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ABSTRACT 

The Vasicek single factor model of portfolio credit loss is generalized to include credits with 
stochastic exposures (EADs) and loss rates (LGDs). The model can accommodate any 
distribution and correlation assumptions for the LGDs and EADs and will produce a closed-
form expression for an asymptotic portfolio’s conditional loss rate. Revolving exposures 
draw against committed lines of credit. Dependence among defaults, EADs, and LGDs are 
modeled using a single common Gaussian factor. A closed-form expression for an 
asymptotic portfolio’s inverse cumulative conditional loss rate is analyzed for alternative 
EAD and LGD assumptions. Positive correlation in individual credits’ EAD and LGD 
realizations increases portfolio systematic risk, producing wider ranges and increased 
skewness in portfolio loss distributions.

                                                 
  Division of Insurance and Research, Federal Deposit Insurance Corporation. The views 
expressed are those of the author and do not reflect the views of the FDIC. I am grateful to 
Rosalind Bennett, Steve Burton, Sanjiv Das, Jin-Chuan Duan, Greg Gupton, Robert Jarrow, 
Peter Raupach, and Stuart Turnbull for helpful comments on an earlier draft of this paper. E-
mail: pkupiec@fdic.gov. 
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A Generalized Single Factor Model of Portfolio Credit Risk 

 
I.   INTRODUCTION 

The Gaussian asymptotic single factor model of portfolio credit losses (ASFM), 

developed by Vasicek (1987), Finger (1999), Schönbucher (2001), Gordy (2003), and others, 

provides an approximation for the loss rate distribution for a credit portfolio in which the 

dependence among individual defaults is driven by a single common latent factor. The 

ASFM assumes that the unconditional probability of default on an individual credit (PD) is 

fixed and known. In addition, all obligors’ exposures at default (EAD) and all loss rates in 

default (LGD) are assumed to be non-stochastic quantities. In a large portfolio of credits, 

idiosyncratic risk is fully diversified and the only source of risk is the uncertainty in the 

portfolio default rate that is driven by the common latent Gaussian factor. 

The ASFM has been widely applied in the financial industry. It has been used to 

estimate economic capital allocations [e.g., Finger (1999), Schönbucher (2001), Gordy 

(2003), and others] and is the model that underlies the Basel II Advanced Internal Ratings-

based approach for setting banks’ minimum regulatory capital requirements. In addition to 

capital allocation, the ASFM has been adapted to estimate market price and potential loss 

distributions for tranches of portfolio credit products [e.g., Li (2000); Andersen, Sidenius, 

and Basu (2003); Gibson (2004); Gordy and Jones (2002); and others]. But despite the 

ASFM’s widespread use, empirical findings suggest that the model omits important 

systematic factors that partly determine the characteristics of a portfolio’s true underlying 

credit loss distribution. 
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Many studies find significant time variability among the realized LGDs for a given 

credit facility or ratings class. The stylized facts hold that default losses increase in periods 

when default rates are elevated. Studies by Frye (2000b), Hu and Perraudin (2002), 

Schuermann (2004), Araten, Jacobs, and Varshney (2004), Altman, Brady, Resti, and Sironi 

(2004), Hamilton, Varma, Ou, and Cantor (2004), Carey and Gordy (2004), Emery, Cantor, 

and Arnet (2004), and others show pronounced decreases in the recovery rates during periods 

with elevated default rates. These results suggest the existence of a systematic relationship 

between default frequencies and default recovery rates that is not captured in the Vasicek 

ASRM framework. 

In addition to issues related to stochastic LGD, the ASFM is often used to estimate 

capital needs for portfolios of revolving credits even though the model is based on the 

assumption that individual credit EADs are fixed. The available evidence, including studies 

by Allen and Saunders (2003), Asarnow and Marker (1995), Araten and Jacobs (2001), and 

Jiménez, Lopez, and Saurina (2006), suggests that obligors draw on committed lines of credit 

as their credit quality deteriorates. Analysis of creditors’ draw rate behavior shows that EADs 

on revolving exposures are positively correlated with default rates—a correlation suggesting 

that there is at least one common factor that simultaneously determines portfolio EAD and 

default rate realizations. 

The ASFM assumption of fixed LGD and EAD excludes two important sources of 

systematic credit risk that are present in historical loss rate data. A number of existing 

models, including those by Frye (2000a),  Pykhtin (2003), Tasche (2004), and Andersen and 

Sidenius (2005), have extended the Vasicek ASFM framework to include stochastic LGD 

rates. These extensions require complex numerical techniques or restrictive assumptions for 
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the LGD distribution to produce tractable expressions for an asymptotic portfolio’s loss rate 

distribution. No existing study extends the ASFM framework to include stochastic EAD and 

LGD and produce a closed-form expression for a portfolio loss rate distribution. 

In the remainder of this paper, the Gaussian ASFM is extended to incorporate 

obligors with EADs and LGDs that are correlated random variables. In this extension, default 

is a random event driven by a compound latent factor as in the standard ASFM. Two 

additional compound latent factors are introduced to drive correlations among individual 

credits’ EADs and LGDs. These Gaussian factors are incorporated into EAD and LGD 

distributions using the inverse integral transformation. A closed-form expression for the 

inverse of the portfolio’s conditional credit loss distribution is derived for cases when LGD 

and EAD probability density functions are continuous. When these distributions are discrete, 

the integral transformation is inadmissible, and an alternative approach must be used to 

derive the asymptotic portfolio’s loss distribution. 

When LGD and EAD have discrete distributions, a closed-form expression for the 

inverse of the portfolio’s conditional loss rate distribution is constructed using a step function 

to approximate the underlying LGD and EAD distributions. The characteristics of the LGD 

and EAD distributions that can be modeled using this approach are unrestricted. The 

approximation error can be made arbitrarily small at the cost of increasing the number of 

terms in the approximation formula. The step-function approach can also be used to 

approximate the inverse of a portfolio’s conditional loss rate distribution for cases when LGD 

and EAD distributions are continuous; and, again, the approximation error can be made 

arbitrarily small by increasing the number of steps in the approximation algorithm. Using the 
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step-function representation, the calculations needed to approximate the portfolio loss rate 

distribution are straightforward and can easily be programmed in a financial spreadsheet. 

Selected examples of portfolio EAD, LGD, and overall loss rate distributions are 

calculated using alternative EAD and LGD distribution and correlation assumptions that are 

consistent with stylized representations of corporate and retail portfolios. 

