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Abstract 
 

This paper proposes a new Lagrange multiplier (LM) based unit root test for panel data allowing 
for heterogeneous structural breaks in both the intercept and slope of each cross-section unit in 
the panel. We note that panel unit root tests allowing for breaks in the slope will critically depend 
on the nuisance parameters indicating the size and location of breaks. Any panel tests that ignore 
this dependency on the nuisance parameter will be subject to serious size distortions. To address 
this problem, our test employs a method that renders the asymptotic distribution of the panel tests 
invariant to nuisance parameters. We derive the asymptotic properties of our test and also 
examine its finite-sample properties. In addition, our test easily can be modified to correct for the 
presence of cross-correlations in the innovations of the panel. We illustrate this by applying the 
cross-sectionally augmented ADF (CADF) procedure of Pesaran (2007) to our test statistic. 
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1.  Introduction 

It now is well known that ignoring existing structural breaks when testing for a unit root 

in a single time series can lead to a significant loss of power, as was first shown by Perron 

(1989). To that end, Perron developed a unit root test based on the Dickey-Fuller (DF) 

framework that allowed for a structural break in the data. Perron's work in this area is most 

relevant for applied researchers since many economic time series tend to display structural 

breaks. 

Over the past decade and a half, there has been increasing interest on the part of 

researchers to extend the univariate unit root tests to the panel framework, partly as a means of 

trying to increase the inherently low power of the unit root test and partly due to the desire to 

take advantage of the rich collection of data that now is available to researchers. The papers by 

Levin, Lin and Chu (2002) and Im, Pesaran and Shin (2003, IPS hereafter) have been the most 

popular examples of such tests, and there have been numerous applications and extensions of 

these tests. Recent developments in panel unit root tests have focused a great deal of attention on 

correcting for the presence of cross-correlations in the innovations of the panel. 

However, extensions of the univariate unit root test with breaks to the panel framework 

have been rather limited. As one would expect, the loss of power that results when ignoring 

existing structural breaks in the univariate unit root tests also exists in panel unit root tests if 

existing structural breaks are ignored. That is, there will be a considerable loss of power in any 

panel unit root tests that do not properly control for structural changes. As a result, one may 

consider extending the work of Perron (1989) to produce a counterpart panel unit root test that 

allows for breaks. For example, one may be tempted to modify the IPS test, or other tests, to 

include dummy variables in the regression for each cross section unit in the panel in order to 
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control for the effects of structural changes. However, this approach is problematic. In order to 

apply an IPS-type test in the situation with structural changes, one would need to compute the 

expected values and variances of the DF t-statistics for all possible different break locations in 

the sample. This task would be extremely cumbersome in practice. The source of the problem in 

this case is that the distribution of the individual test statistic, say, for instance, Perron's 

augmented DF type t-statistic, depends on the nuisance parameters indicating the location of the 

break(s). In the case of the univariate unit root test, Perron handled the location parameter by 

simulating critical values for his test at various break-point locations. Although this provides a 

good solution to handle the location parameter in the case of one break in the univariate setting, 

it would be extremely difficult, perhaps impossible, to simulate critical values in the panel 

framework for all possible combinations of break-point locations for each cross section unit. This 

difficulty has been one of the main reasons for the lack of development of panel unit root tests 

that allow for structural changes. 

Some researchers simply have ignored this "nuisance parameter" problem and have used 

the same expected values and variances of the IPS tests, regardless of where the breaks are 

located. But this approach is invalid. Alternatively, in the case of the univariate unit root tests 

some researchers circumvented the "nuisance parameter" problem by assuming that breaks can 

occur only under the alternative, not under the null. Under this scenario one may be tempted to 

conclude that the tests do not depend on the break location parameters under the null. But this 

conclusion is invalid, for two reasons. First, when not allowing for a break under the null, a 

rejection of the null does not guarantee that the series in question is stationary. Instead, it can 

imply a unit root with breaks under the null; see Nunes, Newbold and Kuan (1997) and Lee and 

Strazicich (2001). Second, the aforementioned authors also showed that not allowing for breaks 
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under the null can lead to serious size distortions and spurious rejections under the null. In light 

of Perron (1989) and others, any valid unit root tests must not be affected by the presence or 

absence of breaks under the null. Otherwise, the tests will not be invariant to the magnitude of 

breaks and the critical values of the tests will be dependent upon these magnitudes. These 

findings extend, similarly, to unit root tests in the panel framework; any panel unit root test that 

depends on a nuisance parameter will be subject to the same spurious rejections of the unit root 

null. 

Amsler and Lee (1995) proposed a reasonable solution to the nuisance parameter problem 

in the special case of a univariate unit root test with level shifts. They showed that the asymptotic 

distribution of the Lagrange Multiplier (LM) test does not depend on the size or location of any 

level shifts and, thus, is free of nuisance parameters. This is true even when a finite number of 

dummy variables for level shifts are included in the LM unit root testing regression. This so-

called "invariance property" of the LM test makes it unnecessary to simulate critical values for 

the test at all possible break-point locations, as must be done in any DF-based unit root test. Im, 

Lee and Tieslau (2005, ILT hereafter) further extended this work to derive a panel LM unit root 

test that allows for a finite number of level shifts. As with the univariate LM-based unit root 

tests, the panel LM-based unit root test of ILT offers an operating advantage over the DF-based 

panel unit root tests in that the test is free from the nuisance parameter problem. 

However, there is a problem of using this approach in the panel framework when 

allowing for breaks in the trend of a series: the "invariance property" of the LM test does not 

hold if the series under investigation exhibits breaks in its trend. Thus, there are no appropriate 

panel unit root tests that allow for breaks in both the intercept and slope of a series. This leaves a 

tremendous void for researchers using time series variables since many such variables typically 
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display breaks in both their level and trend. In the presence of trend shifts, the popular unit root 

tests are subject to the nuisance parameter problem—both the DF-type tests and the LM-type 

tests (although it is clear that the DF-type tests are known to be more sensitive to the nuisance 

parameters than the LM-type tests; see Nunes (2004) for example). To the best of our 

knowledge, there is no panel unit root test that allows for trend-breaks that also is invariant to the 

nuisance parameter. The key issue we face in constructing such a test is to find a way to make 

the unit root test statistic invariant to nuisance parameters. 

Given this situation, we adopt an approach in this paper that makes the univariate unit 

root test invariant to trend-shifts. To do so, we adopt a simple transformation approach with 

relevant asymptotic results in order to obtain a modified test statistic whose asymptotic 

distribution depends on neither the size nor the location of trend-shifts. For this task, we utilize 

an LM-type unit root test that will depend only on the number of breaks, not their size or 

location. Then, we extend the testing procedure to the panel framework with trend-shifts. Thus, 

although the ILT panel tests are valid for level shifts, our newly proposed panel LM unit root test 

offers the distinct advantage of also being invariant to nuisance parameters in the case of 

heterogeneous trend-shifts. In addition, our test can correct for the presence of cross-correlations 

in the innovations of the panel, although this is not the main focus of the present paper. Any of 

the popular methods to correct for this correlation can be used along with our proposed test. In 

this regard, we demonstrate how to apply the cross-sectionally augmented ADF (CADF) 

procedure of Pesaran (2007) to our tests as one possible means of correcting for cross-

correlations. 

The rest of the paper is organized as follows. In Section 2, we consider the transformed 

univariate LM unit root test with trend shifts to render the resulting test statistic invariant to the 
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nuisance parameter. In Section 3, we extend the univariate LM test to the panel framework. We 

provide Monte Carlo simulation results in Section 4. Section 5 provides an empirical example 

wherein we use our panel LM test in an empirical example testing the inflation rates of 22 OECD 

countries. Section 6 provides concluding remarks.  

2.  The Transformed Univariate Unit Root Tests with Trend Shifts 

This paper suggests an LM-based unit root test for panel data that allows for breaks in 

both the level and trend of the series under investigation. This panel LM unit root test is based on 

the univariate LM unit root test. Thus, we begin our analysis with a discussion of the univariate 

LM unit root test, following Lee and Strazicich (2009). It is possible to consider a DF-type test 

but we note that LM-based unit root tests are less sensitive to nuisance parameter problems than 

DF-based unit root tests. This is the motivation for our choice of the LM-based unit root test as 

the foundation for our panel data test. 

