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Abstract

This paper develops a computational framework to value convertible bonds in general
multi-factor Markovian models with credit risk. We show that the convertible bond value
function satisfies a variational inequality formulation of the stochastic game between the
bondholder and the issuer. We approximate the variational inequality by a penalized non-
linear partial differential equation (PDE). We solve the penalized PDE formulation numeri-
cally by applying a finite element spatial discretization and an adaptive time integrator. To
provide specific examples, we value and study convertible bonds in affine, as well as non-
affine, models with four risk factors, including stochastic interest rate, stock price, volatility,
and default intensity.
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1 Introduction

Convertible bonds are (generally callable) corporate bonds with an additional contractual fea-
ture: the bondholder is allowed to convert the bond into a pre-specified number of shares of
common stock at any time prior to maturity. With well-developed convertible bond markets
in the U.S., Europe, and Japan, the problem of consistent modeling, valuation, and risk man-
agement of convertible bonds is of significant practical importance. As any corporate debt,
convertible bonds are subject to interest rate risk and credit risk. The additional conversion
option explicitly introduces dependence on the stock price. It is a well-established empirical
fact that the stock price volatility is stochastic and is negatively correlated with the stock price
(the so-called leverage effect). This negative dependence manifests itself in the implied volatility
smile/skew patterns across strikes observed in stock options prices in the equity options markets.
Furthermore, it is also a well-established empirical fact that corporate bond and credit default
swap (CDS) spreads are positively correlated with the stock volatility of the underlying reference
firm. Thus, in order to accurately model, value, and risk manage convertible bonds one needs a
model that incorporates stochastic dynamics of interest rates, stock price, stochastic volatility,
and credit risk, and captures the key empirical relationships among the stock price process,
the volatility process, and corporate credit spreads. Consistent modeling of these risk factors
and their dependences is especially important to firms engaged in convertible bond arbitrage, a
significant segment of the global hedge fund universe.

Starting from Ingersoll (1977) and Brennan and Schwartz (1977), the early literature on
convertible bonds followed a one-factor structural firm-value approach along the lines pioneered
by Merton (1974). In this approach, one starts with a stochastic process for the firm value
(typically geometric Brownian motion), and all the corporate securities issued by the firm are
treated as contingent claims on the firm value. Brennan and Schwartz (1980) introduced a second
stochastic factor into this structural framework, by modeling stochastic default-free interest rates
(see also Nyborg (1996) for a good summary of this early literature; for recent advances in the
structural approach see Sirbu et al. (2004), Sirbu and Shreve (2005), and Bermudez and Webber
(2003)). While appealing from the corporate finance theory standpoint, the structural approach
has not been widely adopted by the convertible bond practitioner community for at least two
reasons. First, the structural approach is necessarily highly stylized. A detailed model would
require modeling all of the corporate securities issued by the firm simultaneously. This might
involved modeling dozens of different straight and convertible bond issues, taking into account
seniority. Secondly, the firm value process is not directly observable. The observable data in the
market include the stock price, credit spreads (corporate bond yields and, more recently, CDS
spreads in the credit derivatives market), and prices (and implied volatilities) of stock options.
In practice, a practitioner would have a difficult time ascertaining any precise numerical value for
the value of the firm, not to mention the difficulties in estimating its process parameters, such as
volatility. In contrast, the stock price, corporate credit spreads, and implied volatilities of equity
options are continuously observed in the market. From the practical standpoint, it makes sense
to develop convertible bond models that can be calibrated to the prices of liquid benchmark
securities, such as stock options and CDS, and then used to value convertible bonds. Moreover,
since the firm’s common stock, plain vanilla stock options, CDS, and straight corporate debt
are all available for trading, convertible bond arbitrageurs need models that price convertible
bonds consistently with these more liquid instruments.

This dissatisfaction with the structural models lead practitioners to propose a number of
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low-factor (typically one- or two-factor) models where the issues of credit risk were handled
in a somewhat ad-hoc manner by either splitting the convertible bond into its fixed income
and equity components and discounting the components at different rates (e.g., Tsiveriotis and
Fernandes (1998)) or adjusting discount rates according to somewhat ad-hoc rules depending
on the stock price level (e.g., Bardhan et al. (1994)). However, these models lack consistent
theoretical underpinnings.

On the other hand, the intensity-based reduced-form credit risk modeling literature has
enjoyed remarkable development over the past decade (see the recent monographs by Bielecki
and Rutkowski (2002), Duffie and Singleton (2003), Lando (2004), and Schonbucher (2003)
for state-of-the-art surveys). Modeling of convertible bonds in this modern intensity based
framework was initiated by Davis and Lischka (2002), who proposed a convertible bond model
that incorporated a Black-Scholes stock price (equity risk), a stochastic short rate (interest rate
risk), and a default intensity (hazard rate of default) dependent on the stock price (credit risk
linked with the stock price level). Such models with stochastic stock price, stochastic interest
rate, and default intensity taken to be a deterministic function of the stock price became known in
the industry as “two-and-a-half-factor models” (see Andersen and Buffum (2004), Takahashi et
al. (2001), and Ayche et al. (2003) for detailed studies of “one-and-a-half-factor models” with the
default intensity taken to be a deterministic function of the stock price, and deterministic interest
rates). Several typical specifications of the default intensity as a function of the underlying stock
price were later solved in closed form in the case of European-style securities by Linetsky (2006)
and Carr and Linetsky (2006) (unfortunately these solutions do not extend to convertible bonds,
which are American-style securities). However, all of these models still fail to account for the
empirical fact that while the default intensity and credit spreads are strongly influenced by the
stock price, they are not perfectly correlated. Moreover, these models fail to take into account
stochastic volatility of the stock price, an essential empirical feature in the realm of stock options
modeling.

Recently, Carr and Wu (2005) introduced an interesting three-factor reduced-form affine
model of default. In this model, the stock price drops to zero at default. Prior to default,
the stock price follows a continuous process with stochastic volatility. The default intensity
and the instantaneous stock variance follow a bi-variate diffusion process intricately specified to
capture empirical evidence on stock option prices and corporate debt and CDS spreads. Carr
and Wu (2005) show in an extensive empirical study that their model is well suited for joint
modeling and valuation of stock options and credit default swaps. This model is also well suited
to serve as a basis for a convertible bond model. However, while Carr and Wu’s main interest
is in relatively shorter maturity stock options and CDS spreads, they take the short rate as
deterministic. In contrast, convertible bonds have maturities up to thirty years. For example, a
recent Eastman Kodak convertible issue has thirty year maturity (on October 15, 2003 Eastman
Kodak & Co. issued $575 million of 3.375% convertible senior notes due October 15, 2033).
While it may be a reasonable approximation to assume constant interest rates for the valuation
of shorter maturity securities, valuing long-term bonds assuming constant interest rates is highly
unrealistic and prone to serious errors.

The contributions of the present paper to the convertible bond literature are four-fold.

• (i) First, we develop a mathematical framework to value convertible bonds in general multi-
factor Markovian models with credit risk. We show that, when the underlying uncertainty
is modeled as a Markov process with killing (to account for default), the convertible bond
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value function satisfies a variational inequality formulation of the stochastic game between
the bondholder and the issuer (fundamental references on the theory of variational inequal-
itites and stochastic games with stopping times include Friedman (1976) and Bensoussan
and Lions (1982, 1984)). We approximate the variational inequality by a penalized non-
linear partial differential equation (PDE) with two penalty terms corresponding to call
and conversion constraints. In particular, we introduce a new class of penalty terms with
continuous Jacobians that have computational advantages over the standard penalty term
with discontinuous Jacobian that has been previously used in the literature on American
option valuation.

• (ii) Second, we develop a computational framework to solve the multi-dimensional non-
linear PDE with two penalty terms in the finite element method-of-lines framework. We
localize the PDE to a bounded computational domain. We then re-formulate it in the
variational (weak) form and discretize it spatially using multi-dimensional finite elements.
The result is a non-linear ODE system. We integrate it in time using an adaptive time
integrator SUNDIALS based on the backward differentiation formulae (BDF). We provide
an error analysis, and show that adaptivity of the time integrator is essential for efficient
numerical solution of the problem.

• (iii) Third, to provide specific examples, we develop convertible bond valuation in affine, as
well as non-affine, four-factor models with stochastic interest rate, stock price, volatility,
and default intensity. Our affine model formulation is a four-factor extension of the three-
factor Carr and Wu (2005) reduced-form affine model. At default, the stock price drops
to zero. Prior to default, the stock price follows a continuous process with stochastic
volatility. The default intensity, the instantaneous stock variance, and the default-free
short rate follow a tri-variate diffusion process specified to capture empirical evidence on
stock option prices and CDS spreads. We also introduce two non-affine extensions of this
model that allow the default intensity to explicitly depend on the stock price to account
for the so-called collapse of the bond floor well known to practitioners.

• (iv) Fourth, we study the convertible bond value function and its Greeks (sensitivities
with respect to the underlying risk factors) necessary for hedging convertible bonds as
functions of the underlying factors, and determine and analyze optimal conversion and call
strategies in these models. To the best of our knowledge, this paper is the first attempt at
convertible bond modeling that includes four stochastic risk factors influencing convertible
bond values. The existing literature has so far been limited to one- and two-factor models.

We note that the finite element method has been recently applied to convertible bond valua-
tion in an interesting work by Barone-Adesi et al. (2003), who applied it to solve the stochastic
game between the bond issuer and the bondholder. However, Barone-Adesi et al. (2003) do not
consider credit risk at all. They work with two-factor models with stochastic stock price and
stochastic default-free interest rate, and assume no credit risk. This assumption is introduced
to simplify the model and its numerical solution, but is unrealistic, especially in light of the
fact that it is typically the riskier firms with lower credit ratings that issue convertible bonds
(e.g., the previously cited recent Eastman Kodak convertible bond issue is currently rated B by
Standard & Poor — a “junk” bond rating).1 In contrast, the focus of the present paper is on
convertible bond valuation with credit risk.

1According to a recent study by Moody’s Investor Services (see Hamilton et al.(2001)), between 1970 and
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To conclude this brief survey of the convertible bonds literature, we mention an interesting
recent work by Bielecki et al. (2005) who study a general formulation of the convertible bond
problem as a game option in an abstract semimartingale market model set-up (see also related
work by Kallsen and Kuhn (2005)). This paper develops rigorous theoretical underpinnings of
the convertible bond valuation in the general semimartingale framework. In the present paper
we limit ourselves to the Markovian framework leading to PDEs, as our primary focus here is
computational.

The rest of this paper is organized as follows. In Section 2 we describe the structure of
a typical convertible bond contract and fix our notation. In Section 3 we introduce a gen-
eral Markovian modeling framework with credit risk, as well as our example four-factor affine
model for the underlying economic uncertainty, its non-affine extensions, and three-factor special
cases (reductions). In Section 4, following the theoretical framework of Bensoussan and Lions
(1982, 1984), we formulate the convertible bond valuation problem in the Markovian setting as
a stochastic game between the issuer and the bondholder and present its variational inequality
formulation. In Section 5 we present a penalty approximation, which approximates the value
function of the variational inequality with the solution of a non-linear PDE with the appro-
priately chosen penalty terms approximating the action of conversion and call constraints. We
note that, in contrast to the rest of the literature on American-style options that use penalty
formulations with penalty terms with discontinuous Jacobians (e.g., Forsyth and Vetzal (2002),
Sapariuc et al. (2004)), we use penalty terms with continuous Jacobians to improve computa-
tional performance of the PDE solver. In Section 6 we present a variational (weak) formulation
of the penalized non-linear PDE localized to a bounded domain in the state space. In Section
7 we describe our approach to the numerical solution. We work in the finite element method-
of-lines framework. We discretize the problem spatially with finite element basis functions. The
resulting system of non-linear ODEs is integrated in time using an adaptive solver SUNDIALS
developed by the Lawrence Livermore National Laboratory. This solver features adaptively
variable integration order and step size selectors and is suitable for non-linear and non-smooth
problems. Equipped with this computational framework, in Section 8, after presenting exten-
sive numerical experiments and convergence studies to validate our computational approach,
we value some representative convertible bonds, compute their Greeks, study the behavior of
convertible bond prices and Greeks as functions of the underlying risk factors, and analyze op-
timal conversion and call strategies. Section 9 concludes the paper. Analytical solutions for
European-style securities in the four-factor affine model are presented in the Appendix. They
are used as benchmarks for convergence studies in Section 8.

