umich.edu. I thank Sugato Bhattacharya, Uday Rajan, and George Pennacchi for extensive discussions and detailed comments on the paper. I want to thank an anonymous referee, Franklin Allen, Heitor Almeida, Sreedhar Bharath, Charles Calomiris, Sudheer Chava, Douglas Diamond, Gary Fissel, Scott Frame, Chris James, Han Kim, Paul Kupiec, Pete Kyle, M.P. Narayanan, Paolo Pasquariello, Raghuram Rajan, Joao Santos, Antoinette Schoar, Amit Seru, Matt Spiegel, Bhaskaran Swaminathan, Sheridan Titman, Anjan Thakor, Peter Tufano, Haluk Unal, Otto Van Hemert, Paul Willen, and seminar participants at the Board of Governors, Washington D.C., FDIC, Michigan State University, Loyola College, University of Texas at Dallas, University of Wisconsin, Madison, Washington University, York University, AFA, 2010, WFA 2009, FIRS, 2010, Bank of Portugal Financial Intermediation Conference, 2009, and Texas Finance Festival, 2009 for valuable suggestions. Kuncheng Zheng provided excellent research assistance. I gratefully acknowledge financial support from the FDIC's Center for Financial Research. All remaining errors are mine.

Abstract

An originate-to-distribute (OTD) model of lending, where the originator of a loan sells it to various third parties, was a popular method of mortgage lending before the onset of the subprime mortgage crisis. We show that banks with high involvement in the OTD market during the pre-crisis period originated excessively poor quality mortgages. This result is not explained away by differences in observable borrower quality, geographical location of the property or the cost of capital of high and low OTD banks. Instead, our evidence supports the view that the originating banks did not expend resources in screening their borrowers. The effect of OTD lending on poor mortgage quality is stronger for capitalconstrained banks. Overall, we provide evidence that lack of screening incentives coupled with leverage induced risk-taking behavior significantly contributed to the current sub-prime mortgage crisis.

JEL Codes: G11, G12, G13, G14.

The recent crisis in the mortgage market is having an enormous impact on the world economy. While the popular press has presented a number of anecdotes and case studies, a body of academic research is fast evolving to understand the precise causes and consequences of this crisis (see Greenlaw et al., 2008; Brunnermeier, 2008). Our study contributes to this growing literature by analyzing the effect of banks' participation in the originate-to-distribute (OTD) method of lending on the crisis.

As a part of their core operation, banks develop considerable expertise in screening and monitoring their borrowers to minimize the costs of adverse selection and moral hazard. It is possible that they are not able to take full advantage of this expertise due to market incompleteness, regulatory reasons, or some other frictions. For example, regulatory capital requirements and frictions in raising external capital might prohibit a bank from lending up to the first best level (Stein, 1998). Financial innovations naturally arise as a market response to these frictions (Tufano, 2003; Allen and Gale, 1994). The originate-to-distribute (OTD) model of lending, where the originator of loans sells them to third parties, emerged as a solution to some of these frictions. This model allows the originating financial institution to achieve better risk sharing with the rest of the economy,¹ economize on regulatory capital, and achieve better liquidity risk management.²

These benefits of the OTD model come at a cost. As the lending practice shifts from originate-to-hold to originate-to-distribute model, it begins to interfere with the originating banks' screening and monitoring incentives (Pennacchi, 1988; Gorton and Penacchi, 1995; Petersen and Rajan, 2002; Parlour and Plantin, 2008). It is this cost of the OTD model that lies at the root of our analysis. Banks make lending decisions based on a number of borrower characteristics. While some of these characteristics are easy to credibly communicate to third parties, there are soft pieces of information that cannot be easily verified by parties other than the originating institution itself. Thus, as the originating institution sheds off the credit risk and as the distance between the originator and the ultimate holder of risk increases, loan officers' ex-ante incentives to collect soft information decreases (see Stein, 2002, and Rajan, Seru, and Vig, 2009). If the ultimate holders of credit risk do not completely appreciate the true credit risk of mortgage loans, then it is easy to see the resulting dilution in the originator's screening incentives. However, it is not a necessary condition for the dilution in screening standards to occur. For example, if the cost of communicating soft information is so high that all originators are pooled together by the outside investors, then the originator's exante screening incentive goes down even without pricing mistakes by the ultimate investors. The screening incentives can deteriorate further if credit rating agencies make mistakes, as some observers have argued, in assessing the true credit risk of mortgage-backed-securities.

Our key hypothesis is that banks with aggressive involvement in the OTD market had lower screening incentives, which in turn resulted in the origination of loans with excessively poor soft information by these banks. The OTD model of lending allowed them to benefit from the origination fees without bearing the credit risk of the borrowers. As long as the secondary market for mortgage sale was functioning normally, they were able to easily offload these loans to third parties.³ When the secondary mortgage market came under pressure in the middle of 2007, banks with high OTD loans were stuck with large quantities of relatively inferior quality mortgage loans. It can take about two to three quarters from the origination to the sale of these loans in the secondary market (Gordon and D'Silva, 2008). In addition, the originators typically guarantee the loan performance for the first ninety days of loans (Mishkin, 2008). If banks with high OTD loans in the pre-disruption period were originating loans of inferior quality, then in the immediate post-disruption period such banks are likely to be left with a disproportionately large quantity of poor loans. We use the sudden drop in liquidity in the secondary mortgage market to identify the effect of OTD lending on mortgage quality.

We define the period up to the first quarter of 2007 as the pre-disruption period, and later quarters as post-disruption. We first confirm that banks with large quantity of origination in the immediate pre-disruption period were unable to sell their OTD loans in the postdisruption period. We then show that banks with higher participation with the OTD model in the pre-disruption period had significantly higher mortgage chargeoffs and defaults by their borrowers in the immediate post-disruption period. In addition, the mortgage chargeoffs and borrower defaults are higher for those banks that were unable to sell their pre-disruption OTD loans, i.e., for banks that were left with large quantities of undesired mortgage portfolios.

Overall, these results suggest that OTD loans were of inferior quality and banks that were stuck with these loans in the post-disruption period had disproportionately higher chargeoffs and borrower defaults. In order to provide convincing support for the diluted screening incentives hypothesis, it is important to rule out the effect of observable differences in the quality of loans issued by high and low OTD banks on mortgage default rate. We conduct several tests using detailed loan-level data from the Home Mortgage Disclosure Act (HMDA) to address this issue. In these tests, we compare the default rate of high and low OTD banks that are matched along several dimensions of borrowers' observable default risk, properties' location, and the bank's characteristics. We show that our results remain strong in the matched sub-samples. Thus, the effect of OTD lending on mortgage default rates is not an artifact of observable differences in the borrowers' credit risk, the geographical location of high and low OTD banks, or differences in the originating bank's other characteristics such as size and cost of capital.

We continue our investigation by analyzing the interest rates charged by high and low OTD banks during the pre-disruption period. If a bank screens its borrowers carefully on unobservable dimensions, then it is more likely to charge different interest rates to observationally similar borrowers (see Rajan, Seru, and Vig, 2009). Therefore, we expect to find a wider distribution of interest rates for the same set of observable characteristics for a bank that screens its borrowers more actively. Based on this idea, we compare the distribution of interest rates charged by the high and low OTD banks. Consistent with the lax screening hypothesis, we find evidence of tighter distribution for the high OTD banks in our sample.

In our final test, we focus on the determinants of poor screening by the high OTD

banks. We find that the effect of pre-disruption OTD lending on mortgage default rates is stronger among banks with lower regulatory capital. If banks used the OTD model of lending in response to binding capital constraints, then banks with lower capital base should do no worse than the well-capitalized banks. On the other hand, theoretical models such as Thakor (1996) and Holmstrom and Tirole (1997) suggest that banks with lower capital have lower screening incentive due to the risk-shifting problem. Our results support the presence of lax screening incentives behind the origination of such loans. We also find that the effect of OTD loans on mortgage default is concentrated among banks with a lower dependence on demand deposits.⁴ The result supports the view that demand deposits worked as a governance device for commercial banks as argued by Calomiris and Kahn (1991), Flannery (1994), and Diamond and Rajan (2001). Taken together, our study shows that banks that were primarily funded by non-demandable or market-based wholesale debt were the main originators of poor quality OTD loans.

There is a growing literature in this area with important contributions from Keys et al., 2010; Mian and Sufi, 2010; Loutskina and Strahan, 2008; Doms, Furlong, and Krainer, 2007; Mayer and Pence, 2008; Dell'Ariccia, Igan, and Laeven, 2008; Demyanyk and Van Hemert, 2009; Titman and Tsyplakov, 2007; and others. We make three unique contributions to the literature. This is one of the first academic studies that compares default rates of banks that originated loans to sell to third parties with banks that originated loans for their own portfolios. Our findings complement Keys et al. (2010) who analyze default rates of securitized loans above and below the FICO score of 620. In addition to the advantage of comparing sold versus retained loans, our analysis also shows that the dilution in screening standards was not confined to a particular range of borrowers' FICO scores. Instead, it was a far more widespread phenomenon that occurred throughout the banking sector. Second, we focus on lending decisions of institutions that are directly originating loans from borrowers or through their brokers. Thus, our study analyzes the screening behavior of economic agents that are directly responsible for originating loans at the front end of the lending-securitization

channel. Third, our study advances the literature by showing that a bank's capital position and reliance on non-demandable debt have significant effects on its screening incentives.

Overall, our findings have important implications for banking regulations. In addition, we contribute to the credit-risk pricing literature by showing that in an information-sensitive asset market, the issuer's capital position and liability structure have important implications for the pricing of assets in the secondary market. It is important to note that our results come from a period of turmoil in the financial markets. To draw strong policy implications, one has to obviously compare these costs of securitization with the potential benefits of risk-management tools (Stulz, 1984; Smith and Stulz, 1985; Froot, Scharfstein, and Stein, 1993; Froot and Stein, 1998; Drucker and Puri (2008)).⁵ It is also worth pointing out that the role of other macro-economic factors such as the aggregate borrowing and savings rate and monetary policies across the globe cannot be ignored as a potential explanation for the crisis (see Allen, 2009). Our study is essentially cross-sectional in nature, which limits our ability to comment on the role of these macro-economic factors.

The rest of the paper is organized as follows. Section 1 describes the data and provides descriptive statistics. Section 2 presents empirical results relating OTD market participation to mortgage defaults. Section 3 provides the matched sample results. Section 4 explores the linkages with capital position and liability structure and Section 5 concludes the paper.

1 Data

We use two sources of data for our study: call report database for bank information and HMDA (Home Mortgage Disclosure Act) database for loan details. All FDIC-insured commercial banks are required to file call reports with the regulators on a quarterly basis. These reports contain detailed information on the bank's income statement, balance sheet items, and off-balance sheet activities. The items required to be filed in this report change over time to reflect the changing nature of banking business. As the mortgage sale and securitization activities grew in recent years, there have been concomitant improvements in the quality of reporting with respect to these items as well.

