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ABSTRACT 

I develop methods that produce consistent estimates of the Vasicek-Basel IRB (VAIRB) 
credit risk model parameters. I apply these methods to Moody’s data on corporate 
defaults over the period 1920–2008 and assess the model fit and construct hypothesis 
tests using bootstrap methods. The results show that the VAIRB does not capture the 
variability in Moody’s default data: there are numerous episodes in which obligors 
default with much greater frequency than predicted. This pattern is consistent with a 
missing common factor that affects default correlation only intermittently—a missing 
factor similar to the frailty covariate in Duffie et al. (2009). Unlike Lopez (2004), I find 
the VAIRB correlation parameter to be larger for lower-rated credits. I use estimates of 
the VAIRB error distribution to construct capital allocations for model risk and find that 
the capital buffers for model risk are substantial, especially for lower-graded credits. 
VAIRB common factor estimates exhibit positive autocorrelation and thus long time 
series are usually necessary to produce reliable model estimates. Alternatively, I use 
common factor and correlation parameter estimates from the 1920-2008 data to control 
for common factor realizations when estimating unconditional default rates (PDs) from 
short samples. I estimate PDs and confidence intervals using default data for Moody’s 
alpha-numeric rating grades (1998-2008). After correcting for common factor effects, 
sample average default rates are shown to overstate the PD for most credit grades in this 
sample period.   
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HOW WELL DOES THE VASICEK-BASEL AIRB MODEL FIT THE DATA? 

EVIDENCE FROM A LONG TIME SERIES OF CORPORATE CREDIT RATING DATA 

 
I.   INTRODUCTION 

The Basel II Advanced Internal Ratings-Based (AIRB) framework was developed 

to set minimum regulatory capital requirements for the largest and most sophisticated 

internationally active banks.1 The Financial Stability Institute (2006) reports that 95 

countries plan to implement Basel II by 2015, and more than 60 percent of them plan to 

include the AIRB option for credit risk capital requirements. 

The AIRB regulatory framework uses an asymptotic version of Vasicek’s (1987) 

portfolio credit loss model to approximate the annual default rate distributions on 

portfolios of credits that are differentiated by a bank-assigned credit rating. To 

approximate the portfolio credit loss distribution for each credit grade, the AIRB 

framework uses the Vasicek default rate model along with bank estimates of loss given 

default (LGD) and exposure at default (EAD).2 Regulatory capital requirements are set 

equal to the 99.9 percent upper-tail critical value of the portfolio loss distribution 

associated with each credit grade. 

Much has been written about Basel II, but few if any studies have estimated the 

model’s parameters directly from default rate data alone or have analyzed how well the 

AIRB model fits a long time series of default data produced by portfolios of credits 

categorized under a consistent credit rating system. 

                                                 
1 The Basel Committee on Banking Supervision (2006), hereafter BCBS. 

2 The LGD and EAD estimates are not part of the Vasicek model but are calculated  
independently of the parameters of that model. 
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This paper develops a new approach for estimating the parameters of the Vasicek-

AIRB model (VAIRB). Panel regression methods are used to construct VAIRB parameter 

estimates from time series data on a cross section of failure rates from a consistent credit 

rating system. The new approach differs from the ususal “calibration” approach in which 

the model’s correlation parameter is estimated using stock return data (e.g., Zeng and 

Zhang [2001], Lopez [2004]) and unconditional loss rates are inferred from a separate 

analysis of default data. My new proposed method estimates all VAIRB parameters 

simultaneously using only data on observed default rates. The methodology produces 

consistent estimates of the unconditional probability of default (PD) associated with each 

credit grade, the VAIRB default correlation parameter, and the common factor 

realizations that drive default correlation.3 

I implement the estimation methodology using default rate data from Moody’s 

Investors Service on rated corporate bond issues over the period 1920–2008. I construct 

consistent estimates and the sampling distributions for PDs associated with Aa, A, Baa, 

Ba, B, and CaaC rating grades as well as for the VAIRB default correlation parameter. 

Moody’s data provide perhaps the longest times series of default rates for specific credit 

grades assigned under a systematic credit-rating system.  Moody’s data were used as a 

reference when the AIRB framework was developed and are implicitly recognized by the 

Basel Committee on Bank Supervision as an acceptable benchmark of comparison for 

calibrating the PDs associated with a bank’s internal ratings system.4 

                                                 
3 The methodology can accommodate multiple correlation parameters if the data include 
a sufficiently large number of credit grades. 

4 This rating agency “mapping” approach is described in BCBS (2006), p. 102, paragraph 
461-463. 
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The results show that the VAIRB is unable to accurately reproduce the observed 

variation in Moody’s corporate default data. Observed default rates among credit classes 

are not as highly correlated as the VAIRB predicts.  Moreover, within each grade there 

are episodes when credits default with far greater frequency than is predicted by the 

model.  

The empirical shortcomings of the VAIRB are not unexpected given the findings 

of related studies of default correlations.5  For example, using a reduced form doubly-

stochastic default intensity model, Duffie, Eckner, Horel, and Saita (2009) find that a 

model with a common latent factor and observable macroeconomic variables is  

incapable of controlling for the correlation in firm-level corporate default intensities.  

Duffie et al. model the additional default correlation with an unobserved time-varying 

covariate that they term a “frailty” factor. The frailty factor can generate increases or 

decreases in default correlation, but it does so only intermittently. By comparison, the 

VAIRB is a simple and restrictive specification, so its inability to replicate the default 

patterns observed in the data is unsurprising. Still, given the importance of the VAIRB, 

including its use to set international bank capital requirements, it is important to quantify 

the model’s accuracy regardless. 

Formal hypothesis tests are constructed to investigate whether the default rate 

patterns in the data are consistent with a single VAIRB correlation parameter. The test 

results show that different correlation parameters are needed to model high-quality and 

low-quality credit grades. In particular, Moody’s lower-quality credit grades require a 

much larger correlation parameter to explain observed default rates. This result 
                                                 
5 These include, inter alia, Das, Duffie, Kapadia, Saita (2007), Das, Freed, Geng, and 
Kapadia (2006), and Duffie, Eckner, Horel, and Saita (2009). 
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contradicts the findings of Lopez (2004), who used stock return data and KMV-style 

factor models (Zeng and Zhang [2001]) to indirectly infer VAIRB default correlation 

parameter values. Lopez concluded that higher-quality credits require a larger correlation 

parameter, and these findings were used by the BCBS to calibrate the Basel II AIRB 

model.6 

At present, there is no widely-accepted robust method for verifying the accuracy 

of credit grade PD estimates derived from small samples.  The VAIRB specifies that 

default rate realizations are driven by a common factor which should be accounted for 

when PDs are estimated. The data, moreover, indicate that default rates have strong 

positive autocorrelation. This autocorrelation makes it impossible to reliably estimate 

PDs from small samples unless there is a control for the common factor. Consistent 

estimates of the VAIRB common factor realizations and correlation parameter can be 

recovered from long time series panel data and can be used to construct consistent 

estimates of the PD and associated confidence interval of a new credit grade even when 

that grade has only a limited sample history. I derive the algorithm to correct for common 

factor realizations when estimating PDs and PD sampling distributions.  I demonstrate 

the procedure using default data on Moody’s alpha-numeric rating scale over the period 

1998–2008. Over this sample, which includes 7 years of above-average default rate 

experience, the common factor correction reduces most credit grade PD estimates relative 

to the sample average PD estimator.  In all but a few cases involving low default rate 

portfolios, the common factor correction produces a tighter sampling distribution for the 

                                                 
6 The AIRB capital rule includes a regulatory correlation function for corporate credits 
that mimics the findings of the Lopez study.   
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PD estimate relative to the sampling distribution associated with the uncorrected sample 

average default rate estimate of PD.    

The proposed method for controlling for the latent factor realizations when 

estimating PD and PD confidence intervals is novel in the literature.7 Some studies have 

attempted to account for common market effects on PD estimators by adjusting 

confidence interval estimates, but none has directly controlled for the common effects 

specified by the VAIRB.8  

Under the VAIRB model assumptions, zero default rate observations (ZDROs) 

should almost never occur, and yet one-third of the Moody’s sample are ZDROs. The 

unexpectedly high frequency of ZDROs may imply that the Vasicek default rate model is 

inappropriate for the data, but it may also be a consequence of measurement error. The 

measurement error arises because the data are not generated by the pure asymptotic 

portfolios modeled by the VAIRB. 

Lando and Skødeberg (2002) develop a continuous time model that uses ratings 

transition data and Markov-chain methods to impute default rates for rating classes with 

few or no recorded defaults over short (one-year) horizons. This approach uses data on 

the length of time (the duration) each credit remains in a rating grade. The VAIRB 

estimation approach proposed here uses cohort data and so the Lando and Skødeberg 

method cannot be applied.  Pluto and Tasche (2005) suggest an alternative method for 

                                                 
7 The typical approach for estimating one-year unconditional default rates using cohort 
data does not control for year (common factor) effects. Data are pooled for multiple 
years, and unconditional default rates are estimated as the sample proportion of credits in 
a rating grade that default within a one-year horizon. 

8 These studies include Cantor and Falkenstein (2001), Hanson and Schuermann (2006), 
and Cantor, Hamilton, and Tennant (2007).  



 7

deriving confidence bands for PDs under the maintained assumption that credit grades 

only weakly rank-order obligors. Their method is also inappropriate for purposes of this 

paper as it produces confidence bands for PDs, not point estimates, and it is not 

applicable when many of the rating grades have measureable default rates. 

I treat ZDROs as observations with measurement error and consider alternative 

upper bounds on the magnitude of this error.  I report VAIRB parameter estimates when 

ZDROs are truncated to alternative values. The results show that VAIRB parameter 

estimates are sensitive to the treatment accorded ZDROs.  While the approach recognizes 

the importance of measurement error in generating ZDROs, it does not address the 

problems created by measurement error in positive default rate observations.  There are 

many unsettled questions that could benefit from additional research related to statistical 

inference from cohort default data that includes measurement error. 

The explanatory power of the VAIRB has important implications for the 

prudential regulation of bank minimum capital requirements. The VAIRB is the basis for 

international minimum capital regulations for the largest and most complex banking 

institutions, yet the model has only a weak ability to reproduce spikes in observed default 

rate data. To assess the importance of this shortcoming, I estimate the capital that would 

be needed as a buffer against VAIRB model prediction error for each of the Moody’s 

credit grades. The implied capital requirements for VARB model risk are economically 

important for all credit grades, and for lower-quality credits, model risk capital far 

exceeds the credit risk capital assigned by the Basel II AIRB rule. 