2 Convertible Bonds

Consider a convertible bond issued by a certain firm at time t = 0 with maturity date T > 0, face
value F > 0 to be repaid at maturity, and coupon amounts Ci > 0 paid at coupon payment dates
{ti = iδ, i = 1, 2, . . . , N}, where tN = T and δ > 0 is the time interval between two coupons
(typically δ = 1/2 in the U.S. corporate bond market, corresponding to semiannual coupon

2000, 280 convertible bond issuers have defaulted on US$86.7 billion of long-term convertible debt. Default rates
for convertible debt issuers are higher than for those issuers without convertible bonds in their capital structure.
Furthemore, recovery rates for defaulted convertible bonds are significantly lower than those for non-convertible
bonds, recovering $29 on average compared with $43 per $100 par for straight bonds. Thus, the issue of credit
risk is especially important in convertible bond valuation and analysis.

4



payments). According to the market practice, we assume that the coupon payments are equal
and Ci = cδF , where c is the annualized percentage rate to be applied to the face value F . We
assume that the coupon payments are equally spaced with the interval δ (assumptions of equal
coupons and equally spaced coupon payment dates are to simplify notation and are without loss
of generality). The accrued interest at time t ∈ (iδ, (i+ 1)δ] between the two coupons is given
by: A(t) = c(t − iδ)F . The bondholder has an option to convert the bond into k > 0 shares
of common stock of the issuer firm at any time prior to and including maturity. A conversion
factor k > 0 specifies the number of shares of stock to be received in exchange for surrendering
the bond. In the U.S. convertible market, no accrued interest is paid at the time of conversion.

The issuer has an option to call the bond after an initial call protection period [0, tc), tc ∈ [0, T ]
(tc is called the first call date). At the time of call t ∈ [tc, T ), the issuer re-purchases the bond
from the bondholder for a (dirty) call price Cd(t). The bond prospectus typically specifies a
call schedule that stipulates the clean call price Cc(t) in effect during each year of the bond’s
life when the bond is callable. If the bond is called at some time t during the year, the actual
(or dirty) call price Cd(t) to be paid to the bondholder is the clean call price plus the interest
A(t) accrued since the last coupon payment, Cd(t) = Cc(t)+A(t). The bondholder’s conversion
option has a precedence over the issuer’s call option. That is, if the issuer calls a bond at
time t, the bondholder has the right to either convert the bond at t and receive k shares of the
underlying stock worth kSt or receive the dirty call price Cd(t) equal to the clean call price plus
the accrued interest.

Sometimes the bondholder also has an option to put the bond back to the issuer at some
specified times during the life of the bond for some pre-specified amount (typically the bond
face value plus accrued interest). In the U.S. convertible market, the put option is typically
Bermudan-style with only several exercise opportunities during the life of the bond (typically
several years apart). This is in contrast to the call and conversion options, which are American-
style, granting continuous exercise opportunities. In this paper to simplify notation we do
not consider the put option (but it can be easily incorporated in our valuation framework, by
checking optimality of exercising the put at the eligible exercise dates). In this paper we also
do not consider the so-called soft call protection features in some convertible bonds that restrict
the issuer’s right to call the bond based on the price history of the stock, as this introduces
path-dependencies that significantly complicate the analysis. For more detailed discussions of
various features of convertible bonds and market practices we refer the reader to the literature
(e.g., Grau et al. (2003), Greemwood and Hodges (2002), Howard and O’Connor (2001), Lau
and Kwok (2004)).

As any corporate debt, the convertible bond is subject to default by the issuer firm. In
the event of default, we assume that the value of the common stock drops to zero, and the
convertible bond pays a fixed recovery payment equal to a fraction R ∈ [0, 1] of the face value F
(the recovery of face value assumption). Other recovery assumptions can also be considered in
our framework, but for simplicity we limit ourselves to the recovery of face value. This is also
consistent with the actual market practice of what typically happens in bankruptcy proceedings
(see Andersen and Buffum (2003)). We also make a simplifying assumption that at default
the stock price drops to zero (no recovery to the stockholders). This simplification is quite
reasonable for practical purposes. At the time of default the stock typically trades for relatively
low values (typically for pennies in the U.S.). However, if desired, some non-zero recovery on
the common stock can be incorporated in the model as shown by Ayche et al. (2003).
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3 The Markovian Modeling Framework

3.1 General Framework

Let λt denote the (generally stochastic) arrival rate of the default event. Let St denote the
time-t stock price. We assume that prior to default the risk-neutral stock price dynamics is:

dSt = (rt − q + λt)Stdt+
√
VtStdW

S
t , (3.1)

where rt is the (generally stochastic) instantaneous default-free interest rate in the economy
(the short rate), q is the dividend yield on the stock (assumed constant), Vt is the (generally
stochastic) instantaneous variance rate, and WS

t is a standard Brownian motion. When default
occurs, we assume that the stock price drops to zero, where it remains forever (zero is a cemetery
state for the stock price process). The default intensity λt in the drift in (3.1) compensates for
the possibility of a jump to zero, so that the discounted total return process (including stock
price changes, dividends, and a possible jump to default) remains a martingale in the risk-
neutral economy (in this paper we take a risk-neutral probability measure as given and consider
all processes under the given risk-neutral measure).

In our general Markovian framework, we assume that the default intensity and the instanta-
neous stock return variance are functions of the stock price and an n-dimensional state vector Z
following an n-dimensional Markov diffusion process {Zt, t ≥ 0}, and the short rate is a function
of Z:

λt = λ(Zt, St), Vt = V (Zt, St), rt = r(Zt),

dZit = µi(Zt)dt+ σi(Zt)dW i
t , i = 1, ..., n,

whereW i
t is an n-dimensional Brownian motion with the correlation structure dW

i
t dW

j
t = ρi,jdt

and dWSdW i = ρS,idt, and µ and σ are the (generally state-dependent) drift and volatility of
Z. They are assumed to satisfy the technical conditions ensuring that the SDE for the state
vector Z has a unique strong solution.

3.2 A Four-Factor Affine Specification

To simplify the model calibration process, it is convenient to specify the model dynamics so
that it is in the affine class of models (see Duffie et al. (2000)). For affine models the character-
istic function can be obtained analytically, and European-style securities, such as options and
straight corporate bonds and CDS, can be valued by inverting the Fourier transform. In this
paper we study the following affine model specification. We assume that the short rate rt, the
instantaneous variance Vt, and the default intensity λt follow the joint dynamics:

drt = κr(θr − rt)dt+ σr
√
rt dW

r
t , (3.2a)

dVt = κV (θV − Vt)dt+ σV
√
Vt dW

V
t , (3.2b)

dzt = κz(θz + γVt − zt)dt+ σz
√
zt dW

z
t , (3.2c)

λt = zt + αVt + βrt, (3.2d)

dWS
t dW

V
t = ρSV dt, (3.2e)

dWS
t dW

r
t = dWS

t dW
z
t = dW r

t dW
V
t = dW r

t dW
z
t = dWV

t dW
z
t = 0. (3.2f)
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The short rate is assumed to follow a Cox-Ingersoll-Ross (CIR) (1985) process with the long-run
level θr > 0, rate of mean reversion κr > 0, and short rate volatility σr > 0. To calibrate to
the initial yield curve we can also take θr = θr(t) to be a deterministic function of time, but for
simplicity here we assume it is constant. The instantaneous variance is also assumed to follow
a CIR process with the long-run variance level θV > 0, rate of mean reversion κV > 0, and
volatility of variance σV > 0. The default intensity λt is specified to be a linear combination of
three factors: a process zt with dynamics (3.2c), a stock price variance dependent contribution
αVt with α ≥ 0 and an interest rate dependent contribution βrt with β ≥ 0. The correlation
structure among the four driving standard Brownian motions is given by (3.2e-f). The only
non-zero correlation is ρSV between WS and WV . We assume that ρSV < 0 to capture the
leverage effect, i.e., the negative correlation between the stock price and volatility.

This model is a four-factor extension of the three-factor model recently proposed by Carr
and Wu (2005). Carr and Wu’s model obtains if we assume constant short rate and set β = 0.
Since in this paper we are dealing with long-term convertible bonds, it is important to allow
for stochastic default-free interest rates in addition to the stochastic stock price, volatility,
and default intensity. We refer the reader to Carr and Wu (2005) for a thorough discussion
and empirical and economic justification of their three-factor model and, in particular, of their
specification of default intensity λt = zt + αVt (linear dependence of the default intensity on
the instantaneous stock price variance rate is also employed by Carr and Linetsky (2006) in
the context of their jump-to-default extended CEV model). All the arguments of Carr and
Wu (2005) remain valid in our four-factor setting. The rather intricate specification of default
intensity is in agreement with vast empirical evidence on the joint dynamics of the stock price
volatility and credit default swap spreads on the same reference firm presented in Carr and Wu
(2005). In particular, the stochastic variance Vt influences the default intensity in two ways. In
addition to the obvious linear functional dependence of the default intensity on the variance in
(3.2d), the process (3.2e) for the default intensity factor zt features a mean-reverting drift with
the stochastic long-run level θz + γVt with γ ≥ 0 and θz > 0. As the stock volatility increases,
the long-run level of the default intensity factor zt increases, and the process is pulled towards
this increasing long-run level with the mean-reversion rate κz > 0. The state space of the four-
dimensional process {(St, Vt, rt, zt), t ≥ 0} is Ω = (R+)4. The affine model (3.2) is a particular
instance of the general Markovian framework of Section 3.1 with the three-dimensional process
Z: Z1

t = Vt, Z2
t = rt, Z3

t = zt, and λ = Z3
t + αZ1

t + βZ2
t .

Carr and Wu’s model can be thought of as a jump-to-default extended Heston’s stochastic
volatility model with stochastic default intensity that is affine in the instantaneous stock return
variance. We further extend it by introducing stochastic interest rates. We also include the
interest rate contribution to the default intensity βrt with β ≥ 0. As interest rates increase, the
cost of issuing new debt increases, which puts upward pressure on default intensity.

Remark 3.1 (On Nested Lower-Dimensional Affine Models). The four-factor model
(3.1)-(3.2) nests three three-dimensional affine models as special cases.

(1) If we set κr = 0 and σr = 0 we obtain Carr and Wu’s three-factor model with constant
interest rates. This model can be used to value shorter-term securities, where the impact of
stochastic interest rates is relatively less important than the impact of stochastic volatility and
stochastic default intensity.

(2) Another possibility is to set κz = 0 and σz = 0 so that z is constant. In this model the
default intensity is λt = z+αVt+βrt with constant z, and all the dynamics of the intensity comes
from changes in the stock price volatility and the short rate. This three-factor specification is
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a simpler extension of Heston’s stochastic volatility model than the four-factor specification.
However, empirical results in Carr and Wu suggest that the CDS spread dynamics includes an
additional independent factor in addition to the stock volatility.