Beginning with the third quarter of year 2006, banks started to report two key items regarding their mortgage activities: (a) the origination of 1-4 family residential mortgages during the quarter with a purpose to resell in the market, and (b) the extent of 1-4 family residential mortgages actually sold during the quarter. These variables allow us to measure the extent of participation in the OTD market as well as the extent of loans that were actually offloaded by a bank in a given quarter. Both items are provided in schedule RC-P of the call report. This schedule is required to be filed by banks with \$1 billion or more in total assets and smaller banks if they exceed \$10 million in their mortgage selling activities. The data, in effect, is available for all banks that significantly participate in the OTD market.

We construct our key measure of OTD activity as the ratio of loans originated for resale during the quarter scaled by the beginning of the quarter mortgage loans of the bank. This ratio captures the extent of a bank's participation in the OTD market as a fraction of its overall mortgage portfolio. We measure the extent of selling in the OTD market as the ratio of loans sold during the quarter scaled by the beginning of the quarter mortgage loans.

We obtain two measures of mortgage quality from the call reports: (i) chargeoffs on 1-4 family residential mortgages, and (ii) non-performing assets (NPAs) for this category, i.e., mortgage loans that are past due or delinquent. We use net chargeoffs (net of recoveries) as the first proxy of loan quality. It measures the immediate effect of mortgage defaults on a bank's profitability. However, chargeoffs may be subject to the reporting bank's discretionary accounting rules. Mortgage NPAs, on the other hand, are free from this bias and provide a more direct measure of the borrowers' default rate.

We get information on the banks' assets, profitability, mortgage loans, liquidity ratio, capital ratios, and several other variables from the call report. It is important to construct these variables in a consistent manner across quarters since the call report's reporting format changes somewhat over time. Our study spans only seven quarters - from 2006Q3, the first

quarter with OTD data available, till 2008Q1. The reporting requirement has been fairly stable over this time period, and we check every quarter's format to ensure that our data is consistent over time. We provide detailed information on the variables and construction of key ratios in the Appendix.

We obtain detailed loan-level information from the HMDA database. HMDA was enacted by the Congress in 1975 to improve reporting requirements in mortgage lending business. This is an annual database that contains loan-by-loan information on borrower quality, applicant's demographic information and interest rate on the loan if it exceeds a certain threshold. We match the call report and HMDA database for year 2006 to obtain information on the quality of borrowers and geographical location of loans made by banks during the pre-disruption period.

1.1 Descriptive Statistics

Our sample consists of all banks with available data on mortgage origination for resale from 2006Q3 to 2008Q1. We intersect this sample with banks covered in the HMDA database in 2006. We create a balanced panel of banks, requiring the sample bank to be present in all seven quarters. This filter removes only a few banks and does not change any of our results. We impose this filter because we want to exploit the variation in mortgage default rates of the same bank over time as the mortgage market passed through the period of stress.

We begin the discussion of descriptive statistics with a few charts. In Figure 1, we plot the quarterly average of loans originated for resale as a fraction of the bank's outstanding mortgage loans (measured at the beginning of the quarter). This ratio measures the bank's desired level of credit-risk transfer through the OTD model. The ratio averaged just below 30% during 2006Q3 and 2006Q4 and dropped to about 20% in the subsequent quarters. The drop is consistent with the popular belief that the OTD market came under tremendous stress during this period. Figure 2 plots the quarterly average of loans sold scaled by the beginning of the quarter loans outstanding. This measures the extent of credit-risk transfer that the bank was actually able to achieve during the quarter. There is a noticeable decline in the extent of loan sales starting with 2007Q1. As we show later, the decline was especially pronounced in banks that were aggressively participating in the OTD market on or before 2007Q1. Overall, these graphs show that the extent of loan origination and loans transferred to other parties came down appreciably over this time period.

Figure 3 plots the average percentage chargeoff on 1-4 family residential mortgage loans on a quarterly basis. As expected, the quarterly chargeoffs have increased steadily since 2007Q1. The chargeoffs increased four-fold from 2007Q1 to 2007Q4 - a very significant increase for highly leveraged financial institutions. We find similar trend for non-performing mortgages as well (unreported).

Table 1 provides the descriptive statistics of other key variables used in the study. We winsorize data at 1% from both tails to minimize the effects of outliers. The average bank in our sample has an asset base of \$5.9 billion (median \$1.1 billion). These numbers show that our sample represents relatively large banks of the economy. This is due to the fact that we require data on OTD mortgage origination and sale for a bank to be available to be included in our sample. We provide the distribution of other key variables in the table. These numbers are in line with other studies involving large bank samples.

We provide a graphical preview of our results in Figure 4. We take the average value of OTD ratio for every bank during 2006Q3, 2006Q4, and 2007Q1, i.e., during quarters prior to the serious disruption in this market. We call this variable *preotd*.⁶ We classify banks into high or low OTD groups based on whether they fall into the top or bottom one-third of the *preotd* distribution. We track mortgage chargeoffs of these two groups of banks over quarters and plot them in figure 4. Consistent with our earlier graph on the aggregate chargeoffs, both groups have experienced a significant increase in chargeoffs over time. However, there is a remarkable difference in their slopes. While they both started at similar levels of chargeoffs in 2006Q3 and they show parallel trends before the beginning of the crisis, the high OTD

group's chargeoffs increased five times by the end of the sample period as compared to a significantly lower increase of about two-to-three times for the low OTD group. We also plot the fitted difference between the two groups over time. The fitted difference measures the difference in the rate of increase in chargeoffs across the two groups and therefore gives a graphical snapshot of the difference-in-difference estimation results. The fitted difference shows a remarkable linear increase over this time period. The difference in default rate becomes especially high after a couple of quarters from the onset of the crisis.

In summary, we find that banks with higher OTD participation before the subprime mortgage crisis increased their chargeoffs significantly more than banks with lower OTD. Are these differences significant after accounting for differences in bank characteristics and the quality of borrowers they face? And why does this difference exist across the two groups? We explore these questions through formal econometric tests in the rest of the paper.

2 Mortgage Default Rate and OTD

We first establish that there was a significant drop in the extent of mortgages sold in the secondary market in the post-disruption period. We follow this up with our main test that examines the relationship between a bank's mortgage default rate and the extent of its participation in the OTD market.

2.1 Empirical Design & Identification Strategy

Our key argument is that banks with aggressive involvement in the OTD model of lending did not actively screen their borrowers along the soft information dimension. OTD model allowed them to benefit from the origination fees without bearing the ultimate credit risk of the borrowers. These banks originated large amounts of loans with inferior soft information, which were subsequently sold to investors. As long as the secondary loan market had enough liquidity, banks were able to off-load their originated loans without any disruption. The delay from origination to the final sale of these loans did not impose significant credit risk on the originating banks during normal periods. However, when the secondary mortgage market came under pressure in the middle of 2007, banks with high OTD loans were stuck with disproportionately large amounts of inferior-quality mortgage loans. The problem was exacerbated by the early pay default warranties that the sellers of OTD loans typically provide to their buyers for the first ninety days after the loan sale (Mishkin, 2008). Therefore, immediately after the liquidity shock of summer 2007, these banks were left with disproportionately large amounts of OTD mortgage loans that they had originated with an intention to sell but could not sell. If these loans had relatively lower screening standards, then we expect to find relatively higher mortgage default rates for high OTD banks in quarters immediately following the onset of the crisis as compared to otherwise similar low OTD banks that originated most of their loans with an intention to keep them on their balance sheets.

To test this hypothesis in an idealized experimental setting, we need two randomly selected groups of banks that are identical in every respect except for their involvement in the OTD method of lending. To be more precise, we want to compare banks with varying intensity of OTD lending that have made loans to borrowers with observationally similar risk characteristics. This will allow us to estimate the effect of OTD lending on the screening efforts of banks along the soft information dimension without contaminating the results from differences in observable risk characteristics of the borrowers. Because we only have observational data, we control for these differences by including several bank and borrower characteristics in the regression model. More important, we conduct our tests in a differencein-difference setting with carefully chosen matched samples of high and low OTD banks. In these tests, we attempt to find pairs of banks that are similar and have made loans to observationally similar borrowers before the crisis. Then we exploit differences along the OTD dimension in these samples to estimate the effect of OTD lending on screening efforts.

2.1.1 Extent of Mortgage Resale

Since our identification strategy relies on banks' inability to sell their loans in the secondary markets, we first document evidence in support of this argument. We estimate the following model:

$$sold_{it} = \beta_0 + \beta_1 after_t + \beta_2 preotd_i + \beta_3 after_t * preotd_i + \sum_{k=1}^{k=K} \beta X_{it} + \epsilon_{it}$$

sold_{it} measures bank *i*'s mortgage sale as a fraction of its total mortgage loans at the beginning of quarter t.⁷ As described earlier, $preotd_i$ is a time-invariant variable that measures the extent of bank *i*'s participation in the OTD market prior to the disruption in this market in the middle of 2007. We expect to find a positive and significant coefficient on this variable since banks with large OTD loans, almost by construction, are more likely to sell large quantities of these loans in the secondary market. $after_t$ is an indicator variable that equals one for quarters after 2007Q1, and zero otherwise. The coefficient on this variable captures the difference in mortgages sold before and after the crisis. The coefficient on the interaction term $preotd_i * after_t$ is the estimate of interest. This coefficient measures the change in the intensity of loans sold around the disruption period across banks with different degrees of preotd.

We control for several bank characteristics denoted by vector X_{it} to account for the effect of bank size, liquidity, maturity gap, and the ratio of commercial and industrial loans to total assets. More important, we also include a variable *premortgage* that measures the extent of mortgages made by the bank during the pre-disruption period. This variable is computed as the average of the ratio of mortgage loans to total assets during 2006Q3, 2006Q4, and 2007Q1. We include this variable and its interaction with *after* to separate the effect of high mortgage banks from the high OTD banks.⁸

To provide a benchmark specification, we first estimate this model using the OLS method. All standard errors are clustered at the bank level to account for correlated errors across all quarters for the same bank (see Bertrand, Duflo, and Mullainathan (2004)). In the OLS model, we include indicator variables for the bank's state to control for state-specific differences in mortgage activities. Results are provided in Model 1 of Table 2. As expected, we find a large and positive coefficient on the *preotd* variable. The coefficient on the interaction of *after* and *preotd* is negative and highly significant. In this specification, we find a positive coefficient on the *after* dummy variable. In unreported tests, we estimate an OLS regression of *sold_{it}* on *after* and obtain a coefficient of -0.031(t - stat=-1.97) on *after*. Therefore, the sharp decline in the loan resale is concentrated within the set of high *preotd* banks.