We consider the following data generating process (DGP) based on the unobserved 

components representation: 

  yt = 'Zt + et,   et =  et-1 + t ,       (1) 

where Zt contains deterministic variables. The unit root null hypothesis is  = 1. If Zt = [1, t]', 

then the DGP is the same as that in the no-break test of Schmidt and Phillips (1992, hereafter 

SP). The level-shift only, or "crash," model can be described by Zt = [1, t, Dt]', where Dt = 1 for t 

 TB+1 and zero otherwise, and TB denotes the time period of the break. The LM version of the 

crash model was closely examined in Amsler and Lee (1995). The trend-break, or "changing 

growth" model, can be described by Zt = [1, t, DTt
*]', where DTt

* = t−TB for t  TB+1, and zero 

otherwise. Finally, when Zt = [1, t, Dt, DTt
*]' we have the most general model with level and 
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trend breaks. This more general model is the most widely utilized in applied works, and will be 

the focus of our paper. 

 To consider multiple breaks, we can include additional dummy variables such that: 

  Zt = [1, t, D1t,.., DRt, DT1t
*,.., DTRt

*] ,     (2) 

where Djt = 1 for t  TBj+1, j=1,..,R, and zero otherwise, and DTjt
* = t−TBj for t  TBj+1 and zero 

otherwise. Following the LM (score) principle, we impose the null restriction  = 1 and consider 

in the first step the following regression in differences: 

  yt = 'Zt + ut ,        (3) 

where  = [1, 2, 3j, 4j], j=1,..,R.  The unit root test statistics are then obtained from the 

following regression: 

  yt = 'Zt + St-1+ et ,       (4) 
 

where S


t denotes the de-trended series 

  S


t = yt −    − Zt 


 .         (5) 

Here,  is the coefficient in the regression of yt on Zt in (3), and   is the restricted MLE of : 

That is,   = y1 – Z1


 . Subtracting   in (5) makes the initial value of the de-trended series begin 

at zero with S


1 = 0, but letting  = 0 leads to the same result. It is important to note that in the 

de-trending procedure (5), the de-trending coefficient  was obtained in regression (3) using first 

differenced data.1 Also note that Zt is used in (4), rather than Zt in which case the DF type test 

                                                 
1  This two-step detrending method also is used in the DF-GLS type tests of Elliott, Rothenberg and Stock 
(1996). When (3) is replaced with yt

* = 'Zt
* + ut, where yt

* = yt – (1-c/T)yt-1, Zt
* = Zt – (1-c/T)Zt-1, and c 

takes on a small value, we can obtain the DF-GLS type tests. As a special case when c = 0, we have the 
LM type test. The DF-GLS type test also can be considered and it can be marginally more powerful than 



  7

can be obtained. Then, the dummy variable Dt becomes Dt = Bt, which is a point dummy 

variable. The point dummy variable will not affect the asymptotic distribution of the test, but it 

should not be omitted in the testing regression. However, as we will discuss later, the 

dependency on nuisance parameters cannot be removed with this de-trending procedure in the 

model with trend breaks. 

 The LM unit root test statistic is defined by: 

   = t-statistic for the null hypothesis  = 0.     (6) 

To allow for serially correlated and heterogeneously distributed innovations, one can include the 

terms S


t-j, j=1,.,k in (4) to correct for serial correlation in the usual augmented type tests: 

  yt = 'Zt + St-1+ 
j=1 

k

 dj S


t-j + et .      (7) 

Lee and Strazicich (2009) showed that the asymptotic distribution of the test statistics is obtained 

from the following result. 

Proposition 1:  Suppose that the data generating process implies (1) with  = 1 and Zt = [1, t, 

D1t,.., DRt, DT1t
*,.., DTRt

*] for the model with level and trend-breaks. We define Vi
*(r), which is 

the weak limit of the partial sum residual process S


t  
in (5), as follows: 

                                                                                                                                                             
the corresponding LM test. However, note that both the LM and DF-GLS tests adopt the same detrending 
method using (3), which is the main source of power gains. One technical difficulty of the DF-GLS test in 
the panel setting is that we would need to obtain different values of c for different model specifications 
(different combinations of N and T, and different break locations) in order to obtain valid critical values in 
finite samples. This task is somewhat troublesome. Moreover, the value of c is often obtained 
asymptotically when T is 500 or 1,000. Therefore, the focus of our paper is on the LM-type test.  



  8

  

 
    

    




















 1     1   

                     

             

                                  

  )(*

1
*

1R

211212
*
2

111
*
1

rforrV

rforrV

rforrV

rV

RRRR

i








.   (8) 

Then, we have 

     − 
 1 
 2   [ 

j=1 

R+1

 i

0

1
 V_i(r)2dr]–1/2   ,     (9) 

where i
 denotes the fraction of sub-samples in each regime such that=  /T, i

= Bi 

− TBi-1)/T, i = 2,..,R, and R+1
= (T − TBR)/T. Here, V_i (r) is the projection of the process Vi(r) on 

the orthogonal complement of the space spanned by the trend break function dz(,r), as defined 

over the interval r  [0, 1]. Vi(r) = Wi(r) – rWi(1) with a Wiener process Wi(r) for i = 1,.., R.2 

Proof:  See Lee and Strazicich (2009). 

 The result in (9) shows that, in contrast to the model with level shifts in Amsler and Lee 

(1995), the asymptotic distributions of the test statistics with trend breaks depend on the nuisance 

parameters, i
. However, Lee and Strazicich (2009) adopt an approach similar to that in Park 

and Sung (1994) where the dependency of the test statistic on the nuisance parameter can be 

removed with the following transformation: 
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2 In the above, the argument ri

* = (r−i)/(i−i−1) is defined over the range between i−1and i, which has 
been transformed into r defined over the range 0 to 1. 
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We then replace S


t-1 with S


t-1
* in the testing regression and change (7) to: 

  yt = 'Zt + St-1
*+ 

j=1 

k

 dj S


t-j + et .     (11) 

Theorem 1:  Let * be the t-statistic for  = 0.  Then, the asymptotic distributions of these test 

statistics will be invariant to the nuisance parameter  

  *   − 
 1 
 2  [ 

j=1 

R+1
 0

1
 V_i(r)2dr]−1/2 ,      (12) 

where V_i(r) is defined in Proposition 1. 

Proof:  See Lee and Strazicich (2009). 

 The above result shows that the transformed unit root test statistic * no longer depends 

on the nuisance parameter j in the trend-break model, although information on  is required to 

construct the test statistic. Following the transformation, the asymptotic distribution of * only 

depends on the number of trend breaks, since the distribution is given as the sum of R 

independent stochastic terms. With one trend-break (R = 1), the distribution of * is the same as 

that of the untransformed test  using  = 1/2, regardless of the initial location of the break(s). 

Similarly, with two trend-breaks (R = 2), the distribution of * is the same as that of the 

untransformed test  using  = 1/3 and  = 2/3. In general, for the case of R multiple breaks, 

the same analogy holds:  the distribution of * is the same as that of the untransformed test  

using j = j/(R+1), j = 1,.., R. Therefore, we do not need to simulate new critical values at all 

possible break point combinations. Instead, we only need critical values that correspond to the 

number of breaks, R. In Table 1, we reproduced and provided the critical values of exogenous 
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tests for R = 1,.., 4 and T = 50, 100, 200, 500 and 1,000, respectively, which are obtained in Lee 

and Strazicich (2009), via Monte Carlo simulations. These critical values can be used when the 

break locations are known, or they are estimated consistently.3 

 As we will see, the above invariance results will prove helpful in constructing panel LM 

unit root tests with unknown trend breaks. However, the invariance result does not mean that one 

can adopt an incorrect number and/or placement of breaks, even under the null. In fact, one 

should include the correct number of breaks and their correct placement when performing unit 

root tests. This is true for two reasons. First, unit root tests lose power under the stationary 

alternative hypothesis if the number and/or placement of breaks is incorrect. Second, as noted by 

Perron (1989), the usual augmented DF tests will be biased against rejecting the null when the 

stationary alternative is true and a structural break is ignored. This also will hold for LM tests 

with trend breaks. 

3.  The Transformed Panel Unit Root Tests with Trend Shifts 

We now develop a new panel LM test statistic with trend shifts. Our testing procedure is 

similar to that of ILT, but we utilize the transformed LM unit root statistic given in (11). Since 

our test is set in the panel framework, we add the subscript "i" to equation (11), highlighting the 

fact that we run the testing regression for each cross-section unit: 

                                                 
3  In this paper, as in ILT (2005), we do not consider using the critical values of the endogenous break 
tests. We maintain the assumption that the break location parameters can be estimated consistently. The 
usual method of minimizing the sum of squared residuals and the standard information criteria can be 
used in this context. A recent development in the literature also shows that break estimates are consistent 
both under the null and alternative; see Perron and Zhu (2005). Furthermore, it has been shown that 
univariate unit root tests assuming consistency of the estimated breaks perform better than endogenous 
tests; see Perron (2006), and Kim and Perron (2009) for example. Using the critical values of the 
endogenous tests in a panel setting would yield aggravated size distortions since small biases in the 
estimates of the break parameters in the univariate tests would add up in the panel setting as N increases, 
even if these biases are negligible in the univariate setting. 
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  yi,t = 'Zi,t + iS


i,t-1
*+ 

j=1 

k

 dij S


i,t-j + eit , i = 1,.., N   (11) 

In this expression, S


i,t−1
* is as defined in (8). We then denote the resulting test statistic as i

*. The 

test statistic is based on the following null hypothesis, 

 H0:  i = 0   for all i 

against the alternative hypothesis 

 H1: i  < 0, for some i. 