The next section reviews the VAIRB portfolio default rate model. Section III 

describes the proposed method for estimating the VAIRB model parameters. Section IV 
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discusses VAIRB parameter estimation when default rates are autocorrelated. The 

Moody’s corporate default rate data are discussed in Section V, and Section VI discusses 

the interpretation and treatment of ZDROs. Section VII reports model parameter 

estimates and hypothesis test statistics. Section VIII analyzes the implications of VAIRB 

prediction errors for internal capital allocation and for the adequacy of Basel II AIRB 

regulatory minimum capital levels. Section IX provides evidence on the magnitude of 

bias in small-sample estimates of PDs. Section X develops the correction algorithm that 

controls for the autocorrelation of common factor realizations in a small sample estimator 

for the PD of a credit grade and applies the procedure to default rate data for credits rated 

using Moody’s alpha-numeric rating scale. A final section summarizes the results and 

concludes. A short appendix demonstrates the consistency of the proposed VAIRB 

estimators. 

  

II.   THE VASICEK PORTFOLIO DEFAULT RATE MODEL 

The Gaussian single factor model of portfolio credit losses developed by Vasicek 

(1987), Finger (1999), Schönbucher (2001), Gordy (2003), and others provides an 

approximation for the distribution of the default rate on a well-diversified credit portfolio. 

The asymptotic version of the Vasicek model that is used in the Basel II AIRB model 

(VAIRB) focuses on a large diversified portfolio in which idiosyncratic risk is fully 

diversified and the only source of portfolio default rate uncertainty is the realization of  a 

single common latent Gaussian factor.9 

                                                 
9 The VAIRB assumes that the PD, exposure at default, and loss rates in default (LGD) 
are known nonstochastic quantities for all obligors. 



 9

Default on credit i  is triggered by the realization of a latent unobserved factor, 

iV~ , which is interpreted as a proxy for the asset value of the firm that issued credit .i   

iV~  is determined by two random Gaussian factors, one of which, Me~ , is common to the 

latent factors associated with each credit. iV~  is distributed standard normal, and credit i 

is assumed to default when its latent factor realizes a value less than a credit-specific 

threshold, ii DV <
~

. The unconditional probability that credit i defaults is ( ),ii DPD Φ=  

where ( )⋅Φ  represents the cumulative standard normal density function. The common 

factor, Me~ , induces correlation between individual credit latent factor realizations, 

( )
( ) ( ) ,~~

~,~

ji

ji

VV

VVCov

σσ
ρ =  which induces a correlation among default realizations. 

An asymptotic portfolio includes an infinite number of individual credits with 

identical PD and default correlation parameters. In an asymptotic portfolio, idiosyncratic 

risks are completely diversified, and therefore the portfolio’s realized default rate is 

driven by the common factor alone. The default rate for an asymptotic portfolio 

composed of credits with a PD of default iPD  and a default correlation parameter ρ  is 

given by ,~
iX  

                            
( )

⎟
⎟
⎠

⎞
⎜
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⎝
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−
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−
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ρ
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Exhibit 1 shows plots of simulated default rates on six hypothetical asymptotic 

portfolios (bonds rated Aa, A, Baa, Ba, B, and CaaC) where credit defaults are 

determined by the VAIRB. The correlation parameter is assumed to be 0.20, which is 

typical of the correlation value used in many applications for corporate credits. The 
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simulated default rates on the portfolios in Exhibit 1 are very highly correlated because 

the idiosyncratic risk of default is completely diversified and the default rate is driven by 

only a single common factor. Under the VAIRB, realized portfolio default rates will be 

nearly perfectly correlated for all non-zero ρ  values. The default rates would be exactly 

perfectly correlated except that equation (1) applies different nonlinear transformations to 

the common Gaussian term .Me  In Figure 1, the sample pairwise correlations are in 

excess of 0.98. 

The simulations are based on the asymptotic Vasicek model with unconditional default rate values of 15 bps (Aa), 18 bps (A), 
29 bps (Baa), 82 bps (Ba), 229 bps (B) , 655 bps (CaaC) and a correlation parameter of 0.20.

Exhibit 1: Simulated Time Series of Vasicek Model Default Rates
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III.   ESTIMATION OF THE ASYMPTOTIC VASICEK MODEL PARAMETERS  

I adopt the common practice of identifying a credit rating (credit grade) with its 

constant unconditional probability of default. Let jtX  represent the realized default rate 

on an asymptotic portfolio associated with credit grade j in year t. Equation (1) implies 
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Observed default rates may deviate from their theoretically predicted value by a mean-

zero error term, itε
~ . Consistent with the VAIRB model assumptions, the error terms for a 

rating grade are assumed to be independent and identically distributed across time. Rating 

grade errors are assumed uncorrelated within a cross section, but each rating grade may 

have its own residual variance, 
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Incorporating model error, the empirical specification of the VAIRB is 
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Consistent Estimation of the Transformed Model Parameters 

Using the following definitions,  

                                           )(1
jtjt Xy −Φ=            (5) 
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equation (4) can be written, 
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                                               jttjjt bay ε~~ ++=  .                                                 (8)           

Notice that jty , the asymptotic portfolio default rate transformed by the inverse normal 

distribution function, is not bounded between 0 and 1 but is a continuous variable in the 

range ∞± . ja  is a constant determined by the default correlation parameter and the PD 

for credit grade j. tb  is a scalar multiple of the common Gaussian factor realization; it is 

independent of each asymptotic portfolio’s credit rating. 

Under VAIRB assumptions, the parameters ja  and tb can be consistently 

estimated in a panel regression model with N cross sections and T time period. Let 

( )ititititit DNDDDW K321=  be a ( )N×1  selection matrix that indicates 

membership in a specific credit grade. For example, the transformed default rate 

associated with credit grade 1 has tit yy 1=  and ( )00011 K=tW . Similarly the 

transformed default rate associated with credit grade 2 has tit yy 2=  and 

( )00102 K=tW . Define )21( 2 itiitit Tττττ K=  to be a ( )T×1 selection matrix 

that identifies the year associated with observation ity . For example, when 1iit yy = , a 

default rate observation from year 1 on credit class i , )00001(1 L=iτ ; when 

the observation is from year 3, )00100(3 L=iτ . When this notation is used, an 

empirical model for a generic portfolio default rate observation is 

( ) ( ) it
T
itT

T
itit bbbbWaaay ετ ~

321321 ++= L                       (9) 

where itε
~  is the residual term. 

In order to identify all the model’s parameters, I use the VAIRB assumption that 

the common Gaussian factor is a standard normal variable. This assumption imposes a 
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restriction that the average time effect is 0. I obtain first-stage consistent parameter 

estimates by estimating equation (9) under the restriction .0
1

=∑
=

T

t
tb  I use the first-stage 

model residuals to produce consistent estimates of the residual variances for each credit 

rating class, and I generate second-stage estimates by using restricted generalized least 

squares (GLS). 

 

Consistent Estimation of the VAIRB Parameters 

Restricted GLS provides consistent estimates of the parameters in equation (9), 

but the VAIRB parameter estimates are functions of these estimates. The VAIRB 

common factor, ,~
Mte  has unit standard deviation by assumption, so the variance of the 

time effect coefficient estimates provides an estimate of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ρ
ρ

1
. Because tb̂  are 

consistent, ∑
=

T

t
tb

T 1

2ˆ1  is a consistent estimator for ⎟⎟
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⎞
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− ρ
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1
. From this relationship, it is 

possible to solve for consistent estimators of the remaining VAIRB parameters, 
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IV.   AUTOCORRELATION ISSUES 

The VAIRB does not include the possibility of credit cycles; the common 

Gaussian factor realizations are assumed independent over time. If credit ratings are 

updated annually and efficiently so that each credit grade has a fixed one-year PD going 

forward, there should be no autocorrelation in the deviations from the credit grade’s 

unconditional default rate unless there is autocorrelation in the common factor that drives 

defaults.10 

Exhibit 2 reports first-order autocorrelation estimates for the annual default rates 

reported on selected corporate credits rated by Moody’s Investors Service. Exhibit 2 also 

reports autocorrelations for the default rate series after they are transformed using the 

inverse cumulative normal distribution. Default rates and transformed default rates 

exhibit positive autocorrelation for every credit grade examined except Aa. 

                                                 
10 There is a separate literature that investigates whether ratings changes are 
autocorrelated.  The literature suggests that a ratings downgrade increases the probability 
of a subsequent ratings downgrade where as rating up grades seem to have no effect on 
ratings transition probabilities. See for example Altman and Kao (1992) or Güttler and 
Raupach (2009). 



 15

intercept p-value p-value R2

Aa default rate 0.055 0.005 -0.079 0.470 0.006
A default rate 0.049 0.077 0.412 <.001 0.172

Baa default rate 0.140 0.010 0.452 <.001 0.208
Ba default rate 0.506 0.007 0.511 <.001 0.261
B default rate 1.697 0.002 0.520 <.001 0.270

CaaC default rate 9.477 <.001 0.303 0.005 0.091
Φ¯¹(Aa default rate) -3.860 <.001 -0.078 0.491 0.006
Φ¯¹(A default rate) -1.170 <.001 0.666 <.001 0.444
Φ¯¹(Baa default rate) -1.715 <.001 0.478 <.001 0.231
Φ¯¹(Ba default rate) -1.031 <.001 0.628 <.001 0.398
Φ¯¹(B default rate) -1.176 <.001 0.494 <.001 0.245

Φ¯¹(CaaC default rate) -1.218 <.001 0.314 0.003 0.100

Exhibit 2: Credit Cycles in the Realized Default Rates on Rated Corporate Credits
lagged 

dependent 
variabledependent variable

Estimates are based on Moody's Corporate Default Rate Data, 1920-2008. Default rates are 
the number of defaults in the year following a Moody's rating designation divided by the 
number of rated credits in a credit grade. Default rates are measured as percentages.  

The data show that default rates are strongly autocorrelated and yet the VAIRB 

model does not recognize this possibility.  One can show (see the appendix) that—

provided expression (9) is estimated over a sufficiently long time series—even if default 

rates are autocorrelated because of autocorrelation in the latent common factor, the 

VAIRB model parameters can be consistently estimated. 