We provide bank fixed-effect estimation results in Models 2 and 3 of Table 2. This estimation method is more appealing as it controls for bank-specific unobservable effects and allows us to more precisely estimate the effect of disruption in mortgage market on the high OTD banks. *preotd* and *premortgage* are omitted from this model since they are captured in the bank fixed-effects. Our identification comes from the interaction of *after* with *preotd*. In Model 2, we find a significant negative coefficient on the interaction term, which confirms that banks with large OTD loans in the pre-disruption period suffered significant decline in mortgage resale during the post-disruption period. In unreported tests, we estimate this model without the interaction term *after* * *preotd* and find a significant negative coefficient on *after* (coefficient estimate of -0.0251 with *t*-statistics of -2.74). These findings show that the decline in mortgage resale is concentrated among high *preotd* banks. In Model 3, we reestimate the fixed-effect model after removing banks with more than \$10 billion in asset size from the sample because it is often argued that large money-centric banks have a different business model than regional and local banks. We find that our results are equally strong after excluding these large banks from the sample.

These results are economically significant as well. For example, one standard deviation increase in OTD lending prior to the disruption results in a decline of 10% in selling intensity after the crisis based on the estimates of Model 2. Overall, these results are consistent with

our assertion that the disruption in the mortgage market created warehousing risk for the banks, which in turn led to an accumulation of undesired loans, i.e., loans that were initially intended to be sold but could not be sold due to an unexpected decline in the market conditions.

2.2 Mortgage defaults

We now estimate the effect of OTD lending on a bank's quarterly mortgage default rates with the following bank fixed-effect regression model:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preotd_i + \beta_3 after_t * premortgage_i + \sum_{k=1}^{k=K} \beta X_{it} + \epsilon_{it}$$

The dependent variable of this model measures the default rate of the mortgage portfolio of bank *i* in quarter *t*. We use two measures of default: net-chargeoffs and non-performing mortgages, i.e., mortgages that are in default for more than 30 days. We scale them by the bank's total mortgage loans measured as of the beginning of the quarter. μ_i stands for bank fixed-effects and X_{it} is a vector of bank characteristics.⁹ The coefficient on the *after* variable captures the time-trend in default rate before and after the mortgage crisis. The coefficient on the interaction term (i.e., *after_t*preotd_i*) measures the change in chargeoffs/NPAs around the crisis period across banks with varying intensities of participation in the OTD market prior to the crisis. Said differently, β_2 measures the change in default rate for banks that originated loans primarily to sell them to third parties as compared to the corresponding change for banks that originated loans primarily to retain them on their own balance sheets. We include the interaction of *after* with *premortgage* to ensure that the relationship between OTD loans and mortgage performance is not simply an artifact of higher involvement in mortgage lending by higher OTD banks.¹⁰

We control for a host of bank characteristics that can potentially affect the quality of mortgage loans. We control for the bank's size by including the log of total assets in the regression model. We include the ratio of commercial and industrial loans to total assets to control for the broad business mix of the bank. A measure of 12-month maturity gap is included to control for the interest rate risk faced by the banks. Finally, we include the ratio of liquid assets to total assets to control for the liquidity position. The last three variables broadly capture the extent and nature of credit risk, interest rate risk, and liquidity risk faced by the banks.

Results are provided in Table 3. We provide results for the entire sample in Models 1 and 2. In Models 3 and 4 we exclude large banks with asset size more than \$10 billion from the sample. We find that the extent of participation in the OTD market during the pre-disruption period has a significant effect on a bank's mortgage default rates during the post-disruption quarters. In the chargeoff regression model (Model 1), we find a positive and significant coefficient of 0.0420 on *after* * *preotd*. In Model 2 we repeat the analysis with non-performing mortgages as the measure of loan quality and again find a positive and significant coefficient on the interaction term. These effects are economically large as well. For example, based on the estimates of Model 2, one standard deviation increase in *preotd* results in an increase of about 11% in the mortgage default rate as compared to the unconditional sample mean. We repeat our analysis after excluding large banks from the sample and obtain similar results.¹¹

In our next test we model mortgage defaults as a function of the extent of OTD loans that a bank is stuck with. For every bank in the sample, we create a measure of *stuck* loans in the following manner. We first compute the quarterly average of OTD loans originated during the pre-crisis quarters, i.e., during the quarters 2006Q3, 2006Q4, and 2007Q1. From this we subtract the quarterly average of loans sold during the post-crisis periods, i.e., during 2007Q2 to 2008Q1. We scale the difference by the bank's average mortgage assets during the pre-crisis quarters. This variable refines the earlier *preotd* measure by subtracting the extent of loans that a bank could actually sell in the post-disruption period. Therefore, this variable allows us to more directly analyze the effect of loans that a bank had originated to distribute but was unable to distribute due to the drop in liquidity in the secondary market.¹²

We re-estimate the *default* regression model by replacing *preotd* with *stuck*. Results are presented in Table 4. We find a large positive coefficient on the interaction term *preotd*stuck* in Model 1. In unreported tests, we run a horse race between *after*preotd* and *after*stuck* and find that the effect of OTD loans on mortgage chargeoffs mainly come from the variation in *stuck* variable. Similar results hold for mortgage default rate using NPA as the dependent variable (see Model 2). In Models 3 and 4, we show that our results are robust to the exclusion of large banks. In a nutshell, these results provide more direct evidence that banks that were stuck with OTD loans experienced larger mortgage defaults in the post-disruption period.

Overall, we show that OTD loans were of inferior quality because banks that were stuck with these loans in the post-disruption period had disproportionately higher chargeoffs and borrower defaults. While these results are consistent with the hypothesis of dilution in screening standards of high OTD banks, there are two important alternative explanations: (i) Do high OTD banks experience higher default rates because of observable differences in their borrowers' characteristics? and (b) Do these banks make riskier loans because they have a lower cost of capital (e.g., see Pennacchi, 1988)? Our key challenge is to establish a causal link from OTD lending to mortgage default rate that is not explained away by these differences. Since the pullback in liquidity happened at the same time for all banks, we need to be especially careful in ruling out the effect of macro-economic factors from the screening effect of *preotd* on mortgage defaults. We extend our study in two directions to address these concerns. We first use a series of matched sample tests using detailed loan-level data to compare banks that made loans to observationally equivalent borrowers before the onset of the crisis. The key idea behind these tests is to compare borrowers that look similar on hard information dimension so that we can attribute higher default rates of high OTD banks to their lower underwriting standards in a clear manner. In our second set of tests, we exploit the variation in mortgage default rates within the set of high OTD banks. In particular, we analyze the effect of banks' liability structure on the quality of OTD loans to isolate the effect of screening standards. These tests also help us understand the key driving forces behind the origination of poor quality OTD loans.

3 Matched sample analysis

We use Home Mortgage Disclosure Act (HMDA) database to obtain information on the characteristics of mortgages made by commercial banks during 2006. HMDA was enacted by the Congress in 1975 to improve disclosure and promote fairness in the mortgage lending market. This is a comprehensive source of loan-level data on mortgages made by commercial banks, credit unions, and savings institutions. The database provides detailed information on the property's location, borrower's income, loan amount along with a host of borrower and geographical characteristics on a loan-by-loan basis. We match bank-level call report data with loan-level HMDA data using the FDIC certificate number (call report data item RSSD 9050), FRS identification number (RSSD 9001), and OCC charter number (RSSD 9055) of the commercial banks. With the matched sample of banks and individual loans, we proceed in four steps to rule out several possible alternative hypotheses.

3.1 Matching based on observable borrower characteristics

Are our results completely driven by differences in observable borrower and loan characteristics of high and low OTD banks? We construct a matched sample of high and low OTD banks that are similar on key observable dimensions of credit risk to rule out this hypothesis. We divide sample banks into two groups (above and below median) based on their involvement in the OTD market prior to the disruption (i.e., *preotd* variable). Our goal is to match every high OTD bank with a low OTD bank that has made mortgages in similar geographical area to observationally similar borrowers. We first match on the geographical location of properties to control for the effect of changes in house prices for loans made by high and low OTD banks. We compute the fraction of loans issued by a given bank in every state and then take the state with the highest fraction as the bank's main state. This method allows us to match on the location of property rather than on the state of incorporation in case they are different. There can be considerable variation in housing returns within a state or even within a metropolitan statistical area (MSA) (e.g., see Goetzmann and Spiegel, 1997). Our choice of state level matching is driven purely by empirical data limitations. As we show later, our matched sample is well balanced along several important characteristics, such as the median household income of the neighborhood, that are shown to explain the within-MSA variation in house prices. In unreported robustness tests, we carry out a matched sample analysis based on matching within the MSA and find similar results. Since our sample size drops considerably as we narrow the geographical unit of matching, all results in the paper are based on state level matching.

We obtain two key measures of the borrower's credit quality from the HMDA dataset: (a) loan-to-income ratio, and (b) borrower's annual income. We compute the average income and the average loan-to-income ratio of all loans made by a bank during 2006 on a bank-bybank basis. Our matching procedure proceeds as follows. We take a high OTD bank (i.e., above median *preotd* bank) and consider all low OTD banks in the same state as potential matching banks. We break banks into three size groups based on their total assets: (i) below \$100 million; (ii) between \$100 million and \$1 billion; and (iii) between \$1 billion and \$10 billion. We do not include banks with asset size more than \$10 billion in this analysis to ensure that our results are not contaminated by very large banks operating across multiple markets.¹³ From the set of all low OTD banks in the same state, we consider banks in the same size group as the high OTD bank's size group. We further limit this subset to banks that are within 50% of the high OTD bank in terms of average income and average loan-to-income ratio of their borrowers.¹⁴ From this subset, we take the bank with closest average loan-to-income ratio as the matched bank. We match without replacement to find unique matching banks.

Our goal is to find pairs of banks that have made mortgages to observationally equivalent borrowers, but with varying intensity of OTD loans. We have conducted several alternative matching criteria by changing the cut-offs for bank size, borrower's income, and loan-to-income ratio. Our results are robust. To save space, we provide estimation result for the base model only. Due to the strict matching criteria, our sample size drops for this study. We are able to match 180 high OTD banks using this methodology.¹⁵

Given the matching criteria, this sample is dominated by regional banks. The average asset size of banks in this matched sample is \$1.71 billion for the high OTD banks and \$1.65 billion for the low OTD banks. In Figure 5, we plot the distribution of loan-toincome ratio and borrower's annual income across high and low OTD banks in the matched sample. Not surprising, the two distributions are almost identical. In unreported tests, we find that these two groups are well balanced along several geographical dimensions such as neighborhood median income and the population of the census tract. Thus our banks are matched along the socioeconomic distance as well, which provides further confidence in the comparability of house price changes across these two groups (see Goetzmann and Spiegel, 1997). In unreported analysis, we compare several other characteristics across the two groups and analyze them using Kolmogorov-Smirnov test for the equality of distribution. We find that these two groups are statistically indistinguishable in terms of the following characteristics: borrower's income; loan-to-income ratio; loan amount; loan security; and neighborhood income.

We conduct our tests on the matched sample and report the bank fixed-effect estimation results in Table 5. Since our results remain similar for both measures of mortgage default, to save space we report results based on non-performing assets only. We find a positive and significant coefficient of 0.89-0.90 on the interaction term after * preotd in Models 1 and 3. Thus even after conditioning our sample to banks that are comparable along several riskcharacteristics and property location, banks that engaged in higher fraction of OTD lending experienced higher default rates on their mortgage portfolios in quarters just after the onset of the crisis. Models 2 and 4 of the table use *after* **stuck* as the key right hand side variable to assess the impact of OTD lending on mortgage default rates for banks that are more likely to be stuck with these loans. We find strong results. Banks that originated significant amount of mortgage loans with an intention to sell them to third parties, but could not offload them in the secondary market, suffered much higher mortgage default rates.