(3) Another three-factor affine model specification is obtained by setting κV = 0 and σV = 0
so that V is constant. In this specification the volatility is constant, and the default intensity is
independent of the stock price, as the Brownian motionsWS andW z are independent. Note that
if we makeWS andW z correlated, the model will cease to be in the affine class and will have no
analytical solutions for European securities (however, the numerical method developed in this
paper will equally apply). These three-factor reductions provide lower-dimensional alternatives
to the four-factor model, if constraints on the computing burden prevent one from using the full
four-factor model.

Remark 3.2 (On the Calibration of Affine Models). A major advantage of the affine
model specification is the availability of analytical solutions for European-style securities that
greatly simplify the calibration process. The user can calibrate the model to a cross section
of stock options with different strike prices and maturities and to credit spreads (e.g. CDS
spreads) of different maturities (as well as the risk-free yield curve) by using the analytical
solutions. The calibration process fixes model parameter values in Eqs.(3.1)-(3.2). Then, after
the model is calibrated, the user prices a convertible bond by a numerical PDE method. Note
that the calibration is done using only the analytical solutions, and does not require solving the
PDE numerically. The PDE is solved numerically only once at the stage of pricing the convertible
bond after the model has been calibrated to interest rate, CDS and stock options data using the
affine solution. Moreover, the availability of analytical solutions for European-style contracts
allows one to benchmark numerical methods needed to value American-style convertible bonds.
This is a second important advantage of affine models. The computational performance of
numerical implementation can be optimized using the analytical benchmark for the European
case, and the optimized implementation can then be used to value the American-style CB more
efficiently.

3.3 Some Non-Affine Model Specifications

One limitation of the affine specification is the inability to make the default intensity λ explicitly
depend on the stock price S. Indeed, including in the default intensity an additional term with
the negative power of the stock price S−p

t that explodes as the stock falls towards zero as in,
e.g., Carr and Linetsky (2006) and Linetsky (2006), destroys the affine structure. While in the
affine model (3.1)-(3.2) the stock price does influence the default intensity dynamics through the
negative correlation between the stock price S and the stock variance V , as well as through the
contribution of V into the drift of z, the default intensity remains finite as the stock price falls to
zero. In the context of convertible bond modeling, this limits our ability to model the so-called
collapse of the bond floor well-known to practitioners. For low stock prices, the conversion option
is deep out of the money and the bond behaves essentially as a straight corporate bond (this is
known as the bond floor for the convertible bond). It is well known from empirical data that
when the stock price falls to very low levels, market prices of corporate bonds issued by the
firm rapidly fall (and credit spreads increase sharply) as market participants anticipate that a
default event is much more likely when the firm’s stock price falls to very low levels. To capture
this feature, we consider several non-affine modifications of the affine model presented in the
previous section. One possibility is to add a stock-dependent term into the default intensity
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(3.2d):
λt = zt + αVt + βrt + aS−p

t

with some p > 0 and a ≥ 0. When z, V , and r are all constant, this model reduces to the
jump-to-default extended Black-Scholes model recently solved by Linetsky (2006). However,
this analytical solution of the one-factor model does not extend to multi-factor models.

An alternative specification is to make the instantaneous stock return variance depend both
on the stock price itself in the constant-elasticity-of-variance (CEV) fashion and on an indepen-
dent stochastic volatility factor:

Vt = vtS
2β
t ,

where β < 0 is the CEV elasticity parameter, and vt follows a CIR process:

dvt = κv(θv − vt)dt+ σv
√
vt dW

v
t ,

where the Brownian motion can be taken to be independent of WS due to the fact that we
already have a built-in leverage effect between the variance V and the stock price S through
the negative CEV power β < 0. If we substitute this hybrid stochastic volatility-CEV (SVCEV)
specification for the instantaneous stock variance into the default intensity specification (3.2d),
we obtain:

λt = zt + αvtS
2β
t + βrt.

If z, v, and r are all constant, this model reduces to the one-factor jump-to-default extended
CEV model (or JDCEV for short) recently introduced and solved in closed form by Carr and
Linetsky (2006). However, this analytical solution does not extend to multi-factor models.

From the stand-point of our numerical method, the non-affine models discussed in this sec-
tion do not present any additional computational difficulties in pricing convertible bonds. The
advantage of such non-affine specifications is the ability to capture the explosion of the default
intensity and the collapse of the bond floor in the convertible bond valuation. However, their
disadvantage is that the lack of analytical solutions for stock options, corporate bonds, and CDS
significantly complicates model calibration, as one now needs to solve for option prices and credit
spreads by numerically solving the PDE within the calibration process, which will be too slow
for practical purposes. Alternatively, one could use Monte Carlo simulation to estimate option
prices and credit spreads by simulation nested within the calibration procedure. This would still
be significantly slower than the calibration of affine models using the analytical solutions and
the Fourier transform inversion.

3.4 Pricing European-style Securities

Consider a European-style contingent claim that delivers some payoff Ψ(ST ) at expiration time
T > 0 if the company does not default prior to and including time T , and delivers a fixed
recovery payment R ≥ 0 at the time of default if default occurs prior to and including expiration.
According to the standard intensity-based credit risk theory (see the monographs cited in the
Introduction), assuming no default by time t ≥ 0, the time-t price of such a contingent claim
can be written as

U(t, S, V, r, z) = Et

[
e−

∫ T
t (ru+λu)duΨ(ST )

]
(3.3a)

+Et

[∫ T

t
e−

∫ s
t (ru+λu)duλsRds

]
, (3.3b)
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where Et is the expectation operator under the risk-neutral probability measure and conditional
on the information at time t. Since the model is Markovian, the only relevant information at
time t are the values of the four state variables St = S, Vt = V , rt = r, and zt = z.

In particular, for a defaultable zero-coupon bond with unit face value and with recovery
R ∈ [0, 1] at the time of default we have:

BR(t, S, V, r, z) = Et

[
e−

∫ T
t (ru+λu)du

]
(3.4a)

+R
∫ T

t
Et

[
e−

∫ s
t

(ru+λu)duλs

]
ds. (3.4b)

For a European-style call option with payoff (ST − K)+ if the firm has not defaulted prior to
and including T and zero if default occured by T , we have:

C(t, S, V, r, z) = Et

[
e−

∫ T
t (ru+λu)du(ST −K)+

]
. (3.5)

The European-style put price can then be determined from the put-call parity.
A key feature of the three-factor Carr-Wu model and its four-factor version with stochastic

interest rates considered here is that they are in the affine class (Duffie et al. (2000)). Accord-
ingly, the expectation (3.4a) appearing in the defaultable bond pricing formula is exponential
affine in the values of the factors rt, Vt, and zt at time t with time-dependent coefficients satisfy-
ing a system of ODEs of the Riccati type. The expectation appearing in the call pricing formula
(3.5) can be calculated by inverting the following generalized discounted characteristic function
of the log-return ln(ST/St) (Fourier transform):

ϕ(u) := Et

[
e−

∫ T
t

(ru+λu)dueu ln(ST /St)
]
, (3.6)

where u is a complex variable taking values in the domain D ⊂ C of the complex plane where
the expectation in (3.6) is well-defined (note that it is always well defined at least for purely
imaginary u). This characteristic function has the exponential affine form and is calculated in
Carr and Wu (2005) in the three-factor model. The four-factor extension with stochastic short
rate is given in the Appendix. To calculate the recovery part (3.4b) of the defaultable zero-
coupon bond, we need to compute the expectation Et

[
e−

∫ s
t

(ru+λu)duλs

]
. Since λt is affine in the

underlying factors, this expectation also has the exponential affine structure. See the Appendix
for details.

A European-style convertible bond with conversion allowed only at maturity and no call
feature can be expressed as a portfolio of defaultable zero-coupon bonds with no recovery cor-
responding to the coupon payments prior to maturity, a contingent claim that pays

Ψ(ST ) = max{(1 + cδ)F, kST} = (1 + cδ)F + kmax{ST − (1 + cδ)F/k, 0}
at bond maturity T if there is no default prior to and including maturity, and a recovery payment
RF at the time of default if default occurs prior to and including maturity. The time t-value of
the European-style convertible bond is then (here [x] denotes the integer part of x ∈ R and the
sum is over the remaining coupons):

ECB(t, S, V, r, z) =
N−1∑

i=[t/δ]+1

cδFEt

[
e−

∫ iδ
t (ru+λu)du

]
+ (1 + cδ)FEt

[
e−

∫ T
t (ru+λu)du

]
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+kEt

[
e−

∫ T
t (ru+λu)du(ST −K)+

]
+ RF

∫ T

t
Et

[
e−

∫ s
t (ru+λu)duλs

]
ds, (3.7)

where the strike of the conversion option component is

K := (1 + cδ)F/k. (3.8)

All the terms in this expression for the European-style convertible bond can be computed in the
affine framework by Fourier inversion (see the Appendix).

While our main interest in the present paper is in the valuation of American-style convertible
bonds that are analytically intractable due to American-style call and conversion options and
require numerical PDE methods, the analytical solutions for European-style contingent claims
such as defaultable zero-coupon bonds and call and put options provide useful benchmarks for
numerical methods. Furthermore, the availability of analytical solutions for corporate bonds,
CDS and options greatly facilitates calibration of the model to the credit and equity options
data as demonstrated in Carr and Wu (2005) in the three-factor case. The calibrated model can
then be used to value convertible bonds via the numerical method studied in this paper.

4 Valuing Convertible Bonds: A Stochastic Game with Stop-

ping Times

Let
ψ1(t, S) := kS

be the payoff to the bondholder in the case of conversion at time t with the stock price equal to
S. Let

ψ2(t, S) := max{C(t), kS}
be the payoff to the bondholder in the case of call at time t by the issuer with the stock price
equal to S at t, where C(t) is the dirty call price (including interest accrued since the last
coupon). The payoff of the convertible bond at maturity T is

Ψ(ST ) = max{(1 + cδ)F, kST},

Let F = {F , t≥ 0} be the filtration generated by the Brownian motionW driving our model.
For t ∈ [0, T ], let Θt,T be the set of all F-stopping times taking values in [t, T ]. For t ∈ [0, T ], let
θ1 ∈ Θt,T and θ2 ∈ Θt∨tc,T be two stopping times. The θ1 will model the time of conversion by
the bondholder and the θ2 — the time of call by the issuer (recall that conversion is allowed at
any time during the life of the bond, while the bond is callable only during the period [tc, T ] for
some tc ≥ 0). Let J(θ1, θ2; t, S, V, r, z) be the time-t value of the bond, assuming the bondholder’s
conversion strategy is given by the stopping time θ1 and the issuer’s call strategy is given by
the stopping time θ2. Then, assuming no default by time t ∈ [0, T ], we have (here and in what
follows x ∧ y := min{x, y} and x ∨ y := max{x, y}):

J(θ1, θ2; t, S, V, r, z) = Et


e−

T∫
t
(rs+λs)ds

Ψ(ST )1{T≤θ1∧θ2}
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+
N−1∑

i=[t/δ]+1

Et


e−

iδ∫
t
(rs+λs)ds

cδF1{iδ<θ1∧θ2}


+ Et


e−

θ1∫
t

(rs+λs)ds
ψ1(θ1, Sθ1)1{θ1<T∧θ2}




+Et


e−

θ2∫
t

(rs+λs)ds
ψ2(θ2, Sθ2)1{θ2≤θ1,θ2<T }


+ Et


∫ θ1∧θ2∧T

t
e
−

s∫
t
(ru+λu)du

λsRds


 . (4.1)

The first term is the time-t present value of the terminal payoff to be received if there is no
default, no call, and no conversion prior to maturity. The second term is the present value of
the coupon stream, where each coupon is to be received if there is no default, no call, and no
conversion prior to the coupon date ti = iδ, i = [t/δ]+1, . . . , N−1 (the final coupon at maturity
tn = T is included in the terminal payoff and, thus, is not included in the coupon stream). The
third term is the present value of the payoff at the time of conversion, assuming the bondholder
converts prior to the issuer’s call, prior to default, and prior to maturity. The fourth term is
the present value of the payoff at the time of call, assuming the issuer calls prior to conversion,
prior to default, and prior to maturity. The fifth and final term is the present value of the
recovery payment in the case of default prior to call, conversion, and maturity. For the future
development it will also be convenient to write the value of the coupon stream in the continuous
form:

N−1∑
i=[t/δ]+1

Et


e−

iδ∫
t
(rs+λs)ds

cδF1{iδ<θ1∧θ2}


 = Et

[∫ θ1∧θ2∧T

t
e−

∫ s
t (ru+λu)duC(s)ds

]
, (4.2)

where we introduced a coupon rate: C(t) :=∑N−1
i=[t/δ]+1Ciδ(t− ti), where δ(x) is the Dirac delta

function, and Ci = δcF and ti = iδ are the coupon amounts and payment dates, respectively.
This framework accommodates both discrete and continuous coupons. If one wishes to consider
a continuous coupon stream paid at the continuous rate c, then one simply sets C(t) = cF ,
so that the interest earned in the infinitesimal time interval dt is cFdt. Continuous coupons
are often considered in the literature to simplify the analysis, although in practice coupons are
always paid at discrete time intervals.