The ability to generate reliable parameter estimates of the coefficients in 

expression (9) depends on the ability to recover an accurate estimate of the unconditional 

mean of the transformed default rate series. To get a sense of the length of the time series 

that may be needed to generate accurate estimates of the unconditional mean from 

expression (9) when default rates are positively autocorrelated, I conduct a Monte Carlo 

study of the small-sample distributions of the sample mean estimates from two alternative 

autoregressive processes that are representative of the Moody’s corporate default rate 
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dynamics: (i) Baa-rated credits, and (ii) Ba credits.11 I simulate the respective processes 

100 times, with 121 observations in each sample. The first 21 observations are omitted to 

remove the effect of initial conditions. For each of the 100 samples, I calculate estimates 

of the sample mean based on alternative subsample lengths, and I also calculate the 

characteristics of the respective sampling distributions. 

Exhibit 3 reports the results of the Monte Carlo analysis. The results show that the 

sample mean estimator converges toward the true unconditional mean of each process, 

but the rate of convergence is slow. Even with 100 observations in a time series sample, 

the sample mean estimate still exhibits some bias as well as significant variability. A 

comparison of the alternative processes shows that convergence is faster for the mean 

estimate of the Baa process, which has weaker autocorrelation and a smaller standard 

error associated with its Gaussian innovation. The simulation analysis suggests that, 

although the VAIRB PD parameter can be consistently estimated, reliable PD estimates 

can only be constructed from long time series samples. PD estimates from small-samples 

are likely to be unreliable.  

 

                                                 
11 The autoregressive process estimates are reported in Exhibit 2. 
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sample size 10 20 30 40 50 100

average 0.249 0.257 0.257 0.262 0.263 0.251
std dev 0.207 0.174 0.136 0.121 0.105 0.075
minimum -0.307 -0.091 -0.185 -0.040 0.050 0.082
maximum 0.712 0.701 0.663 0.641 0.586 0.429

average 1.092 1.099 1.079 1.103 1.090 1.076
std dev 0.723 0.570 0.465 0.406 0.362 0.305
minimum -0.379 -0.651 -0.353 -0.092 -0.076 0.367
maximum 2.972 2.437 2.221 2.164 2.046 2.177

Exhibit 3: Sampling Distribution for the Simple Average Estimated from a Sample 
Generated by Alternative  Autoregressive Processes

Baa process: Rt=0.141+0.4557 Rt-1+et, et~N(0,0.4191)

Ba process: Rt=0.5037+0.5145 Rt-1+et, et~N(0,1.40)

Sampling distribution for the simple sample mean of two autoregressive processes based on 
100 bootstrap replications of the indicated sample size. The autoregressive processes are 
the empirical AR (1) models for the Baa and Ba default rate processes with parameter 
estimates given in  Exhibit 2. The true unconditional sample averages for the AR (1) 
process are: 0.2590 for the Baa default rate process, and 1.0375 for the Ba default rate 
process. Each bootstrap sample begins after 21 burn-in iterations to attenuate the effects of 
initial conditions.

 

V.   PORTFOLIO DEFAULT RATE DATA 

I estimated the parameters of the VAIRB using annual default rate data on six 

different credit rating categories for corporate bonds over the period 1920–2008 as 

reported by Moody’s Investors Corporation (2009). For each of the credit rating grades—

Aaa, Aa, A, Baa, Ba, B, and CaaC—Moody’s publishes annual default rate performance 

data.12 Moody’s calculates default rates as the ratio of the number of issuers that were in 

a credit grade at the beginning of a year but defaulted within the year to the number of 

issuers that were in the credit grade at the beginning of the year.13 

                                                 
12 The Aaa-rating grade is excluded from the analysis because credits in this grade did not 
default within the first year and so this cohort data provide no information on the 1-year 
unconditional default rate associated with an Aaa rating. 

13 Moody’s excludes from the default rate calculation all credits with withdrawn ratings, 
and argues that the exclusion has little effect on the reported default rates. 
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Most rating grades include a large number of bonds in an annual cohort, although 

some cohorts likely have relatively few bonds.14 I assume that each annual default rate 

observation is an approximation for the annual default rate on an asymptotic portfolio of 

credits, and I interpret a Moody’s credit rating as an indicator of the issue’s unconditional 

probability of default.15 The obligors in a credit grade are assumed to have the same PD 

over an annual horizon, and this PD is assumed to be fixed over the sample period. 

The Moody’s annual default rates for credits rated Aa, A, Baa, Ba, B, and CaaC 

are plotted in Exhibit 4 in two separate panels to accommodate differences in default rate 

scales. 

 

                                                 
14 Moody’s does not disclose the number of bonds in each rating grade and cohort for the 
entire sample period. Rather, it provides partial information on the number of bonds in a 
rating grade, and these data indicated that in some sample years, the CaaC grade included 
relatively few bonds. 

15 Moody’s argues that a credit rating reflects an assessment of the expected performance 
of an issue along multiple (unspecified) dimensions and does not represent a ranking 
based only on the probability of default over a fixed horizon. This claim notwithstanding, 
it is common to interpret a credit agency rating as an implicit estimate of an issue’s 
probability of default. 



 19

Exhibit 4: Moody's Corporate Issuer-rated Default Rates: 1920-2008
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The plots in Exhibit 4 show that the default rates on these Moody’s rating classes 

are positively correlated. Exhibit 5 reports the sample correlation estimates along with the 

sample average annual default rates. The sample correlations reported in Exhibit 5 are not 

nearly as strong as the sample correlations implied by the VAIRB. 

 



 20

Aa A Baa Ba B CaaC
Aa 1 0.587 0.357 0.221 0.083 0.022
A 1 0.697 0.363 0.113 0.039

Baa  1 0.556 0.331 0.212
Ba 1 0.711 0.350
B 1 0.642

CaaC 1

0.063 0.092 0.271 1.063 3.395 13.103

Exhibit 5: Correlation among Moody's Corporate Bond Annual Default Rates for 
Alternative Ratings Grades, 1920-2008 

average default 
rate (%)  

 

VI.   SPECIAL FEATURES OF THE DATA  

There are a number of features of the data that merit discussion. The plots in 

Exhibit 4 show many observations with zero annual default rates, including 12 years of 

data for which there are no recorded defaults in any of the credit rating grades.16 Under 

VAIRB assumptions, there is virtually no probability that an asymptotic portfolio with a 

positive PD should experience zero defaults, yet in almost 14 percent of the sample years 

there are no recorded defaults on any obligor rated by Moody’s. Similarly, a 100 percent 

default rate should be an extremely rare occurrence and, according to VAIRB 

assumptions, such an extreme default rate must coincide with very high default rates on 

all portfolios contemporaneously. The Moody’s data does not exhibit this pattern. 

The prevalence of zeros in the Moody’s data (as well as the 100 percent default 

rate reported for CaaC credits in 1984) can be consistent with the VAIRB if the Moody’s 

rating grade portfolios are not truly asymptotic portfolios—and surely they are not. The 

                                                 
16 The 12 years when there are no recorded defaults in any of the credit rating grades are 
1946, 1948, 1950, 1952, 1953, 1956, 1958, 1959, 1964, 1965, 1967, and 1969. Almost 30 
percent of sample are ZDROs. 
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number of credits in each rating class is limited; accordingly, the observed default rates 

include measurement error. 

Consider a portfolio of 1,000 independent obligors in a single credit grade that did 

not experience a default within a year. This portfolio is not asymptotic even though it is 

well diversified by any practical standard. Consider the measured default rate on this 

portfolio when we add a single credit and the new credit subsequently defaults. This 

experiment provides the upper bound on this portfolio’s default rate of about 10 basis 

points. Although the observed default rate is zero, the true unobserved default rate could 

be as large as 10 basis points, given the portfolio characteristics. 

Exhibit 6 illustrates the relationship between the number of independent obligors 

in a credit grade and the magnitude of the upper bound on the potential measurement 

error associated with a ZDRO. True asymptotic default rates of zero may have zero 

probability and yet ZDROs may occur simply because of measurement error. 

10000 1 bps
2000 5 bps
1000 10 bps
500 20 bps
200 50 bps
100 100 bps

Exhibit 6: Potential Measurement Error 
and Portfolio Size

upper bound on the 
magnitude of 

measurement error
number of obligors in 

a credit grade

 

Default rates of zero are also problematic for purposes of estimation. The inverse 

normal transformation will not accommodate default rates of zero (-∞) or 100 percent 

(+∞), so these extreme default rate observations must be truncated for estimation. There 

are many reported default rates of zero in the sample, so the truncation value assigned to 
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ZDROs will have a measurable effect on the model estimates. I report the estimation 

results using truncation values for ZDROs. 

Measurement error is feature of all observations, not just ZDROs. Although 

ZDROs and 100 percent default rates are special because their measurement error is 

necessarily one-sided, a positive default rate observation may also include significant 

measurement error. When default rates are positive, the measurement error distribution is 

two-sided but it is also asymmetric.17 It is an open question how the measurement error in 

positive default rate observations can best be handled econometrically. In the analysis 

that follows, I do not account for measurement error in positive default rate observations. 

In contrast to the ZDROs, there is only one default rate of 100 percent in the 

sample.18 This observation is also likely to be contaminated by measurement error. 

Again, the measurement error is necessarily one-sided, but unlike ZDROs, this time—

since there is only one observation— the truncation value selected has little effect on the 

results I report. I truncate this observation using the rule 100 percent minus the lower 

bound used to truncate ZDROs.19 

Another important choice is the assumption regarding the treatment of the 12 

years of data for which there are no observed defaults in any rating category. These 

observations represent years when there was a very strong economy (i.e., a large positive 
                                                 
17 Repeat the experiment of adding a single obligor to a large portfolio— but not an 
asymptotic portfolio. If the obligor subsequently defaults, the default rate changes in 
magnitude according to the number of obligors in the portfolio. In contrast, if the 
additional credit does not default, the new portfolio will have a smaller default rate, but 
the magnitude of the decline will be relatively small. 