In economic terms, our estimation shows that banks with one standard deviation higher OTD lending have about 0.45% higher mortgage default rate. This represents 32% higher default rate than the unconditional sample median of this variable. The economic magnitude of the matched sample results are stronger than the base case specification presented in Table 3. The coefficient on *after* * *preotd* is almost twice as much as the base case that uses all bank-quarter observations. However, we cannot directly compare these two estimates because they are estimated on different samples.

Overall the analysis of this section shows that the variation generated by the OTD model of lending is unlikely to be explained away by differences in borrower's credit risk, property location, bank size, or other bank characteristics.

3.2 Matching based on interest rates

Our results suggest that OTD mortgages performed much worse even after conditioning on observable borrower characteristics. This leads to two possibilities: (a) these loans were different on unobservable dimensions and the originating banks properly priced these unobservable factors to account for the higher risk; or (b) the originating banks didn't expend enough resources in screening these borrowers because the loans will be subsequently sold to third parties. While both of these hypotheses are consistent with the view that OTD loans were riskier, under the first possibility the bank is properly screening these loans and pricing them accordingly.

We conduct a specific matched sample analysis to separate these two hypotheses. By definition, it's impossible for us to directly incorporate the unobservable dimensions of borrowers' risk in our analysis. However, if banks are expending resources in screening the high risk OTD loans, then it must be reflected in the loan pricing. We exploit this idea in the following test.

In addition to property location and borrower's loan-to-income ratio, we now also match on the interest rates charged by the banks at the time of the loan origination. HMDA database reports loan spreads for high-risk borrowers only. The reporting requirement stipulates that banks should report loan spreads on all first security loans with a spread of above 3% and all junior security loans with a spread of above 5%. Thus, these loans generally fall in the subprime category. Though we are unable to match on loan spreads for the entire mortgage portfolio, it is this subset that is more meaningful in terms of our economic exercise. We compute the average loan spread on a bank-by-bank basis and then match banks based on these averages.

For every high OTD bank, we first find a set of low OTD banks that meet the following criteria: (i) they primarily operate in the same state as the high OTD bank; (ii) they are in the same size group; (iii) they are within 50% of the average loan-to-income ratio of the high OTD bank; and (iv) they are within 50% of the average loan spread of the high OTD bank. From this set, we select the low OTD bank with closest loan spread as the matched bank.

The resulting matched sample comprises a set of high and low OTD banks that have made mortgages to observationally equivalent borrowers in similar geographical areas at similar rates. We compare the distribution of key borrower characteristics for this matched sample as well. As expected, we find that the high and low OTD banks in this sample have borrowers with similar loan-to-income ratio, income, loan security, and neighborhood income. We plot the distribution of loan-to-income ratio and the borrowers' income across these groups in Figure 5. The two distributions fall mostly in the common support zone. In unreported analysis, we compare these characteristics with formal statistical tests. Based on Kolmogorov-Smirnov test for the equality of distribution, we find that these two groups are statistically indistinguishable from each other on each of these dimensions. The extent of mortgage loans as a fraction of total assets made by these banks in the pre-disruption period is also statistically indistinguishable.

By construction, high and low OTD banks in this sample differ in the extent of OTD loans made during the pre-disruption period. Thus, this sample exploits the variation along the OTD dimension keeping several observable and the *priced component of unobservable characteristics* constant. If banks screened the OTD loans and incorporated the effect of privately acquired information into the pricing of these loans, then we should not expect to see any difference in the performance of high and low OTD mortgages in this sub-sample. If, on the other hand, riskier loans were made without properly incorporating the effect of unobservable risk in loan pricing, then we are likely to see differences in their performance even on this sub-sample.

This test also allows us to overcome some of the data limitations of HMDA dataset. While HMDA is one of the most comprehensive loan-level data sources available for mortgage loans, it omits some relevant information about the borrower's credit risk such as their FICO scores. Our matching exercise in the earlier section is based on the assumption that characteristics such as loan-to-income ratio, borrower's income, neighborhood income, and property's location capture a significant part of the default risk of loan applicants. The matched sample exercise of this section allows us to control for any omitted variables such as FICO scores that may be relevant for the banks' credit decision. Information on FICO score or any other variables used in the process of lending should ultimately be reflected in the rate that banks charge to their borrowers. Thus by exploiting the variation along the OTD dimension, while keeping the interest rates similar, we are able to more precisely estimate the effect of securitization on screening. Results are provided in Table 6. In Models 1 and 2, we estimate the effect of *preotd* and *stuck* variables on mortgage default rates without controlling for other bank characteristics. Models 3 and 4 include control variables as well. We find strong evidence that banks that originated large volume of mortgages that were intended to be sold in the OTD market experienced larger mortgage default on their portfolios in quarters immediately following the crisis. The effect is stronger for banks that were unable to sell these loans. One standard deviation increase in OTD lending in the pre-crisis period results in an increase of 0.38% in mortgage default rate after the crisis. This increase is approximately 26% of the matched sample's median mortgage default rate.

Even for banks that charged similar rates to their borrowers and made most of their loans in the same geographical area, the performance of high OTD bank is significantly worse in the post-disruption period. Conditional on interest rates, there should be no relationship between OTD lending and post-crisis default rates if these two groups of loans were made with equal screening efforts. However, if high OTD loans were granted without proper screening on unobservable dimensions, then we are likely to find higher default rates for high OTD banks even within this sample. The evidence of this section suggests that OTD loans were made without proper screening on unobservable dimensions.

3.3 Other tests

To complement the results of previous section, we conduct an additional matched sample test in which we match banks based on the fraction of high risk loans made during 2006. We compute the fraction of subprime loans made by a bank by computing the ratio of high spread loans to total loans based on HMDA dataset. High spread loans are defined as first lien loans with rate spread of more than 3% or second lien loans with rate spread of more than 5%. Our matching exercise is same as the previous section except that now we ensure that the fraction of subprime loans (i.e., high interest rate loans) made by these banks are similar. In unreported results, we find a strong effect of OTD lending on mortgage default rate even on this sub-sample. The estimated economic magnitudes are similar to the interest rate-based matched sample results of the previous section.

In the preceding analyses, we create carefully matched pairs of high and low OTD banks that have similar characteristics. Depending on the matching criteria we obtain different samples of high and low OTD banks, and show that our key results remain similar across these sub-samples. A limitation of this approach is that we conduct our experiments with smaller samples due to the strict matching requirements. Therefore, as a complement to these tests, we use regression methods to control for differences in borrowers' risk characteristics. We estimate the following model:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preod_i + \sum_{m=1}^{m=M} \beta_m after_t * risk_{im} + \sum_{k=1}^{k=K} \beta_k X_{ikt} + \epsilon_{it}$$

 $risk_i$ represents a vector of borrowers' default risk for bank *i*. We interact these measures with *after* to separate out the effect of borrower risk characteristics on default rates after the crisis from the bank's OTD lending. We use several measures of default risk such as loan-to-income ratio, annual income, average interest rate charged by the bank, fraction of subprime loans in a bank's portfolio, and the fraction of low documentation loans in its portfolio. Our results remain robust to this alternative specification. We do not present these results in the paper to save space.

3.4 Cost of capital channel

An important benefit of the OTD model is that it allows the selling bank to lower its cost of capital. Pennacchi (1988) shows that banks can lower their cost of capital by transferring credit risk through loan sales. In a competitive deposits market, loan sales can lower the bank's cost of capital by allowing it to save on regulatory capital and required reserves (see also Gorton and Pennacchi (1995)). If high OTD banks have lower cost of capital, then they can make loans to relatively higher credit risk borrowers since some of these borrowers present positive NPV projects only to the high OTD banks. Therefore, the ex-post performance of the higher OTD banks' mortgage portfolio is likely to be worse in bad economic times due to the presence of these marginal borrowers.

Are our results simply driven by the lower cost of capital of high OTD banks? To rule out this alternative hypothesis, we compare the performance of smaller banks having large OTD portfolios with larger banks having little-to-no involvement in the OTD model of lending. Our assumption is that it is unlikely that a small bank even after engaging in the OTD model of lending has lower cost of capital than a bank that is several times bigger in size. Several empirical studies find a negative link between firm size and its cost of capital. Thus, this test allows us to compare the performance of OTD loans issued by banks with relatively higher cost of capital than the non-OTD banks.

We compute the bank's average assets during the pre-disruption quarters (i.e., 2006Q3, 2006Q4, and 2007Q1) and classify them into the small bank group if their asset is less than \$1 billion. From this set, we obtain banks with higher than median levels of OTD lending during the pre-disruption quarters. For every small bank, we consider all large banks (assets greater than \$10 billion) in below median OTD group that have made the largest fraction of mortgages in the same state as the small bank. We require the large bank's borrowers' average income to fall within 50% of the small bank's borrowers. From the resulting set, we select the large bank with closest loan-to-income ratio as the matched bank. Given the strict nature of matching, our sample drops considerably for this analysis. We are able to obtain a match for 83 small banks by this method. The average asset size of high OTD banks in this sample is \$600 million, whereas the low OTD banks have average asset size of about \$8.76 billion.

We re-estimate our models for this sub-sample and present the results in Table 7. Our results remain strong. The high OTD small banks originated significantly lower-quality mortgages than the low OTD large banks. The differential effect of OTD loans, therefore, is unlikely to be explained away by the lower cost of capital of high OTD banks.

3.5 Shrinkage in loan spreads

In this section, we provide a more direct evidence in support of the dilution in screening standards based on an analysis of the dispersion in loan spreads charged by high and low OTD banks. To motivate the empirical test, consider a setting where two originating banks are faced with similar pools of borrowers based on observable characteristics. Bank S screens the applicants, evaluates their true credit worthiness based on privately observed signals, and grants loans at a fair price. Bank NS does not screen its borrowers and offers them a standard rate conditional on observable signals. In this model, the S bank discriminates its borrowers significantly more than the NS bank for the same set of observable characteristics of the borrowers. Therefore, loan rates charged by the S bank will have a wider distribution than the loan rates charged by the NS bank for observationally equivalent borrowers. Thus, if the high OTD banks are of the NS type, then we expect to observe tighter distribution of loan rates for these banks after parsing out the effect of observable signals. This test is in line with the arguments developed more formally in Rajan, Seru, and Vig (2009), who argue that the default prediction models fail in systematic ways as the reliance on hard information in loan approval decisions increases.