We assume that the issuer and the bondholder behave rationally, i.e., the bondholder is value-
maximizing and the issuer is value-minimizing by optimally choosing the stopping times θ1 and
θ2, respectively. That is, the bondholder chooses the conversion time to maximize the bond
value, while the issuer chooses the call time to minimize the bond value. Then, the convertible
bond value is a saddle point of J(θ1, θ2; t, S, V, r, z):

U(t, S, V, r, z) = inf
θ2∈Θt∨tc,T

sup
θ1∈Θt,T

J(θ1, θ2; t, S, V, r, z)

= sup
θ1∈Θt,T

inf
θ2∈Θt∨tc,T

J(θ1, θ2; t, S, V, r, z). (4.3)

This is an example of a stochastic game with stopping times. For the mathematical theory of
stochastic games with stopping times and, in particular, for general existence and uniqueness
results for saddle points and for the variational inequality formulation we refer to the funda-
mental references Friedman (1975, Chapter 16, Sections 16.9-16.12) and Bensoussan and Lions
(1982, Chapter 5, Section 5.2) and Bensoussan and Lions (1984, Chapter 2, Section 2.9).
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The time-t price of the convertible bond U = U(t, S, V, r, z) (the value of the stochastic
game (4.3)) can be determined as a solution of the following system of parabolic variational
inequalities. Find a function U , ψ1 ≤ U ≤ ψ2, such that (see Bensoussan and Lions (1982),
Eqs. (5.87-5.88) and Theorem 5.5, pp. 489-490 and Bensoussan and Lions (1984), Eqs. (9.52)
and (9.54) and Theorem 9.5, pp. 166–167):

∂U
∂t −AU − (r+ λ)U + λR+ C = 0 if ψ1 < U < ψ2,

∂U
∂t −AU − (r+ λ)U + λR+ C ≤ 0 if U = ψ1,

∂U
∂t −AU − (r+ λ)U + λR+ C ≥ 0 if U = ψ2,

(4.4)

with the terminal condition at maturity T :

U(T, S, V, r, z) = Ψ(S). (4.5)

Here C = C(t) is the previously defined coupon rate, λ = z+αV +βr, and A is the second-order
differential operator A = −G, a negative of the infinitesimal generator G of the underlying diffu-
sion process. In the particular case of the four-dimensional process (3.1)–(3.4) the infinitesimal
generator has the form:

Gu := 1
2

(
V S2 ∂

2u

∂S2
+ σ2

V V
∂2u

∂V 2
+ σ2

rr
∂2u

∂r2
+ σ2

zz
∂2u

∂z2
+ 2ρSV σV V S

∂2u

∂S∂V

)

+(r − q + λ)S
∂u

∂S
+ κV (θV − V )

∂u

∂V
+ κz(θz + γV − z)

∂u

∂z
+ κr(θr − r)

∂u

∂r
.

The problem is considered on the time interval [0, T ]. In the absence of call and conversion
options prior to maturity, the problem reduces to pricing a European-style convertible bond
that can only be converted at maturity. Its value function is given by Eq. (3.14), where the
expectations can be computed in the affine framework. The value function of the bond also
satisfies the PDE Ut −AU − (r+ λ)U + λR+ C = 0 in [0, T ]×Ω subject to the terminal payoff
condition (4.5). American-style call and conversion options constraint the value function of the
convertible bond to stay between the conversion and call values, ψ1 ≤ U ≤ ψ2. Intuitively,
the space Q = [0, T ] × Ω separates into three regions. The conversion region (it is optimal
for the bondholder to convert the bond), where the conversion constraint is binding, U = ψ1,
and the inequality Ut − AU − (r + λ)U + λR + C ≤ 0 holds, the call region (it is optimal for
the issuer to call the bond), where the call constraint is binding, U = ψ2, and the inequality
Ut−AU − (r+λ)U +λR+C ≥ 0 holds, and the continuation region (neither call nor conversion
are optimal, and neither call nor conversion constraints are binding) where U satisfies the PDE
Ut − AU − (r + λ)U + λR + C = 0. The three regions are separated by the two boundaries:
the optimal conversion boundary and the optimal call boundary. The stopping times θ∗1 and
θ∗2 that realize the optimal strategies for the bondholder and the issuer in (4.3) are given by
(Bensoussan and Lions (1982, Theorem 5.5, p. 490), and Bensoussan and Lions (1984, Theorem
9.6, Eq. (9.60), p. 167):

θ̂1 = inf{s ∈ [t, T ] : U(s, Ss, Vs, rs, zs) = ψ1(s, Ss)},
θ̂2 = inf{s ∈ [t ∨ tc, T ] : U(s, Ss, Vs, rs, zs) = ψ2(s, Ss)}, (4.6)
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where U = U(t, S, V, r, z) is the solution of the parabolic variational inequality (4.4)–(4.5).
If the convertible bond is callable, it is always optimal to convert the bond at time t if

kSt ≥ C(t). Thus, the value function satisfies

U(t, S, V, r, z) = kS, (4.7)

for those (t, S, V, r, z) for which S ≥ S∗(t), where S∗(t) = C(t)/k. Therefore, it is sufficient
to consider the problem (4.4)–(4.5) only for those (t, S, V, r, z) for which S ≤ S∗(t), and then
extend the solution to the whole space [0, T ]×Ω by using (4.7).

5 Penalty Approximation and Localization to a Bounded Do-

main

In order to numerically solve the variational inequality formulation (4.4)–(4.5), we construct a
penalty approximation as follows. Fix some small ε > 0 and consider a non-linear PDE of the
form (here x+ := max{x, 0} and x− := max{−x, 0}):

∂Uε
∂t

−AUε − (r + λ)Uε + λR+ C + 1
ε
(Uε − ψ1)− − 1

ε
(Uε − ψ2)+ = 0 (5.1)

subject to the terminal condition

Uε(T, S, V, r, z) = Ψ(S). (5.2)

The two non-linear penalty terms 1
ε(Uε−ψ1)− and −1

ε (Uε−ψ2)+ approximate the action of the
conversion and call constraints, respectively. According to Friedman (1976, Chapter 16) and
Bensoussan and Lions (1982, Theorem 5.6, p. 490) and Bensoussan and Lions (1984, Theorem
9.5, p. 167), the solution Uε of the non-linear penalized PDE problem (5.1)–(5.2) converges
to the solution of the variational inequality (4.4)–(4.5) as ε → 0. In particular, the following
penalization error estimate holds for the penalty approximation (Brezzi and Norrie (1987),
Section 9.4b, Boman (2001), Sapariuc et al. (2004)):

max
t∈[0,T ]

‖Uε(t, ·)− U(t, ·)‖L∞(Ω) ≤ Cε (5.3)

for some constant2 C > 0 independent of ε, and

ψ1 − Cε ≤ Uε ≤ ψ2 +Cε. (5.4)

The intuition is as follows. While the solution U of the variational inequality is constrained to
be not less than the conversion value and not greater than the call value, ψ1 ≤ U ≤ ψ2, the
solution of the non-linear penalized PDE Uε can fall below the conversion value ψ1 or raise above
the call value ψ2. However, while when ψ1 ≤ U ≤ ψ2 both penalty terms vanish, when Uε < ψ1,
the first penalty term 1

ε (Uε − ψ1)− has a positive value that rapidly increases as the solution
falls below ψ1, forcing the solution above ψ1. Similarly, when Uε > ψ2, the second penalty term
−1
ε (Uε − ψ2)+ has a negative value with the rapidly increasing absolute value as the solution

2In sections 5-7 C denotes positive constants in various error estimates. It should not lead to any confusion
with the previously used notation for the call price and for the coupon rate.
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raises above ψ2, forcing the solution below ψ2. The smaller the value of ε, the larger the value
of the coefficient 1/ε in the penalty terms and the more closely the penalty terms approximate
the action of the conversion and call constraints. The penalized solution Uε can fall below ψ1

and raise above ψ2, but ψ1 − Uε ≤ Cε and Uε − ψ2 ≤ Cε for some constant C > 0 independent
of ε.

While the specific functional form of the penalty terms in (5.1) is commonly used in the
literature on the penalty approximation of variational inequalities (e.g., Bensoussan and Lions
(1982, 1984), Forsyth and Vetzal (2002), Friedman (1976), Glowinski (1981, 1984), Marcozzi
(2001), Sapariuc et al. (2004), Zvan et al. (1998)), more general forms of the penalty term can
be considered (see Glowinski (1984) for general results about the penalty method). In fact, the
penalty terms 1

ε (Uε − ψ1)− and −1
ε (Uε − ψ2)+ have discontinuous first derivatives with respect

to Uε. In the numerical solution, one needs to use Newton-type iterations to solve a non-linear
system of algebraic equations resulting from the discretization of the PDE. The discontinuity
in the Jacobian of this system stemming from the discontinuity in the derivative of the penalty
term with respect to Uε presents some computational challenges, as non-smooth Newton-type
iterative schemes for non-linear systems with discontinuous Jacobians need to be used (see,
e.g., Forsyth and Vetzal (2002)). In this paper we consider more general penalty terms of the
form ( 1

ε(U − ψ1)−)p and −( 1
ε(U − ψ2)+)p for some p ≥ 1, which we call power-p penalty terms.