18 The default rate reported for the CaaC grade in 1984 is 100 percent. 

19 For example, if ZDROs are truncated to .0001, then the single 100 percent default rate 
observation is truncated to 1–.0001, or 99.99 percent. 
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draw from the common Gaussian factor), but the data are not informative as to the 

magnitude of the positive common factor shock. These data also cannot identify PD 

differences among the credit grades. These data are included in the estimation sample 

with an additional restriction that the time dummy variable takes on the same value for 

each of these years (since they are all equally “good” according to the data). Including 

these data with uniformly truncated default rates will alter PD estimates as well as the 

default correlation parameter estimate.20 

The VAIRB does not include any time dependence in the Gaussian factor 

structure, so the omission of these 12 years of data does not cause any dynamic 

inconsistency in the model. However, estimation using a censored sample imparts an 

upward bias on PD estimates and a downward bias on the estimates of the model 

correlation parameter. Still, the censored sample estimates are useful for assessing the 

sensitivity of the VAIRB parameter estimates to ZDROs so I include these results.  

VII.   MODEL ESTIMATION AND TESTING 

Panels A through D of Exhibit 7 report restricted GLS parameter estimates for the 

VAIRB under alternative assumptions regarding the lower (and upper) bound on 

portfolio default rates. In Panels A through C the model coefficient estimates that 

correspond to credit grade covariates are statistically significant and monotonically 

increasing (from grade Aa to grade CaaC), a pattern that is expected under the VAIRB if 

credit grade PDs increase monotonically from ratings Aa to CaaC. This monotonic 

pattern fails to hold in Panel D, when zero default rates are truncated at 50 bps. 

                                                 
20 These parameters are determined simultaneously, so it is hard to project how truncation 
will affect the estimates. 
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Moody's implied
rating parameter standard t statistic * unconditional
grade estimate error PD in bps

Aa -3.581 0.061 -51.14 6.7
A -3.512 0.058 -50.16 8.3

Baa -3.270 0.053 -46.7 17.0
Ba -2.760 0.058 -39.41 67.3
B -2.311 0.064 -33 192.6

CaaC -1.811 0.086 -25.86 524.1
ρ 0.198

Aa -3.030 0.043 -71.24 18.8
A -3.011 0.041 -72.75 19.9

Baa -2.882 0.039 -74.68 29.3
Ba -2.548 0.040 -64.13 74.2
B -2.148 0.046 -46.72 199.7

CaaC -1.628 0.066 -24.51 598.0
ρ 0.085

Aa -2.844 0.037 -75.99 28.4
A -2.842 0.037 -76.18 28.7

Baa -2.751 0.036 -77.49 37.4
Ba -2.476 0.035 -70.22 80.3
B -2.093 0.041 -51.21 209.1

CaaC -1.566 0.061 -25.75 640.0
ρ 0.055

Aa -2.579 0.032 -71.24 55.4
A -2.600 0.034 -72.75 52.3

Baa -2.564 0.034 -74.68 57.9
Ba -2.374 0.032 -64.13 96.9
B -2.015 0.036 -46.72 236.0

CaaC -1.477 0.055 -24.51 728.8
ρ 0.030

Exhibit 7: VAIRB Estimates Based on Moody's 
Corporate Bond Rating Annual Performance Data 1920-

2008
Panel A: 0 default rates truncated to 1 bps

Panel B: 0 default rates truncated to 10 bps

Panel C: 0 default rates truncated to 20 bps

Panel D: 0 default rates truncated to 50 bps

Parameter estimates are generalized least squares estimates of equation (9) 
using 89 years of Moody's annual default rate data. All reported t-test 
statistics are significanly different from zero at the .0001 level of the test.  

The estimates in Panels A, B, and C of Exhibit 7 show, predictably, that as the 

lower bound on ZDROs is increased, the PD estimates increase for all credit grades; at 
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the same time, the estimated value of the VAIRB correlation parameter declines. The 

treatment accorded ZDROs can have a substantial effect on the correlation parameter’s 

estimated value. The correlation parameter estimate falls from almost 20 percent when 

the ZDROs are truncated to 1 basis point, to 5.5 percent when the truncation is 20 basis 

points. These results highlight the importance of ZDROs for statistical inference.  

Exhibit 8 reports VAIRB parameter estimates when the data exclude the 12 years 

for which there are no defaults recorded in any credit rating class. These estimates also 

imply the anticipated rank ordering between credit quality and PDs provided the 

truncation value assigned to ZDROs is less than 50 basis points. The VAIRB correlation 

parameter varies from a high of 15.8 percent when the upper bound on measurement 

error is assumed to be 1 basis point, to a low of 2.6 percent when the truncation value for 

ZDROs is set to 50 basis points. Removing the years with no reported defaults has the 

largest effect on PD estimates for the low-quality credit grades which increase 

substantially. This is due partly to a smaller estimate of the correlation parameter which 

reduces the VAIRB model’s ability to reproduce the large default rate observations that 

sometimes occur for lower-rated credits in the Moody’s data. 

 



 26

Moody's implied
rating parameter standard t statistic * unconditional
grade estimate error PD in bps

Aa -3.560 0.016 -57.71 5.4
A -3.480 0.059 -59.04 7.0

Baa -3.200 0.057 -56.32 16.6
Ba -2.610 0.064 -40.8 83.1
B -2.091 0.069 -30.46 274.9

CaaC -1.514 0.092 -16.49 823.9
ρ 0.158

Aa -3.021 0.049 -70.38 17.6
A -2.998 0.042 -72.02 18.8

Baa -2.849 0.040 -71.02 29.5
Ba -2.463 0.044 -56.03 86.5
B -2.001 0.049 -40.91 265.6

CaaC -1.400 0.070 -20.02 881.3
ρ 0.066

Aa -2.839 0.038 -74.82 27.6
A -2.836 0.038 -75.00 27.9

Baa -2.731 0.037 -73.94 38.1
Ba -2.414 0.039 -61.85 91.7
B -1.971 0.044 -45.15 270.3

CaaC -1.361 0.064 -21.27 917.5
ρ 0.045

Aa -2.580 0.033 -77.98 54.5
A -2.604 0.035 -73.69 50.9

Baa -2.562 0.036 -71.89 57.4
Ba -2.343 0.035 -66.93 104.0
B -1.928 0.038 -50.24 285.6

CaaC -1.306 0.058 -22.52 987.6
ρ 0.026

Panel D: 0 default rates truncated to 50 bps

Parameter estimates are generalized least squares estimates of equation (9) 
using 77 years of Moody's annual default rate data. Years in which there 
are no defaults among the bonds rated by Moody's are excluded from the 
estimation sample. All reported t-test statistics are significanly different 
from zero at the .0001 level of the test.

Exhibit 8: VAIRB Estimates Based on Moody's 
Corporate Bond Rating Annual Performance Data 1920-

2008 Excluding Years with No Rated Bond Defaults

Panel A: 0 default rates truncated to 1 bps

Panel B: 0 default rates truncated to 10 bps

Panel C: 0 default rates truncated to 20 bps
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Moody’s (2009) reports the number of issuers in each annual rating category 

cohort from 1970 to 2008. The CaaC ratings category includes relatively few issuers in a 

number of years of the sample, so these data may include large measurement errors. To 

assess the importance of this source of measurement error, I estimate the model excluding 

the CaaC ratings grade (Exhibit 9). When the CaaC data are excluded, there are 

additional years in which there are no recorded defaults in the Aa, A, Baa, Ba, or B rating 

grades.21 

The estimates reported in Exhibit 9 are not materially different from the full 

sample estimates reported in Exhibit 7, so I conclude that the measurement error bias 

introduced by including CaaC credits in the estimation is not of first-order importance. 

Since there are benefits in having an estimate of the CaaC grade PD parameter, I include 

the CaaC data in the remaining analysis. 

 

 

                                                 
21 The additional years are 1945, 1947, 1951, 1954, and 1968. The coefficients 
restrictions on zero default rate years are extended to include these years. 
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Moody's implied
rating parameter standard t-statistic unconditional
grade estimate error PD in bps

Aa -3.581 0.048 -73.93 2.7
A -3.512 0.045 -78.50 3.4

Baa -3.270 0.045 -73.21 7.8
Ba -2.760 0.050 -55.73 37.9
B -2.311 0.059 -39.41 126.9
ρ 0.165

Aa -3.030 0.030 -99.77 14.8
A -3.011 0.029 -105.37 15.8

Baa -2.882 0.028 -102.48 23.6
Ba -2.548 0.032 -80.89 62.4
B -2.148 0.041 -53 175.7
ρ 0.059

Aa -2.844 0.025 -112.07 22.2
A -2.842 0.025 -114.16 22.4

Baa -2.751 0.025 -112.52 29.7
Ba -2.476 0.027 -91.54 66.4
B -2.093 0.036 -58.63 181.5
ρ 0.035

Parameter estimates are generalized least squares estimates of equation (9) 
using 89 years of Moody's annual default rate data. All reported t-test 
statistics are significanly different from zero at the .0001 level of the test.

Exhibit 9: VAIRB Estimates Based on Moody's Corporate 
Bond Rating Annual Performance Data 1920-2008 

Excluding CaaC Rating Grade

Panel A: 0 default rates truncated to 1 bps

Panel B: 0 default rates truncated to 10 bps

Panel C: 0 default rates truncated to 20 bps

 

 

Standard Errors of VAIRB Parameter Estimates 

The VAIRB parameter estimates are nonlinear transformations of the restricted 

GLS parameter estimates of equation (9), so the standard error of these estimates must be 

obtained from an auxiliary analysis. I construct Efron (1979) bootstrap sampling 

distributions for the parameter estimates when ZDROs are truncated to two different 
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values: 10 basis points and 20 basis points.22 Specifically, I draw 5,000 paired samples 

(with replacement) from the underlying estimation sample of 89 observations, and for 

each bootstrap sample, I estimate the restricted GLS model parameters and solve for the 

implied VAIRB parameters. Repeated application builds the sampling distribution for the 

parameters of the VAIRB. By using paired draws, sampling both the dependent and the 

independent variables simultaneously, I preserve heteroskedasticity features of the data 

which are reflected in the sampling distribution of the parameter estimates. 

A bootstrap sample may include multiple observations on any year of data, 

including observations for which there are no observed default rates for any of the rating 

categories. In the bootstrap exercise, restrictions are imposed to require identical common 

factor estimates for all years in the sample for which there are no observed defaults in any 

of the credit grades. As a consequence, the restriction matrix imposed for model 

estimation is unique in each of the 5,000 bootstrap replications. The summary statistics 

for the sampling distributions of the VAIRB parameters are reported in Exhibit 10. 