Based on this idea, we compare the distribution of loan spreads charged to borrowers across high and low OTD banks. We first obtain all loan-level observation from the HMDA data with non-missing observation on loan spreads. As discussed earlier, this data is reported for very high-risk borrowers only: i.e., for the subset for which the effect of lax screening is potentially higher. We first estimate the following model of loan spread to parse out the effect of observable characteristics:

$$rate_{ib} = \alpha + \beta X_{ib} + \epsilon_{ib}$$

 $rate_{ib}$ is the log percentage spread (over comparable maturity treasury security) on mortgage to borrower *i* by bank *b*. X_{ib} is a set of borrower, loan, and bank characteristics that are observable and likely to affect the loan rate. We include following borrower characteristics in the model: log of borrower's annual income, log of loan amount, loan-to-income ratio, log of neighborhood median family income reported by HMDA, percentage minority population in the neighborhood, whether the loan is secured by a first lien or not, whether the property is occupied by the owner or not, purpose of the loan (home purchase, improvement, or refinancing), loan type (conventional or FHA insured loan), indicator for the state of the property, and the applicant's sex and race. This is a comprehensive set of characteristics aimed at capturing the borrowers' default risk, demographics, and other correlated variables. In addition to these factors, we also include the bank's asset size (log of assets), liquidity ratio, maturity gap, CIL loans to total asset ratio, and mortgage-loans to total asset ratio. These variables are included to control for bank specific effects in pricing such as the bank's cost of capital and relative advantage in making mortgage loans.¹⁶

We are interested in the dispersion of the residual of this regression, i.e., ϵ_{ib} . Our hypothesis is that the high OTD banks did not expend resources in discriminating borrowers with similar observable quality but with different unobservable signals. ϵ_{ib} captures the effect of such unobservable factors. We compute three measures of dispersion in ϵ_{ib} : (i) standard deviation, (ii) difference between the 75th and 25th percentiles, and (iii) difference between the 90th and 10th percentiles. Results are reported in Table 8. Panel A presents results for all banks, whereas Panel B is for the matched sample used in sub-section 3.1. We find a consistent pattern of shrinkage in loan spreads for the high OTD banks. The standard deviation of loan rates issued by the high (above median) OTD banks is about 17-28% lower than the low (below median) OTD banks. We observe similar patterns for other two measures of dispersion as well. We conduct Bartlett's test for the equality of variance of the two distributions and strongly reject the null hypothesis of equal variance for the two groups. Levene's test statistics for the equality of variance produce similar results. The Kolmogorov-Smirnov test statistic strongly rejects the equality of the two distributions as well.

Overall, we show that the low OTD banks offered loans at more discriminating terms for the same observable characteristics as compared to the high OTD banks. This finding is consistent with the assertion that the high OTD banks did not expend as much resources in screening their borrowers as their low OTD counterparts.

4 Capital & Liability Structure

We have so far established a link between OTD lending and the banks' screening incentives in the paper. Going forward, it is important to understand the characteristics of banks that engaged in such behavior. We do so by analyzing the effect of a bank's liability structure on the quality of OTD loans that it originated in the pre-disruption period. These tests serve two purposes. First, they allow us to sharpen our basic test that relates OTD lending to screening incentives. Second, they provide useful guidance for policy reforms that are aimed at deterring such behavior in future.

4.1 Effect of capital constraints

As discussed earlier, there are several advantages of the OTD model of lending. By delinking the origination of loans from their funding, banks can capitalize on their comparative advantage in loan origination without holding a large capital base. The benefit can be especially high for banks with lower capital base because these banks are more likely to reject the loan application of a potentially creditworthy borrower due to regulatory capital constraints. The OTD model of lending allows these capital constrained banks to provide credit to such marginal creditworthy borrowers. Thus the securitized loans of such capital constrained banks are likely to be of better quality than the securitized loans of unconstrained banks that face similar set of borrowers.

On the other hand, capital constrained banks have lower screening and monitoring incentives (see Thakor, 1996; Holmstrom and Tirole, 1997) due to the well-known risk-shifting problem (Jensen and Meckling, 1976). If banks are using the OTD market to create riskier loans by diluting their screening standards, then capital-constrained banks are predicted to have higher incentives to make inferior loans. Thus, we have sharply different predictions on the effect of capital constraints on the extent of mortgage defaults by high *preotd* banks: one consistent with the sound economic motivation to economize on regulatory capital, and the other consistent with diluted screening incentives. We estimate the following triple-differencing model to test this prediction:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preotd_i + \beta_2 after_t * cap_i + \beta_3 after_t * preotd_i * cap_i + \sum_{k=1}^{k=K} \beta X + \epsilon_{it}$$

The dependent variable, $default_{it}$, measures the mortgage default rate of bank *i* in quarter *t. cap_i* measures the tier-1 capital ratio of bank *i* during the pre-disruption quarters. We take the average value of this ratio for the pre-disruption quarters (2006Q3 to 2007Q1) to capture the effect of capital ratio at the time these loans were made. Table 9 provides the estimation results. Consistent with our earlier analysis we present results for both "All Bank" sample and "Excluding Large Banks" sub-sample. In Models 1 and 3, we estimate the regression model with bank level control variables only. Models 2 and 4 control for borrower characteristics based on HMDA dataset for 2006.

It is important to note that banks endogenously choose their capital ratios. This raises a potential concern for our identification strategy in this section. For example, consider a bank CEO who prefers higher risk for some unobserved reasons. Such a bank is likely to keep lower capital and at the same time originate riskier loans in the OTD market. Our triple-difference tests exploit variations within the set of high OTD banks. Said differently, the coefficient on the triple interaction term measures the incremental effect of capital constraints holding fixed the level of OTD loans. The unconditional effect of capital constraint is captured by the double interaction term after * cap. The test design, therefore, minimizes the endogeneity concerns to a large extent. In addition, Models 2 and 4 control for borrowers' risk characteristics, which further alleviates the concern regarding the endogeneity of bank capital.

We find a positive and significant coefficient on after * preotd in all specifications, confirming our earlier results that banks with higher OTD loans in the pre-crisis period experienced larger defaults on their mortgage portfolios in the post-crisis quarters. The coefficient on after*cap is positive, but insignificant. The coefficient on the triple interaction term, i.e., the coefficient of interest, is negative and statistically significant. Thus, the effect of OTD lending on mortgage default rate weakens for banks with higher capital base. In other words, the relationship between OTD lending and mortgage default rate is predominantly concentrated among banks with lower capital. One standard deviation decrease in the capital ratio translates into 0.18% higher defaults, which is about 13% of the sample median of mortgage default rates. This result shows that banks used the OTD channel mainly to originate poor-quality loans rather than to save on regulatory capital. The result, therefore, is consistent with the dilution in screening standards of the high OTD banks.

4.2 Effect of demand deposits

We study the effect of demand deposits on the quality of OTD loans to further understand the role of funding structure on the banks' lending behavior. We focus on demand deposits because their presence is one of the defining features of commercial banks (see Diamond and Dybvig (1983)). There are two economic forces leading to opposite prediction about the role of demand deposits on a bank's lending behavior. While on one hand the presence of subsidized deposit insurance might encourage banks with large demand deposit to engage in imprudent risk-taking behavior, the fragility induced by demand deposits can also act as a disciplining device. The threat of large scale inefficient withdrawal by the depositors can exert an ex-ante pressure on the bank managers' risk-taking behavior. Calomiris and Kahn (1991) and Flannery (1994) provide theoretical arguments that demand deposits can control imprudent risk-taking activities of a bank. Diamond and Rajan (2001) show that the demand deposits can act as a disciplining device by committing the banker to avoid undesirable risky behavior. The franchise value associated with a large deposit base might limit a bank's risk-taking behavior as well.

We examine the role of demand deposit on risk-taking through the OTD model of lending using the same empirical methodology that we use for the test involving the effect of capital ratios. We estimate a triple-differencing model and provide results in Table 10. We measure the extent of dependence on demand deposits by taking the ratio of demand deposits to total deposits of the bank. The ratio is computed as the average over the pre-crisis quarters. The coefficient on the triple-interaction term after * preotd * dd measures the incremental effect of demand deposits on the mortgage default rate of banks with higher fraction of demand deposits.

In all specifications, we find a positive and significant coefficient on *after* * *preotd* consistent with our base results. More notably, we find a significant negative coefficient on the triple interaction term. As the fraction of demand deposits increases, the relationship between OTD lending and mortgage default rate weakens. One standard deviation increase in the demand deposit ratio translates into a decrease of 0.24% in default rates, which is approximately 18% of the sample median of mortgage default rate. Overall, the results show that high OTD banks that are primarily funded by demand deposits did not originate excessively risky loans. It is the set of high OTD banks without heavy reliance on demand deposits that experienced disproportionately higher default rates in the immediate aftermath of the crisis. Said differently, the effect of poor incentives created by the participation in the OTD market is primarily concentrated within banks that raise most of their capital through

non-demandable deposits. These results are consistent with the view that demand deposits create an ex-ante effect by limiting excessive risk-taking by the bank. In unreported tests, we include the effect of capital position and demand deposits together in the model and find that both the results remain robust. Taken together, these results show that banks that were predominantly funded by non-demandable deposits or wholesale market-based sources of funds were the main originators of inferior quality mortgages. These findings highlight the inter-dependence between a bank's funding structure and its asset side activities (see Song and Thakor, 1997). In particular, any regulation designed to address a bank's risk-taking behavior on the lending side should also focus on incentive effects generate by its liability structure.

5 Discussion & Conclusion

We argue that the originate-to-distribute model of lending resulted in the origination of inferior quality loans in recent years. Using a measure of banks' participation in the OTD market prior to the onset of the subprime mortgage crisis, we show that banks with higher OTD participation have higher mortgage default rates in the later periods. These defaults are concentrated in banks that are unable to sell their OTD loans after the disruption in the mortgage market. Our evidence confirms the popular belief that lack of screening incentive created by the separation of origination from the ultimate bearer of the default risk has been a contributing factor to the current mortgage crisis. Equally important, our study shows that these incentive problems are severe for poorly capitalized banks and banks that rely less on demand deposits. Thus, large capital base and higher fraction of demand deposits act as disciplining devices for the banks.

These findings have important implications for financial markets and bank regulators. They provide useful inputs to the regulation of financial markets and the determination of capital ratio for the banking sector. Our results also imply that the probability of default of a mortgage depends on the originator of the loan in a predictable way. This can serve as an important input to the pricing models of mortgage-backed securities.

Appendix:Variable Construction from Call Report

We obtain data from quarterly call reports filed by FDIC-insured commercial banks.