We can construct the t-bar statistic using the average of the test statistics. The panel LM statistic 

for the above hypothesis can be obtained as the standardized statistic of the following average 

test statistic: 

  = 
 1 
 N 

i=1 

N

 i
*.        (13) 

The distribution of  depends on T, but is free of other parameters under the null hypothesis. We 

denote the expected value and variance of  under the null hypothesis as E( ) and V( ). Note that 

the critical values of  do not vary much over N. In fact, our simulation results confirm that the 

critical values are almost invariant to different values of N in the data generating process. 

However, we note that the effect of the autocorrelation structure cannot be downplayed. As such, 

we compute the values of E( ) and V( ) for various combinations of N and T (sample size), p 

(truncation lag), and R (number of breaks), via stochastic simulations using 500,000 replications. 

These are reported in Table 2. As noted above, our test statistics do not depend on the location of 

breaks. As such, we do not need these mean and variance values for different locations of breaks. 

This is the key feature of our proposed panel test statistic; under any other method, it is not easy 

to formulate a valid test statistic if the test depends on the location(s) of the break(s). Formally, 

our panel test statistic follows a standard normal distribution: 
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  LM( *~ ) = 
 

 
    -   

 

N t E t

V t

 
 




     (14) 

where E


( t ) and V


( t ) are the estimated values of the average of the means and variances of t , say 

E( t ) and Var( t ), as reported in Table 2, which correspond to the estimated parameter values of p 

and R. That is, we compute these values as: 

 E


( t ) = 
 1 
 N  

i=1 

N

 E( t (R


i, p


i))       (15) 

and: 

 V


( t ) = 
 1 
 N  

i=1 

N

 Var( t (R


i, p


i)), 

where (R


i, p


i) are the estimated values of the number of breaks and the number of truncation lags 

in the testing regression for the i-th cross-section unit. Thus, we allow for different numbers of 

breaks and truncation lags in different cross-section units. Note that we utilize the transformed 

test statistic i
* using the estimated break locations and the number of breaks (R


i) for each cross-

section unit. Therefore, our suggested panel statistic utilizes endogenously determined values of 

all parameters and it is free of nuisance parameters. In the next section, we employ various forms 

of DGPs to confirm that the suggested tests are robust to different locations of trend-breaks. 

On the Issue of Cross-Correlations 

The earliest panel unit root tests assumed zero correlations in the innovations across the 

panel. Such correlation is very likely to exist in cross-country studies and, therefore, such an 

assumption is highly unrealistic. Several methods have been proposed as a means of dealing with 

such correlations. To begin with, IPS proposed cross-section demeaning of each series in the 

panel as a way of partially dealing with cross correlations in the panel. However, this approach 
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may not be effective in the presence of pair-wise correlations among cross-section units. As 

such, Choi (2006) generalized the de-meaning procedure and proposed a two-way error 

components model as a means of controlling for cross-correlations in the panel. The method 

suggested by Choi (2006) easily can be adopted in our framework. In the case of heterogeneous 

panels, however, the two-way error components model might be too restrictive. This led Bai and 

Ng (2002), Phillips and Sul (2003) and Moon and Perron (2004) to propose common factor 

models as a means of correcting for cross correlations. Others have suggested the use of 

seemingly unrelated regression to correct this problem. Alternatively, one may consider using the 

cross-sectionally augmented ADF (CADF) procedure suggested by Pesaran (2007). Each of the 

above-mentioned methods for dealing with cross correlations in the innovations of the panel has 

both merits and caveats, depending on the situation. Any one of these methods could be used in 

conjunction with our proposed test without affecting the properties and relative performance of 

the test. However, providing the details of each of these extensions (or comparing the 

performance of these tests in correcting for cross-correlations) is beyond the scope of this paper.  

We do, however, wish to illustrate the application of the CADF procedure of Pesaran 

(2007) to our testing framework. This procedure is simpler but most effective. Specifically, we 

assume that the error term in (11) has the single-factor structure 

  eit  =  i ft + uit         (16) 

where ft is the unobserved common effect. Then, we consider the following testing regression 

which is augmented by the cross-section averages of lagged levels and first-differences of the 

individual series 

 yi,t = i'Zi,t + iS
*

i,t-1+ g S
_

*
t-1 + hS

_
t
* + 

j=1 

 p
 gijS

_
*
t-j +  

j=1 

 p
 dijS


i,t-j +  uit .  (17) 

We use the t-statistic on i, denoted as i
**, to construct the mean statistic  as in (13).  
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 Finding critical values that do not depend on nuisance parameters is again the key issue. 

Note that Pesaran (2007) suggests using the mean statistic, as given in (13), for a formal panel 

test statistic, and provides its critical values for various combinations of N and T. Similarly, we 

suggest using the critical values for various combinations of N and T, but we utilize both the 

means and variances of .4  Then, one can use the standardized statistic in (14), which follows a 

standard normal distribution. There is one more technical issue that will affect the performance 

of the test:  the means and variances of the test statistic vary significantly over different AR 

truncation orders (p). As such, it is important to use the means and variances of  for each 

different value of p, as in IPS (2003) and ILT (2005). Accordingly, we simulate new critical 

values for the means and variances for various combinations of N and T and for different 

numbers of beaks, R. These values are provided in the Appendix and were obtained via 

stochastic simulations using 50,000 replications. 

4.  Simulation Results 

In this section, we provide finite sample Monte Carlo simulation results on the Panel LM 

unit root tests with trend breaks. Our goal is to verify the theoretical results presented above, and 

to examine the general performance of the tests. To perform our simulations, pseudo-iid N(0,1) 

random numbers were generated using the Gauss procedure RNDNS and all calculations were 

conducted using the Gauss software version 8.0. The DGP used in the simulations has the form 

in (1). For simplicity, we let Zt = [1, t, Dt, DTt
*] and [1, 2, 3, 4] so that 3 is the level shift 

coefficient and 4 is the trend break coefficient. We also let  = TB/T denote the fraction of the 

                                                 
4  We observe that the mean statistic  in (13) does not vary over different values of N in our case. On the 
other hand, we observe that the variance changes significantly over different combinations of N and T. 
Thus, we suggest using the critical values of both the means and variances of   for various combinations 
of N and T.  
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series before the break occurs at t = TB + 1. The initial values y0 and 0 are assumed to be 

random, and we assume that 
2 = 1. All simulation results are calculated using 20,000 

replications. The size (frequency of rejections under the null when  = 1) and power (frequency 

of rejections under the alternative when 0.9) of the tests are evaluated using 5% critical 

values. 

In Table 3, we report the size and power properties of the univariate unit root tests for 

different break magnitudes and locations. In each case, we wish to examine how the transformed 

test (*) and untransformed test () behave under the null and alternative hypotheses. In 

particular, we wish to examine if the transformed test (*) is invariant to the size and location of 

breaks. The results reported in Table 3 show that both tests have reasonably good size under the 

null. While they show mild size distortions in some cases, there is no clear pattern of significant 

size distortions. This is an encouraging finding and supports our proposition that the size 

properties are fairly invariant to different locations and magnitudes of level and trend breaks. 

Comparing the size properties of the transformed test with the untransformed test we see little 

difference, although the transformed test has marginally more accurate size than the 

untransformed test. Thus, the (untransformed) LM test is fairly less sensitive to the location of 

the trend break location. In this regard, Nunes (2004) might suggest ignoring the location of the 

trend shift in the LM version test. However, it is evident that the transformed test performs better 

and the effect of ignoring the trend shift will be more problematic in the panel version of the test, 

as we will see the result below. Most importantly, we see only trivial variation in size for the 

transformed test as the size and location of the trend break varies. Since we are using the same 

critical values in the transformed test regardless of the size and location of the breaks, these 
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results are gratifying and confirm our theoretical prediction that the transformed test with trend 

break is invariant to the level and trend break. 