 

 

                                                 
22 For a useful textbook discussion of the bootstrap, see Cameron, A. Colin, and Pravin 
K. Trivedia (2005). 
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Aa A Baa Ba B CaaC ρ
mean 18.78 19.95 29.38 74.59 201.57 608.45 0.085

median 18.68 19.79 29.08 74.04 199.41 594.94 0.085
mode 17.01 18.59 27.87 68.45 169.73 537.36 0.068

std dev 1.67 2.00 3.78 11.06 32.85 140.87 0.011
maximum 26.19 29.27 44.63 129.29 346.53 1350.87 0.128
quantile

99 23.02 25.17 39.41 102.86 286.82 1000.48 0.111
95 21.75 23.48 36.01 93.90 259.96 858.70 0.103
90 20.97 22.64 34.33 89.15 245.01 793.24 0.099
10 16.74 17.53 24.75 60.94 161.97 440.04 0.070
5 16.23 16.92 23.64 57.43 150.97 398.88 0.067

Aa A Baa Ba B CaaC ρ
mean 28.79 29.05 38.02 81.49 211.95 651.41 0.057

median 28.71 28.92 37.78 80.90 209.95 635.93 0.057
mode 25.21 24.69 29.48 64.29 141.94 443.02 0.040

std dev 1.66 1.95 3.65 10.08 30.66 138.39 0.009
maximum 35.29 38.27 54.11 135.14 345.97 1358.20 0.094
quantile  

99 33.08 33.99 47.42 106.98 290.34 1030.53 0.079
95 31.65 32.47 44.37 99.20 265.37 896.76 0.072
90 30.93 31.67 42.77 94.87 252.35 834.62 0.069
10 26.72 26.90 33.53 68.92 174.57 484.39 0.046
5 26.21 26.07 32.45 66.06 164.46 445.64 0.044

Exhibit 10: Sampling Distribution for VAIRB Parameter Estimates based on Moody's Corporate 
Ratings Data, 1920-2008

Model parameter estimates when 0 default rates are truncated to 10 basis points, 5000 
Unconditional Probability of Default Parameters

Model parameter estimates when 0 default rates are truncated to 20 basis points, 5000 
Unconditional Probability of Default Parameters in bps

Bootstrap sampling distribution esimates based on 5000 replications of paired resampling of Moody's 
Investors Corporate Bond Default Rate Data, 1920-2008.  The model estimation restrictions are 
dynamically modified to impose an identical macro factor value for all resampled observations for which 
there are no default rates observed in any rating grade.  

For the credit categories Aa through Baa, unconditional default rates are fairly 

accurately estimated. The standard errors of the unconditional default rate sampling 

distributions are less than 10 percent of the mean value of the PD estimates. For credit 

ratings in the Ba to CaaC range, the relative precision of the PD estimates declines. For 

the lowest-quality credits, CaaC, the standard deviation of the sampling distribution of 

PD estimator is about 23 percent of the mean value when ZDROs are truncated to 10 

basis points or 21 percent when ZDROs are truncated to 20 basis points. 
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These results differ from those reported in at least two studies whose authors 

calculate estimates of confidence intervals for unconditional default rates by using the 

continuous Markov-chain duration approach. Both Hanson and Schuermann (2006) and 

Cantor, Hamilton, and Tennant (2007) report that, when they analyze the sampling 

distributions for unconditional default rate estimators, lower-quality credits have larger 

associated coefficients of variation. 

Hypothesis Tests for Rank-Order Among Credit Grades 

The bootstrap procedure can be used to generate the sampling distributions for 

hypothesis tests. For example, one measure of the integrity of a rating system is its ability 

to order credits according to the magnitude of their PDs. The statistical significance of 

differences in credit grades’ PD estimates can be measured with the use of the bootstrap 

sampling distribution of the difference between two rating grade PD estimates. Exhibit 11 

reports descriptive statistics for the sampling distributions of the differences in 

unconditional default rate estimates associated with adjacent rating grades. 
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A-Aa Baa-A Ba-Baa B- Ba B-CaaC
mean 1.68 9.43 45.21 126.98 406.88

std dev 1.08 2.43 8.97 26.80 124.09
quantile

99 4.05 15.88 68.40 197.79 748.07
95 3.05 13.80 60.79 174.52 627.36
5 -0.48 5.81 31.29 86.54 224.59
1 -1.12 4.71 27.25 72.45 171.35

A-Aa Baa-A Ba-Baa B- Ba B-CaaC
mean 0.27 8.97 43.47 130.46 439.46

std dev 1.01 2.44 8.22 24.99 122.59
quantile

99 2.98 15.41 64.81 195.02 774.00
95 1.98 13.18 57.81 173.85 658.80
5 -1.28 5.27 30.88 92.39 260.42
1 -1.93 3.99 26.33 78.17 200.42

Difference in Unconditional Probability of Default Parameters

Bootstrap sampling distribution esimates based on 5000 replication of paired 
resampling of Moody's Investors Corporate Bond Default Rate Data, 1920-
2008.  The model estimation restrictions are dynamically modified to impose 
an identical macro factor value for all resampled observations for which there 
are no default rates observed in any rating grade.

Exhibit 11: Sampling Distribution for Differences in VAIRB PD 
Estimates based on Moody's Corporate Ratings Data, 1920-2008

Model parameter estimates when 0 default rates are truncated to 10 basis 
points, 5000 paired sample bootstrap replications

Difference in Unconditional Probability of Default Parameters

Model parameter estimates when 0 default rates are truncated to 20 basis 
points, 5000 paired sample bootstrap replications

 

The results reported in Exhibit 11 suggest that all the rating grades except the 

adjacent Aa and A categories differentiate credits according to their PD. The results are 

qualitatively similar irrespective of whether ZDROs are truncated at 10 or 20 basis 

points. The results suggest that the PD associated with each rating grade increases 

monotonically from grade A through grade CaaC.  However, the sampling distribution of 

the difference between A- and Aa-rated PDs suggests that these grades do not have 

statistically different unconditional probabilities of default at conventional levels of 

significance. Exhibit 12 plots the sampling distribution for the difference between the 

unconditional default rate estimates for Aa- and A-rated credits based on 5,000 paired 
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bootstrap samples. The sampling distribution clearly highlights the degree of overlap in 

the Aa- and A-rated sampling distributions. 
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Exhibit 12: Sampling Distribiution for the Difference Between Aa- and A-Rated PD 
estimates based on 5000 Bootstrap Replications

 

Common Factor Realization Estimates 

Exhibit 13 plots the mean and 90 percent probability bounds of the sampling 

distribution of the VAIRB common factor realizations based on a bootstrap of 5,000 

paired replications.23 Recall that under the VAIRB, positive values of the common factor 

are associated with low portfolio default rates, whereas negative common factor draws 

are associated with large default rates. 

                                                 
23 The 90 percent probability bound comprises the 5 and 95 percentile levels of the 
common factors’ estimated sampling distribution. 
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Estimates based on Moody's annual default rate data on rated corporate credits, 1920-2008. ZDROs are truncated to 
10 basis points. The sampling distribution is calculated from 5000 paired bootstrap replications. The pink line is the 
95th percentile of the sampling distribution. The blue line is the mean of the sampling distribution. The yellow line is 
the 5th percentile of the sampling distribution. 

Exhibit 13: Sampling Distribution for the VAIRB Common Factor 
Estimates, 1920-2008
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The common factor estimates plotted in Exhibit 13 show a clear pattern of credit 

cycles in the default rate data. Realized default rates were above average for most of the 

1920s and 1930s and were below average for all but one year over the period 1941 to 

1969. This long credit cycle was followed by two shorter credit cycles in addition to the 

downturn that began in 2008.  

The sampling distribution estimates show temporal dependence among the 

common factor realizations. The Wald and Wolfowitz (1940) runs test statistic for 

independence is 9.84 when calculated with the use of the mean values of the common 

factor sampling distributions. The common factor estimates violate a formal 

nonparametric runs test for independence at any commonly used level of significance. 
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Thus, the temporal independence assumption of the VAIRB is rejected at normal levels 

of confidence for these historical Moody’s default data. 

 

Test for Multiple Correlation Parameters 

The bootstrap can also be used to test other aspects of the VAIRB specification. 

For example, the restriction of a common correlation parameter across credit rating 

classes may be questionable. One can construct a formal test by analyzing the sampling 

distributions for the VAIRB correlation parameter under alternative restrictions. 

The baseline specification assumes that the correlation parameter is identical for 

the entire set of ratings (Aa, A, Baa, Ba, B, and CaaC). Under an alternative restriction, 

the correlation parameter is estimated and restricted to be identical within the 

subinvestment-grade group alone (Ba, B, CaaC).24 Consider the difference between these 

two restricted correlation estimates. If the correlation is greater for higher-quality credits 

as assumed in Lopez (2004) and the Basel AIRB framework, then the correlation estimate 

based on the fully inclusive restriction should exceed the correlation estimate produced 

when only the more limited (Ba, B, CaaC) restriction is imposed. 

The sampling distributions for the alternative correlation parameter estimates and 

their difference are reported in Exhibit 14. I estimated the sampling distributions by using 

                                                 
24 I construct the test in this manner to avoid losing degrees of freedom. I could have 
constructed it as a test between separate parameters for the high grade group (Aa, A, Baa) 
and the low grade group (Ba, B, CaaC), and in that formulation, there would be many 
new data points for the high-quality group where no defaults were recorded in any of the 
included credit grades. Constructing the test as I have means that there are no additional 
years beyond the aforementioned 12 years for which all the rating categories report zero 
default rates. 
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5,000 paired-sample bootstrap replications, assuming zero default rate observations are 

truncated to 20 basis points. 

[1]   ρ  estimate from [2]  ρ  estimate from estimate of
Aa, A, Baa, Ba, Ba, B and difference in 

B, CaaC credits (in pct) CaaC credits (in pct) correlation  [2]-[1]
mean 5.68 18.17 -12.49
median 5.66 18.15 -12.5
mode 6.1 19.57 -13.47
maximum 9.27 24.78 -7.99
99 percentile 7.81 22.42 -9.77
95 percentile 7.13 21.29 -10.59
90 percentile 6.83 20.52 -11.03
10 percentile 4.58 15.82 -13.94
5 percentile 4.29 15.13 -14.38
1 percentile 3.79 13.92 -15.13
minimum 3.05 11.04 -17.02

Exhibit 14: Sampling Distributions for Alternative Correlation Parameter Estimates 
and their Differences

The sampling distributions of the VAIRB model correlation parameter estimates and their differences are 
estimated using 5000 paired-sample bootstrap replications. In the estimation, zero default rates are 
truncated to 20 basis points.  