- Liquid Assets: We define liquid assets as the sum of cash plus fed funds sold plus government securities (US treasuries and government agency debt) held by the banks. Note that we do not include all securities held by banks, since it also includes mortgage-backed securities. In our sample period, these securities are unlikely to serve as a liquidity buffer for the banks. Liquidity ratio is the ratio of liquid assets to total assets.
- Mortgage loans: We take loans granted for 1-4 family residential properties.
- Mortgage chargeoffs and NPA: We take net chargeoff (net or recoveries) on the residential 1-4 family mortgages. We consider all mortgage loans that are past due 30 days or more and loans that are delinquent as non-performing mortgages, or as mortgages under default.
- Originate-to-Distribute Mortgages: We compute the dollar volume of 1-4 family residential mortgages originated by banks with a purpose to sell them off to third parties. This data item is filed by all banks with assets of more than \$1 billion as of June 30, 2005 or any bank with less than \$1 billion in total assets where there is more than \$10 million activity in 1-4 family residential mortgage market for two consecutive quarters. The first quarter in which banks reported this data item is 2006Q3. The data is divided into two broad categories: retail origination and wholesale origination. We divide the sum of retail and wholesale origination by the beginning of the quarter 1-4 family mortgage loans to get the measure of OTD in our analysis. We compute the average value of this number based on 2006Q3, 2006Q4, and 2007Q1 to construct a bank-specific measure of participation in the OTD lending. If an observation is missing for any of these quarters, we compute the average value based on remaining observations.
- Loans sold during the quarter: Banks also report the extent of 1-4 family residential mortgage loans sold to third parties during the quarter. We scale them by the beginning of the quarter mortgage loans for 1-4 family residential properties to get the first measure of the intensity of loan sale. In the second measure, we add the origination of loans during the same quarter to the beginning of the quarter mortgage loans in the denominator.
- Maturity Gap: We construct 1-year maturity GAP as follows: (loans and leases due to mature and re-price within a year+Securities due to mature or re-price within a year+Fed Fund Sold+Customers Liability to the Bank for Outstanding Acceptance) minus (Term Deposits due to mature or re-price within a year+Fed Funds Borrowed+Other Liabilities for Borrowed Funds+Banks Liabilities on Customers Outstanding Acceptance). We take the absolute value of this number and scale it by the total assets of the bank to compute the 1-year maturity gap ratio.

Notes

¹Allen and Carletti (2006) analyze conditions under which credit-risk transfer from banking to some other sector leads to risk-sharing benefits. They also argue that under certain conditions, these risk-transfer tools can lead to welfare-decreasing outcomes.

²See Drucker and Puri (2007) for a survey of different theories behind loan sales.

³The mortgage market was functioning normally till the first quarter of 2007. In March 2007, several subprime mortgage lenders filed for bankruptcy, providing some early signals of the oncoming mortgage crisis. The sign of stress in this market became visibly clear by the middle of 2007 (Greenlaw et al., 2008).

⁴Since capital structure and demand deposit mix of large banks are generally very different from those of the small banks, we pay careful attention to the effect of bank size in these tests.

⁵See also Ashcraft and Santos (2008) for a study on the costs and benefits of credit default swaps and Gande and Saunders (2007) for the effect of secondary loan sales market on the bank-specialness.

 6 Our results are robust to alternative ways of constructing this variable, for example, by averaging over only 2006Q3 and 2006Q4 or by only taking 2007Q1 value as the measure of *preotd*.

⁷Our results are similar if we add the mortgages originated during the quarter in the denominator.

⁸Our results are similar without the inclusion of *premortgage* variable in the regression models.

⁹In an alternative specification, we also estimate this model without bank fixed-effects (similar to the one described in the previous section for the extent of mortgage resale). The advantage of this model is that it also allows us to estimate the coefficient on *preotd*. However, we prefer the bank fixed-effect approach as it allows us to control for unobservable factors that are time-invariant and unique to a bank. All key results remain similar for the alternative econometric model.

¹⁰We re-estimate these models without including the interaction of *after* and *premortgage* and obtain similar results.

¹¹In an unreported robustness exercise, we drop the first two quarters after the beginning of the crisis from our sample. We do so to allow more time for the mortgages to default after the beginning of the crisis. Our results become slightly stronger for this specification.

 12 It is worth pointing out that this measure is not a perfect proxy for *stuck* loans because

it does not directly match loan origination with selling at the loan-by-loan level. However, in the absence of detailed loan-level data, it is a reasonable proxy for the cross-sectional dispersion of *stuck* loans at the bank-level.

 13 We have estimated the model without this restriction and all results remain similar.

 $^{14}\mathrm{Similar}$ results hold if we narrow this band to 25%.

¹⁵Since we impose a restriction of balanced panel in our study, in regressions we lose few observation due to the non-availability of other data items for all seven quarters. Our results remain robust to the inclusion of these observations in the sample.

¹⁶We have experimented with several other reasonable specifications and obtained similar results. We report results based on one of the most comprehensive models to isolate the effect of observable information on loan spreads.

References

Allen, F. 2009. The Global Financial Crisis. An address to the Wharton Finance Club.

Allen, F., and D. Gale. 1994. Financial Innovations and Risk Sharing. MIT Press, Cambridge, MA.

Allen, F., and E. Carletti. 2006. Credit Risk Transfer and Contagion. Journal of Monetary Economics 53:89-111.

Ashcraft, A., and J. Santos. 2007. Has the CDS Market Lowered the Cost of Corporate Debt? Working paper, Federal Reserve Bank of New York.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. How Much Should We Trust Differencesin-Differences Estimates? Quarterly Journal of Economics 119:249-75.

Brunnermeier, M. 2008. Deciphering the 2007-08 Liquidity and Credit Crunch, forthcoming in Journal of Economic Perspective.

Calomoris C., and C. Kahn. 1991. The Role of Demandable Debt in Structuring Optimal Banking Arrangements. American Economic Review 81:497-513.

Dell'Ariccia, G., I. Deniz, and L.A. Laeven. 2008. Credit Booms and Lending Standards: Evidence from the Subprime Mortgage Market. Working Paper, International Monetary Fund.

Demyanyk, Y., and V. H. Otto. 2009. Understanding the Subprime Mortgage Crisis. forthcoming Review of Financial Studies.

Doms, M., F. Furlong, and J. Krainer. 2007, Subprime Mortgage Delinquency Rates. Working Paper, Federal Reserve Bank of San Francisco.

Diamond, D., and P. Dybvig. 1983. Bank Runs, Deposit Insurance, and Liquidity. Journal of Political Economy 91:401-19.

Diamond, D., and R. Rajan. 2001. Liquidity Risk, Liquidity Creation, and Financial Fragility: A Theory of Banking. Journal of Political Economy 109:287-327.

Drucker, S., and M. Puri. 2005. Banks and Capital Markets: A Survey. Handbook of Empirical Corporate Finance, Edited by B. Espen Eckbo (Elsevier/North-Holland).

Drucker, S., and M. Puri. 2008. On Loan Sales, Loan Contracting, and Lending Relationships. Forthcoming in Review of Financial Studies.

Flannery, M. 1994. Debt Maturity Structure and The Deadweight Cost of Leverage: Optimally Financing Banking Firms. American Economic Review 84:320-31.

Froot, K. A., D. S. Scharfstein, and J. C. Stein. 1993. Risk Management: Coordinating Corporate Investments and Financing Policies. Journal of Finance 5:162958.

Froot, K. A., and J. C. Stein. 1998. Risk Management, Capital Budgeting, and Capital Structure Policy for Financial Institutions: An Integrated Approach. Journal of Financial Economics 47:55-82.

Gande, A., and A. Saunders. 2007. Are Banks Still Special when There Is a Secondary Market for Loans? Working Paper, New York University.

Goetzmann, W. N., and M. Spiegel. 1997. A Spatial Model of Housing Returns and Neighborhood Substitutability. Journal of Real Estate Finance and Economics 14:11-31.

Gordon, B., and A. D'Silva. 2008. Hedges in the Warehouse: The Banks Get Trimmed. Chicago Fed Letter #249.

Gorton, G., and G. Pennacchi. 1995. Banks and Loan Sales: Marketing Nonmarketable Assets. Journal of Monetary Economics 35: 389411.

Greenlaw, D., J. Hatzius, A. K. Kashyap, and H. S. Shin. 2008. Leveraged Losses: Lessons from the Mortgage Market Meltdown. US Monetary Policy Forum Conference Draft.

Jensen M., and W. Meckling. 1976. Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics 3:305-60.

Holmstrom, B., and J. Tirole. 1998. Private and Public Supply of Liquidity. Journal of Political Economy 106:1-40.

Holmstrom, B., and J. Tirole. 1997. Financial Intermediation, Loanable Funds, and the Real Sector. Quarterly Journal of Economics 112:663-91.

Keys, B., T. Mukherjee, A. Seru, and V. Vig. 2010. Did Securitization Lead to Lax Screening? Evidence From Subprime Loans. Quarterly Journal of Economics, 125:307-62.

Leland, H., and D. Pyle. 1977. Information Asymmetries, Financial Structure, and Financial Intermediation. Journal of Finance 32:371-87.

Loutskina, E., and P. E. Strahan. 2008. Informed and Uninformed Investment in Housing: The Downside of Diversification, SSRN Working Paper.

Mayer, C., and K. Pence. 2008. Subprime Mortgages: What, Where, and to Whom? NBER Working Paper.

Mian, A., and A. Sufi. 2009. The Consequences of Mortgage Credit Expansion: Evidence from the 2007 Mortgage Default Crisis. Quarterly Journal of Economics 124:1449-96.

Mishkin, F. S. 2008. On Leveraged Losses: Lessons from the Mortgage Meltdown. U.S. Monetary Policy Forum Speech, February 29, 2008.

Parlour, C., and G. Plantin. 2008. Loan Sales and Relationship Banking. Journal of Finance 63:1291-1314.

Pennacchi, G. 1988. Loan sales and the Cost of Bank Capital. Journal of Finance 43:37596.

Petersen, M., and R. Rajan. 1994. The Benefits of Lending Relationships: Evidence from

Small Business Data. Journal of Finance 49:3-37.

Purnanandam, A. 2007. Interest Rate Derivatives at Commercial Banks: An Empirical Investigation. Journal of Monetary Economics 54:1769-1808.

Rajan, U., A. Seru, and V. Vig. 2009. The Failure of Models that Predict Failure: Distance, Incentives and Defaults. Working Paper, University of Chicago.

Smith, C.W., Stulz, R. 1985. The Determinants of Firms' Hedging Policies. Journal of Financial and Quantitative Analysis 28: 391-405.

Song, F., and A. Thakor. 1997. Relationship Banking, Fragility, and the Asset-Liability Matching Problem. Review of Financial Studies 20:2129-77.

Stein, J. 1998. An Adverse-Selection Model of Bank Asset and Liability Management with Implications for the Transmission of Monetary Policy. RAND Journal of Economics 29:466-86.

Stein, J. 2002. Information Production and Capital Allocation: Decentralized versus Hierarchical Firms. Journal of Finance 57:1891-1921.

Stulz, R. 1984. Optimal Hedging Policies. Journal of Financial and Quantitative Analysis 19:127-40.

Thakor, A. 1996. Capital Requirement, Monetary Policy, and Aggregate Bank Lending: Theory and Empirical Evidence. Journal of Finance 51:279-324.

Titman, S., and S. Tsyplakov. 2007. Originator Performance, CMBS Structures and Yield Spreads of Commercial Mortgages. Working Paper, University of Texas, Austin.

Tufano, P. 2003. Financial Innovations. Handbook of the Economics of Finance, edited by George Constantinides, Milt Harris and Rene Stulz (Amsterdam: North Holland).