Taking p > 1 restores the continuity of the derivative of the penalty term with respect to Uε, and
standard Newton iterations with continuous Jacobian can be used. In the numerical experiments
in this paper we take p = 2 and verify that the estimate (5.3) holds in this case as well. Thus,
for some small ε > 0, we solve the non-linear PDE

∂Uε
∂t

−AUε − (r+ λ)Uε + λR+ C +
(
1
ε
(Uε − ψ1)−

)p
−
(
1
ε
(Uε − ψ2)+

)p
= 0 (5.5)

subject to the terminal condition (5.2).
Since the state space Ω is unbounded in our problem, in order to be able to solve the problem

numerically we need to localize it to a bounded computational domain. To this end, we consider
a sequence of problems formulated on increasing bounded domains that exhaust the state space
Ω. Let {Ωk}∞k=1 be a sequence of increasing bounded open domains such that ∪∞

k=1Ωk = Ω.
We consider a sequence of PDE problems (5.5) subject to the terminal condition (5.2) posed
on bounded domains Ωk. For the problem on the bounded domain Ωk to be well posed, we
introduce artificial boundary conditions on the boundary ∂Ωk. For the localized problem, we
have

max
t∈[0,T ]

||Uε,k(t, ·)− Uε(t, ·)||L∞(G) → 0 as k → ∞ (5.6)

for any compact set G ⊂ Ω such that G ⊂ Ωk for all k and for essentially arbitrary choice of
the artificial boundary conditions, as long as the problem is well-posed (see Friedman (1976,
Chapter 16), Bensoussan and Lions (1982, 1984), Marcozzi (2001), Sapariuc et al. (2004)). The
result (5.6) says that the behavior of the solution near the distant boundary ∂Ωk does not affect
the solution on any fixed bounded region G ⊂ Ωk in the limit k → ∞. Therefore, any well-
posed problem on Ωk is suitable as an approximation of the original problem on the unbounded
state space Ω, provided that k is taken sufficiently large and the quality of the approximation is
considered only on some fixed approximation domainG ⊂ Ωk. This justifies the use of essentially
arbitrary artificial boundary conditions. The domain G ⊂ Ωk where we are interested in the
solution is referred to as the approximation domain. The domain Ωk ⊂ Ω where the computation
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is performed is referred to as the computational domain (see Marcozzi (2001) for details). A
priori determination of the size of the computational domain required for a given error tolerance
is possible as shown in Kangro and Nicolaides (2000) for the case of the multi-dimensional Black-
Scholes-Merton PDE. Namely, after changing the variables in the Black-Scholes-Merton PDE
that reduces it to the heat equation,

max
t∈[0,T ]

||Uk(t, ·)− U(t, ·)||L∞(G) ≤ Ce−cRk , (5.7)

where Rk is the radius of the computational domain Ωk and C > 0 and c > 0 are independent
of Rk.

While from the theoretical standpoint any choice of artificial boundary conditions will work
as long as the problem on the bounded domain is well-posed, from the practical standpoint of
the numerical computation, one would like the artificial boundary conditions to approximate
the solution on the boundary as closely as possible. If the chosen artificial boundary conditions
closely approximate the solution, then the bounded computational domain can be chosen to
be of relatively moderate size, reducing the size of the numerical computation and gaining in
computational efficiency. If the chosen artificial boundary conditions do not approximate the
solution well enough, one needs to choose a large enough computational domain to mitigate the
pollution of the solution from the artificial boundary conditions, thus increasing the size of the
numerical computation. In the case of our convertible bond problem, we fix an approximation
domain G = (S, S) × (V , V ) × (r, r) × (z, z), where we are interested in the solution, and
consider a sequence of computational domains Ωk = (Sk, Sk) × (V k, V k) × (rk, rk) × (zk, zk),
0 < Sk < S < S < Sk < ∞, 0 < V k < V < V < V k < ∞, 0 < rk < r < r < rk < ∞,
0 < zk < z < z < zk < ∞. In this paper we use artificial Dirichlet boundary conditions for all
t ∈ [0, T ]:

Uk|∂Ωk
= g|∂Ωk

, (5.8)

where g = g(t, S, V, r, z) is an appropriately chosen function to approximate the solution U on
the boundary. In particular, the following choice of g approximates the solution on the boundary
reasonably well:

g(t, S, V, r, z) = max{min{C(t), ECB(t, S, V, z, r)}, kS}, (5.9)

where ECB(t, S, V, z, r) is the price of the European-style convertible bond (3.14). Note that

g(T, S, V, r, z) = Ψ(S),

because ECB(T, S, V, z, r) = Ψ(S), and ψ1 ≤ g ≤ ψ2 for all t ∈ [0, T ], i.e., the call and conversion
constraints are enforced on the boundary. The European-style convertible bond price can be
computed analytically in the affine framework, or can be approximated by using some suitable
simplifying assumptions, e.g., letting the volatilities of V , r, and z be all zero, and using the
Black-Scholes-Merton formula in the European call option portion of the expression (3.14). In
the latter case, we have a simple explicit expression for the European-style convertible bond to
be used in the artificial boundary condition (5.9):

ECB(t, S, V, r, z) =
N−1∑

i=[t/δ]+1

cδFe−(r+λ)(iδ−t) + (1 + cδ)Fe−(r+λ)(T−t)
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+kECBSM(K, T ; t, S,
√
V , r+ λ, q) +

λRF

r + λ
(1− e−(T−t)(r+λ)), (5.10)

where λ = z+αV +βr and ECBSM(K, T ; t, S,
√
V , r+ λ, q) is the time-t Black-Scholes-Merton

price of the European call with strike K (where K = (1 + cδ)F/k) and expiration T when the
current stock price at time t is S, the volatility of the stock price is σ =

√
V , the interest rate

is r + λ, and dividend yield is q. We use this expression in our choice of the artificial boundary
conditions in our numerical experiments in this paper.

Remark 5.1. The probabilistic interpretation of the localization to a bounded domain is
as follows. Fix a bounded open domain Ωk in the state space Ω and add the following artificial
knock-out clause to the convertible bond contract. If the underlying state variable process hits
the boundary ∂Ωk at some time t prior to maturity T , conversion θ1, call θ2, and default, then
the bond is retired (knocked out) and the bondholder receives a rebate g(t, St, Vt, rt, zt). Clearly,
the value function of this artificial knock-out convertible bond with rebate g will approximate
the value function of the convertible bond with no knock-out feature better and better as we
enlarge the domain Ωk, shifting the boundary further and further away from the initial state of
the process. This probabilistic interpretation is discussed in Friedman (1976) and Bensoussan
and Lions (1982, 1984) in the general context of stochastic games with stopping times. These
references also provide a probabilistic interpretation of the penalty approximation (see Bensous-
san and Lions (1982, Section 5 in Chapter 3 in particular). In fact, the theorems in Friedman
(1976) and Bensoussan and Lions (1982, 1984) we cite throughout this paper are formulated for
stochastic games with stopping times in a bounded domain with a boundary. In order to apply
these results in our setting, one needs to localize the stochastic game with stopping times to a
bounded domain by adjoining an artificial knock-out condition with rebate, and then consider
the variational inequality formulation of the game on the bounded domain, as well as its penalty
approximation.

6 The Weak (Variational) Formulation

In order to solve the non-linear PDE (5.5) on a bounded computational domain Ωk with the
Dirichlet boundary conditions (5.8)–(5.9) and the terminal condition (5.2) numerically in the
finite element method-of-lines framework, in this section we develop a weak (variational) for-
mulation of the PDE. In what follows we consider a fixed bounded computational domain Ωk
and drop the index k to simplify notation (i.e., Ω is now a bounded domain as described in
section 5). For future convenience, we change the stock price variable to a dimensionless vari-
able x := ln(S/S0), where S0 is some reference price level, and transform the terminal value
problem with non-homogeneous Dirichlet boundary conditions into an initial value problem with
homogeneous Dirichlet boundary conditions by defining

uε(t, x, V, r, z) := Uε(T − t, S0e
x, V, r, z)− g(T − t, S0e

x, V, r, z), (6.1)

φi(t, x, V, r, z) := ψi(T − t, S0e
x)− g(T − t, S0e

x, V, r, z), i = 1, 2. (6.2)

The function uε solves the PDE

∂uε
∂t

+Auε + (r + λ)uε + πε(uε) = f (6.3)
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with the non-linear penalty term

πε(uε) = −
(
1
ε
(uε − φ1)−

)p
+
(
1
ε
(uε − φ2)+

)p
(6.4)

and the non-homogeneous term (we denote x = (x, V, r, z), the four-dimensional state vector)

f(t, x) = λR+ C(T − t) +
∂g

∂t
(T − t, x)−Ag(T − t, x)− (r+ λ)g(T − t, x) (6.5)

with the homogeneous boundary and initial conditions:

uε(t, x)|∂Ω = 0, ∀t ∈ [0, T ], and uε(0, x) = 0, ∀x ∈ Ω. (6.6)

HereA is the second-order elliptic differential operator on the bounded domain Ω (a restriction of
the negative of the infinitesimal generator G of the ddiffusion process3 to the bounded domain):

Au := −1
2

(
V
∂2u

∂x2
+ σ2

V V
∂2u

∂V 2
+ σ2

rr
∂2u

∂r2
+ σ2

zz
∂2u

∂z2
+ 2ρSV σV V

∂2u

∂x∂V

)

−(r− q + λ− 1
2
V )

∂u

∂x
− κV (θV − V )

∂u

∂V
− κz(θz + γV − z)

∂u

∂z
− κr(θr − r)

∂u

∂r
(6.7)

with the homogeneous Dirichlet boundary conditions on ∂Ω.
A weak (variational) formulation of the PDE problem (6.3)–(6.7) is obtained by considering

a space of test functions square-integrable on Ω, with their (weak) first derivatives square-
integrable on Ω, and vanishing on the boundary ∂Ω (the Sobolev space H1

0 (Ω) := {u ∈ L2(Ω) :
∇u ∈ L2(Ω), u|∂Ω = 0}). Multiplying the PDE (6.3) with a test function v = v(x), integrating
over Ω and applying Green’s formula, we arrive at the weak (variational) formulation of the
PDE:

(
∂uε
∂t

, v) + a(uε, v) + (πε(uε), v) = (f, v), (6.8)

where
(u, v) =

∫
Ω
u(x)v(x)dx

is the inner product in L2(Ω), and the bilinear form a(·, ·) is defined by:

a(u, v) =
1
2

∫
Ω

(
V
∂u

∂x

∂v

∂x
+ σ2

V V
∂u

∂V

∂v

∂V
+ σ2

rr
∂u

∂r

∂v

∂r
+ σ2

zz
∂u

∂z

∂v

∂z
+ ρSV σV V

(
∂u

∂x

∂v

∂V
+
∂v

∂x

∂u

∂V

))
dx

−
∫

Ω

(
[r − q + λ− 1

2
V − 1

2
ρSV σV ]

∂u

∂x
v + [κV (θV − V )− 1

2
σ2
V ]
∂u

∂V
v + [κz(θz + γV − z)− 1

2
σ2
z ]
∂u

∂z
v

+ [κr(θr − r)− 1
2
σ2
r ]
∂u

∂r
v

)
dx+

∫
Ω
(r + λ)uvdx.

To solve the variational formulation, we seek a function uε = uε(t, x) that vanishes on the
boundary ∂Ω, satisfies a vanishing initial condition (6.6), and such that Eq. (6.8) holds for
any test function v ∈ H1

0 (Ω). More details on the variational formulation of parabolic PDEs
associated with diffusion processes can be found in Quarteroni and Valli (1997) and Thomee
(1997), where the relevant functional analytic background can be found.

3To be specific, in this section all expressions are written for the infinitesimal generator of the four-factor affine
model in section 3.2. However, the framework is valid for any other Markovian model of the general form in
section 3.1, including non-affine models in section 3.3.
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7 Numerical Solution by the Finite Element Method-of-Lines

7.1 Finite Element Approximation

We now develop a spatial discretization of the variational formulation (6.8), (6.6) on the bounded
rectangular domain Ω = [x, x] × [V , V ] × [r, r] × [z, z] by the Galerkin finite element method
(see Ciarlet (1978), Larson and Thomee (2003), Quarteroni and Valli (1997) and Thomee (1997)
for textbook treatments of the finite element method). Each of the four variables is discretized
as follows: xi = x + ihx, i = 0, . . . , mx + 1, with hx = (x − x)/(mx + 1), Vi = V + ihV ,
i = 0, . . . , mV + 1, with hV = (V − V )/(mV + 1), zi = z + ihz, i = 0, . . . , mz + 1, with
hz = (z − z)/(mz + 1), and ri = r + ihr, i = 0, . . . , mr + 1, with hr = (z − z)/(mr + 1), where
hx, hV , hr, and hz are discretization step sizes in each of the variables. Then the finite element
grid nodes in the four-dimensional rectangular domain Ω are (xix, ViV , ziz , rir), 0 ≤ ix ≤ mx+1,
0 ≤ iV ≤ mV +1, 0 ≤ iz ≤ mz+1, 0 ≤ ir ≤ mr+1. Since our problem is homogeneous with the
vanishing Dirichlet boundary conditions, so that the solution vanishes on the boundary, we will
associate finite element basis functions only with the inner nodes: (xjx, xjV , xjz , xjr), 1 ≤ jx ≤
mx, 1 ≤ jV ≤ mV , 1 ≤ jz ≤ mz, 1 ≤ jr ≤ mr. We introduce a natural ordering for the inner
nodes as follows. For xJ = (xjx , xjV , xjz , xjr), define J : N4 → N as follows:

J(jx, jV , jz, jr) = jx + (jV − 1)mx + (jz − 1)mxmV + (jr − 1)mxmVmz.