The sampling distribution for the difference in the alternative correlation 

parameter estimates shows that the Moody’s data are consistent with at least two different 

correlation parameters, one for highly rated credits and another larger correlation 

parameter for lower-quality credits. This correlation pattern is inconsistent with Lopez 

(2004) and the Basel AIRB framework. Both suggest that the correlation parameter 

decreases as a credit’s unconditional probability of default increases. 

 

VAIRB Predictive Accuracy 

One can assess the fit of the VAIRB by comparing the actual and predicted 

default rates by credit grade over the estimation sample. Exhibit 15 plots the actual and 

predicted portfolio default rates for Moody’s investment-grade credits. The investment-
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grade data include a large number of ZDROs. When the investment-grade credit 

portfolios experience high default rates (in the 1920s and 1930s), the VAIRB produces 

elevated default rate predictions, but many of these predictions fall far short of the actual 

recorded default rates. In the period beginning in the late 1960s, the model predicts an 

elevated level of investment-grade defaults, but the model’s default rate predictions are 

small relative to the actual default rates recorded. 
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Exhibit 15: Predicted and Actual Default Rates for Moody's Aa-, A-, and Baa-
Rated Corporate Credits, 1920-2008,  20 Basis Points Truncation

Panel A: Moody's Aa Credits
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Exhibit 16 provides the actual and predicted portfolio default rates for Moody’s 

subinvestment-grade credits. As the plots show, the fit of the VAIRB is particularly poor 

subinvestment-grade credits. For the lowest-rated credits, B and CaaC, errors are large 

and concentrated in two periods: the 1930s and a period that began in the late 1970s.  The 

large error rates for subinvestment-grade credits are likely due at least in part to an 

inappropriate restriction on this group’s correlation parameter. A larger correlation 

parameter for lower-quality credit grades would provide the VAIRB with additional 

flexibility to model these extreme default rate observations. 
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Exhibit 16: Predicted and Actual Default Rates for Moody's Ba-, B-, and CaaC-
Rated Corporate Credits, 1920-2008,  20 Basis Points Truncation

Panel A: Moody's Ba Credits
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The model prediction errors depend partly on the truncation value selected for 

ZDROs. Within a reasonable range of truncation values, as the truncation value for 

ZDROs is increased, the unconditional default rate estimates increase and the model 

correlation parameter estimate decreases. Although I have not conducted an exhaustive 

analysis of alternative truncation values, a comparison of the RMSE statistics reported in 

Exhibit 17 suggests that a uniform 20 basis point truncation value is probably a 

reasonable compromise relative to an objective of minimizing root mean-squared 

prediction errors across the credit grades. 

Rating 20 bps 50 bps
Aa 24.4 34.6
A 25.1 35.4

Baa 30.4 36.2
Ba 112.6 112.5
B 328.3 317.9

CaaC 1593.1 1563.7

Exhibit 17: Model Prediction Error Rates 
for Alternative Zero Default Rate Tuncation 

Choices

RMSE for truncation value

RMSE is the root mean-square VAIRB prediction 
error measured in basis points using Moody's 
Corporate default rate data, 1920-2008.  

VIII.   VAIRB MODEL ERROR AND ECONOMIC CAPITAL 

The magnitude of the VAIRB prediction errors should be a concern for risk 

managers as well as for bank regulatory authorities. The VAIRB is widely used as a 

benchmark for setting internal capital allocations for bank investment activities that 

generate credit risk. Moreover, many countries have adopted or plan to adopt the VAIRB 

to set minimum regulatory capital requirements for their largest and most complex 
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internationally active banks. The Basel AIRB approach sets minimum regulatory capital 

requirements equal to the losses associated with the 99.9th percentile of the VAIRB 

default rate distribution,25 with an offset for bank reserves held for nonspecific credit 

losses.26 

The analysis thus far suggests that the VAIRB is unable to reliably model the 

default rate patterns that are observed in the Moody’s corporate rating data. The results 

show that, in many circumstances, the VAIRB underpredicts observed default rates, 

especially when observed default rates are large relative to the sample average experience 

for a credit grade. These results suggest that there is significant risk that the Basel II 

AIRB framework may underallocate capital, given its stated objective of covering 99.9 

percent of a credit grade’s loss distribution. 

One solution to this underprediction problem is to include an additional capital 

component for model risk. In the remainder of this section, I provide estimates of the 

magnitude of the capital requirements that are necessary to buffer against the model risk 

generated by VAIRB model prediction error.  Economic capital allocations and minimum 

regulatory capital requirements must include capital for model risk in addition to VAIRB 

estimates of the capital needed to buffer against credit risk for capital allocations to 

satisfy regulatory objectives or internal firm objectives. 

                                                 
25 To be precise, capital for unexpected loss is the 99.9 percent default rate from the 
VAIRB distribution multiplied by EAD and LGD and, in some cases, by a maturity 
factor. See BCBS (2006), pp. 63 ff. for the exact procedures for calculating minimum 
regulatory capital requirements for corporate wholesale exposures.  

26 Bank reserves for nonspecific credit losses are a buffer to absorb credit losses. The 
magnitude of these reserves should approximate so-called expected credit losses and 
these reserves are subtracted from the unexpected loss estimate.  See Kupiec (2003) for 
additional discussion. 
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Exhibit 18 reports statistics on the sampling distributions of the VAIRB 

prediction errors by credit rating. I estimated the sampling distributions from over 31,000 

model prediction errors generated by bootstrap resampling.  I re-estimated the model for 

350 paired-sample bootstrap replications and calculated prediction errors. Zero default 

rates are truncated to 20 basis points. Exhibit 18 reports that, on average, the VAIRB 

overpredicts default rates for Aa- and A-rated credits and underpredicts the default rates 

for the remaining credit classes. The error distributions are strongly skewed, so the mean 

value is not very informative. The remaining statistics reported in Exhibit 18 include 

selected percentiles on the upper tails of the VAIRB error distribution (focusing on 

underprediction). 

Aa A Baa Ba B CaaC
mean -5.5 -4.5 0.7 30.8 133.1 667.2

median 1.8 0.9 1.9 -3.6 -0.9 165.7
mode 10.8 10.9 8.9 -5.5 -43.3 -138.9

maximum 45.6 111.1 118.8 837.8 1541.4 9115.4
99 percentile 34.3 89.2 99.4 757.3 1373.0 8413.2
95 percentile 13.3 13.2 60.9 195.0 743.2 3430.3
90 percentile 12.6 12.5 28.9 118.9 556.1 2558.4

Exhibit 18: Sampling Distribution Statistics for VAIRB Model Errors by 
Rating Class 
Moody's Corporate Rating

Model errors are actual minus predicted default rate values. Positive model errors indicate under-
prediction.  Reported values are measured in basis points. The sampling distributions are 
estimated from 31,150 residuals generated from 350 paired-sample bootstrap iterations. ZDROs 
are truncated to 20 basis points.  

Exhibit 19 reports the unconditional probability of default estimates and the 

capital needed to buffer against 99.9 percent of the potential credit loss estimates as 

calculated by the VAIRB model using Moody’s data from 1920-2008 and a truncation 

value of 20 basis points for ZDROs.  In addition to credit risk capital, I calculate the 

capital needed to buffer an estimate of the 95th percentile of the VAIRB error distribution 
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(from Exhibit 18).27  The total capital needed to cover 99.9 percent of the estimated credit 

risk exposure and 95 percent of the estimated model risk exposure is a measure of total 

capital needed to cover the default risk on these asymptotic credit portfolios. 

The estimates in Exhibit 19 show that capital for model error risk contributes less 

than 10 percent of the total capital needed for the Aa- and A-rated credits. The 

contribution of model risk to total capital requirements rises as credit quality declines. 

Model risk comprises about 21 percent of total capital for Baa-rated credits; about 32 

percent for Ba-rated credits; and over 50 percent for lower-quality credits. VAIRB model 

prediction errors are large in many cases, and the results show that there are significant 

consequences for ignoring model risk when setting minimum capital requirements. 

Aa A Baa Ba B CaaC
Unconditional PD estimate in bps 28.4 28.7 37.4 80.3 209.1 640.0
Capital for 99.9 percent loss coverage in bps* 5000.0 5000.0 5000.0 5000.0 5000.0 5000.0
Capital for 95 percent model error coverage in bps 13.3 13.2 60.9 195.0 7432.0 3430.0
Total required capital in bps 5013.3 5013.2 5060.9 5195.0 12432.0 8430.0
Capital for model error as a percentage of total capital 0.3 0.3 1.2 3.8 59.8 40.7
* The capital estimate is for coverage of 99.9 percent unexpected loss calculated using a correlation parameter estimate of 0.055. The 
unconditional probability of default and the correlation parameter estimates are based on a truncation rule that sets zero default rates 
to 20 basis points. 

Exhibit 19: Capital Alloacation for Credit Risk and VAIRB Model Error 
Moody's Corporate Rating

 

 
IX.   VAIRB PARAMETER ESTIMATION FROM SMALL SAMPLES 

Few institutions have data on the default rate performance of their internal rating 

systems for 89 years. Because of data limitations on banks’ own internal ratings system 

performance, the Basel AIRB approach requires as little as five years of data as the 

                                                 
27 It would be natural to choose to buffer against 99.9 percent of the model error risk, 
given regulatory objectives. This calculation, however, is omitted because, in most cases, 
model risk capital is more than twice as large as the capital needed to buffer 95 percent of 
the VAIRB model error risk which is already shockingly large. Estimates of the capital 
needed to buffer against 99.9 percent of the model error risk are reported in Exhibit 18. 
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minimum acceptable sample length that a bank may use for estimation for some AIRB 

parameters. An important regulatory concern has been the quality of the parameter 

estimates that may be generated from such small samples. 