The following figure plots the ratio of OTD loans to total mortgages on a quarterly basis. We plot the average value of this ratio across all banks with available information in the sample. Quarter zero corresponds to quarter ending on March 31, 2007.

Figure 1: Mortgage originated for distribution over time

The following figure plots the extent of loans sold as a fraction of mortgage outstanding as of the beginning of the quarter. We plot the average value of this ratio across all banks with available information in the sample. Quarter zero corresponds to quarter ending on March 31, 2007.

Figure 2: Mortgage sold over time

The following figure plots the average net charge-off as a % of mortgage outstanding on a quarterly basis. Quarter zero corresponds to quarter ending on March 31, 2007.

Figure 3: Mortgage chargeoff over time

The following figure plots the average net charge-off (as a % of mortgage outstanding) on the bank's mortgage portfolio across two groups of banks sorted on the basis of their participation in the OTD market prior to March 31, 2007.

Figure 4: Mortgage chargeoff and OTD participation

Figure 5: Distribution of Key Characteristics of High and Low OTD Banks After Matching

The plots give the kernel density functions of the key characteristics of the high and low OTD banks after matching. More details on the matching are provided in the paper. The first plot is for the loan-to-income ratios; the second plot is for the borrowers' annual income.

Table 1: Summary Statistics

to total mortgages; *tierlcap* measures the ratio of tier one capital to risk-adjusted assets; *liquid* is the bank's liquid assets residential mortgages outstanding to total assets; cil/ta is the ratio of commercial and industrial loans to total assets; td/tais the ratio of total deposits to total assets; dd/td is the ratio of demand deposits to total deposits; nii/ta is the ratio of net interest income to total assets; chargeoff measures the chargeoff on mortgage portfolio (net of recoveries) as a percentage of mortgage assets; npa/ta is the ratio of non-performing assets to total assets; morthpa is the ratio of non-performing mortgages to total asset ratio, absgap is the absolute value of one-year maturity gap as a fraction of total assets. preotd measures the originate-to-distribute loans i.e., mortgages originated with a purpose to sell, as a fraction of total mortgages. This variable is This table provides the summary statistics of key variables used in the study. All variables are computed using call report data minimum, and maximum values for each variable. ta is total assets in billions of dollar; mortgage/ta is the ratio of 1-4 family for seven quarters starting from 2006Q3 and ending in 2008Q1. We provide the number of observations (N), mean, median, constructed at the bank-level based on its average quarterly values during 2006Q3, 2006Q4, and 2007Q1.

variable	Z	mean	p50	min	max
ta	5397.00	5.92	1.05	0.06	168.65
mortgage/ta	5397.00	0.17	0.15	0.01	0.49
$\operatorname{cil}/\operatorname{ta}$	5397.00	0.11	0.10	0.00	0.39
td/ta	5397.00	0.78	0.80	0.44	0.92
dd/td	5397.00	0.09	0.08	0.01	0.33
leverage	6636.00	0.90	0.91	0.77	0.94
nii/ta	5397.00	0.89	0.87	0.32	1.51
chargeoff(%)	5397.00	0.04	0.00	-0.07	0.79
npa/ta(%)	5397.00	0.73	0.44	0.00	5.40
mortnpa(%)	5397.00	2.03	1.35	0.00	13.86
tier1cap	5397.00	0.11	0.10	0.07	0.29
liquid	5397.00	0.15	0.12	0.02	0.50
absgap	5397.00	0.14	0.11	0.00	0.51
preotd	771.00	0.23	0.05	0.00	3.06

Table 2: Intensity of Mortgages Sold

This table provides the regression results of the following model:

$$sold_{it} = \beta_0 + \beta_1 a fter_t + \beta_2 preotd_i + \beta_3 a fter_t * preotd_i + \sum_{k=1}^{k=K} \beta X + \epsilon_{ii}$$

excludes banks with more than \$10 billion in assets. These models omit *preotd* and *premortgage* as right-hand-side variables since they remain constant across all seven quarters for a given bank. *premortgage* is the average ratio of mortgage assets to The dependent variable, $sold_{it}$, measures bank i's mortgage sale as a fraction of its total mortgage loans at the beginning of quarter t. $after_t$ is a dummy variable that is set to zero for quarters before and including 2007Q1, and one after that. preotd_i is the average value of OTD mortgages to total mortgages during quarters 2006Q3, 2006Q4 and 2007Q1. X stands for a set of control variables. Model 1 is estimated using OLS method. Models 2 and 3 are estimated with bank fixed-effects. Model 3 total assets for 2006Q3, 2006Q4, and 2007Q1. logta measures the log of total assets; cil/ta is the ratio of commercial and industrial loans to total assets; *liquid* is the bank's liquid assets to total asset ratio; *absgap* is the absolute value of one-year maturity gap as a fraction of total assets. Adjusted R-squared and number of observations are provided in the bottom rows. All standard errors are clustered at the bank-level.

	Mode	1 1	Mode	el 2	Mode	<u>al</u> 3
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
preotd	0.9591	(54.64)				
premort gage	0.0403	(0.85)				
after	0.0273	(1.95)	0.0182	(1.23)	0.0205	(1.24)
after * preotd	-0.1889	(-3.34)	-0.2037	(-3.74)	-0.2120	(-3.86)
after * premortgage	0.0163	(0.21)	0.0235	(0.29)	0.0428	(0.49)
logta	-0.0031	(-0.54)	0.1475	(2.88)	0.1575	(2.44)
cil/ta	-0.0248	(-0.22)	-0.8606	(-2.74)	-0.7744	(-2.40)
liquid	0.0339	(0.48)	-0.0292	(-0.21)	0.0570	(0.38)
absgap	-0.0320	(-0.55)	0.2866	(2.79)	0.3171	(2.82)
R^2	0.8156		0.9039		0.9054	
N	4476		4476		4100	
State dumnies	Yes		N_{0}		No	
Bank fixed-effect	N_{O}		Yes		Yes	
Exclude Large Banks	N_{O}		N_{O}		$\mathbf{Y}_{\mathbf{es}}$	

Table 3: Mortgage Defaults

This table provides the regression results of the following fixed-effect model:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preotd_i + \sum_{k=1}^{k=K} \beta X + \epsilon_{it}$$

the outstanding mortgage loans) of bank i during quarter t. $after_t$ is a dummy variable that is set to zero for quarters before and including 2007Q1, and one after that. $preotd_i$ is the average value of OTD mortgages to total mortgages during quarters 2006Q3, 2006Q4 and 2007Q1. μ_i denotes bank fixed effects; X stands for a set of control variables. premortgage is the average ratio of mortgage assets to total assets for 2006Q3, 2006Q4, and 2007Q1. logta measures the log of total assets; cil/ta is the ratio of commercial and industrial loans to total assets; *liquid* is the bank's liquid assets to total asset ratio; absgap is the absolute The dependent variable, $default_{it}$, is measured by either the mortgage chargeoffs or the non-performing mortgages (scaled by value of one-year maturity gap as a fraction of total assets. Adjusted R-squared and number of observations are provided in the bottom rows. All standard errors are clustered at the bank-level.

		All F	3anks		Ex	ccludes L	arge Banks	
	Mode	11	Mode	<u>ol</u> 2	Mode	<u>وا</u> 3	Mode	14
Dependent Var:	Charg	eoffs	NP_{A}	A	Charge	eoffs	NP/	_
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.0116	(1.91)	0.3411	(3.03)	0.0134	(2.03)	0.3076	(2.52)
after * preotd	0.0420	(2.76)	0.4439	(2.44)	0.0428	(2.76)	0.4015	(2.21)
after * premortgage	0.0060	(0.21)	0.6600	(1.22)	-0.0062	(-0.20)	0.4261	(0.82)
logta	0.0925	(4.15)	0.2266	(0.51)	0.0776	(2.67)	0.6896	(1.42)
cil/ta	0.2010	(1.65)	2.6103	(1.37)	0.1662	(1.32)	2.2626	(1.13)
liquid	0.0745	(1.24)	1.3732	(0.90)	0.1089	(1.64)	-0.1540	(-0.14)
absgap	-0.0672	(-1.59)	-3.2639	(-3.85)	-0.0742	(-1.64)	-3.1248	(-3.66)
R^2	0.3805		0.7297		0.3621		0.7135	
N	5397		5397		4977		4977	

Table 4: Mortgage Default and Inability to Sell

This table provides regression results for the following fixed-effect model:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * stuck_i + \sum_{k=1}^{k=K} \beta X + \epsilon_i$$

The dependent variable, $default_{it}$, is measured by either the mortgage chargeoffs or the non-performing mortgages of bank i $stuck_i$ measures the difference between loans originated before 2007Q1 and loans sold after this quarter. μ_i denotes bank fixed 2006Q4, and 2007Q1. logta measures the log of total assets; cil/ta is the ratio of commercial and industrial loans to total assets; liquid is the bank's liquid assets to total asset ratio; absgap is the absolute value of one-year maturity gap as a fraction of total assets. Adjusted R-squared and number of observations are provided in the bottom rows. All standard errors are clustered at during quarter t. $after_t$ is a dummy variable that is set to zero for quarters before and including 2007Q1, and one after that. effects; X stands for a set of control variables. *premortgage* is the average ratio of mortgage assets to total assets for 2006Q3, the bank-level.

		All B	anks		Ex(cludes L	arge Bank	s
	Mode	11	Mode	12	Mode	el 3	Mode	14
Dependent Var:	Charge	offs	NP/	4	Charg	eoffs	NP	Ā
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.0131	(2.18)	0.3113	(2.81)	0.0148	(2.25)	0.2791	(2.35)
after * stuck	0.0922	(3.03)	1.4342	(3.64)	0.0940	(3.02)	1.2756	(3.39)
after * premortgage	0.0000	(0.00)	0.5888	(1.11)	-0.0110	(-0.35)	0.3892	(0.75)
logta	0.1004	(4.64)	0.3684	(0.85)	0.0855	(3.02)	0.8078	(1.67)
cil/ta	0.1964	(1.62)	2.3276	(1.25)	0.1675	(1.34)	2.0930	(1.07)
liquid	0.0633	(1.05)	1.1788	(0.83)	0.1047	(1.60)	-0.2045	(-0.19)
absgap	-0.0603	(-1.43)	-3.1394	(-3.79)	-0.0690	(-1.54)	-3.0421	(-3.59)
R^2	0.3818		0.7330		0.3635		0.7162	
N	5397		5397		4977		4977	

Case
Base
lysis:
Ana
Sample
Matched
Table 5:

income and the bank's size. The dependent variable is the non-performing mortgage loans of banks in a given quarter. The definition of variables and details of the model estimation are provided in the paper. Adjusted R-squared and number of This table reports the estimation results of fixed-effect regressions on a matched sample of high and low OTD banks. Banks are matched on geographical location of their mortgage portfolios, the borrowers' loan-to-income ratio, the borrowers' annual observations are provided in the bottom rows. All standard errors are clustered at the bank-level.