The total number of inner nodes is M = mxmVmzmr. We define the finite-element basis func-
tions {ϕJ(x)}MJ=1 associated with the inner nodes in the four-dimensional rectangular domain
Ω as the product of one-dimensional hat functions:

ϕJ (x) = ϕix(x)ϕiV (V )ϕiz(z)ϕir(r), J = J(ix, iV , iz, ir),

1 ≤ ix ≤ mx, 1 ≤ iV ≤ mV , 1 ≤ iz ≤ mz, 1 ≤ ir ≤mr, 1 ≤ J ≤M,

where each one-dimensional hat function ϕi(x) associated with the node xi is defined by:

ϕi(x) =




(x− xi−1)/h, xi−1 ≤ x ≤ xi
(xi+1 − x)/h, xi ≤ x ≤ xi+1

0 , x /∈ [xi−1, xi+1]
.

The Jth basis function ϕJ(x) is a hat function equal to one at the inner node xJ = (xjx, xjV , xjz , xjr)
and zero outside of the four-dimensional cube [xjx−1, xjx+1] × [Vjv−1, VjV +1] × [zjz−1, zjz+1] ×
[rjr−1, rjr+1].

We look for a finite element approximation uε,h to the solution uε of the variational formula-
tion (6.8), (6.6) as a linear combination of the finite element basis functions with time-dependent
coefficients:

uε,h(t, x) =
M∑
J=1

uε,J (t)ϕJ(x), t ∈ [0, T ]. (7.1)

Note that, by construction, uε,h vanishes on the boundary ∂Ω (since the basis functions associ-
ated with the inner nodes vanish on the boundary). Thus, we look for an approximation uε,h to
the true solution uε in the finite element space Vh spanned by the finite element basis functions
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{ϕJ(x)}MJ=1. We also approximate the conversion and call constraints and the penalty term in
the finite element basis:

φi,h(t, x) =
M∑
J=1

φi,J(t)ϕJ(x), i = 1, 2, t ∈ [0, T ], (7.2)

πε,h(uε,h)(t, x) =
M∑
J=1

πε(uε,h)(t, xJ)ϕJ(x)

=
M∑
J=1

{
−
(
1
ε
(uε,J(t)− φ1,J(t))−

)p
+
(
1
ε
(uε,J(t)− φ2,J(t))+

)p}
ϕJ(x). (7.3)

Denote by uε(t) = (uε,1(t), . . . , uε,M(t))� the M -dimensional vector of time-dependent coef-
ficients in (7.1) to be determined. Substituting (7.1) into (6.8) and letting the test functions v
in (6.8) run through the set of all basis functions {ϕJ}Mj=1 (i.e., we approximate the test function
by vh(x) =

∑M
j=1 vJϕJ(x)), we obtain the followingM -dimensional system of ODEs:

Mu̇ε(t) + Auε(t) +Mπε(uε)(t)−F(t) = 0, t ∈ (0, T ] (7.4)

subject to the homogeneous initial condition uε(0) = 0. Here u̇ε(t) = (u̇ε,1(t), . . . , u̇ε,M(t))�,
u̇ε,J(t) ≡ duε,J(t)/dt, M = (mIJ)MI,J=1, mIJ = (ϕJ , ϕI), A = (aIJ)MI,J=1, aIJ = a(ϕJ , ϕI),
πε(uε)(t) = (πε(uε,1)(t), . . . , πε(uε,M )(t))�,

πε(uε,J)(t) = −
(
1
ε
(uε,J (t)− φ1,J(t))−

)p
+
(
1
ε
(uε,J(t)− φ2,J)+

)p
,

and F(t) = (f1(t), . . . , fM(t))�,

fJ (t) = (λR+ C(T − t) + ġ(T − t), ϕJ)− a(g(T − t), ϕJ).

The ODE system (7.4) is referred to as the semi-discretization of the variational problem (spa-
tially discrete and continuous in time). The problem is now reduced to the numerical integration
of this ODE system. This is referred to as the finite element method-of-lines (MOL). Due to
the origins of the finite element method in structural engineering, M is referred to as the mass
matrix, A is referred to as the stiffness matrix, and F is referred to as the load vector. The ODE
(7.4) also has a non-linear penalty term πε(uε). For each t ∈ [0, T ], on the bounded compu-
tational domain Ω the semi-discrete finite element approximation is known to be second order
accurate in the spatial discretization step size h:

||uε,h(t, ·)− uε(t, ·)|| ≤ Ch2 (7.5)

both in the L2(Ω) and L∞(Ω) norms.

7.2 Integrating the ODE System

We have reduced the convertible bond pricing problem to the numerical solution of the non-linear
ODE system (7.4). We observe that M ∼ O(hxhV hzhr) and A ∼ O((hxhV hzhr)−1). Hence, the
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system (7.4) is stiff for small spatial discretization steps h. In this paper we use a variable inte-
gration step-size and variable integration order backward differentiation formula (BDF) based
ODE package SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)
available from the Lawrence Livermore National Laboratory (http://www.llnl.gov/CASC/sundials/).
In particular, we use the library IDA included in the SUNDIALS suite. IDA is a package for
the solution of differential-algebraic equation (DAE) systems in the form

F (t,u, u̇) = 0, (7.6)

where t is an independent variable, u ∈ Rn is a vector of dependent variables, u̇ = du/dt,
and F : R × Rn × Rn → Rn is a non-linear function, F (t,u, u̇) = Mu̇ε + Auε + Mπε(uε) −
F. It is written in C, but is derived from the package DASPK which is written in Fortran.
The integration method in IDA is variable-order, variable-coefficient BDF, in fixed-leading-
coefficient form, making it suitable for the stiff systems integration (see Brenan et al. (1996)).
The method order varies between 1 and 5. The backward differentiation formula (BDF) of order
q is obtained by approximating the value of the derivative u̇(tn) at time tn through the derivative
of a polynomial of degree q interpolating u(t) at q + 1 time steps tn, tn−1, . . . , tn−q :

u̇(tn) ∼ ∆t−1
n

∑q

i=0
αn,iun−i.

The coefficients αn,i are uniquely determined by the order q and the history of time steps ∆tn,
∆tn−1,. . . ,∆tn−q and are independent of the function u(t). In the case of equal time steps
∆t1 = ∆t2 = · · · = ∆tn, the coefficients αn,i = αi of the BDF scheme of order up to five are:

q α0 α1 α2 α3 α4 α5

1 1 -1
2 3

2 -2 1
2

3 11
6 -3 3

2 -13
4 25

12 -4 3 -43
1
4

5 137
60 -5 5 -10

3
5
4 -15

For the variable step case, the coefficients αn,i depend on the time step history.
The application of the BDF formula reduces (7.6) to a non-linear algebraic system with the

unknown vector un = u(tn) that has to be solved at each step from the knowledge of the vectors
un−i = u(tn−i), i = 1, .., qn (in IDA the order of the BDF scheme qn is variable from time step
to time step):

G(un) ≡ F (t,un,∆t−1
n

∑qn

i=0
αn,iun−i) = 0.

The resulting non-linear algebraic system is solved by Newton iteration. Starting with the
solution obtained at the previous step, un(0) = un−1, the Newton correction is determined
iteratively by solving the linear system:

J(un(m+1) − un(m)) = −G(un(m)), (7.7)

where un(m) is the Newton approximation of the solution un on the m-th iteration and J is the
Jacobian matrix of G,

J =
∂G

∂u
=
∂F

∂u
+
αn,0
∆tn

∂F

∂u̇
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evaluated at the previous value un(m). For the ODE system (7.4), the Jacobian matrix is:

J = A +MΠε(uε) +
αn,0
∆tn

M,

where Πε(uε) =
(
∂πε(uε,J )
∂uε,I

)M
I,J=1

is a diagonal matrix:

∂πε(uε,J)
∂uε,I

= δI,J

(p
ε

){(1
ε
(uε,J(t)− φ1,J(t))−

)p−1

1{uε,J (t)<φ1,J(t)}

+
(
1
ε
(uε,J(t)− φ2,J)+

)p−1

1{uε,J (t)>φ2,J(t)}

}
,

where δI,J is the identity matrix and 1{x>y} is the indicator function. For p > 1 this Jacobian is
continuous in uε. We use the Scaled Preconditioned Generalized Method of Residuals (SPGM-
RES) to solve the linear system (7.7) at each step of the Newton iteration. The preconditioned
system is (P−1J)(un(m+1) − un(m)) = −P−1G with the user-defined preconditioner P. We use a
diagonal preconditioner P = diag(J), which is the simplest to invert preconditioner suitable to
reduce stiffness resulting from the large penalty term for small ε.

During the integration of the system, IDA adaptively selects the time step ∆tn and the order
of the BDF scheme qn so that the error remains within the desired error tolerance. IDA starts
the integration with the order q = 1 and the initial step size which is adjusted to satisfy the
initial error test. During the integration, the solver tries to increase both the order of integration
and the step size. If the error test fails with the given integration step and order, the step size
and the order of integration are reduced. The quantities controlling the change of the step size
and integration order are estimated from the asymptotic properties of the BDF scheme. The
details of the adaptive order and step selection can be found in the SUNDIALS documentation
Hindmarsh et al. (2005 and 2006).

8 Analysis of Convertible Bonds

8.1 The Affine Model

We will assume the following parameters for the four-factor affine model of section 3.2 that will
be used in numerical examples in this section:

• Default-free interest rate process: θr = 0.06, κr = 0.25, σr = 0.1, initial short rate
r0 = 0.05.

• Stock process: dividend yield q = 0.02.

• Instantaneous stock price variance process: κV = 1.0, θV = 0.0625, σV = 0.8, initial
variance level V0 = 0.0625 (corresponding to the initial stock price volatility σ0 = 0.25 or
25% per annum), correlation between the stock return and the variance processes ρSV =
−0.5.

• Default intensity factor z: θz = 0.005, κz = 0.5, γ = 0.3, σz = 0.8, z0 = 0.023.
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Figure 1: Implied volatility skews for times to expiration T = 0.25, 0.5, 1, and 2 years.

• Default intensity process: α = 0.3, β = 0.1. Initial default intensity with these parameters:
λ0 = 0.04675 or 4.675% per annum.

Figure 1 plots the implied volatility skews for European-style stock options with times to
expiration T = 0.25, 0.5, 1, and 2 years in this model. For each time to expiration, it graphs
the Black-Scholes implied volatility as a function of the strike price, assuming the current stock
price is S0 = 25. The call option prices are computed using the affine solution presented in the
Appendix, and the Black-Scholes volatilities are implied from these model option prices. We
observe that the implied volatility skews have empirically realistic shapes. For each time to
expiration, the volatility is a decreasing convex function of strike. This so-called volatility skew
is induced by the negative correlation between the stock price and the instantaneous variance,
as well as by the possibility of default (jump to zero). As time to expiration increases, the
volatility skew gradually flattens out, in accordance with the pattern empirically observed in
equity options markets.