2.  THE GAUSSIAN ASFM MODEL 

The Vasicek single common factor model of portfolio credit risk assumes that 

uncertainty on credit i is driven by a latent unobserved factor, iV~ , with the following 

properties: 
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)(⋅φ  represents the standard normal density function. As expression (1) indicates, iV~  is 

distributed standard normal, ( ) ,0~ =iVE  and ( ) ( ) ( ) .1~~~ 222 =−= iii VEVEVσ  Me~  is a common 

factor, and the correlation between individual credits’ latent factors is 
( )

( ) ( ).~~

~,~

ji

ji
V VV

VVCov

σσ
ρ =  

iV~  is often interpreted as a proxy for the market value of the firm that issued credit .i  

Credit i is assumed to default when its latent factor takes on a value less than a credit-

specific threshold, ii DV <~
. The unconditional probability that credit i defaults is 

( ),iDPD Φ=  where ( )⋅Φ  represents the cumulative standard normal density function. Time is 
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not an independent factor in the ASFM but is implicitly recognized through the calibration of 

input values for PD. 

 

3.  A SINGLE FACTOR MODEL OF LOSSES ON A PORTFOLIO OF REVOLVING CREDITS WITH 
CORRELATED EXPOSURES AND LOSS RATES 

3.1 A Model of Stochastic EAD 
Assume that a generic revolving credit account, i , has a maximum line of credit, iM , 

upon which it may draw. The account utilization rate [ ]1,0~ ∈iX  is a random variable that 

determines the end-of-period account exposure, .~
ii MX  Basel II conventions require that 

EAD be at least as large as initial exposure, and so account-level EAD is modeled as an initial 

outstanding exposure and a random draw rate iδ~  on its remaining line of credit. 

Assume that an individual account begins the period with a drawn exposure ii Md 0 , 

where 0id  is the initial share of the account line of credit that is used. The line of credit that 

can be drawn by the creditor over the subsequent period is ( ) ii Md 01− . Let [ ]1,0~ ∈iδ  

represent the share of the remaining line of credit that is borrowed over the period, and let 

( )iδ~Ω  represent the cumulative density function for .~
iδ  This representation accommodates 

the Basel II convention that requires that the exposure at the end of the one-year horizon be 

at least as large as the initial level of extended credit, ii Md 0 . The model can be generalized 

to recognize creditors’ ability to reduce or eliminate their outstanding balances by setting 

00 =id  and directly modeling an account’s end-of-period utilization rate [ ]1,0~ ∈iX  instead of 
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modeling an account’s draw rate .~
iδ  Under the draw rate specification, the account’s end-of- 

period exposure is 

( )( ) ( ) [ ].1,0,~~,~1~
00 ∈Ω−+= iiiiiiiii dddMXM δδδ                             (2) 

Systematic dependence among individual accounts’ draw rates is incorporated by 

assuming that account draw rates are driven by a latent Gaussian factor, iZ~ , with the 

following properties: 
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                                          (3)     

The correlation between the latent variables that determines each account’s draw rate is 

( )
( ) ( ),~~

~,~

ji

ji
Z ZZ

ZZCov

σσ
ρ =  and the correlation between the latent factors that drive account exposures 

and defaults is ( )
( ) ( )ji

ji
VZ ZV

ZVCov
~~

~,~

σσ
ρρ = . To induce a positive correlation between a portfolio’s 

default rate and its draw rate, we adopt the normalization convention that higher account 

draw rates are associated with smaller realizations of the latent variable, iZ~ . 

 For any random variable s~  with continuous density function, ( )sf ~  , the probability 

integral transformation requires that the random variable S~  be distributed uniformly over the 

interval [ ]1,0 , when the random variable S~  is defined by the integral transformation, 

( )∫
∞−

=
is

dssfSi . Using this transformation, we introduce correlation structure into the 
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realizations of the draw rate process by equating the probability integral transformations for 

the physical draw rate iδ~  and the latent variable, iZ~ , ( ) ( )ii ZΦ−=Ω 1δ . This transformation  

implies a one-to-one mapping between iZ~  and iδ~ , 

( )( )ii Z~1~ 1 Φ−Ω= −δ .                                                               (4) 

3.2 A Model of Stochastic LGD 

Let [ ]1,0~ ∈iλ  represent the loss rate that that will be experienced on credit i’s 

outstanding balance should the borrower default. Let ( )iλ~Θ  represent the cumulative density 

function for .~
iλ  Systematic dependence among individual credits’ loss rates is introduced by 

assuming that iλ~  is driven by a latent Gaussian factor, iY~ , with the following properties: 
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            (5)     

To induce positive correlation between a portfolio’s default rate and its loss rate given 

default, we adopt the normalization convention that higher account draw rates are associated 

with smaller realizations of the latent variable, iZ~ . The correlation between the latent factors 

that determine default and loss given default is ,0>YV ρρ  and the correlation between the 

Gaussian drivers of default and exposure at default is .0>ZV ρρ  Using the inverse integral 

transformation to introduce a correlation structure, the mapping between iλ~  and iY~  is given 

by 

 ( )( )ii Y~1~ 1 Φ−Θ= −λ .                                                                   (6) 
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3.3 The Loss Rate for an Individual Account 

Define an indicator function over the latent variable iV~  that indicates default status 

( ) .
0

~1~1
⎩
⎨
⎧ <

=
otherwise

DVif
V ii

iiD                                                                  (7) 

The indicator function, ( )iV
iD

~1 , defines a random variable that is distributed binomially with 

an expected value of ( )iDΦ . 

Let ( )iiii YZV ~,~,~Λ  represent the loss rate for account i measured relative to the 

account’s maximum credit limit, iM . ( )iiii YZV ~,~,~Λ  is defined as 

( ) ( ) ( )( )
( ) ( ) ( )( )( ) ( )( ).~1~11~1

~~1~1~,~,~

11
00

00

iiiii

iiiiiiiii

YZddV

ddVYZV

iD

iD

Φ−ΘΦ−Ω−+=

−+=Λ
−−

λδ
                        (8) 

3.4 The Conditional Loss Rate for an Individual Account 

Let ( )Mi eV
iD |~1  represent the value of the default indicator function conditional on a 

realized value for Me , the common latent factor. The conditional expected value of the 

indicator function is 

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
Φ=

V

MVi
Mi

eD
eVE

iD ρ
ρ

1
|~1 .                                                 (9) 

Similarly, let Mi eZ |~  and Mi eY |~  represent, respectively, the values of the random draw rate 

and LGD latent variables conditional on a realized value for Me . These conditional random 

variables are normally distributed with means, ( ) MZMi eeZE ρ=|~  and ( ) MYMi eeYE ρ=|~ , and 

variances, ( ) ,1|~2
ZMi eZ ρσ −=  and ( ) .1|~2

YMi eY ρσ −=  
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The cumulative probability ii ZZ ≤~  conditional on MM ee =~  is identical to the 

cumulative probability 
Z

MZi
i

eZ
e

ρ
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1
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1
. A similar relationship defines 

the cumulative conditional probability distribution for .~
iY  The cumulative conditional 

distribution functions are 
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An individual account’s loss rate, conditional on a value for Me , is 