In Table 4, we report the size and power properties of the panel unit root tests for 

different break magnitudes and locations. The point of this simulation is the same as that of the 

univariate tests. We wish to confirm that the transformed panel tests LM(*), which are based on 

the transformed univariate tests, i
*, are robust to different break locations. To show this, we set 

the break location parameter  = 0.3. We also consider the untransformed tests LM(), which are 

based on the untransformed test statistics .  Since LM() depends on the break location, we will 

need to use the mean and variances that correspond to correct break locations. However, we still 

use the same mean and variances of the transformed test statistics to see how they behave under 

the null and alternative hypotheses. Moreover, we also examine the panel LM unit root tests 

without breaks under the heading of "LM no break" as well as the IPS tests without breaks under 

the heading of "DF no break," respectively. The results reported in Panel A of Table 4 show that 

the transformed test LM(*) has reasonably good size under the null. In addition, the power 

property seems reasonable. While the test shows mild size distortions in some cases, there is no 

clear pattern of significant size distortions. These results are gratifying and confirm our 

theoretical prediction that the transformed panel LM test with trend breaks is invariant to breaks. 

In particular, this finding supports our proposition that the size properties are invariant to 

different locations and magnitudes of level and trend breaks. Comparing the size properties of 

the transformed test with the untransformed test we see significant differences. The size 

distortion problem is evident from the untransformed tests. It is also clear that the loss of power 
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is significant for the panel tests that ignore breaks. The power is nearly zero for both the panel 

LM and the DF tests without breaks. 

The results in Panel B of Table 4 are based on the case where the break location is given 

randomly at any location. We use the uniform distribution for the break location (between 

0.15 and 0.85The pattern of the results is not much different from that in Panel A of Table 4. 

The transformed panel LM tests are mostly robust to different break locations and the 

untransformed tests show size distortions and loss of power. The panel tests without breaks 

exhibit a considerable loss of power. 

5.  Empirical Application 

We now apply our panel LM unit root test to the CPI inflation rates of 22 OECD 

countries5 to address the question of whether or not the inflation rate is stationary. It is especially 

important to address this question while allowing for changes in the slope of inflation since this 

series typically exhibits changing trends as the series responds to various shocks in the economy. 

For example, many countries experienced periods of markedly increasing inflation rates in the 

postwar period—during the first oil shock, for example, while this trend reversed itself in more 

recent decades with much of the global economy experiencing relatively low rates of inflation—

for example, during the "oil glut" of the early 1980s and the low global inflation rates of the 

1990s. 

The question of whether inflation is I(0) or I(1) has important policy implications for 

many aspects of macroeconomics and finance. For example, the validity of the Phillips curve, the 

ability to forecast inflation or conduct inflation targeting, the analysis of real interest rates, the 

                                                 
5 The complete list of countries is given in Table 5. The data were taken from the OECD's Main 
Economic Indicators CD ROM, September 2007. Inflation rates were computed by first differencing the 
logged CPI series.  
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conduct of monetary policy, and the validity of the capital asset pricing model critically hinge on 

the long-run properties of inflation. Nonetheless, there still is some debate as to whether inflation 

should be considered as a stationary or non-stationary series. 

The earliest research on the stationarity of inflation rates considered this issue without 

allowing for breaks, and supported the notion that inflation is non-stationary. This includes 

Nelson and Schwert (1977), Barsky (1987), Ball and Cecchetti (1990), and Kim (1993). With the 

publication of Perron's seminal paper in 1989, researchers began to recognize the importance of 

allowing for breaks when testing for unit roots. When allowing for breaks, some researchers 

began to conclude that inflation is stationary, although this finding may be called into question. 

Perron (1989), for example, concluded that the US CPI inflation rate is non-stationary, even 

when allowing for an exogenous level shift. Zivot and Adrews (1992) were the first to analyze 

inflation rates while allowing for an endogenously determined break in the level of the series, 

and they were able to reject the null of a unit root in US CPI inflation. However, their test does 

not allow for a break under the null and, thus, their rejection of the null does not guarantee that 

the series is stationary. Similarly, Lumsdaine and Papell (1997), when allowing for breaks under 

only the alternative hypothesis, were able to reject the null of a unit root in inflation. Nunes, 

Newbold and Kuan (1997), however, were not able to reject the null of a unit root in inflation 

when allowing for breaks under both the null and alternative hypotheses. It is important to note 

that no one has yet considered this issue while allowing for trend breaks under both the null and 

alternative while using a test statistic that is invariant to the break-point location. This is a crucial 

shortcoming of all previous analyses. We hope to improve on prior studies by applying our new 

test to this issue. 
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 Our testing procedure begins by computing the transformed univariate LM unit root test 

statistics (allowing for trend breaks) for the inflation rate series of each country. We apply the 

two-step procedure suggested by Lee and Strazicich (2009) which begins by jointly determining 

from the data whether or not breaks exist and, if they do, their location, while also determining 

the optimal lag length "p" that is needed to correct for autocorrelation in the errors. This 

procedure makes use of the "maximum F test," which is described in Lee and Strazicich (2009), 

assuming the data generating process specified in equation (1), where i = 1. We begin by 

allowing for two trend breaks6 and perform a grid search over all possible break point locations, 

while eliminating 10% of the end points of the sample. If two trend breaks are found to exist in 

the inflation series of a given country, we then move to step 2 of the testing procedure in which 

we test for a unit root in the series using the transformed two-break LM unit root test statistic. 

If we can reject the presence of two trend breaks in the inflation series of a given country, 

we repeat the entire 2-step procedure again where, now, step 1 determines whether or not a 

single trend break exists and, if so, where it is located (while simultaneously determining the 

optimal lag length "p"). If one trend break is found to exist in the inflation series of a given 

country, we then move to step 2 and test for a unit root in this series using the transformed one-

break LM unit root test statistic. 

If no trend breaks are found to exist in the inflation series of a given country, we then 

employ the procedure suggested by Lee and Strazicich (2003), which tests for a unit root while 

allowing for up to two breaks in the level of the series. Since the distribution of the LM unit root 

test is invariant to the location of any existing level shifts, there is no need to employ the 

transformation of Park and Sung (1994) in this instance. If no breaks of any kind are found to 
                                                 
6 A series with more than two breaks might best be modeled as a non-linear process and, thus, we restrict 
our analysis to consider only up to two breaks. 
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exist in the inflation series of a given country, we compute the no-break LM unit root test of 

Schmidt and Phillips (1992) for that country. 

After computing all of the univariate LM unit root tests allowing for the optimal number 

and type of breaks, we then use these statistics to compute the standardized panel LM unit root 

test statistic, as described in equation (14). Since the asymptotic distribution of this test statistic 

is standard normal, the critical values of the test follow the usual z-scores of the standard normal 

distribution. 

The results of testing are shown in Table 5. For purposes of comparison, we report the 

results of the univariate LM unit root tests in Panel A of Table 5. We also report the optimal 

break point locations for each country and we note that all countries were found to have two 

trend breaks. The locations of the break dates identified by our procedure seem quite reasonable. 

For example, 17 of the 22 countries under investigation experienced their first break during the 

period from 1972 to 1977, a well-known period of high global inflation coinciding with the first 

oil crisis and the collapse of the Bretton Woods Accord. All of the remaining five countries 

experienced their first break during the period from 1981 to 1986, during the time of the so-

called "oil glut." Not surprisingly, seven of the countries under investigation here experienced 

their second break during this same period, while Greece experienced its second break during the 

1979 energy crisis—the beginning of a period of declining growth in Greece. Nine countries 

experienced their second break from 1990 to 1992. This is of interest since 1990 marked a high 

point of average global inflation rates over the postwar period and it was at this time when 

central banks across the globe began to embrace inflation targeting. World-wide average 

inflation rates declined significantly over the early 1990s. In particular, it is interesting to note 

that New Zealand experienced its second break in 1990, shortly after its central bank began its 
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policy of inflation targeting. Similarly, Canada experienced its second break in 1991, which 

coincides with the period during which its central bank first adopted inflation targeting. 

Based on the univariate LM unit root tests, the inflation rates for 16 of 22 countries were 

found to be stationary at the 10% level of significance or better. We conjecture that the failure to 

reject the null of a unit root in the remaining series may be due to the relatively low power of the 

univariate test, which may be improved by moving to the panel framework. To examine this 

issue, panel B of Table 5 reports the panel LM unit root test statistic. The null of a unit root is 

strongly rejected in this case, supporting the notion that these series are stationary with 

occasional trend breaks. Since the power of the unit root test greatly increases in the panel 

setting, it is not surprising that we find strong evidence of stationarity using the panel test 

statistic while we do not find this result uniformly in all series when testing in the univariate 

setting. This result supports the notion that inflation rates in these OECD countries are stationary 

with occasional trend breaks. 