Small-sample estimates of unconditional default rate inputs into regulatory capital 

calculations may be downward biased in samples that do not include sufficient data on a 

“bust” phase of the credit cycle. To correct for this potential shortcoming, the AIRB 

requires that the underlying data include either a downturn phase of the credit cycle or, 

alternatively, some technique to adjust unconditional default rates so that they reflect 

recession conditions.  These so-called “stress PD” requirements are necessary because the 

AIRB rule does not otherwise include a requirement for banks to control for the effects of 

the common factor realizations when they are estimating the input values for their 

minimum regulatory capital calculations.   

To assess the reliability of small-sample estimates,  I construct sampling 

distributions for the parameters of the VAIRB when the parameters are estimated from 

sample sizes of 5 and 10 years of data using the Efron (1979) jackknife re-sampling 

procedure, with 5,000 paired observations to preserve heteroskedasticity. 

Exhibit 20 reports selected statistics on the sampling distributions for VAIRB 

parameter estimates from sample sizes of 5, 10, and 89 years of data when zero default 

rates are truncated to 20 basis points. The estimator based on 89 years of data is nearly 

symmetric, whereas the small-sample distributions are skewed with a long right tail. 

Because of the skew, small-sample mean estimates are not very informative about the 

estimates that are likely to be produced in practice. The right tail of the distribution is 

particularly pronounced when estimates are based on 10 years of data. 
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Aa A Baa Ba B CaaC ρ
mean 39.78 40.05 52 107.44 263.7 802.33 0.0773

median 28.97 29.78 38.74 84.51 221.81 688.58 0.0681
mode 35.83 38.22 43.88 100.5 231.81 2136.01 0.0358

maximum 900.67 941.12 1018.02 1412.06 1951.78 5080.93 0.5113
quantiles

99 212.45 205.16 255.65 485.35 895.2 2617.96 0.2581
95 89.78 90.86 117.95 233.92 545.96 1791.63 0.1651
90 65.03 64.58 85.21 180.09 445.08 1479.88 0.135
10 22.18 22.12 25.68 48.2 116.49 425.6 0.0274
5 20.99 20.91 23.62 41.85 97 263.82 0.02

Aa A Baa Ba B CaaC ρ
mean 29.3 29.76 40.34 90.9 245.46 839.62 0.051

median 26.84 26.37 36.07 77.79 214.02 626.3 0.043
mode 21.01 21.38 24.87 36.06 107.43 51.28 0.011

maximum 383.6 357.52 349.5 704.55 1299.03 6504.09 0.3562
quantiles

99 61.47 66.82 100.91 269.18 729.21 3813.08 0.1609
95 43.74 47.52 73.12 189.17 528.3 2287.59 0.1191
90 38.95 42.59 62.85 157.74 445.3 1766.05 0.1013
10 21.18 21.11 21.64 39.49 87.74 177.13 0.0114
5 20.56 20.43 20.36 32.23 66.39 118.28 0.0058

Aa A Baa Ba B CaaC ρ
mean 28.79 29.05 38.02 81.49 211.95 651.41 0.057

median 28.71 28.92 37.78 80.90 209.95 635.93 0.057
mode 25.21 24.69 29.48 64.29 141.94 443.02 0.040

std dev 1.66 1.95 3.65 10.08 30.66 138.39 0.009
maximum 35.29 38.27 54.11 135.14 345.97 1358.20 0.094
quantiles  

99 33.08 33.99 47.42 106.98 290.34 1030.53 0.079
95 31.65 32.47 44.37 99.20 265.37 896.76 0.072
90 30.93 31.67 42.77 94.87 252.35 834.62 0.069
10 26.72 26.90 33.53 68.92 174.57 484.39 0.046
5 26.21 26.07 32.45 66.06 164.46 445.64 0.044

Model parameter estimates based on 89 observations when 0 default rates are truncated to 
20 basis points, 5000 paired sample replications

Unconditional Probability of Default Parameters in bps

Exhibit 20: Small Sample Distributions for VAIRB Parameter Estimates based on Moody's 
Corporate Ratings Data, 1920-2008

Model parameter estimates based on 10 observations when 0 default rates are truncated to 
20 basis points, 5000 paired sample bootstrap replications

Unconditional Probability of Default Parameters in bps

Model parameter estimates based on 5 observations when 0 default rates are truncated to 20 
basis points, 5000 paired sample bootstrap replications

Unconditional Probability of Default Parameters in bps

Jackknife sampling distribution esimates based on 5000 paired resampling of Moody's Investors 
Corporate Bond Default Rate Data, 1920-2008.  The model estimation restrictions are dynamically 
modified to impose an identical macro factor value for all resampled observations for which there are no 
default rates observed in any rating grade.  
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The sampling distributions for VAIRB unconditional default rate parameter 

estimates are plotted in Exhibit 21. In constructing the histograms, I collected the 

observations above the largest indicated value on a histogram in the largest bucket 

included on each histogram. Among these results, relative to the 89-observation sample 

estimates, there is a pattern in which small-sample parameter distribution estimates have 

more probability associated with smaller unconditional default rates. Although the right 

tail of the small-sample estimators puts more mass on very high default rates relative to 

the estimator based on the 89-observation sample, the total mass on these high default 

rates is small. Much of the mass of the small-sample estimators is concentrated on 

smaller default rate values. 

Exhibit 21: Small-Sample Distributions of VAIRB PD Estimates 

Panel A: Distribution of PD Estimates for Aa-Rated Credits in bps
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Panel B: Distribution of PD Estimates for A-Rated Credits in bps
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Panel C: Distribution of PD Estimates for Baa-Rated Credits in bps
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Panel D: Distribution of PD Estimates for Ba-Rated Credits in bps
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Panel E: Distribution of PD Estimates for B-Rated Credits in bps
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Panel F: Distribution of PD Estimates for CaaC-Rated Credits in bps
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There are at least two reasons that the small-sample estimator districutions have 

more mass concentrated at lower default rates. One reason is the prevalence of ZDROs in 

the Moody’s data. The jackknife random sampling technique will potentially draw a large 

share of ZDROs in a small sample, given their frequency of occurrence. A second reason 

for the shape of the distributions is the strong positive autocorrelation in the common 

factor. Since the common factor is strongly autocorrelated, it will require a very long time 

series before the common latent factor is likely to have a sample average close to zero. 

Because VAIRB identification is achieved by imposing the zero mean condition, 

common factor estimates are likely to be biased in small samples. This bias will also 

induce a bias in the small-sample unconditional default rate estimates. 

The biases that are demonstrated in these small-sample results likely understate 

the effect of positive autocorrelation in small samples; that is, most of the common factor 

draws in a small sample are likely to be either positive or negative. In such a case, the 
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unconditional default rate is likely to be poorly estimated. In addition, the model 

restriction that the common factor averages to zero over the sample will induce a larger 

bias in the common factor estimates compared with those produced under the jackknife 

random sampling techniques that underpin Exhibit 21. The small-sample parameter 

distributions plotted in Exhibit 21 are for samples of observations chosen at random from 

the entire time series, so the underlying autocorrelation structure in the raw data is not 

preserved in these jackknife sampling distributions. 

  

X.   ALTERNATIVE SMALL-SAMPLE PD ESTIMATE 

One can use consistent estimates of the common factor realizations to estimate the 

unconditional default rates associated with additional credit grades that may not have a 

long time series of default rate data. The estimator is consistent under the assumption that 

the default rate and correlation factor associated with the new credit rating class are 

identical to those that characterize the credit grading system used to produce the common 

factor estimates. 

Recall that the VAIRB model implies 
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Let APD  represent the unconditional probability of default on an auxiliary rating 

category for which data are available, but with only a modest sample size of S. From 

expression (13), it is evident that 
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Consequently, as the size of the small sample for the alternative rating grade increases, 
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Thus a consistent estimate of the unconditional default rate of the new rating class is 
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To estimate the unconditional default rates for Moody’s alpha-numeric rating 

scale, I apply expression (16). Although Moody’s publishes default rate statistics on its 

alpha-numeric rating grades from the early 1980s, I use data from 1998 to 2008 to 

demonstrate the adjustment. I exclude rating grades that exhibit no defaults over this 

sample period, and I truncate ZDROs to 20 basis points. I take the correlation and 

common factor adjustments used in (16) from the VAIRB estimates derived from the 

Moody’s 1920–2008 data on letter rating grades when zero default rates are truncated to 

20 basis points (Exhibit 7, Panel C). Estimates of the realization of the common factor 

estimates for the period 1998-2008 are reported in Exhibit 22. Over this period, there are 

4 years in which the common factor realization decreases default rates (2004–2007) and 7 
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years in which the common factor realization increases default rates (1998-2003, and 

2008). 

year
1998 -0.065
1999 -0.343
2000 -0.634
2001 -0.806
2002 -1.126
2003 -0.206
2004 0.412
2005 0.632
2006 0.646
2007 1.004
2008 -0.745

common factor 
estimate

Exhibit 22: Estimates of the 
Implied Common Factor 

Realizations from Moody's 
Corporate Default Data 

1988-2008

Estimates are derived from 
Moody's default data for the 
period 1920-2008 (See 
Exhibit 7, Panel C). ZDROs 
are truncated to 20 bps.  