( ) ( ) ( ) ( )( )( ) ( )( )iMiMiiiMiMiiii eYeZddeVeYZV
iD |~1|~11|~1|~,~,~ 11

00 Φ−ΘΦ−Ω−+=Λ −− .         (12) 

 

3.5 The Loss Rate on an Asymptotic Portfolio of Revolving Credits 

Consider a portfolio with N accounts that have identical credit limits, ,MM i =  

identical initial drawn balances, ,00 MdMd ii =  identical latent factor correlations, 

{ }YXV ρρρ ,, , and identical default thresholds, .DDi =  Assume that all credits’ end-of-

period draw rates, iδ~ , and loss rates given default, ,~
iλ  are, respectively, taken from 

unconditional distributions that are identical across credits (the distributions for iδ~  and iλ~  

generally differ). Under these assumptions, ( ) ( )ii VV DiD
~1~1 =  for all ,i  and the loss rate for an 

individual credit depends on the identity of the credit only through the idiosyncratic risk 
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factors in the latent variables .~and,~,~
iii YZV  As a consequence, the subscript on the loss rate 

can be eliminated, ( ) ( )iiiiiii YZVYZV ~,~,~~,~,~ Λ=Λ . 

Let ( )NVVVV ~,,~,~~
21 K

v
=  represent the vector of N latent variables that determine 

account defaults. Define Y
r~  and Z

r~  analogously. Let ⎟⎠
⎞⎜⎝

⎛Λ Mp eYZV |~,~,~ rrr
 represent the loss rate 

on the portfolio of N accounts conditional on a realization of ,Me   
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.           (13) 

Recall that ( )Miii eYZV |~,~,~Λ  is independent of ( )Mjjj eYZV |~,~,~Λ  for all ji ≠  and the 

conditional loss rates for individual credits are identically distributed. Thus, the Strong Law 

of Large Numbers requires, for any admissible value of ,Me  

( )
( )( )Miiisa

N

i
Miii

NMpN
eYZVE

N

eYZV
eYZV |~,~,~

|~,~,~

lim|~,~,~lim ..
1 Λ⎯⎯→⎯

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
Λ

=⎟⎠
⎞⎜⎝

⎛Λ
∑

=
∞→∞→

rrr

,     (14) 

where ..sa  indicates convergence with probability one. Independence among the conditional 

indicator functions implies 
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Expression (15) is the inverse of the conditional distribution function for an asymptotic 

portfolio’s loss rate evaluated at ( ).,+∞∞−∈Me  The only random factor driving the 

unconditional portfolio loss rate distribution is the common latent factor, Me~ . As a 

consequence, an asymptotic portfolio’s loss rate, PΛ~ , has a density function defined by the 

implicit function,  

( )( )( )[ ] ( )( )( ) ( )
⎪⎭

⎪
⎬
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⎪⎩

⎪
⎨
⎧
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⎜
⎝

⎛

−

−
ΦΛ −−

MMiMi
V

MV
p eeYEeZEdd

eD
φ

ρ
ρ

,|~1|~1)1(
1

~~ 11
00 , 

for ( )., ∞∞−∈Me                                                         (16)                        

3.6 Calculation of the Critical Values of a Portfolio’s Loss Rate Distribution 

 Many risk management functions require estimates for portfolio loss rates that are 

associated with a particular cumulative probability threshold. Consider, for example, the 

portfolio loss rate that exceeds a proportion, α , of all potential portfolio credit losses (or 

alternatively, a loss rate exceeded by at most α−1 of all potential portfolio losses). Because 

the portfolio loss rate function is decreasing in .
Me , expression (15) evaluated at 

( )α−Φ= − 11
Me  is the loss rate consistent with a cumulative probability of α . Using the 

identities ( ) ( )αα 11 1 −− Φ−=−Φ  and ( ),1 PDD −Φ=  the portfolio loss rate consistent with a 

cumulative probability of α  is 

( )

( ) ( )

( )( )( )( )[ ]
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|~1)1(

1

1|~,~,~
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⎟
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⎯→⎯⎟⎠
⎞⎜⎝
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α
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αρ

α
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V

V
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eYZV
rrr

(17)  
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3.7 Discussion  

The first term in expression (17), ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

Φ+Φ
Φ

−−

V

VPD

ρ
αρ

1

11

, is the inverse of an 

asymptotic portfolio’s cumulative default rate distribution evaluated at a probability of α . 

When EAD and LGD are both constant as they are in the Vasicek ASFM framework,  the 

formula used to estimate a capital allocation with a coverage rate ofα is, 

( ) ( )
,

1

11

EADLGD
PD

V

V ⋅⋅⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

−

Φ+Φ
Φ

−−

ρ

αρ
 .1 

The remaining terms in expression (17) are the α-level critical values for the 

asymptotic portfolio’s EAD distribution, ( )( )( )( )α11
00 |~1)1( −− Φ−=Φ−Ω−+ Mi eZEdd , and 

the asymptotic portfolio’s LGD distribution, ( )( )( )( )α11 |~1 −− Φ−=Φ−Θ Mi eYE . 

In general, the critical values of the asymptotic portfolio exposure and LGD 

distributions must be calculated using numerical techniques. Although numerical quadrature 

methods of estimation are preferred on efficiency grounds (i.e., smaller estimation error for a 

given number of calculations), a simple Monte Carlo estimator of 

( )( )( )( )α11 |~1 −− Φ−=Φ−Θ Mi eYE  provides an example that aids in understanding some of the 

portfolio’s distribution properties. 

                                                 
1 For example, this loss rate formula (with 999.=α ) is used to calculate minimum 
regulatory capital requirements in the Basel II AIRB approach (see the Basle Committee on 
Banking Supervision (2006)). The interpretation is that when capital is set at this level, 99.9 
percent of all potential portfolio credit losses will be less than the capital allocation. 



 

 - 14 -

To construct a simple Monte Carlo estimator, for a given value for α , generate a 

random sample of size M of standard normal deviates, )1,0(~~ φje , Mj ,...,3,2,1= . For each 

observation, je , calculate ( )( )( )αρρλ 11 11ˆ −− Φ−−Φ−Θ= YjYj e . The Monte Carlo 

estimate of ( )( )( )( )α11 |~1 −− Φ−=Φ−Θ Mi eYE  is ∑
=

M

j
jM 1

.ˆ1 λ  The precision of this estimator 

improves as the Monte Carlo sample size, ,M  increases,2 

 ( )( )( )( )αλ 11
.

