
Federal Dposit Insurance Corporation •  Center for Financial Researchh

Sanjiv R. Das

Darrell Duffie

Nikunj Kapadia

Risk-Based Capital Standards, 
Deposit Insurance and Procyclicality

Risk-Based Capital Standards, 
Deposit Insurance and Procyclicality

FDIC Center for Financial Research 
Working Paper 

No. 2006-08
            Capital Allocation for Portfolio Credit Risk

                        

 August 2006

Empirical Comparisons and Implied Recovery Rates  

 

kkk 

 

 

 

 

An Empirical  

An Empirical Analysis  

 

 



 

State-

 Efraim Benmel Efraim Benmelech

 

May, 2005      

June 20

      

May , 2005                Asset S2005-14

September 2005



 

 

 

Capital Allocation for Portfolio Credit Risk   
  

by 
 

Paul H. Kupiec∗ 
 

First Draft February 2005; Revised August 2006 
 

ABSTRACT 

Capital allocation rules are derived that maximize leverage while maintaining a target 
solvency rate for credit portfolios where risk is driven by a single common factor and 
idiosyncratic risk is fully diversified. Equilibrium conditions ensure that capital allocations 
depend on interest earnings as well as credits’ probability of default, endogenous loss given 
default, and asset correlation. Capitalization rates exceed those estimated using Gaussian 
credit loss models. Results demonstrate that credit risk is undercapitalized by the Basel II 
AIRB approach in part because of ambiguities regarding the definition of loss given default. 
An alternative proposed capital rule removes this bias. 
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Capital Allocation for Portfolio Credit Risk   
 

1. INTRODUCTION 

The market value of equity in a bank’s capital structure functions as a buffer that 

protects all bank creditors from potential loss.1 Other things equal, an increase in bank equity 

raises the probability the bank will fully perform on its contractual obligations. In the risk 

management literature, bank equity is often called economic capital, and the process of 

selecting the amount of equity in the bank’s capital structure is called capital allocation.   

Survey data suggest that many banks use value-at-risk (VaR) techniques to set 

economic capital allocations.2 VaR-based methods of setting capital attempt to maximize 

bank leverage while ensuring that the potential default rate on a bank’s outstanding debt is 

below a maximum target rate selected by management.3 This paper develops capital 

allocation rules for portfolios of risky credits that are consistent with the implicit objective 

function underlying VaR capital methods. In the context of Black and Scholes (1973) and 

Merton (1974) (BSM) model, capital is set to maximize the amount of debt used to finance a 

credit portfolio while maintaining a pre-determined target solvency rate on the bank’s 

financing debt.   

In contrast to the Gaussian credit loss model (GCLM) approach pioneered by Vasicek 

(1991) and extended by Finger (1999), Schönbucher (2000), Gordy (2003) and others, this 

paper derives capital requirements using a full equilibrium structural model of credit risk. 

The use of equilibrium pricing restrictions ensures that the capital allocation rule is consistent 

with equilibrium relationships that exist between probability of default (PD), loss given 

default (LGD), yield to maturity, (YTM), and asset correlations—relationships that 

                                                 
1 The capital allocation issues discussed herein apply to non-bank firms as well. 

2 See, for example, the Basel Committee on Banking Supervision (1999).  

3 The constraint sets a minimum bank solvency rate (1 minus the bank’s expected default 
rate). 
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determine the benefits that can be achieved by diversifying idiosyncratic default risk and 

trading off interest income against credit losses.   

The survey data documenting the widespread use of VaR suggests that it is common 

to set capital equal to estimates of unexpected credit loss (UL). Such a methodology is, for 

example, used to set regulatory capital requirements for banks under the Basel II Internal 

Ratings Based (IRB) approach. Kupiec (2004a) demonstrates that the UL approach does not 

set capital consistent with the objective of maximizing leverage while maintaining a 

minimum solvency target. To satisfy this objective, capital must be set equal to the sum of 

expected loss (EL), UL, and the interest that will accrue on the bank’s funding debt over the 

horizon of interest.  

Capital allocation rules that incorporate equilibrium pricing conditions are 

computationally cumbersome relative to the GCLM. They require inputs that are not direct 

measures of credit risk. The BSM approach can be translated into an applications-friendly 

model using a Gaussian representation of the default process, albeit at a cost in terms of 

model accuracy. This Gaussian copula approximation, termed the Gaussian credit return 

model (GCRM), uses individual credit’s PD, LGD, YTM and asset correlation as inputs. 

GCRM capital rules are easily calculated, but they are biased. The sign and magnitude of the 

bias depends on the target solvency margin, but the bias can be attenuated by incorporating a 

scalar adjustment factor once the solvency margin is selected.  