Figure 2 plots the term structure of zero-coupon credit spreads s(T ) in this model, assuming
zero recovery in default. Defaultable zero-coupon bonds with different times to maturity T are
priced, and credit spreads are then computed according to:

s(T ) = − 1
T
ln(B(T ))−R(T ),

where B(T ) is the T -maturity defaultable zero-coupon bond price and R(T ) is the default-free
T -maturity zero-coupon interest rate (yield-to-maturity on the T -maturity bond). We observe
that the instantaneous credit spread is equal to λ0, and, for these parameter values, the term
structure of credit spreads is hump-shaped, first upward-slopping, and then downward-slopping
after about two years. The term structure of default-free zero-coupon interest rates R(T ) is also
plotted in Figure 2. It is upward-slopping for these parameter values.
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Figure 2: The term structures of default-free interest rates and credit spreads.

Figure 3 plots the value function of a European-style 5-year convertible bond with the follow-
ing parameters: coupon rate c = 0.03 (3%) per annum, coupon period δ = 0.5 year (semiannual
coupon), face value F = 100 dollars, conversion factor k = 4 (convertible into four shares of
stock per $100 face value), conversion is allowed only at maturity, no call, and zero recovery in
default. The bond price is computed according to Eq. (3.7), where the expectations are com-
puted as described in the Appendix. The bond price is plotted as a function of the stock price
and time remaining to maturity with all other parameters kept fixed (in particular, V0 = 0.0625,
z0 = 0.023, r0 = 0.02).

8.2 Convergence of the Numerical Solution

In this section we experimentally study convergence of our numerical approximation and, in par-
ticular, experimentally validate the error estimates (5.3) and (7.5) for the penalty approximation
and the spatial discretization, as well as study computational performance of the SUNDIALS
temporal integration solver. We consider two 5-year convertible bonds: a European-style con-
vertible bond with the same parameters as in section 8.1 and an American-style convertible bond
with the clean call price of $140, conversion allowed at any time during the five-year period,
call protection during the first two years (call allowed at any time during the subsequent three
years) and all other parameters the same as in section 8.1. For the European-style convertible
bond we are able to use the affine solution for the analytical expression (3.7) as our benchmark
(see the Appendix). The computed value function of the European-style bond is obtained by
numerically solving the PDE (5.1)–(5.2) without the penalty terms (corresponding to ε → ∞).
The numerical solution is then compared to the analytical affine solution. The discrete coupon
payments are handled as follows. The time interval [0, T ] with T = 5 years is split into subinter-
vals (ti−1, ti) between the coupon payment dates ti = iδ, i = 1, 2, . . . , N (N = 10 and δ = 0.5 in
this case). The PDE (5.1) (correspondingly the ODE (7.4) after spatial discretization) is solved
between the coupon payment dates with the so-called jump condition enforced at the coupon
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Figure 3: European-style convertible bond value function.

payment dates:
U(ti−, x) = U(ti+, x) +Ci

withCi = δcF , the coupon paid at time ti. This jump condition enforces the absence of arbitrage
across the coupon payment date. Indeed, to prevent arbitrage, the value of the bond just before
the coupon is paid should be equal to the value of the bond just after the coupon is paid plus
the coupon amount. In other words, the bond value drops by the amount of the coupon at each
of the coupon payment dates. Between the coupon payment dates, the PDE (5.1) is solved with
the coupon rate C in the PDE set equal to zero, as there are no payments between the coupon
dates.

The value function of the American-style convertible bond with call and conversion is com-
puted by solving the PDE (5.1)–(5.2) with the penalty term, where we select a penalization
parameter ε << 1. In this case we do not have an analytical benchmark. To study convergence,
we compute a benchmark value function by selecting a small ε, taking a large computational
domain, selecting a small spatial discretization step h, and solving the ODE (7.4) with a small
error tolerance parameter. The computed numerical solution serves as the benchmark for so-
lutions on coarser spatial discretization grids, with larger values of the penalization parameter,
and less stringent error tolerances in the solver.

Figure 4 illustrates the results for the European-style and American-style convertible bond.
The graphs (a) and (b) plot the L2 norms of the errors over the approximation domain as
functions of the spatial discretization step size h in the log-log scale for the European and
American cases, respectively (the temporal integration error tolerance and the penalization
parameter in the American case are selected small enough to isolate the spatial discretization
error). The affine solution is used as a benchmark in the European case, and a pre-computed
numerical solution is used as a benchmark in the American case. The plots evidence the h2

convergence as h→ 0, validating the estimate (7.5). Sample solution values are given in Table 1.
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In this example, the convertible bond prices are computed for S = S0 = 20, V = 0.0625 (25%
volatility of the stock), z = 0.023, and r = 0.05. In this example the American-style bond
is worth less than the European-style bond due to the call option retained by the bond issuer
that significantly limits the possible gains from the equity price appreciation and subsequent
conversion by forcing the bond holder to convert early.

European American
Benchmark Solution 119.402 93.211
Mesh size, h 0.2 0.1 0.05 0.2 0.1 0.05
FEM solution 120.067 119.518 119.375 92.058 93.008 93.188
Error −0.665 −0.116 0.027 1.153 0.204 0.023
Error as % of par −0.67% −0.12% 0.03% 1.15% 0.20% −0.02%

Table 1: The FEM solution for the European and American convertible bond problems.

The graph (c) in the second row plots the maximum norm error as a function of the penal-
ization parameter ε for the penalty terms with p = 1, 2, 3 (the spatial discretization step size and
the temporal discretization error tolerance are selected small enough to isolate the penalization
error). The plot evidences the linear error decay as ε→ 0, validating the estimate (5.3).

The graph (d) illustrates the performance of the SUNDIALS IDA temporal integration solver
in integrating the non-linear ODE system resulting from the spatial discretization of the penal-
ized PDE in the American case. It plots the time step history of the SUNDIALS solver. We
observe that after each coupon payment date (that introduces non-smoothness into the solution,
as the solution jumps by the amount of the coupon), the solver restarts the computation with a
small time step, and then rapidly increases the time step size as the solution smooths out, until
it reaches the next coupon payment date, where the process is repeated. The solver uses the first
order integration right after each coupon payment date, and increases to between two and four
as the temporal integration progresses and the solution smooths out. The average integration
order of the solver in this example is 2.07. The step size during the action of the call constraint
is slightly smaller than during the call-protected period.

Table 2 presents CPU times needed to achieve practically relevant accuracy of 0.1 − 0.2%
of the convertible bond value. According to Bloomberg, typical bid/ask spreads on convertible
bonds quoted by dealers are in the range between 0.5% and 2%, depending on the liquidity of a
particular issue. The accuracy of 0.1− 0.2% ensures that computational errors are significantly
smaller than the bid/ask spread. The table presents CPU times for the 5-year convertible bond
studied in previous examples in this section. The bond is valued using the full four-factor
model, as well as the three three-factor models (with constant interest rate, constant volatility,
or constant z).

8.3 The Convertible Bond Value Function and Optimal Call and Conversion
Boundaries

The value function of the American convertible bond CB(t, S, V, z, r) as a function of the stock
price S and time to maturity τ = T − t is shown in Figure 5 for fixed V = 0.0625, z = 0.023,
and r = 0.05. The convertible bond value function exhibits downward jumps after each coupon
payment, and becomes equal to the payoff at the expiration time. Four sections of the value
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function at τ = 5 years to maturity are shown in Figure 6. The value function is an increasing
and convex function of S, and a decreasing and convex function of the variables z and r (Figures
6 (a)–(d)). The value of the convertible bond is increasing in V for relatively high values of the
stock price S due to the high positive effect of volatility on the embedded conversion option
(equity component of the convertible bond). In contrast, the value of the convertible bond
decreases with the increase in V for relatively low values of the stock price S (see Figure 6 (a)).
This is due to the increase in the default intensity λ associated with higher equity volatility and
resulting decline in the bond (debt) component due to increased default risk that out-weights
the increase of the value of the embedded conversion option.

In Figure 5 we also show the call (solid line) and conversion (dashed line) boundaries on the
solution surface and their projections onto the (S, t)-plane. It is optimal for the bond issuer to
call the bond at time t if St ≥ Scall(t), where Scall(t) is the call boundary, and it is optimal for
the bond holder to convert the bond into shares at time t if St ≥ Sconv(t), where Sconv(t) is
the conversion boundary. Note that during the call protection period, the bond holder will not
convert the bond into shares just before the coupon payment time, as it is optimal to postpone
the conversion until after the coupon payment date to receive the coupon and then convert the
bond after the coupon is received. As a result, the conversion boundary asymptotically goes to
infinity with the approach of the coupon payment date. When the bond is callable, both the
call and conversion boundaries should be equal to or lower than the point of intersection of the
call and conversion payoffs: Sconv(t), Scall(t) ≤ C(t)/k. In our solution, the call boundary is
equal to this quantity during the time when the bond is callable, Scall(t) = C(t)/k, up until the
final coupon period before maturity (see also Figure 7 (a)–(d)). With the approach of maturity
(when the value of the bond approaches its face value F ), the conversion boundary declines to
F/k (which is less than C(t)/k). The F/k is the stock price that makes conversion value equal
to the notional amount (kS = F ).

Since the bond conversion generally happens at relatively high stock prices, where the vari-
ance V has a positive effect on the bond price through its effect on the conversion option value,
the conversion boundary Sconv(t) is increasing in V (Figure 7 (a)). Similarly, because of the
negative effect of z and r on the solution, the boundaries are decreasing in these variables (Fig-
ure 7 (b)–(c)). The correlation between the stock price and the variance processes, ρSV , has
a negative effect on the boundaries, similar to the effects of α, β and γ (see Table 2). The
volatility of variance σV has a positive effect on the boundaries, while σz and σr have negative
effects.

An interesting question is how the call and conversion boundaries are influenced by the
number of stochastic factors used in the model. To assess this, we consider cases when one of
the three processes Vt, zt, and rt is deterministic, i.e., in each of the three cases we set one of the
three volatilities σV , σz, σr equal to zero. Figure 7 (d) plots the resulting boundaries in these
three three-factor models, as well as the boundaries for the complete four-factor model. We see
that the conversion boundary in the call-protected period, as well as the conversion boundary
in the last coupon period before maturity are sensitive to the effects of volatilities of all of the
state variables. Making one of the four factors deterministic and reducing the four-factor model
to the three-factor one has a significant effect on the optimal conversion boundaries. This is
further illustrated in Table 2 that gives convertible bond values and the critical conversion levels
for T = 5 years to maturity for the four-factor model and the three cases where we set one of
the volatilities σV , σz, σr equal to zero.
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Four-factor model Three-factor models
Baseline ρSV = 0 α = 0 β = 0 γ = 0 σV = 0 σz = 0 σr = 0

Price 93.21 93.26 97.13 94.15 93.27 94.25 91.55 93.19
Sconv 41.47 40.67 50.47 43.07 41.97 39.57 43.07 41.37

Table 2: Convertible bond price and critical value Sconv for the four-factor model and three
three-factor models computed at t = 5, V = 0.0625, z = 0.023, and r = 0.05. The bond price
is computed at S = 20. The four-factor model parameters are: ρSV = −0.5, α = 0.3, β = 0.1,
γ = 0.1, σV = 0.8, σz = 0.8, σz = 0.1. In each of the three-factor models one of the volatilities
σV , σz, or σz is set equal to zero.