1
|~1ˆ1lim −−

=
∞→ Φ−=Φ−Θ⎯→⎯∑ Misa

M

jj
M eYE

M
.                         (18) 

A similar approach can be used to estimate the critical value of the asymptotic portfolio’s 

draw rate distribution, ( )( )( )( )α11 |~1 −− Φ−=Φ−Ω Mi eZE . 

The Monte Carlo estimators make two characteristics of the asymptotic portfolio’s 

draw and loss given default rate distributions transparent. First, as the correlations in their 

latent factors converge to 0, the asymptotic portfolio draw rate and LGD distributions 

converge to a point distribution located at their unconditional expected values: 

              ( )( )( )( ) ( ) [ ]1,0~|~1lim 11
0 ∈∀=Φ−=Φ−Θ −−

→ αλαρ EeYE MiY
                                

( )( )( )( ) ( ) [ ]1,0~|~1lim 11
0 ∈∀=Φ−=Φ−Ω −−

→ αδαρ EeZE MiY
 .                  (19) 

Secondly,  as the correlations in these distributions’ latent factors approach 1, the 

distributions of the portfolio draw and LGD rate distributions converge to distributions that 

                                                 
2 The convergence rate of the Monte Carlo estimator is 

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
2
1

MO . 
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characterize the loss or exposure behavior of a single credit (i.e., there is no diversification in 

the portfolio-level distributions): 

         ( )( )( )( ) ( ) [ ]1,0|~1lim 111
1 ∈∀Θ=Φ−=Φ−Θ −−−

→ αααρ Mi eYE
Y

 

       ( )( )( )( ) ( ) [ ]1,0|~1lim 111
1 ∈∀Ω=Φ−=Φ−Ω −−−

→ αααρ Mi eZE
Z

.                   (20) 

While it is possible to calculate the full asymptotic portfolio LGD or EAD distribution 

function using quadrature, Monte Carlo, or perhaps another numerical method, such methods 

are computationally intensive. Aside from issues of ease of computation, the derivation of 

expression (17) is not fully general as it requires use of the integral transform, which is 

applicable only when the distributions for the individual account LGD and draw rates are 

continuous. 

The next section derives an approximation for asymptotic portfolio loss distribution 

that is applicable in cases when the individual credit LGD and draw rate distributions are 

discrete. A random variable’s range of support is divided into equal increments, and these 

increments are used in conjunction with compound latent Gaussian factors to construct a 

step-function approximation for individual credit EAD and LGD distributions. This approach 

circumvents the need to use numerical techniques to calculate conditional EAD and LGD 

expectations, and it can also be used to approximate the portfolio loss distribution when the 

LGD and draw rate distributions are continuous. Because it avoids the need to use numerical 

methods to calculate expectations, depending on the intended use and accuracy requirements, 

the step-function formulation of the model may be preferred in some applications. 



 

 - 16 -

4.   A STEP-FUNCTION APPROXIMATION FOR AN ASYMPTOTIC PORTFOLIO’S CUMULATIVE 
LOSS DISTRIBUTION 

4.1 Discrete Approximation for a Cumulative Distribution Function 

 
Let ( )a~Ξ  represent the cumulative density function for [ ].1,0~ ∈a  Because ( )a~Ξ  is a 

cumulative density function, it is monotonic and non-decreasing in .~a  Over the range of 

support for ,~a  define n  equal increments of size 
n
1 , and use these increments to define a set 

of overlapping events that span the random variable range of support: 

( ){ } ,,...,2,1,0,,,~ njnja =Ε  where ( )nja ,,~Ε  is the event ⎥⎦
⎤

⎢⎣
⎡∈

n
j

a ,0~ , for .,,3,2,1,0 nj K=  By 

construction, ⎟
⎠
⎞⎜

⎝
⎛Ξ

n
j  is the probability that event ( )nja ,,~Ε occurs. 

Let ( )nja ,,~1Ε  be the indicator function for the event ( )nja ,,~Ε ,  

( )
( )

⎩
⎨
⎧ Ε∈

=Ε otherwise0
,,~if1

1 ,,~
njaai

nja                                                     (21) 

The expected value of the indicator function is the probability of occurrence of the indicated 

event, 

   ( )( ) ⎟
⎠
⎞⎜

⎝
⎛Ξ=Ε n

jE nja ,,~1 ,  nj ,,3,2,1,0 L= .                                      (22) 

The correspondence between events and indictor functions in expression (22) is exact 

for integer values of j , but, for a fixed n , the random variable support may include irrational 

numbers that cannot be assigned a cumulative probability using expression (22). To construct 

an approximation for ( )a~Ξ  that spans the entire support of a~ , let 
n
xa i

i =  for any [ ]1,0∈ia . 
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For fixed n , ix  need not be integer-valued. Using nax ii = , approximate the cumulative 

distribution function for a~  as  

( ) ] [
⎟
⎠
⎞⎜

⎝
⎛Ξ≈Ξ

n
xa i

i ,                                                                          (23) 

where ] [g  is the so-called ceiling function that returns a value g if g is an integer, and the 

next-largest integer value if g in not an integer. Using this convention, ⎟
⎠
⎞⎜

⎝
⎛Ξ

n
j  is the 

cumulative probability assigned to all realizations of a~  in the range, 
n
ja

n
j

i <<−1  . For 

non-integer ix  this approximation overstates the true cumulative probability, 

] [
⎟
⎠
⎞⎜

⎝
⎛Ξ≥⎟

⎠
⎞⎜

⎝
⎛Ξ

n
x

n
x ii , but the magnitude of the approximation error is decreasing in n  and can 

be reduced to any desired degree of precision by choosing n  sufficiently large.3 

Consider the compound event, ( ) ( )njanja ,,~,1,~ Ε∩−Ε , as ∞→n . In the limit as 

,01and,, →∞→∞→
n

jn  the ratio 
n
j  remains unchanged, and the compound event 

( ) ( )njanja ,,~,1,~ Ε∩−Ε converges to the point [ ]1,0∈
n
j . Using expression (22), 

                                                 
3 If [ ]1,0∈ia  is rational, then 

n
j

ai =  for some integers, .and nj  If [ ]1,0∈ia  is irrational, then, 

Lagrange has shown, 
25

1
nn

jai <− . Thus [ ]1,0∈ia  can be approximated to any desired 

degree of accuracy by 
n
j

ai ≈  for some integers, ,and nj where the precision of the 

approximation is increasing in .n  See Conway and Guy (1996), pp. 187–89. 
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( )( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛Ξ=− −ΕΕ∞→ n

jEE njanjan '11lim ,1,~,,~ , or in the limit as ,∞→n  the difference in the 

expected values of indicator functions immediately adjacent to the point 
n
j  converges to the 

value of the probability density of a~ evaluated at the point .
n
j  

In instances when ( )a~Ξ is discrete, if n  is sufficiently large, each point in the support 

of a~  can be associated with a unique compound event, ( ) ( )njania ,,~,,~ Ε∩Ε , for some 

integers i and j . Consequently, a discrete distribution ( )a~Ξ  can be represented exactly 

using this representation if sufficient precision (sufficiently large n ) is specified. 