	[Mode]	[]	Mode	12	Mode	<u>ي</u>] 3	Mode	14
Dependent Var:	NPA		NP^{A}	_	NP_{I}	Ā	NP_{2}	4
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.5657	(6.28)	0.5422	(6.45)	0.4044	(2.15)	0.3649	(1.97)
after * preotd	0.8997	(2.83)			0.9043	(2.94)		
after * stuck			2.3613	(3.89)			2.3898	(4.19)
after * premortgage					0.3076	(0.38)	0.2376	(0.31)
logta					0.6920	(0.72)	0.9455	(1.02)
cil/ta					1.9596	(0.66)	2.0078	(0.69)
absgap					-5.6376	(-3.78)	-5.4404	(-3.74)
liquid					0.5862	(0.18)	-0.0657	(-0.02)
R^2	0.7039		0.7113		0.7136		0.7212	
N	2289		2289		2289		22.89	

rts the estimation results of fixed-effect regressions on a matched sample of high and low OTD banks. Banks are	ographical location of their mortgage portfolios, bank size, the borrowers' loan-to-income ratio and the average	the subprime loan portfolio of the bank. The dependent variable is the non-performing mortgage loans of the	n quarter. The definition of variables and details of the model estimation are provided in the paper. Adjusted	number of observations are provided in the bottom rows. All standard errors are clustered at the bank level.
This table reports the estimat	matched on geographical loce	rate spread on the subprime	banks in a given quarter. Th	R-squared and number of obs

Table 6: Matched Sample Analysis: Average Loan Spread Charged

	Model 1	Model	12	Mode	al 3	Mode	el 4
lent Var:	NPA	NPA	-	NP/	4	NP	A
Ē	timate <i>t</i> -stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
	.5060 (5.58)	0.4911	(5.79)	0.2791	(1.53)	0.2505	(1.40)
preotd C	.6557 (2.28)			0.6880	(2.44)		
stuck		1.7369	(3.13)			1.8194	(3.33)
premort gage				0.4686	(0.64)	0.4364	(0.60)
				0.4861	(0.86)	0.6906	(1.22)
				0.3309	(0.12)	0.3722	(0.13)
				-4.5193	(-3.31)	-4.5168	(-3.29)
				-2.1793	(-1.35)	-2.3290	(-1.46)
0	.7049	0.7098		0.7118		0.7170	
	2205	2205		2205		2205	
	2205	2205			2205	2205	2205 2205

Table 7: Matched Sample Analysis: Small to Big

This table reports the estimation results of fixed-effect regressions on matched sample of high and low OTD banks. We match performing mortgage loans of the banks in a given quarter. The definition of variables and details of the model estimation are provided in the paper. Adjusted R-squared and number of observations are provided in the bottom rows. All standard errors small banks with large OTD lending with large banks with little-to-no OTD lending. The dependent variable is the nonare clustered at the bank level.

	Mode	11	Mode	1 2	Mode	al 3	Mode	14
Dependent Var:	NPA	_	NP/	_	NP/	4	NP/	_
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.4577	(4.18)	0.4377	(4.36)	-0.0232	(-0.11)	-0.0922	(-0.44)
after * preotd	0.8384	(2.33)			0.8665	(2.38)		
after * stuck			2.0376	(2.60)			2.2099	(2.81)
after * premortgage					1.4795	(1.43)	1.4727	(1.40)
logta					2.3183	(1.77)	2.7952	(2.28)
cil/ta					4.3085	(0.80)	3.2424	(0.59)
absgap					-4.7469	(-2.25)	-4.6843	(-2.29)
liquid					3.4007	(0.74)	3.1728	(0.71)
R^2	0.6966		0.7046		0.7117		0.7230	
N	1148		1148		1148		1148	

Table 8: Shrinkage in Loan Spread

This table provides the dispersion in loan spread across high (above median) and low (below median) OTD banks. Panel A is the difference between the 75^{th} and the 25^{th} percentiles, and the difference between the 90^{th} and the 10^{th} percentiles. Shrinkage for all banks, Panel B for the matched sample. We provide three measures of dispersion in log loan spreads: standard deviation, measures the difference in dispersion across the high and low OTD banks. Bartlett's and Levene's p-values are for the null hypothesis that the variance of loan spreads for the high OTD group equals the variance of loan spreads for the low OTD group.

	Pan	iel A: All Ba	ıks	Panel I	3: Matched S	ample
	High OTD	Low OTD	Shrinkage	High OTD	Low OTD	Shrinkage
Standard Deviation	0.2236	0.2621	0.0385	0.2056	0.2627	0.0571
P75-P25	0.3144	0.3559	0.0415	0.2731	0.3669	0.0938
P90-P10	0.5697	0.6767	0.1070	0.5172	0.6883	0.1711
Bartlett's p-value			0.0001			0.0001
Levene's p-value			0.0001			0.0001

Table 9: The Effect of Bank Capital

This table provides the regression results of the following fixed effect model:

$$default_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preotd_i + \beta_2 after_t * cap_i + \beta_3 after_t * preotd_i * cap_i + \sum_{k=1}^{k=K} \beta X + \epsilon_{it}$$

logta measures the log of total assets; cil/ta is the ratio of commercial and industrial loans to total assets; liquid is the bank's the average loan-to-income ratio of all loans issued by the bank in 2006. highrate measures the fraction of high interest rate The dependent variable, $default_{it}$, is measured as the ratio of non-performing mortgages to the outstanding mortgage loans of that. *preotd_i* is the average value of OTD mortgages to total mortgages during quarters 2006Q3, 2006Q4 and 2007Q1; *cap_i* is liquid assets to total asset ratio; absgap is the absolute value of one-year maturity gap as a fraction of total assets. li measures loans originated by the bank and *noincome* measures the fraction of loans without income documentation originated by the bank bank i during quarter t. after is a dummy variable that is set to zero for quarters before and including 2007Q1, and one after bank i's average tier 1 capital ratio during quarters 2006Q3, 2006Q4, and 2007Q1; μ_i denotes bank fixed effects; X stands for a set of control variables. *premortgage* is the average ratio of mortgage assets to total assets for 2006Q3, 2006Q4, and 2007Q1. n 2006. Adjusted R-squared and number of observations are provided in the bottom rows. All standard errors are clustered at the bank-level.

		::	,		ſ	, , ,	•	
		All B	anks		EX	cludes L	arge Banks	
	Mode	11	Mode	12	Mode] 3	Mode	14
Dependent Var:	NP/	-	NP_{I}	4	NP/	-	NP_{I}	-
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.2390	(1.06)	-0.6064	(-2.16)	0.1240	(0.51)	-0.7314	(-2.43)
after * cap	0.8111	(0.45)	0.9272	(0.55)	1.4960	(0.76)	1.8426	(1.01)
after * preotd * cap	-5.4985	(-2.05)	-5.2733	(-2.01)	-5.1978	(-1.89)	-5.2544	(-1.93)
after * preotd	1.1495	(2.49)	1.0360	(2.31)	1.0716	(2.25)	1.0056	(2.16)
after * premortgage	0.6313	(1.17)	0.8177	(1.56)	0.4066	(0.78)	0.6109	(1.16)
logta	0.2335	(0.53)	0.3191	(0.75)	0.7031	(1.45)	0.7281	(1.48)
cil/ta	2.5588	(1.34)	2.8332	(1.45)	2.2419	(1.12)	2.5009	(1.22)
liquid	1.3795	(0.91)	1.3492	(0.95)	-0.1292	(-0.12)	-0.1240	(-0.11)
absgap	-3.2334	(-3.81)	-3.0484	(-3.69)	-3.1012	(-3.61)	-3.0050	(-3.51)
after * li			0.2714	(2.64)			0.2827	(2.63)
after * high rate			1.9064	(3.85)			1.6838	(3.67)
after * no income			0.6671	(2.42)			0.5810	(1.87)
R^2	0.7303		0.7340		0.7140		0.7160	
N	5397		5327		4977		4907	

Table 10: The Effect of Demand Deposits

This table provides the regression results of the following fixed effect model:

$$efault_{it} = \mu_i + \beta_1 after_t + \beta_2 after_t * preotd_i + \beta_2 after_t * dd_i + \beta_3 after_t * preotd_i * dd_i + \sum_{k=1}^{k=K} \beta X + \epsilon_{it}$$

The dependent variable, $default_{it}$, is measured as the ratio of non-performing mortgages to the outstanding mortgage loans of that. preotd_i is the average value of OTD mortgages to total mortgages during quarters 2006Q3, 2006Q4 and 2007Q1; dd_i is bank i during quarter t. after is a dummy variable that is set to zero for quarters before and including 2007Q1, and one after bank i's average demand deposits to total deposits ratio during quarters 2006Q3, 2006Q4, and 2007Q1; μ_i denotes bank fixed liquid is the bank's liquid assets to total asset ratio; absgap is the absolute value of one-year maturity gap as a fraction of total assets. *li* measures the average loan-to-income ratio of all loans issued by the bank in 2006. *highrate* measures the fraction of high interest rate loans originated by the bank and noincome measures the fraction of loans without income documentation 2006Q4, and 2007Q1. logta measures the log of total assets; cil/ta is the ratio of commercial and industrial loans to total assets; priginated by the bank in 2006. Adjusted R-squared and number of observations are provided in the bottom rows. All standard effects; X stands for a set of control variables. *premortgage* is the average ratio of mortgage assets to total assets for 2006Q3, errors are clustered at the bank-level

		All R	anka		Ц А	-Indae L	arna Banke	
	Mode		Mode	2	Mode	1 3	Mode] 4
Dependent Var:	NP/		NP_{A}		NP_{I}		NP/	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
after	0.5045	(3.66)	-0.2957	(-1.38)	0.4479	(3.00)	-0.3404	(-1.52)
after * dd	-1.6465	(-2.43)	-1.6697	(-2.44)	-1.3884	(-1.98)	-1.4100	(-2.02)
after * preotd * dd	-3.9949	(-2.34)	-3.7627	(-2.25)	-3.4250	(-2.09)	-3.2896	(-2.04)
after * preotd	0.9364	(2.79)	0.8260	(2.58)	0.8294	(2.52)	0.7423	(2.32)
after * premortgage	0.5526	(1.04)	0.7312	(1.43)	0.3507	(0.68)	0.5570	(1.07)
logta	0.2222	(0.51)	0.3085	(0.74)	0.6675	(1.39)	0.6942	(1.42)
cil/ta	2.7117	(1.44)	3.0167	(1.57)	2.4083	(1.21)	2.7033	(1.34)
liquid	1.3462	(0.92)	1.3215	(0.97)	-0.0527	(-0.05)	-0.0373	(-0.03)
absgap	-3.2555	(-3.91)	-3.0656	(-3.78)	-3.1305	(-3.70)	-3.0252	(-3.60)
after * li			0.2548	(2.53)			0.2648	(2.51)
after * high rate			1.9479	(4.07)			1.7502	(3.89)
after * no income			0.6255	(2.33)			0.5534	(1.83)
R^2	0.7322		0.7358		0.7154		0.7173	
N	5397		5327		4977		4907	