(a) Convergence of European CB solution (b) Convergence of American CB solution

(c) Convergence of Penalty Approximation (d) SUNDIALS IDA integration step size

Figure 4: Convergence of solutions for European and American convertible bonds.
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Figure 5: Solution for the 5-year Convertible Bond (semiannual 3% coupon, 2 years call pro-
tection period, and clean call price $1400). Solid lines – optimal call boundary, dashed lines –
optimal conversion boundary. The projection of the optimal call and conversion boundaries on
the (S, T ) plane is also shown.
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(a) Solution surface as a function of S and
√

V for z = 0.023
and r = 0.05

(b) Solution surface as a function of S and z for V = 0.0625
and r = 0.05

(c) Solution surface as a function of
√

V and z for S = 20.0
and r = 0.05

(d) Solution surface as a function of z and r for S = 20.0 and
V = 0.0625

Figure 6: Two-dimensional sections of the convertible bond value function.
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(a) Call and Conversion Boundaries for different V (b) Call and Conversion Boundaries for different z

(c) Call and Conversion Boundaries for different r (d) Dependance of call and conversion boundaries on
volatilities of state variables.

Figure 7: Optimal call and conversion boundaries.
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9 Conclusion

This paper develops and solves a four-factor convertible bond model with stochastic interest rate,
stock price, volatility, and default intensity. Our model is a four-factor extension of the three-
factor Carr and Wu (2005) reduced-form affine model of default applied to convertible bonds.
At default, the stock price drops to zero. Prior to default, the stock price follows a continuous
process with stochastic volatility. The default intensity, the instantaneous stock variance, and the
default-free short rate follow a tri-variate diffusion process specified to capture empirical evidence
on stock option prices and credit default swap spreads. We show that the value function of the
convertible bond satisfies a variational inequality formulation of the stochastic game between the
bondholder and the issuer. The variational inequality is approximated by a penalized non-linear
partial differential equation. The penalized formulation is solved numerically by applying the
finite element spatial discretization and an adaptive time integrator. This framework allows us
to value and analyze convertible bonds in this empirically realistic set-up with four risk factors,
in contrast with the existing convertible bond literature that has up to now been primarily
limited to one- and two-factor models. Our framework naturally includes such empirical features
of market data as the leverage effect and the dependence between credit spreads and equity
volatility. The inclusion of credit risk, volatility dynamics, and interest rate dynamics are
important in order to value and hedge convertible bonds consistently with more liquid securities
such as straight corporate debt and CDS, equity, and equity options that can be used to hedge
convertible bonds. Such consistency across all traded securities on the same reference company
is particularly important for the firms engaged in convertible bond arbitrage. At the same time,
accurate determination of the optimal conversion and call policies is important to bond holders
and bond issuers in order to maximize the value of their assets and minimize the value of their
liabilities, respectively.

A Analytical Solutions for European-style Securities in the Four-

Factor Affine Model

Introduce a new state variable xt := log(St/S0), so that xt solves the following SDE:

dxt = (rt − q + λt − 1
2
Vt)dt+

√
VtdW

S
t .

The dynamics of the four stochastic variables in our model can be expressed in the matrix form:

dXt = µ(Xt)dt+ σ(Xt)dWt,

where Xt = (xt, Vt, zt, rt)� is the state vector and Wt is a vector of four independent Brow-
nian motions. The model is such that both the drift vector µ(X) and the covariance ma-
trix σ(X)σ(X)� are affine functions of X , µ(X) = K0 + K1X , K0 ∈ R4, K1 ∈ R4×4, and
σ(X)σ(X)� = H0+Hxx+HV V +Hzz+Hrr, H0, Hx, HV , Hz, Hr ∈ R4×4, with the coefficients:

K0 =




−qt
κV θV
κzθz
κrθr


 , K1 =



0 α − 1

2 1 β + 1
0 −κV 0 0
0 κzγ −κz 0
0 0 0 −κr


 , H0 = 0, Hx = 0,
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HV =




1 ρSV σV 0 0
ρSV σV σ2

V 0 0
0 0 0 0
0 0 0 0


 , Hz =



0 0 0 0
0 0 0 0
0 0 σ2

Z 0
0 0 0 0


 , Hr =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 σ2

r


 .

We also introduce a discount rate R(Xt) := rt + λt that is also an affine function of the state
vector: R(X) = R0 + R�

1 X with R0 = 0 and the vector R1 = (0, α, 1, β+ 1)�.
Since the model is in the affine class, its generalized characteristic function

ϕ(u,Xt, t, T ) = Et

[
e−

∫ T
t R(Xs)dseuxT

]
, u ∈ C

is exponential affine in the state vector (see Duffie et al. (2000) and Carr and Wu (2005)):

ϕ(u,X, t, T ) = eA(t)+Bx(t)x+BV (t)V+Bz(t)z+Br(t)r,

where the scalar A(t) and the vector B(t) = (Bx(t), BV (t), Bz(t), Br(t))� solve the system of
complex-valued ODEs:

Ḃx(t) = (R1)0 − (K�
1 B(t))0 −

1
2
B(t)�HxB(t) = 0,

ḂV (t) = (R1)1 − (K�
1 B(t))1 −

1
2
B(t)�HVB(t) = α− (α− 1

2
)Bx(t)

+κV BV (t)− κzγBz(t)− 1
2
(Bx(t)2 + 2ρSV σV Bx(t)BV (t) + σ2

V BV (t)
2),

Ḃz(t) = (R1)2 − (K�
1 B(t))2 −

1
2
B(t)�HzB(t) = 1−Bx(t) + κzBz(t)− 1

2
σ2
zBz(t)

2,

Ḃr(t) = (R1)3 − (K�
1 B(t))3 −

1
2
B(t)�H3B(t) = β − (β + 1)Bx(t) + κrBr(t)− 1

2
σ2
rBr(t)

2,

Ȧ(t) = R0 −KT
0 B(t)−

1
2
B(t)�H0B(t) = qBx(t)− κV θV BV (t)− κzθzBz(t)− κrθrBr(t)

with the terminal conditions A(T ) = 0 and B(T ) = (u, 0, 0, 0)�. Integrating the first ODE, we
obtain Bx(t) = u, and the system of ODE reduces to

ḂV (t) = (α− (α− 1
2
)u− 1

2
u2) + (κV − ρSV σV u)BV (t)− κzγBz(t)− 1

2
σ2
VBV (t)

2, (A.1a)

Ḃz(t) = (1− u) + κzBz(t)− 1
2
σ2
zBz(t)

2, (A.1b)

Ḃr(t) = β − (β + 1)u+ κrBr(t)− 1
2
σ2
rBr(t)

2, (A.1c)

Ȧ(t) = qu− κV θV BV (t)− κzθzBz(t)− κrθrBr(t) (A.1d)

with the terminal conditions BV (T ) = Bz(T ) = Br(T ) = A(T ) = 0. If γ = 0 (no effect of
the stock volatility on the drift of the default intensity), then we have a system of independent
Riccatiatti equations for BV (t), Bz(t), and Br(t) that can be solved analytically. If γ �= 0, the
solution to this non-linear system of ODEs can be obtained numerically.
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Once the generalized characteristic function ϕ(u,Xt, t, T ) is determined, we can value de-
faultable bonds (3.10) without recovery (R = 0) directly by

B0(t, Xt) = ϕ(0, Xt, t, T ),

while European-style options can be valued by inverting the Fourier transform. In particular,
due to the results in Duffie et al. (2000) and Carr and Wu (2005), the price of a call option with
strike K is computed as follows:

C(t, Xt, K, T ) = Et

[
e−

∫ T
t R(Xs)ds(S0e

xT −K)+
]

=
1
2
(S0ϕ(1, Xt, t, T )−Kϕ(0, Xt, t, T ))

−1
π

∫ ∞

0

{
Im

(
(S0ϕ(1− iv, Xt, t, T )−Kϕ(−iv, Xt, t, T ))eikv

)} dv
v
,

where k = ln(K/S0), Im(z) denotes the imaginary part of z ∈ C, and the integral is computed
by numerical quadrature.

To perform the computations of option prices more efficiently, Carr-Madan (1999), and Lee
(2004) consider a damped option pricing function:

Cδ(k) := S−1
0 eδkC(t, Xt, S0 exp(k), T ),

with a damping constant δ > 0, and k = ln(K/S0). They show that the Fourier transform,
Ĉδ(u), of a damped option price Cδ(k), exists for the appropriately chosen damping constants,
and can be computed as:

ϕ(u− (δ + 1)i, Xt, t, T )
δ2 + δ − u2 + i(2δ + 1)u

.

As a result, the option price is given by the Fourier inversion formula involving only a single
term:

C(t, Xt, K, T ) = S0
e−δk

2π

∫ ∞

−∞
e−iuk

ϕ(u− (δ + 1)i, Xt, t, T )
δ2 + δ − u2 + i(2δ + 1)u

du

= S0
e−δk

π

∫ ∞

0
Re

[
e−iuk

ϕ(u− (δ + 1)i, Xt, t, T )
δ2 + δ − u2 + i(2δ + 1)u

]
du, (A.2)

where the integral is computed by numerical quadrature.
To value the recovery part (Eq. (3.11) and the last term in Eq. (3.14)), we also need to

compute an extended generalized characteristic function φ(u, v, Xt, t, T ) defined for u ∈ C and
v ∈ Rn by

φ(u, v, Xt, t, T ) = Et

[
e−

∫ T
t R(Xs)ds(v ·XT )euxT

]
.

This expectation can be computed as follows:

φ(u, v, Xt, t, T ) = ϕ(u,Xt, t, T )(C(t) +D(t)X),

where ϕ(u,Xt, t, T ) is the generalized characteristic function determined previously, and the
scalar C(t) and the vector D(t) = (Dx(t), DV (t), Dz(t), Dr(t))� solve the system of ODEs

Ḋx(t) = −(K�
1 D(t))0 −

1
2
B(t)�HxD(t), (A.3a)
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ḊV (t) = −(K�
1 D(t))1 −

1
2
B(t)�HVD(t), (A.3b)

Ḋz(t) = −(K�
1 D(t))2 −

1
2
B(t)�HzD(t), (A.3c)

Ḋr(t) = −(K�
1 D(t))3 −

1
2
B(t)�H3D(t), (A.3d)

Ċ(t) = −KT
0 D(t)−

1
2
B(t)�H0D(t) (A.3e)

with the terminal conditions C(T ) = 0 and D(T ) = v�, and the vector B(t) determined pre-
viously when solving for ϕ(u,Xt, t, T ). Then the recovery part of the defaultable bond can be
calculated as follows:

RF

∫ T

t
Et

[
e−

∫ s
t (ru+λu)duλs

]
ds = RF

∫ T

t
φ(u, v, X, t, s)ds

with u = 0 and v = (0, α, 1, β)�.
In our implementation we usethe fifth-order Cash-Karp Runge-Kutta method with adaptive

step-size control (see Gear (1971), Cash and Carp (1990), and the implementation in Press et al.
(1995)) for solving the ODEs (A.1) and (A.3) required for computing the generalized character-
istic function ϕ(u,Xt, t, T ) and the extended generalized characteristic function φ(u, v, Xt, t, T ).
The proposed integration method achieves sufficiently high accuracy with relatively small num-
ber of time steps and function evaluations. It allows for controlling both the absolute and
relative error while solving the ODE. We use the absolute error tolerance of 10−5 and the initial
step size of dt = 10−4 to achieve the empirical error in the CB price smaller than 10−5. It takes
only 10 integration steps to solve each ODE to the desired accuracy. In contrast, the constant
step 4-th order Runge-Kutta method requires more than 10000 time steps to achieve the com-
parable accuracy. The efficiency gains from using the Cash-Karp adaptive Runge-Kutta solver
are dramatic in this application. The integration of the characteristic functions required for
computing the option prices (A.2) is performed by using the trapezoidal rule, which is known to
have exponentially decaying errors of discretization and truncation for the functions considered
here (e.g., Lee (2004)). We use a constant discretization interval equal to 0.05, and stop the
computations as soon as the integral on 10 consecutive intervals is smaller in absolute value than
the desired accuracy 10−5. The resulting empirical error of a CB price computation in this case
is also of the order 10−5.
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