4.2 Approximating Individual Account EAD 

Divide the [ ]1,0  range of support for the draw rate into 1+n overlapping regions and 

define 1+n corresponding events: ( ){ }nj,,~δΕ  is the set of events  ⎥⎦
⎤

⎢⎣
⎡∈

n
j

i ,0~δ  for 

.,,2,1,0 nj K=  

The probability distribution for an account’s draw rate is approximated by a 

uniform-size step function defined on iZ  using ( ){ }nj,,~δΕ , 
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⎠
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⎞⎜

⎝
⎛

≥

=

−

+

nii

niini

ijiij

iii

iii

ii

i

AZfor

AZAorn
n

AZAfor
n
j

AZAfor
n

AZAfor
n

AZfor

~1

~1

~

~2

~1

~0

~

1

1

23

12

1

MM

MMδ
                                                      (24) 

where 121 iiniin AAAA <<< − L .  Expression (24) models the draw rate as a monotonically 

decreasing function of iZ~  with 1+n distinct draw rates with uniform increments of size 
n
1

 

beginning at 1=iδ . 

The latent variable thresholds { }inii AAA ,,, 21 L  are defined by equating the Gaussian 

probabilities for the latent variable thresholds to the probability that the corresponding events 

occur under ( )iδ~Ω . For example, the equality ( ) ( )01 1 Ω=Φ− iA  defines ( )( )011
1 Ω−Φ= −

iA . 

Similarly, ( ) ⎟
⎠
⎞⎜

⎝
⎛Ω=Φ−

n
Ai

11 2  defines ,111
2 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛Ω−Φ= −

n
Ai  and so on. The threshold values for 

the unconditional draw rate distribution approximation are given in Table 1. 
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Table 1: Step-Function Approximation for an Individual Credit’s 

Draw Rate Distribution 

 
Draw 
Rate 

 
Event 

Cumulative 
Probability of  

Draw Rate 

 
Threshold Value for Latent 

Variable iZ~  
0 ( )n,0,~δΕ  ( )0Ω  ( )( )011

1 Ω−Φ= −
iA  

n
1  ( )n,1,~δΕ  ⎟

⎠
⎞⎜

⎝
⎛Ω

n
1

 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛Ω−Φ= −

n
Ai

111
2  

n
2

 
( )n,2,~δΕ  ⎟

⎠
⎞⎜

⎝
⎛Ω

n
2  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛Ω−Φ= −

n
Ai

211
3  

M  M  M  M  

n
n 1−

 ( )nn ,1,~ −Ε δ ⎟
⎠
⎞⎜

⎝
⎛ −Ω

n
n 1  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −Ω−Φ= −

n
nA ni

111  

1  ( )nn,,~δΕ  1  

 

4.3 Approximating Individual Account LGD 

The methodology used to approximate the LGD distribution is analogous to the 

approach used to approximate the draw rate distribution. Divide the interval [ ]1,0  into 

1+n overlapping regions and define a corresponding set of events, ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡∈∋Ε

n
jnj i ,0~,,~ λλ , 

for .,,2,1,0 nj K=  

The model is normalized so that higher realized loss rates are associated with smaller 

realized values of iY~ . Approximate ( )iλ~Θ  as 
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⎢
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<≤⎟
⎠
⎞⎜

⎝
⎛ −

<≤⎟
⎠
⎞⎜

⎝
⎛

<≤⎟
⎠
⎞⎜

⎝
⎛

≥

=

−

ini

niini

iii

iii

ii

i

BYfor

BYBfor
n

n

BYBfor
n

BYBfor
n

BYfor

~1

~1

~2

~1

~0

~

1

23

12

1

MM

MM
λ

                                                (25) 

for 121 iiinin BBBB <<<< − L . The latent variable thresholds are defined in Table 2. 

 

Table 2: Step-Function Approximation for an Individual Credit’s 

Loss Rate Distribution 

 
Loss  
Rate 

 
Event 

Cumulative 
Probability of  

Loss Rate 

 
Threshold Value for 
Latent Variable iY~  

0 ( )n,0,~λΕ  ( )0Θ  ( )( )011
1 Θ−Φ= −
iB  

n
1  ( )n,1,~λΕ  

⎟
⎠
⎞⎜

⎝
⎛Θ

n
1

 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛Θ−Φ= −

n
Bi

111
2  

n
2

 
( )n,2,~λΕ  ⎟

⎠
⎞⎜

⎝
⎛Θ

n
2  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛Θ−Φ= −

n
Bi

211
3  

M  M  M  M  

n
n 1−

 
( )nn ,1,~ −Ε λ  

⎟
⎠
⎞⎜

⎝
⎛ −Θ

n
n 1  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −Θ−Φ= −

− n
nB ni

211
1  

1  ( )nn,,~λΕ  1 
⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −Θ−Φ= −

n
nB ni

111  
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4.4 The Loss Rate for an Individual Account 

The loss rate distribution for an individual account can be modeled using 12 +n  

indicator functions defined over the latent variables .~and,~,~
iii YZV  One indicator function 

indicates default status; n  indicator functions are used to approximate the cumulative EAD 

distribution, ( )δ~Ω ; and n  indicator functions are used to approximate the cumulative LGD 

distribution, ( ),~λΘ  

( )

( )

( ) .,...,3,2,1,
0

~1~1

,...,3,2,1,
0

~1~1

,
0

~1~1

nkfor
otherwise

BYifY

njfor
otherwise

AZif
Z

otherwise
DVifV

iki
i

iji
i

ii
i

ikB

ij
A

iD

=
⎪⎩

⎪
⎨
⎧ <=

=
⎪⎩

⎪
⎨
⎧ <

=

⎪⎩

⎪
⎨
⎧ <=

                                      (26) 

Each indicator function defines a binomial random variable. 