6.  Conclusion 

We have suggested a new panel LM unit root tests allowing for heterogeneous structural 

breaks in both the intercept and slope of each cross-section in the panel. Given that all existing 

unit root tests of this nature depend on the nuisance parameters that indicate the size and location 

of any breaks, we employ a method that makes the asymptotic distribution of our test invariant to 

these nuisance parameters. We derive the asymptotic properties of our test and also examine its 

finite-sample properties. Overall, we show evidence that our suggested tests are robust to 

different locations of trend-shifts. No existing tests have this crucially important feature. 
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TABLE 1:  CRITICAL VALUES FOR THE TRANSFORMED UNIVARIATE 
LM UNIT ROOT TEST 

 
 sig. 
 level Sample Size 

 R (%) T=50 T=100 T=200 T=500 T=1000 
 
 1 1 −4.604 −4.363 −4.261 −4.206 −4.176 
  5 −3.950 −3.792 −3.716 −3.675 −3.662 
  10 −3.635 −3.501 −3.443 −3.410 −3.402 
 
 2 1 −5.365 −4.980 −4.799 −4.698 −4.687 
  5 −4.661 −4.379 −4.261 −4.191 −4.175 
  10 −4.338 −4.097 −3.997 −3.934 −3.921 
 
 3 1 −6.092 −5.510 −5.302 −5.140 −5.127 
  5 −5.362 −4.931 −4.752 −4.634 −4.620 
  10 −5.019 −4.635 −4.484 −4.382 −4.361 
 
 
Notes:  R = # of breaks. 
 



TABLE 2:  MEANS AND VARIANCES FOR THE PANEL LM UNIT ROOT TEST 
 
PANEL A:  R=0 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 25 −1.99 0.38 −1.99 0.39 −1.91 0.38 −1.90 0.41 −1.82 0.43 −1.80 0.47 −1.71 0.51 −1.69 0.58 −1.60 0.65 
 50 −1.98 0.36 −1.97 0.36 −1.93 0.35 −1.93 0.37 −1.89 0.37 −1.89 0.38 −1.84 0.38 −1.83 0.39 −1.78 0.40 
 100 −1.97 0.34 −1.97 0.34 −1.95 0.34 −1.95 0.34 −1.93 0.34 −1.93 0.34 −1.90 0.34 −1.90 0.35 −1.88 0.35 
 200 −1.98 0.34 −1.97 0.34 −1.96 0.34 −1.96 0.34 −1.95 0.34 −1.95 0.34 −1.94 0.34 −1.93 0.34 −1.93 0.34 

 
PANEL B:  R=1 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 25 −2.69 0.40 −2.73 0.40 −2.67 0.37 −2.68 0.42 −2.59 0.50 −2.57 0.62 −2.44 0.73 −2.35 0.89 −2.18 1.04 
 50 −2.67 0.37 −2.68 0.36 −2.65 0.34 −2.67 0.34 −2.63 0.34 −2.64 0.36 −2.59 0.37 −2.58 0.41 −2.52 0.44 
 100 −2.65 0.34 −2.66 0.34 −2.64 0.33 −2.65 0.32 −2.63 0.32 −2.64 0.32 −2.62 0.31 −2.62 0.32 −2.60 0.32 
 200 −2.64 0.33 −2.64 0.33 −2.63 0.32 −2.64 0.32 −2.63 0.31 −2.63 0.31 −2.63 0.31 −2.63 0.31 −2.62 0.31 

 
PANEL C:  R=2 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 50 −3.22 0.37 −3.27 0.35 −3.26 0.32 −3.30 0.33 −3.27 0.35 −3.28 0.40 −3.21 0.45 −3.18 0.53 −3.08 0.59 
 100 −3.19 0.34 −3.21 0.33 −3.21 0.31 −3.23 0.30 −3.23 0.30 −3.24 0.30 −3.23 0.29 −3.24 0.30 −3.22 0.31 
 200 −3.17 0.33 −3.18 0.32 −3.18 0.32 −3.19 0.31 −3.19 0.30 −3.20 0.30 −3.20 0.29 −3.21 0.29 −3.20 0.28 

 
PANEL D:  R=3 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 50 −3.72 0.39 −3.82 0.35 −3.84 0.31 −3.90 0.35 −3.87 0.43 −3.86 0.55 −3.73 0.64 −3.64 0.76 −3.47 0.86 
 100 −3.66 0.35 −3.71 0.33 −3.72 0.30 −3.76 0.29 −3.76 0.28 −3.79 0.29 −3.78 0.29 −3.80 0.32 −3.77 0.36 
 200 −3.63 0.33 −3.65 0.32 −3.66 0.31 −3.68 0.30 −3.68 0.29 −3.71 0.28 −3.71 0.27 −3.72 0.27 −3.72 0.26 

 
Notes:  R = # of breaks; p = order of autocorrelation; T = # of time periods 
 



TABLE 3:  SIZE & POWER OF UNIVARIATE LM UNIT ROOT TEST 
5% REJECTION RATES 

 
 T=100 T=500 
 DGP Size (β=1.0) Power (β=1.0) Size (β=1.0) Power (β=1.0) 

 3 4 λ *  *  *  *  

 2 0.5 0.3 0.043 0.039 0.138 0.137 0.045 0.044 0.973 0.991 
   0.5 0.054 0.054 0.149 0.149 0.048 0.048 0.995 0.995 
   0.8 0.040 0.034 0.120 0.120 0.050 0.038 0.874 0.996 

 5 0.5 0.3 0.049 0.042 0.131 0.128 0.041 0.036 0.976 0.991 
   0.5 0.053 0.053 0.149 0.149 0.050 0.050 0.996 0.996 
   0.8 0.039 0.031 0.130 0.134 0.044 0.028 0.872 0.996 

 2 1 0.3 0.042 0.041 0.134 0.132 0.049 0.041 0.970 0.990 
   0.5 0.048 0.048 0.147 0.147 0.053 0.053 0.994 0.994 
   0.8 0.043 0.030 0.125 0.128 0.048 0.029 0.880 0.994 

 5 1 0.3 0.046 0.040 0.129 0.133 0.044 0.040 0.975 0.993 
   0.5 0.047 0.047 0.148 0.148 0.048 0.048 0.994 0.994 
   0.8 0.040 0.031 0.122 0.125 0.048 0.033 0.870 0.997 

 5 1.5 0.3 0.043 0.038 0.137 0.127 0.051 0.042 0.972 0.992 
   0.5 0.052 0.052 0.148 0.148 0.045 0.045 0.995 0.995 
   0.8 0.043 0.033 0.120 0.132 0.050 0.031 0.873 0.998 

 10 1.5 0.3 0.048 0.038 0.136 0.132 0.050 0.045 0.972 0.990 
   0.5 0.051 0.051 0.144 0.144 0.048 0.048 0.995 0.995 
   0.8 0.044 0.034 0.121 0.122 0.051 0.033 0.870 0.994 

 5 3 0.3 0.046 0.040 0.137 0.134 0.050 0.041 0.974 0.992 
   0.5 0.048 0.048 0.149 0.149 0.048 0.048 0.994 0.994 
   0.8 0.041 0.029 0.131 0.126 0.054 0.034 0.876 0.997 

 
Notes:  T = # of time periods; 3 = intercept coefficient; 4 = break coefficient (magnitude of the 

break); λ = break location; * = transformed univariate test statistic;  = untransformed univariate 
test statistic. 
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TABLE 4.A:  SIZE & POWER OF PANEL LM UNIT ROOT TEST 
5% REJECTION RATES, 4 = 0.5, λ = 0.3 

 
 T=25 T=50 T=100 T=250 
 N Test size power size power size power size power 

  LM(*) 0.047 0.068 0.036 0.148 0.044 0.659 0.051 1.000 

 10 LM() 0.035 0.059 0.025 0.109 0.015 0.613 0.018 1.000 

  LM no break 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.005 0.000 0.024 0.001 

  LM(*) 0.032 0.059 0.029 0.240 0.048 0.950 0.042 1.000 

 25 LM() 0.019 0.035 0.008 0.132 0.011 0.927 0.008 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.006 0.001 0.131 0.468 

  LM(*) 0.017 0.051 0.026 0.370 0.035 0.999 0.041 1.000 

 50 LM() 0.008 0.027 0.003 0.169 0.003 0.997 0.003 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.005 0.004 0.492 1.000 

  LM(*) 0.014 0.063 0.015 0.607 0.025 1.000 0.036 1.000 

 100 LM() 0.002 0.018 0.000 0.228 0.000 1.000 0.000 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.017 0.039 0.904 1.000 
 
Notes:  4 = break coefficient (magnitude of the break); λ = break location; T = # of time periods; 