Exhibit 23 reports simple and corrected PD estimates for the Moody’s alpha-

numeric sample data.  The simple PD estimator is the sample mean.  The corrected PD 

estimator is expression (16). Along with these sample estimates, Exhibit 23 also reports 

selected characteristics of the sampling distributions of the respective estimators 

generated from 5000 paired-sample bootstrap replications.  These estimators are 

constructed by generating 5000 samples of 11 observations in which each observation in 

a sample is a common factor realization (from Exhibit 22) and a ratings class default rate 

pair chosen at random from the original sample (with replacement).  For each of the 5000 

samples, the respective estimators are calculated and the sampling distribution of the 

estimators is constructed.  
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sample standard
estimate mean deviation 99 95 90 10 5 1

Aa3 corrected 0.287 0.293 0.059 0.468 0.398 0.371 0.225 0.211 0.186
Aa3 simple 0.316 0.317 0.113 0.666 0.549 0.433 0.200 0.200 0.200
A1 corrected 0.275 0.279 0.048 0.411 0.364 0.344 0.222 0.209 0.186
A1 simple 0.272 0.272 0.069 0.487 0.415 0.344 0.200 0.200 0.200
A2 corrected 0.254 0.256 0.035 0.344 0.317 0.303 0.212 0.201 0.183
A2 simple 0.221 0.221 0.020 0.285 0.264 0.243 0.200 0.200 0.200
A3 corrected 0.255 0.256 0.033 0.342 0.313 0.300 0.215 0.206 0.189
A3simple 0.222 0.222 0.029 0.289 0.267 0.245 0.200 0.200 0.200
Baa1 corrected 0.307 0.309 0.042 0.420 0.385 0.366 0.259 0.249 0.231
Baa1 simple 0.318 0.318 0.089 0.594 0.503 0.422 0.216 0.213 0.206
Baa2 corrected 0.327 0.329 0.041 0.432 0.400 0.384 0.277 0.265 0.244
Baa2 simple 0.320 0.320 0.062 0.475 0.424 0.407 0.241 0.223 0.210
Baa3 corrected 0.380 0.385 0.068 0.568 0.508 0.477 0.303 0.283 0.254
Baa3 simple 0.447 0.447 0.143 0.826 0.710 0.644 0.268 0.239 0.219
Ba1 corrected 0.407 0.414 0.080 0.624 0.558 0.520 0.318 0.295 0.256
Ba1 simple 0.500 0.500 0.165 0.953 0.798 0.715 0.295 0.266 0.226
Ba2 corrected 0.529 0.536 0.090 0.773 0.689 0.651 0.427 0.397 0.342
Ba2 simple 0.600 0.599 0.129 0.910 0.818 0.768 0.432 0.399 0.315
Ba3 corrected 1.108 1.124 0.187 1.602 1.459 1.377 0.892 0.841 0.747
Ba3 simple 1.311 1.313 0.272 1.980 1.757 1.666 0.967 0.873 0.730
B1 corrected 1.098 1.128 0.254 1.808 1.583 1.468 0.819 0.753 0.634
B1 simple 1.489 1.489 0.337 2.255 2.039 1.921 1.056 0.925 0.716
B2 corrected 2.180 2.254 0.618 3.937 3.370 3.079 1.522 1.383 1.132
B2 simple 3.277 3.276 0.908 5.538 4.838 4.469 2.144 1.871 1.357
B3 corrected 4.421 4.518 1.030 7.198 6.301 5.865 3.233 2.902 2.410
B3 simple 5.915 5.916 1.468 9.602 8.489 7.852 4.063 3.656 2.897
Caa1 corrected 7.847 7.912 1.217 11.231 10.073 9.532 6.413 6.096 5.505
Caa1 simple 9.334 9.342 2.011 14.365 12.871 12.013 6.818 6.248 5.217
Caa2 corrected 15.620 15.719 1.847 20.363 18.853 18.128 13.400 12.760 11.720
Caa2 simple 17.435 17.443 2.837 23.889 22.146 21.074 13.803 12.889 10.719
Caa3 corrected 23.825 23.859 1.674 28.182 26.726 26.017 21.757 21.235 20.342
Caa3 simple 24.823 29.815 2.676 31.397 29.293 28.411 21.382 20.590 19.202

quantile
sampling distribution characteristics for the rating grade PD estimate

Exhibit 23: PD Sampling Distribution Estimates for Selected Grades of Moody's Alpha-Numeric Rating 
Scale, 1998-2008  

Corrected estimates use consistent estimates of the VAIRB common factor from Moody's 1920-2008 corporate 
ratings data (Exhibit 22) to construct the estimator given in expression (16).  Sampling distributions are estimated 
using 5000 paired-sample bootstrap replications.  

 

 A comparison of the simple and corrected PD estimates and sampling distribution 

characteristics reported in Exhibit 23 reveals some interesting features. The first thing to 

notice is that for most credit grades, the corrected PD estimator is smaller than the simple 

PD estimator.  This feature is intuitive as the common factor realization estimates include  

7 of 11 years with below-average common factor realizations. Default rate observations 
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are elevated from their unconditional PD rates and are adjusted downward by expression 

(16). 

 The corrected PD estimates are smaller than simple PD estimates for all grades 

except A1, A2, A3 and Baa2. This is easily explained. Grades A1, A2, A3 and Baa2 have 

only one observation in the 11-year sample with a non-zero default rate and the ZDROs 

are truncated to 20 basis points. The common factor correction adjusts observed default 

rates by adjusting an index that is transformed into a default rate through a standard 

normal CDF transformation. The PDF of the standard normal distribution for the index 

value associated with default rates below 20 basis points [ ( ) 878.2002.1 −=Φ− ], is very 

small. In contrast, the PDF values associated with index levels in excess of 20 basis 

points is not only larger, it is increasing as the default rate increases. The asymmetry of 

the normal distribution PDF in this region explains why the corrected PD estimates for 

grades A1, A2, A3 and Baa2 are larger than the uncorrected estimates. For 7 of the 11 

sample observations, the common factor adjustment works to lower the index that 

determines the portfolio default rate, but in the region of ( ) 878.2002.1 −=Φ− , small 

declines in the index imply very little decline in the portfolio default rate. Conversely, for 

4 of the 11 sample points, the common factor adjustment works to increase the index, and 

in the region of ( ) 878.2002.1 −=Φ− , the implied increase in portfolio default rates is 

large compared to the reductions generated by the corrections for the 7 above-average 

default rate years. 

A second important feature of the corrected PD estimator can be seen comparing 

the confidence intervals (CIs) for the respective PD estimators calculated from the 
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sampling distributions for each grade grade.28  In all grades but two cases—the A2 and 

A3 grades, the width of the symmetric CI is smaller for the corrected PD estimate. For all 

other grades, the width of the CI for the corrected estimator is on average about 65 

percent of the width of the CI associated with the simple PD estimator. The corrected PD 

estimators for grades A2 and A3 have wider CI intervals because of the data 

characteristics of these grades.  Both grades have only one non-zero default rate 

observation, and the single non-zero default rate is very small in both cases (about 45 

basis points).  After ZDROs are truncated to 20 basis points, the simple PD estimator for 

these two credit grades has only a very small associated standard deviation.  

  

XI.   SUMMARY AND CONCLUSIONS 

This paper has developed a new approach for estimating the parameters of the 

asymptotic Vasicek portfolio default rate model that is used to set minimum capital 

requirements for large, complex banking institutions under the Basel II AIRB framework. 

The approach produces consistent estimates of all VAIRB parameters using only time 

series data on a cross section of the failure rates from a consistent credit rating system. 

The method is applied to data on Moody’s rated corporate credits over the period 1920–

2008. 

The results show that the VAIRB is incapable of explaining the variability of the 

default rates in Moody’s data. From the perspective of capital allocation, an important 

finding is that the model significantly under-predicts default rates during “bust” phases of 

the credit cycle.  This pattern of under-prediction is consistent with a missing transitory 
                                                 
28 A confidence interval estimate is the difference between to two extreme quantile 
estimates, say the 99-percent and the 1-percent, or the 95-percent and the 5-percent.   
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common factor that affects default correlation only intermittently, similar to the frailty 

covariate in Duffie et al. (2009). 

Bootstrap methods are used to construct estimates of the VAIRB model error 

distribution by credit grade. These distributions are used to estimate the capital needed as 

a buffer against model risk when the VAIRB is used to set capital requirements. The 

results show that capital needed as a buffer against model risk is substantial.  Indeed, for 

lower-rated credits, model risk capital exceeds the capital needed to cover 99.9 percent of 

potential credit losses as estimated by VAIRB. 

Estimates of the VAIRB common factor indicate that factor realizations are 

strongly autocorrelated. This finding implies that a long time series of default rates is 

needed to construct consistent estimates of the PD for a credit grade. The sampling 

distributions for VAIRB parameter estimates derived from small samples are constructed 

using the jackknife. The results show that small-sample estimators have high variability 

and that there is a substantial likelihood that small-sample PD estimates from will 

substantially underestimate the true probability of default. Consistent estimates of 

VAIRB common factors derived from long time series can be used to improve the 

accuracy of PD estimates (and confidence intervals) derived from small samples.  Small-

sample PD estimates that include a correction for the common factor realizations are 

constructed for credits rated using Moody’s alpha-numeric scale over the period 1998-

2008.  For most credit grades, the correction for the common factor results in smaller PD 

estimates and narrower confidence intervals as compared to simple average default rate 

estimates over this sample period.  
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XII.   APPENDIX: ESTIMATION OF UNCONDITIONAL DEFAULT RATES AND TIME 
EFFECTS WHEN DEFAULTS ARE AUTOCORRELATED 

 
 When the latent common factor is autocorrelated, expression (9) is isomorphic to 

the following specification: 

 

ittiit uaZ υ~~~ ++=                                                             (A1) 

with 

1,~~
1 <+= − αςα ttt uu                                                      (A2) 

where i indexes the cross section of N groups and t indexes time. The mean-zero error 

components, itυ~  and tς
~ , are independent and identically distributed over time. Consistent 

estimates of the unconditional default rates and latent factor realizations can be 

constructed from consistent estimates of ia  and realized values of tu~  in expression A1. 

Assuming a sample of observations on T time periods, repeated substitution yields 
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where a.s. almost surely indicates convergence. 

 

If the sample size T is small and the autoregressive term α  is large (i.e., close to 

1), then the autoregressive error component will have a large effect on the sample mean 

estimator, and sample mean will be a poor estimator for ia . In general, the larger the 
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autoregressive parameterα , the longer the time series that will be needed to produce 

accurate estimates of the unconditional sample mean ia . 

 
One can construct consistent estimates of the time effects by using consistent 

estimates of each group sample mean. For a cross section of size N, 

ittiit uaZ υ~~ˆ~ +=−     for .,,3,2,1 Ni K=                                    (A5) 
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The consistency of the tû  estimators is not altered by the imposition of the additional 

restriction that time effect estimates must sum to zero over the sample horizon. 

In short time series applications, imposing the restriction 0
1

=∑
=

T

t
tb  will result in 

biased estimates of the time effects, for the actual sample will not be balanced between 

positive and negative deviations from the unconditional mean. As the length of the 

sample increases, the average effect of the common factor over the sample will more 

closely approximate zero, and the identifying restriction  0
1

=∑
=

T

t
tb  will be appropriate. 

The importance of partial cycles will diminish as T increases and the sample includes  

more complete cycles. At the limit, even if there are credit cycles in the default data, the 

restriction 0
1

=∑
=

T

t
tb  will hold exactly as .∞→T  
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