Let ( )nYZV iii
A
i ,~,~,~Λ  represent the approximate loss rate for account i measured 

relative to the account’s maximum credit limit, iM . ( )nYZV iii
A
i ,~,~,~Λ  is defined as 

( ) ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−+=Λ ∑∑

==

n

j
ii

n

k
iiiiii

A
i Y

n
Z

n
ddVnYZV

ijB
ik

AiD
11

00
~11~111~1,~,~,~

,             (27) 

where the notation indicates that the approximation depends on ,n  the number of increments 

used to model the account’s LGD and EAD cumulative distribution functions. 
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5.5 The Conditional Loss Rate for an Individual Account 

Let ( )Mi eV
iD |~1  represent the value of the default indicator function conditional on a 

realized value for Me , the common latent factor. Similarly, let ( )Mi eZ
ij

A |~1  and ( )Mi eY
ijB |~1  

represent the values of the remaining indicator functions ( nj ...,,3,2,1= ) conditional on 

.~
MM ee =  These additional conditional indicator functions define independent binomial 

random variables with expected values 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
Φ=⎟⎟⎠

⎞
⎜⎜⎝

⎛

Z

MZij
Mi

eA
eZE

ij
A ρ

ρ
1

|~1 ,         nj ,,3,2,1 K=                          (28) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
Φ=⎟

⎠
⎞⎜

⎝
⎛

Y

MYij
Mi

eB
eYE

ijB ρ
ρ

1
|~1 ,          nj ,,3,2,1 K= .                         (29) 

An individual account’s conditional loss rate is approximated as 

( ) ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−+=Λ ∑∑

==

n

j
MiMi

n

k
iiMiMiii

A
i eY

n
eZ

n
ddeVenYZV

ijB
ik

AiD
11

00 |~11|~111|~1|,~,~,~ . (30) 

4.6 The Loss Rate on an Asymptotic Portfolio of Revolving Credits 

As in Section 3.5, we consider a portfolio composed of N accounts that are identical 

except for their idiosyncratic risk factors. The credits have identical credit limits, initial 

drawn balances, latent factor correlations, identical default thresholds, and identical LGD and 

draw rate distributions. Under these assumptions, the 12 +n  threshold values in expression 

(26) are identical across individual credits, and indicator function subscript i no longer is 

necessary: ( ) ( )ii VV DiD
~1~1 = , ( ) ( ),~1~1 ii ZZ

jAijA =  and ( ) ( )ii YY
jBijB

~1~1 =  for .,,3,2,1 nj L=  The loss 

rate for an individual credit will depend on the identity of the credit only through the 
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idiosyncratic risk factors in the latent variables ,~and,~,~
iii YZV  and so the account’s 

approximate loss rate can be written without an identifying subscript as ( )nYZV iii
A ,~,~,~Λ . 

Let ⎟⎠
⎞⎜⎝

⎛Λ M
A
p enYZV |,~,~,~ rrr

 represent the approximate loss rate on the portfolio of 

N accounts conditional on a realization of ,Me  and n increments in the step-function 

approximation 

( )( ) ( )( )

⎟⎟
⎟
⎟
⎟
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⎜
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⎟
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N
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Miii
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N

i
Miii

A

M
A
p
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|,~,~,~|,~,~,~

|,~,~,~ rrr
 .           (31) 

Because the individual account conditional loss rates are independent and identically 

distributed, the Strong Law of Large Numbers requires 

( )
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.  (32) 

Substitution of the expressions for the conditional expectations yields 
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.        (33) 

Expression (33) is an approximation for the inverse of the conditional distribution function 

for an asymptotic portfolio’s loss rate evaluated at ( ).,+∞∞−∈Me  Propositions 2 and 3 in the 

appendix can be used to show that, in the limit, as ,∞→n the approximation converges to 
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the true underlying asymptotic portfolio conditional loss rate consistent with the model 

assumptions. Thus, an asymptotic portfolio’s loss rate density function can be approximated 

by the implicit function 
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for ( )., ∞∞−∈Me                                                        (34) 

The portfolio loss rate is decreasing in .
Me , so the loss rate consistent with a cumulative 

probability of α  is given by expression (33) evaluated at ( )α−Φ= − 11
Me . Using the 

definitions of the latent variable thresholds in Tables 1 and 2, it follows that an 

approximation for the portfolio loss rate consistent with a cumulative probability of α  is 
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where 
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Proposition 2 in the appendix establishes that ( )αB
n

⎟
⎠
⎞⎜

⎝
⎛ 1  is an approximation for the portfolio’s 

conditional LGD rate, 

( ) ( )( )αλα −Φ==⎟
⎠
⎞⎜

⎝
⎛ −

∞→ 1|~1lim 1
Mn eEB

n ,                                            (38) 

so the probability density of the asymptotic portfolio’s LGD rate can be approximated by the 

implicit function 

( ) ( )( ) ,,1lim 1

⎭
⎬
⎫

⎩
⎨
⎧

Φ⎟
⎠
⎞⎜

⎝
⎛ −

∞→ αφαB
nn   ∈∀ α [ ].1,0                                (39) 

The expression ( )⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−+ αA

n
dd 1)1( 00  is an approximation for the asymptotic 

portfolio’s conditional utilization rate relative to the portfolio’s total committed line of credit; 

( )αA
n

⎟
⎠
⎞⎜

⎝
⎛ 1  is an approximation for the portfolio’s conditional draw rate. Proposition 2 in the 

appendix can be used to establish 

 ( ) ( )( ),1|~1lim 1 αδα −Φ=→ −
∞→ Mn eEA

n                                           (40) 

and so the probability density of the portfolio’s overall draw rate can be approximated by the 

implicit function  

( ) ( )( ) ,1,1lim 1

⎭
⎬
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⎩
⎨
⎧ −Φ⎟

⎠
⎞⎜

⎝
⎛ −

∞→ αφαA
nn  [ ]1,0∈∀ α .                             (41) 

5.  EXAMPLES OF UNCONDITIONAL DRAW RATE AND LOSS GIVEN DEFAULT DISTRIBUTIONS 

In this section, the algorithm developed in Section 4 is applied to approximate 

portfolio level distributions that are generated by three alternative account-level 
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unconditional distributions. These account-level distributions could represent individual 

account draw rates or LGD rates depending on the specific application. The three 

distributions considered are all members of the Beta family. The distribution parameters are 

selected so that one unconditional distribution is skewed right, one is symmetric, and one is 

skewed left. The analysis demonstrates that skewness and correlation among individual LGD 

and EAD distributions are important determinants of the shape of the asymptotic portfolio 

LGD and draw rate distributions. Although the examples could represent either individual 

account draw or LGD rate distributions, to simplify the discussion they are described as if 

they represent LGD distributions. 

Figure 1: Beta (1.6, 7) Distribution

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

Beta  (1.6, 7)

Mean = 0.186

Mode =0.091

 

5.1 Positively Skewed Distribution 

The density function for the Beta distribution with the first parameter (alpha) equal to 

1.6 and the second parameter (beta) equal to 7, plotted in Figure 1, is 

( )
( ) ( ) ( ) 10for,1
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66.0 <<−
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Γ= λλλλ

λλ
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where ( ) 0,
0

1 >=Γ ∫
∞

−− bdyeyb yb , is the mathematical gamma function. This unconditional 

distribution is skewed right and could, for example, represent the random draw rates on 

revolving corporate credits or the loss given default rates on wholesale bank loans or alt-A 

mortgages. 