N = # of cross sections; LM(*) = transformed panel LM test statistic allowing for level and trend 

breaks; LM() = untransformed panel LM test statistic allowing for level and trend breaks; "LM 
no break" = a conventional LM-type panel unit root test without allowing for breaks; "DF no 
break" = a conventional Dickey-Fuller-type panel unit root test without allowing for breaks. 
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TABLE 4.B:  SIZE & POWER OF PANEL LM UNIT ROOT TEST 
5% REJECTION RATES, 4 = 0.5; λ = RANDOMLY DETERMINED 

 
 T=25 T=50 T=100 T=250 
 N Test size power size power size power size power 

  LM(*) 0.034 0.047 0.050 0.165 0.043 0.676 0.054 1.000 

 10 LM() 0.024 0.035 0.026 0.127 0.020 0.640 0.026 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.001 0.000 0.005 0.000 0.024 0.001 

  LM(*) 0.017 0.036 0.030 0.228 0.038 0.945 0.050 1.000 

 25 LM() 0.008 0.021 0.009 0.140 0.007 0.924 0.007 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  LM(*) 0.016 0.037 0.020 0.353 0.039 0.999 0.036 1.000 

 50 LM() 0.004 0.017 0.005 0.161 0.002 0.998 0.002 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  LM(*) 0.006 0.029 0.016 0.579 0.025 1.000 0.043 1.000 

 100 LM() 0.001 0.005 0.000 0.239 0.000 1.000 0.000 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
Notes:  4 = break coefficient (magnitude of the break); λ = break location; T = # of time periods; 

N = # of cross sections; LM(*) = transformed panel LM test statistic allowing for level and trend 

breaks; LM() = untransformed panel LM test statistic allowing for level and trend breaks; "LM 
no break" = a conventional LM-type panel unit root test without allowing for breaks; "DF no 
break" = a conventional Dickey-Fuller-type panel unit root test without allowing for breaks. 
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TABLE 5, PANEL A:  UNIVARIATE LM UNIT ROOT TESTS ON INFLATION 

 Country: Univariate LM Stat Optimal Lag Break Locations 

 Australia 6.371*** 7 1972, 1991 
 Austria 6.738*** 8 1972, 1982 
 Belgium 7.084*** 1 1972, 1988 
 Canada 4.680** 7 1982, 1991 
 Finland 9.007*** 8 1976, 1992 
 France 0.972 8 1973, 1985 
 Germany 5.655*** 5 1981, 1990 
 Greece 4.399* 7 1974, 1979 
 Italy 8.119*** 8 1972, 1984 
 Japan 4.278 8 1973, 1977 
 Korea 4.213 7 1981, 1987 
 Luxembourg 7.082*** 7 1972, 1984 
 Netherlands 4.306 3 1973, 1988 
 New Zealand 5.881*** 8 1977, 1990 
 Norway 7.202*** 7 1983, 1990 
 Portugal 5.778*** 2 1976, 1992 
 South Africa 5.999*** 8 1972, 1992 
 Spain 3.162 2 1975, 1986 
 Sweden 7.370*** 8 1985, 1990 
 Switzerland 4.158 7 1975, 1996 
 United Kingdom 6.889*** 2 1973, 1984 
 United States 7.531*** 1 1976, 1983 
 

 
 
 
 

TABLE 5, PANEL B:  PANEL LM UNIT ROOT TESTS ON INFLATION 
 
 

Panel LM Test Statistic  =  9.807*** 
 

 
Notes:  *Significant at 10%; **Significant at 5%; ***Significant at 1% 
 



  30

APPENDIX: MEANS AND VARIANCES FOR THE PANEL LM UNIT ROOT TEST USING PESARAN’S PROCEDURE 
 

PANEL A:  R = 0         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 30 -2.14 0.86 -2.10 1.04 -1.96 1.17 -1.90 1.40 -1.75 1.57 -1.66 1.81 -1.48 2.07   
10 50 -2.15 0.75 -2.12 0.83 -2.05 0.91 -2.02 1.00 -1.94 1.09 -1.90 1.21 -1.81 1.29 -1.76 1.39 -1.67 1.46 
10 100 -2.15 0.69 -2.14 0.72 -2.10 0.75 -2.09 0.80 -2.05 0.83 -2.03 0.87 -2.00 0.90 -1.98 0.94 -1.94 0.97 
10 200 -2.15 0.66 -2.15 0.67 -2.13 0.67 -2.12 0.69 -2.11 0.70 -2.10 0.71 -2.08 0.73 -2.08 0.75 -2.06 0.76 
20 30 -2.14 0.96 -2.09 1.23 -1.96 1.45 -1.89 1.75 -1.74 1.95 -1.65 2.20 -1.48 2.45   
20 50 -2.14 0.81 -2.12 0.93 -2.04 1.04 -2.01 1.19 -1.93 1.31 -1.89 1.47 -1.81 1.57 -1.76 1.70 -1.66 1.78 
20 100 -2.15 0.73 -2.14 0.79 -2.10 0.84 -2.09 0.90 -2.05 0.94 -2.04 1.00 -2.00 1.05 -1.99 1.12 -1.95 1.17 
20 200 -2.15 0.70 -2.15 0.71 -2.13 0.73 -2.12 0.74 -2.11 0.77 -2.10 0.79 -2.08 0.82 -2.08 0.85 -2.06 0.88 
30 30 -2.14 1.09 -2.09 1.43 -1.96 1.74 -1.89 2.16 -1.74 2.37 -1.65 2.61 -1.48 2.80   
30 50 -2.14 0.90 -2.12 1.08 -2.05 1.22 -2.01 1.46 -1.93 1.64 -1.89 1.85 -1.81 1.98 -1.76 2.17 -1.66 2.20 
30 100 -2.15 0.80 -2.14 0.87 -2.10 0.93 -2.09 1.01 -2.06 1.08 -2.04 1.17 -2.00 1.24 -1.99 1.33 -1.95 1.42 
30 200 -2.15 0.77 -2.15 0.79 -2.13 0.81 -2.12 0.84 -2.11 0.87 -2.10 0.91 -2.08 0.95 -2.08 0.99 -2.06 1.02 
50 30 -2.14 1.30 -2.09 1.85 -1.96 2.33 -1.89 2.95 -1.74 3.13 -1.65 3.50 -1.48 3.57   
50 50 -2.15 1.09 -2.12 1.34 -2.05 1.59 -2.02 1.92 -1.94 2.15 -1.90 2.44 -1.81 2.62 -1.76 2.86 -1.67 2.93 
50 100 -2.15 0.91 -2.14 1.00 -2.10 1.09 -2.09 1.21 -2.05 1.32 -2.04 1.44 -2.00 1.55 -1.98 1.70 -1.94 1.82 
50 200 -2.15 0.88 -2.15 0.93 -2.13 0.98 -2.12 1.03 -2.11 1.09 -2.10 1.14 -2.08 1.19 -2.08 1.25 -2.06 1.30 
70 30 -2.14 1.58 -2.09 2.34 -1.96 3.05 -1.89 3.80 -1.74 4.09 -1.65 4.49 -1.48 4.45   
70 50 -2.15 1.25 -2.12 1.59 -2.05 1.95 -2.02 2.37 -1.94 2.74 -1.90 3.18 -1.81 3.37 -1.76 3.59 -1.67 3.69 
70 100 -2.15 1.07 -2.14 1.20 -2.10 1.32 -2.09 1.48 -2.05 1.62 -2.04 1.81 -2.00 1.96 -1.98 2.14 -1.94 2.28 
70 200 -2.15 0.99 -2.15 1.06 -2.13 1.12 -2.12 1.18 -2.11 1.25 -2.10 1.32 -2.08 1.39 -2.08 1.47 -2.06 1.54 