Figure 2 plots the asymptotic portfolio’s LGD distribution for alternative correlation 

assumptions assuming that individual LGDs are distributed ( )7,6.1Beta  and that LGD 

correlation is driven by the single common factor structure described above.  The asymptotic 

portfolio’s LGD distribution is approximated using ( ) ( )( ) ,,1,1 1

n
jB

n
=

⎭
⎬
⎫

⎩
⎨
⎧

−Φ⎟
⎠
⎞⎜

⎝
⎛ − ααφα  

.2500,2500,,3,2,1 == nj K  

Figure 2 shows that, when individual credit loss rates are uncorrelated, the portfolio’s 

unconditional LGD distribution converges to ( )( ) .1862.07,6.1 =BetaE  As correlation among 

individual LGD realizations increases, the range of the portfolio LGD distribution increases 

and the distribution becomes increasingly positively skewed. As correlation approaches 1, 

the ability to diversify LGD risk within the portfolio diminishes. When correlation reaches 

one, the asymptotic portfolio LGD distribution converges to the ( )7,6.1Beta  distribution (not 

shown). 
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Figure 2: Asymptotic Portfolio Unconditional LGD or Draw Rate 
Distribution for Alternative Correlations When Individual Credits 

Are Distributed Beta  (1.6, 7)
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5.2 Negatively Skewed Distribution 

The second unconditional distribution considered is the Beta distribution with 

parameters alpha = 4 and beta = 1.1: 

( )
( ) ( ) ( ) 10for,1

1.14
1.5),7,6.1(

)~,1.1,4(~~

1.03 <<−
ΓΓ

Γ= λλλπ

λλ

Beta

Beta

.                                  (42) 

This negatively skewed distribution, plotted in Figure 3, could represent individual draw 

rates or LGD rates on sub-prime credit card accounts or other revolving retail credits. 

Figure 3: Beta (4,1.1) Distribution
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Figure 4 plots the asymptotic portfolio LGD distribution generated under different 

correlation assumptions when individual LGDs are distributed ( )1.1,4~~ Betaλ . The 

unconditional portfolio LGD distribution is approximated using the step-function approach 

with .2500=n  When individual LGD realizations are uncorrelated, LGD risk is completely 

diversified, and the asymptotic portfolio’s LGD distribution converges 

to ( )( ) 7845.01.1,4 =BetaE . As the correlation increases, the portfolio’s LGD distribution 

becomes increasingly negatively skewed; it converges to ( )1.1,4Beta for 1=Yρ . 
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Figure 4: Unconditional Asymptotic Portfolio LGD or Draw Rate 
Distribution for Alternative Correlations When Individual Credits Are      

Distributed Beta  (4, 1.1)
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Figure 5: Beta(7,7) Distribution
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5.3 Symmetric Distribution 

The final example is the Beta distribution with parameters alpha = 7 and beta = 7,  

 ( )
( ) ( ) ( ) 10for,1

77
14),7,7(

)~,7,7(~~

66 <<−
ΓΓ

Γ= λλλλ

λλ

Beta

Beta
.                             (43) 

This distribution, plotted in Figure 5, is symmetric and could represent LGD rates on 

investment-grade corporate debt. 

Figure 6 plots, for different correlation assumptions, the unconditional asymptotic 

portfolio LGD distribution approximation ( 2500=n ) that is generated when LGDs are 

distributed ( )7,7~~ Betaλ . The distribution converges to ( )( ) 5.07,7 =BetaE  when individual 

LGD realizations are uncorrelated. As the correlation increases, the range of the asymptotic 

portfolio LGD distribution increases, and the portfolio LGD distribution converges 

to ( )7,7Beta as .1→Yρ  
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Figure 6: Unconditional Asymptotic Portfolio LGD or Draw Rate 
Distribution for Alternative Correlations When Individual Credits Are 

Distributed Beta  (7, 7)
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5.4 Sample Asymptotic Portfolio Unconditional Loss Rate Distributions 

This section illustrates the calculation of unconditional loss rate distributions for 

alternative asymptotic credit portfolios. The approximations use expression (33) with 

.2500=n The examples represent hypothetical portfolios that are broadly consistent with the 

stylized facts associated with selected fixed-term loans and revolving credit facilities for both 

wholesale and retail credits.  

Published evidence on the shape and correlations of individual credits’ LGD and EAD 

distributions is limited. Few studies characterize the shape of individual account EAD 

distributions, and no study has attempted to estimate the strength of EAD correlation in a 

structural model.4 A larger number of studies focus on the distribution of LGD rates, but the 

evidence is still sparse and much of it is specialized to default rates for agency-rated credits. 

Most studies investigating LGD correlation behavior investigate time series 

correlation estimates between observed default frequencies and default recovery rates. Only 

one study estimates a structural model LGD correlation parameter. Frye (2000b) estimates 

Yρ  to be about 20 percent for agency-rated bonds, but his estimate is based on a structural 

model that assumes that LGD distributions are symmetric. It seems likely that alternative 

specifications for LGD that include significant skew in the unconditional LGD distribution 

would produce more modest estimates of correlation, but such issues have yet to be studied. 

Also, as noted by Carey and Gordy (2004), most LGD correlation estimates have been 

                                                 
4 Araten and Jacobs (2001) provide simple descriptive statistics on a sample of Chase 
revolving facilities. Jiménez, Lopez, and Saurina (2006) provide an aggregated histogram of 
all corporate EADs derived from the Spanish credit registry for all credit institution loans in 
excess of 6000 Euros over a period spanning 1984–2005.  
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derived from rating-agency bond data, and the correlations for different liability classes are 

likely to differ according to firm capital structure characteristics and the identity of important 

stakeholders, including the presence (or absence) of significant banking interests. 

A review of the publicly available literature suggests that the shape of individual 

unconditional LGD and EAD distributions as well as the magnitudes of their correlations is 

an open issue. This study will not contribute on the issue of model calibration but, instead, 

will illustrate the asymptotic portfolio loss rate distributions that are generated under 

alternative structural model parameterizations. 

5.4.1 Hypothetical Portfolio of Term Loans 

 The first example is chosen to represent the portfolio loss rate distribution that may 

arise on a portfolio of term loans of non-investment-grade senior secured credits. Figure 7 

plots the distribution of projected LGD rates on loans that receive a recovery rating by 

FitchRatings.5 A large share of the FitchRatings sample of credits are secured first-lien loans, 

a fact that partly explains the favorable recovery rate distribution. This forward-looking LGD 

rate distribution is not conditioned on any realized state of the economy, so it proxies for an 

unconditional LGD distribution. 

The distribution in Figure 7 is not very granular. While this distribution could be used 

directly in expression (34), it is broadly similar to the continuous ( )7,6.1Beta  distribution, and 

so we will use the latter distribution to represent the LGD distribution for individual secured 

first-lien loans. To construct the asymptotic portfolio loss rate distribution for this class of 

exposures, we assume that all loans are fully drawn (EAD = 1) and that individual credits 
                                                 
5 Figure 7 was constructed by the author from information provided in FitchRatings (2006).  
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have an unconditional probability of default of 0.5 percent. The default correlation parameter 

is set at 20 percent ( )20.0=Vρ  to reflect both the wholesale nature of these credits and the 

corporate correlation used in the Basel AIRB capital framework. 

Figure 7: Projected LGD Distribution Loans Rated by 
FitchRatings
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The asymptotic portfolio loss distribution is plotted for different LGD correlation 

assumptions ( )Yρ  in Figure 8. The alternative panels in Figure 8 highlight the importance of 

systematic risk in recovery rates. As the correlation between individual account LGD rates 

increases, the skewness of the asymptotic portfolio’s loss rate distribution increases. As 

correlation increases from 0 to 10 percent, the 99.5 percent critical value of the portfolio loss 

rate distribution increases by almost 60 percent. When individual LGD correlations are 20 

percent, the portfolio 99.5 percent loss-coverage rate is about 87.5 percent larger than the 

estimate produced by the simple Vasicek ASRF formula (the top panel of Figure 8) that 

assumes uncorrelated LGDs. 

5.4.2 Hypothetical Portfolio of Revolving Senior Unsecured Credits 

A second example is chosen to represent the loss rate distribution of an asymptotic 

portfolio of revolving senior unsecured bank loans made to investment-grade obligors. The 

example assumes that portfolio obligors begin with a 30 percent facility utilization rate and 
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draw on their remaining credit line over the subsequent period. Because these are wholesale 

credits, we use the Basel II default correlation assumption, .20.0=Vρ  We examine the shape 

of an asymptotic portfolio loss rate distribution under alternative correlation assumptions for 

LGD and EAD. 

Figure 8: Asymptotic Portfolio Loss Rate Distributions for 
Fixed EAD Under Alternative Correlation Assumptions.      

Individual Credits Have PD =0.5% and Unconditional 
LGD s~Beta(1.6,7).
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Figure 9: Asymptotic Portfolio Loss Rate Distributions for Alternative Correlations. 
Individual Credits Have PD=0.25%, 30% Initial Utilization, and 70% Revolving 

Balances, With Unconditional Draw Rates~Beta (1.6,7) and Unconditional 
LGDs~Beta (7,7).
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Altman (2006, table 2) reports data that suggest that historical loss rates on senior 

unsecured bank loans are nearly symmetric, with an average loss rate of about 50 percent and 

a standard deviation of about 25 percent. The ( )7,7Beta  distribution provides a reasonable 

approximation to this LGD distribution. Araten and Jacobs (2001, table1) estimate, for the 
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Chase data they examine, that a credit with a rating of BBB+/BBB has, on average, about a 

55 percent loan equivalent value a year before default. We are not aware of any published 

study that further characterizes the exposure distribution on these types of facilities, but the 

assumption of an initial utilization rate of 30 percent and a ( )7,6.1Beta draw rate distribution 

matches both the mean of the Araten and Jacobs EAD data and conventional wisdom that 

suggests that bankers are at least partially successful at limiting takedowns by distressed 

obligors. We assume an unconditional default rate of 0.25 percent. 

Figure 9 plots estimates of the asymptotic portfolio loss rate distribution under 

alternative assumptions for LGD ( )Yρ and EAD ( )Zρ  correlations. The panels in Figure 9 

show that correlation in individual credit LGD and EAD distributions has a large effect on the 

tails of the portfolio’s credit loss distribution. As correlation in EADs and LGDs increases 

from 0 to 10 percent (0 to 20 percent), the loss value associated with a 99.5 percent 

cumulative probability increases by 43 percent (64 percent). 

5.4.3 Hypothetical Portfolio of Sub-Prime Retail Credits 

The final example is intended to mimic a sub-prime credit card portfolio. Unlike with 

earlier examples, we are unable to reference a published study to anchor our choice of 

distributional assumptions. Individual accounts are assumed to have an unconditional 

probability of default of 4 percent, and default correlations are assumed to be 4 percent, 

consistent with the Basel AIRB treatment of qualified retail exposures. Customers are 

assumed to begin the period with 20 percent utilization of their credit limits and are assumed 

to draw on the remaining 80 percent of their credit limit with a draw rate modeled using the 
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( )1.1,4Beta  distribution. Because these are unsecured credits, recovery rates are low and 

account LGDs are assumed to follow the ( )1.1,4Beta  distribution. 

Figure 10: Asymptotic Portfolio Loss Rate Distributions for Alternative 
Correlations. Individual Credits Have PD=4%, 20% Initial Utilization, and 80% 

Revolving Balance, With Unconditional Draw Rates~Beta (4,1.1) and Unconditional 
LGDs~Beta (4,1.1).
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Figure 10 plots estimates of the asymptotic portfolio’s loss rate distribution under 

alternative assumptions for LGD and EAD correlations. Unlike with the earlier two examples, 

the panels in Figure 10 show that correlation in individual credit LGD and EAD distributions 

has a relatively minor effect on the tails of the portfolio’s credit loss distribution. As 

correlation in EADs and LGDs increases from 0 to 10 percent (0 to 20 percent), the loss value 

associated with a 99.5 percent cumulative probability increases by only 26 percent (35 

percent).  This result is driven by extreme negative skew in the LGD and EAD distributions, 

as most of the probability mass is associated with high account draw and loss rates. 

7. CONCLUSIONS 

This paper has developed a tractable generalization of the single common factor 

portfolio credit loss model that includes correlated stochastic exposures and loss rates. The 

model yields an exact closed-form representation when individual account LGD and EAD 

distributions are continuous, and an alternative closed-form representation when LGD and 

EAD distributions are discrete. The model does not restrict EAD or LGD distributions or their 

correlations. The closed-form representation of an asymptotic portfolio’s inverse cumulative 

conditional loss rate can be used to calculate both the unconditional portfolio loss rate 

distribution and economic capital allocations. Portfolio loss rate distributions are illustrated 

for representative wholesale and retail portfolios. The results show that the additional 

systematic risk created by positive correlation among individual account EAD and LGD 

realizations increases the skewness of an asymptotic portfolio’s loss rate distribution. In turn, 

this increase in skewness increases the measured risk in lower tranches of collateralized debt 

obligations (CDOs) and securitizations, and mandates the need for larger economic capital 

allocations than those calculated with the use of the Vasicek model. 
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APPENDIX 
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Substitution of the definitions of the jB values from Table 2 and ( ) ( )αα 11 1 −− Φ−=−Φ=Me  
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where the final step is justified by Proposition 1. 
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