100 30 -2.14 1.94 -2.09 3.00 -1.96 3.96 -1.89 5.13 -1.74 5.56 -1.65 5.87 -1.48 5.82   
100 50 -2.15 1.52 -2.12 1.99 -2.05 2.45 -2.01 3.05 -1.93 3.51 -1.90 4.02 -1.81 4.35 -1.76 4.79 -1.67 4.76 
100 100 -2.15 1.28 -2.14 1.47 -2.10 1.65 -2.09 1.90 -2.05 2.09 -2.04 2.35 -2.00 2.57 -1.99 2.85 -1.95 3.06 
100 200 -2.15 1.17 -2.15 1.25 -2.13 1.33 -2.12 1.42 -2.10 1.51 -2.10 1.61 -2.08 1.70 -2.07 1.80 -2.06 1.90 
200 30 -2.14 3.25 -2.09 5.33 -1.96 7.16 -1.89 9.26 -1.74 9.86 -1.65 10.5 -1.48 9.82   
200 50 -2.15 2.42 -2.12 3.37 -2.05 4.27 -2.02 5.37 -1.94 6.27 -1.90 7.33 -1.81 7.90 -1.77 8.52 -1.67 8.52 
200 100 -2.15 2.04 -2.14 2.40 -2.10 2.75 -2.09 3.18 -2.05 3.60 -2.04 4.07 -2.00 4.50 -1.98 4.97 -1.95 5.35 
200 200 -2.15 1.82 -2.15 1.98 -2.13 2.13 -2.12 2.30 -2.11 2.48 -2.10 2.68 -2.08 2.87 -2.07 3.08 -2.06 3.28 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL B:  R = 1         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 32 -2.76 0.69 -2.72 0.77 -2.55 0.79 -2.45 0.91 -2.24 1.09 -2.10 1.43 -1.86 1.93   
10 50 -2.76 0.60 -2.74 0.64 -2.65 0.66 -2.61 0.70 -2.50 0.73 -2.44 0.80 -2.31 0.86 -2.23 1.00 -2.09 1.14 
10 100 -2.76 0.54 -2.75 0.56 -2.71 0.57 -2.70 0.59 -2.65 0.60 -2.64 0.62 -2.59 0.62 -2.57 0.64 -2.52 0.65 
10 200 -2.75 0.53 -2.75 0.53 -2.73 0.53 -2.73 0.54 -2.71 0.54 -2.71 0.54 -2.69 0.55 -2.68 0.55 -2.66 0.55 
20 32 -2.76 0.70 -2.72 0.82 -2.55 0.87 -2.45 0.97 -2.24 1.16 -2.10 1.52 -1.85 2.08   
20 50 -2.76 0.61 -2.74 0.67 -2.65 0.70 -2.61 0.75 -2.50 0.78 -2.44 0.84 -2.31 0.91 -2.23 1.05 -2.09 1.23 
20 100 -2.76 0.54 -2.75 0.56 -2.71 0.57 -2.70 0.58 -2.66 0.60 -2.64 0.62 -2.59 0.63 -2.57 0.66 -2.52 0.69 
20 200 -2.76 0.51 -2.75 0.52 -2.74 0.52 -2.73 0.53 -2.71 0.54 -2.71 0.55 -2.69 0.56 -2.68 0.58 -2.66 0.59 
30 32 -2.76 0.74 -2.72 0.89 -2.55 0.93 -2.45 1.03 -2.24 1.21 -2.10 1.62 -1.86 2.24   
30 50 -2.76 0.61 -2.74 0.67 -2.65 0.72 -2.61 0.80 -2.50 0.83 -2.44 0.90 -2.31 0.97 -2.23 1.13 -2.09 1.29 
30 100 -2.76 0.55 -2.75 0.59 -2.71 0.60 -2.70 0.64 -2.66 0.66 -2.64 0.69 -2.59 0.70 -2.57 0.72 -2.52 0.75 
30 200 -2.76 0.52 -2.75 0.53 -2.74 0.54 -2.73 0.55 -2.71 0.57 -2.71 0.58 -2.69 0.59 -2.68 0.60 -2.66 0.61 
50 32 -2.76 0.85 -2.72 1.08 -2.55 1.11 -2.45 1.17 -2.24 1.37 -2.10 1.85 -1.85 2.56   
50 50 -2.76 0.70 -2.74 0.81 -2.65 0.88 -2.61 0.95 -2.50 0.98 -2.44 1.03 -2.31 1.10 -2.23 1.31 -2.10 1.48 
50 100 -2.76 0.59 -2.75 0.64 -2.71 0.67 -2.70 0.73 -2.66 0.76 -2.64 0.80 -2.59 0.83 -2.57 0.85 -2.52 0.85 
50 200 -2.76 0.53 -2.75 0.55 -2.73 0.56 -2.73 0.58 -2.71 0.59 -2.70 0.62 -2.69 0.64 -2.68 0.66 -2.66 0.67 
70 32 -2.76 0.94 -2.72 1.22 -2.55 1.26 -2.45 1.35 -2.24 1.53 -2.10 2.09 -1.86 2.98   
70 50 -2.76 0.75 -2.74 0.89 -2.65 0.99 -2.61 1.08 -2.50 1.12 -2.44 1.20 -2.31 1.27 -2.23 1.49 -2.09 1.71 
70 100 -2.76 0.62 -2.75 0.68 -2.71 0.74 -2.70 0.81 -2.66 0.85 -2.64 0.92 -2.59 0.95 -2.57 0.97 -2.52 0.98 
70 200 -2.76 0.58 -2.75 0.60 -2.73 0.62 -2.73 0.65 -2.71 0.66 -2.71 0.69 -2.69 0.72 -2.68 0.74 -2.66 0.76 

100 32 -2.76 1.07 -2.72 1.46 -2.55 1.50 -2.45 1.60 -2.24 1.82 -2.10 2.46 -1.86 3.47   
100 50 -2.76 0.83 -2.74 1.04 -2.65 1.19 -2.61 1.29 -2.50 1.31 -2.44 1.39 -2.31 1.51 -2.23 1.77 -2.09 2.01 
100 100 -2.76 0.68 -2.75 0.76 -2.71 0.82 -2.70 0.91 -2.66 0.97 -2.64 1.03 -2.59 1.06 -2.57 1.10 -2.52 1.11 
100 200 -2.76 0.62 -2.75 0.65 -2.73 0.68 -2.73 0.73 -2.71 0.76 -2.70 0.80 -2.68 0.84 -2.68 0.87 -2.66 0.90 
200 32 -2.76 1.55 -2.72 2.27 -2.55 2.35 -2.45 2.38 -2.24 2.73 -2.10 3.73 -1.86 5.28   
200 50 -2.76 1.14 -2.74 1.57 -2.65 1.85 -2.61 2.03 -2.50 2.01 -2.44 2.09 -2.31 2.24 -2.23 2.66 -2.10 3.08 
200 100 -2.76 0.88 -2.75 1.04 -2.71 1.18 -2.70 1.35 -2.66 1.49 -2.64 1.63 -2.59 1.69 -2.57 1.75 -2.52 1.76 
200 200 -2.76 0.78 -2.75 0.85 -2.73 0.92 -2.73 0.99 -2.71 1.06 -2.71 1.13 -2.69 1.20 -2.68 1.28 -2.66 1.33 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL C:  R = 2         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 35 -3.30 0.63 -3.29 0.66 -3.12 0.66 -3.02 0.86 -2.79 1.12 -2.56 1.51 -2.22 2.03   
10 50 -3.29 0.57 -3.29 0.58 -3.20 0.56 -3.15 0.59 -3.02 0.67 -2.95 0.82 -2.78 0.96 -2.64 1.15 -2.42 1.36 
10 100 -3.27 0.50 -3.28 0.50 -3.24 0.50 -3.23 0.50 -3.19 0.50 -3.17 0.51 -3.12 0.51 -3.10 0.53 -3.04 0.56 
10 200 -3.25 0.49 -3.26 0.48 -3.24 0.47 -3.24 0.47 -3.23 0.46 -3.23 0.46 -3.21 0.46 -3.21 0.47 -3.19 0.46 
20 35 -3.30 0.65 -3.29 0.68 -3.12 0.67 -3.02 0.86 -2.79 1.21 -2.56 1.70 -2.22 2.25   
20 50 -3.28 0.55 -3.29 0.57 -3.19 0.55 -3.15 0.59 -3.03 0.66 -2.95 0.81 -2.78 1.00 -2.64 1.25 -2.41 1.49 
20 100 -3.26 0.48 -3.27 0.49 -3.24 0.49 -3.23 0.49 -3.19 0.50 -3.17 0.51 -3.12 0.50 -3.10 0.54 -3.04 0.58 
20 200 -3.26 0.46 -3.26 0.46 -3.25 0.46 -3.25 0.45 -3.23 0.46 -3.23 0.46 -3.21 0.46 -3.21 0.47 -3.19 0.47 
30 35 -3.30 0.65 -3.29 0.67 -3.13 0.68 -3.03 0.91 -2.79 1.26 -2.56 1.81 -2.22 2.40   
30 50 -3.28 0.57 -3.29 0.60 -3.20 0.59 -3.15 0.62 -3.03 0.69 -2.95 0.88 -2.79 1.09 -2.64 1.40 -2.42 1.66 
30 100 -3.27 0.48 -3.27 0.49 -3.24 0.49 -3.23 0.51 -3.19 0.50 -3.18 0.52 -3.12 0.53 -3.10 0.56 -3.04 0.59 
30 200 -3.26 0.45 -3.26 0.45 -3.25 0.45 -3.25 0.45 -3.23 0.45 -3.23 0.45 -3.21 0.46 -3.21 0.46 -3.19 0.46 
50 35 -3.30 0.71 -3.29 0.77 -3.13 0.74 -3.03 1.02 -2.79 1.44 -2.56 2.10 -2.22 2.75   
50 50 -3.28 0.61 -3.29 0.66 -3.19 0.64 -3.15 0.64 -3.03 0.74 -2.95 0.93 -2.78 1.19 -2.64 1.54 -2.42 1.95 
50 100 -3.27 0.50 -3.27 0.52 -3.24 0.53 -3.23 0.55 -3.19 0.54 -3.17 0.56 -3.12 0.57 -3.10 0.60 -3.04 0.63 
50 200 -3.26 0.47 -3.26 0.48 -3.25 0.49 -3.25 0.49 -3.23 0.48 -3.23 0.49 -3.21 0.50 -3.21 0.51 -3.19 0.51 
70 35 -3.30 0.76 -3.29 0.83 -3.12 0.78 -3.02 1.07 -2.79 1.59 -2.56 2.37 -2.22 3.30   
70 50 -3.28 0.64 -3.29 0.70 -3.20 0.69 -3.15 0.70 -3.03 0.78 -2.95 1.01 -2.78 1.34 -2.64 1.82 -2.42 2.34 
70 100 -3.27 0.52 -3.27 0.55 -3.24 0.56 -3.23 0.58 -3.19 0.59 -3.17 0.60 -3.12 0.61 -3.10 0.63 -3.04 0.67 
70 200 -3.26 0.49 -3.26 0.50 -3.25 0.51 -3.25 0.51 -3.23 0.52 -3.23 0.54 -3.21 0.55 -3.21 0.55 -3.19 0.55 

100 35 -3.30 0.86 -3.29 0.96 -3.12 0.86 -3.03 1.19 -2.79 1.84 -2.56 2.85 -2.22 3.98   
100 50 -3.28 0.68 -3.29 0.78 -3.20 0.78 -3.15 0.79 -3.03 0.90 -2.95 1.19 -2.78 1.63 -2.64 2.21 -2.42 2.78 
100 100 -3.27 0.54 -3.27 0.58 -3.24 0.62 -3.23 0.66 -3.19 0.68 -3.18 0.69 -3.12 0.69 -3.10 0.72 -3.04 0.77 
100 200 -3.26 0.49 -3.26 0.51 -3.25 0.52 -3.25 0.54 -3.23 0.55 -3.23 0.58 -3.21 0.59 -3.21 0.60 -3.19 0.60 
200 35 -3.30 1.12 -3.29 1.33 -3.12 1.18 -3.02 1.64 -2.79 2.60 -2.56 4.26 -2.22 6.22   
200 50 -3.28 0.84 -3.29 1.07 -3.19 1.06 -3.15 1.05 -3.03 1.17 -2.95 1.64 -2.78 2.30 -2.64 3.27 -2.42 4.36 
200 100 -3.27 0.64 -3.27 0.74 -3.24 0.80 -3.23 0.85 -3.19 0.87 -3.17 0.90 -3.12 0.91 -3.10 0.95 -3.04 1.02 
200 200 -3.26 0.56 -3.26 0.61 -3.25 0.65 -3.25 0.69 -3.23 0.73 -3.23 0.76 -3.21 0.78 -3.21 0.80 -3.19 0.80 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL D:  R = 3         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 38 -3.79 0.61 -3.84 0.61 -3.69 0.66 -3.60 1.03 -3.27 1.35 -2.95 1.77 -2.50 2.16   
10 50 -3.76 0.56 -3.80 0.54 -3.72 0.52 -3.68 0.61 -3.53 0.82 -3.40 1.05 -3.13 1.24 -2.90 1.53 -2.59 1.73 
10 100 -3.72 0.48 -3.75 0.47 -3.72 0.45 -3.73 0.44 -3.69 0.44 -3.67 0.46 -3.62 0.49 -3.59 0.53 -3.52 0.60 
10 200 -3.70 0.46 -3.71 0.45 -3.70 0.43 -3.71 0.43 -3.70 0.42 -3.70 0.42 -3.69 0.42 -3.69 0.41 -3.67 0.40 
20 38 -3.79 0.61 -3.84 0.59 -3.69 0.66 -3.60 1.03 -3.27 1.44 -2.95 1.93 -2.51 2.38   
20 50 -3.76 0.55 -3.80 0.53 -3.72 0.50 -3.68 0.60 -3.53 0.81 -3.39 1.10 -3.13 1.34 -2.90 1.62 -2.59 1.87 
20 100 -3.72 0.46 -3.74 0.45 -3.72 0.43 -3.73 0.42 -3.69 0.42 -3.68 0.44 -3.62 0.48 -3.59 0.54 -3.52 0.61 
20 200 -3.70 0.44 -3.71 0.43 -3.70 0.42 -3.71 0.41 -3.70 0.41 -3.70 0.40 -3.69 0.40 -3.69 0.39 -3.67 0.40 
30 38 -3.79 0.63 -3.83 0.60 -3.69 0.67 -3.60 1.07 -3.27 1.46 -2.95 2.05 -2.51 2.61   
30 50 -3.76 0.55 -3.80 0.54 -3.72 0.49 -3.68 0.62 -3.53 0.83 -3.39 1.14 -3.13 1.43 -2.90 1.78 -2.59 2.08 
30 100 -3.72 0.46 -3.74 0.46 -3.72 0.44 -3.72 0.45 -3.69 0.44 -3.68 0.46 -3.62 0.47 -3.59 0.53 -3.52 0.60 
30 200 -3.70 0.42 -3.71 0.42 -3.70 0.41 -3.71 0.40 -3.70 0.40 -3.70 0.40 -3.69 0.40 -3.69 0.40 -3.67 0.40 
50 38 -3.79 0.66 -3.84 0.64 -3.69 0.66 -3.60 1.16 -3.27 1.64 -2.95 2.36 -2.51 2.98   
50 50 -3.76 0.58 -3.80 0.57 -3.72 0.54 -3.68 0.65 -3.53 0.88 -3.39 1.25 -3.12 1.60 -2.89 2.01 -2.58 2.41 
50 100 -3.72 0.47 -3.74 0.47 -3.72 0.46 -3.73 0.46 -3.69 0.46 -3.68 0.48 -3.62 0.51 -3.59 0.58 -3.52 0.67 
50 200 -3.70 0.43 -3.71 0.43 -3.70 0.43 -3.71 0.43 -3.70 0.42 -3.70 0.42 -3.69 0.42 -3.69 0.43 -3.67 0.43 
70 38 -3.79 0.68 -3.84 0.66 -3.69 0.70 -3.60 1.24 -3.27 1.85 -2.95 2.73 -2.51 3.54   
70 50 -3.76 0.59 -3.80 0.60 -3.72 0.56 -3.68 0.68 -3.53 0.96 -3.39 1.41 -3.12 1.83 -2.89 2.34 -2.58 2.80 
70 100 -3.72 0.49 -3.74 0.49 -3.72 0.48 -3.73 0.47 -3.69 0.47 -3.67 0.50 -3.62 0.55 -3.59 0.62 -3.52 0.71 
70 200 -3.70 0.43 -3.71 0.44 -3.70 0.44 -3.71 0.44 -3.70 0.44 -3.70 0.44 -3.69 0.44 -3.69 0.43 -3.67 0.43 

100 38 -3.79 0.74 -3.84 0.70 -3.69 0.75 -3.60 1.42 -3.27 2.18 -2.95 3.22 -2.51 4.15   
100 50 -3.76 0.64 -3.80 0.65 -3.72 0.61 -3.68 0.72 -3.53 1.07 -3.39 1.60 -3.12 2.16 -2.89 2.79 -2.59 3.34 
100 100 -3.72 0.50 -3.74 0.51 -3.72 0.51 -3.73 0.52 -3.69 0.51 -3.68 0.53 -3.62 0.56 -3.59 0.66 -3.52 0.78 
100 200 -3.70 0.44 -3.71 0.44 -3.70 0.44 -3.71 0.45 -3.70 0.45 -3.70 0.46 -3.69 0.46 -3.69 0.46 -3.67 0.46 
200 38 -3.79 0.93 -3.84 0.90 -3.69 0.93 -3.60 1.85 -3.27 3.08 -2.95 4.86 -2.51 6.40   
200 50 -3.76 0.76 -3.80 0.83 -3.72 0.73 -3.68 0.92 -3.53 1.45 -3.39 2.31 -3.13 3.15 -2.89 4.21 -2.59 5.27 
200 100 -3.72 0.56 -3.74 0.63 -3.72 0.64 -3.72 0.64 -3.69 0.62 -3.68 0.64 -3.62 0.71 -3.59 0.84 -3.52 1.04 
200 200 -3.70 0.49 -3.71 0.51 -3.70 0.53 -3.71 0.56 -3.70 0.57 -3.70 0.57 -3.69 0.57 -3.69 0.58 -3.67 0.57 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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