The GCRM capital rule, while biased, outperforms the GCLM capital allocation rule 

proposed in the literature and implemented in the Advanced Internal Models Approach 

(AIRB) of Basel II. When capital allocations are set equal to UL estimated in a GCLM, 

capital shortfalls are large and the magnitude of the shortfalls vary across credit risk profiles.  

On average, capital recommended by the GCLM is only a fraction of the magnitude needed 

to generate the true target solvency rate.  

The bias in the GCLM methodology can be attributed to a number of sources, the 

most obvious being the use of UL to estimate capital requirements. Capital allocations must 
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cover EL, UL and interest on the bank’s funding debt. The omission of EL from the capital 

calculation is a large source of bias that causes capital GCLM estimates to be understated.4   

An equally important source of GCLM bias relates to the measurement of LGD—or 

more accurately, ambiguity regarding how LGD should be measured. The equilibrium model 

developed herein sets capital requirements using a credit portfolio’s return distribution. 

Returns are measured relative to a portfolio’s initial market value and negative portfolio 

returns represent portfolio credit losses. In the GCRM framework, LGD is measured as loss 

relative to a credit’s initial market value. This current exposure measure of LGD is 

commonly used in practice and is fully compliant with Basel II AIRB guidance, but it is not 

the measure that should be used in the AIRB capital rule.  

An alternative way to measure default loss is to measure loss relative to the total 

promised future value (future exposure). Here LGD is measured as a shortfall relative to a 

credit’s principal plus accrued interest at the end of the capital allocation horizon. While the 

GCLM literature is not prescriptive as to how LGD should be measured in applications, it is 

shown that if LGD is measured relative to future exposure, provided one includes capital for 

EL, the GCLM converges to the GCRM. This convergence result not only provides the 

missing economic foundation for the GCLM, but it adds an important prescriptive result on 

the definition of LGD that has been missing in the GCLM literature. 

In practice, there are significant issues surrounding the definition of LGD used in 

bank and vendor capital allocation models. For example, a recent report produced jointly by 

the International Association of Credit Portfolio Managers (IACPM) and the International 

Swap Dealers Association (ISDA) (2006) finds that the definition of LGD varies widely 

across vendor and bank internal capital models. The report concludes that variation in the 

definition of LGD is an important source of dispersion in capital estimates produced by the 

alternative vendor and bank models included in their study.  

                                                 
4 In the Basel AIRB application of the GCLM, a bank must have loan loss reserves equal to 
EL or adjust its capital base. Reserves are a dynamic feature not incorporated into the static 
analysis in this paper, but corrections are made to account the absence reserve accounts. 
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Both simplified Gaussian models (the CGLM and CGRM) are unable to accurately 

reproduce the negative return tail of a credit portfolio’s return (loss) distribution. The 

inaccuracy arises in part because these models assume fixed LGD. The full equilibrium 

structural model includes fully endogenous LGDs and recognizes statistical co-dependence 

among LGDs as well as between LGDs and PDs. These features generate return distribution 

characteristics that cannot be accurately reproduced in the simplified Gaussian framework. 

This bias in GCRM capital estimates can be effectively attenuated using a scaling factor that 

is calibrated according to the selected solvency target. The bias in the GCLM is not simply 

repaired as this rule excludes EL which varies with PD and LGD.   

The results in this paper help to explain concerns that have been raised regarding the 

capital requirements that are set by the Basel II AIRB approach. Quantitative Impact Studies 

(QIS) conducted both in the US and in other countries have found substantial declines in 

most banks’ required minimum capital requirements under the AIRB framework.5 Across 

reporting banks, the QIS results show wide variation in capital requirements for positions 

with similar risk. The AIRB formula is based on the GCLM UL framework and includes the 

biases that are identified in this study. AIRB capital requirements are very sensitive to the 

definition of LGD and use of the current exposure measure of LGD will result in 

undercapitalized exposures. The variation in industry practice regarding estimation of LGD 

identified in the ICAPM-ISDA study is a potential explanation for both the level and 

dispersion in QIS results.    

An outline of this paper follows. Section 2 summarizes the methodology for 

constructing optimal capital allocations and demonstrates that UL measures of capital are 

downward biased. Section 3 revisits the capital allocation problem in the context of the 

Black-Scholes-Merton (BSM) model. Section 4 derives closed-form portfolio-invariant 

capital allocation rules for a single common factor version of the BSM model in which 

idiosyncratic risk is fully diversified. Section 5 reviews Gaussian copula methods and derives 

the GCLM, GCRM, and the respective capital allocation functions.  Section 6 reports the 
                                                 
5 See, Summary Findings of the Fourth Quantitative Impact Study (2006), and BCBS, Results 
of the fifth quantitative impact study (2006a). 
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results of a calibration exercise in which alternative capital allocation rules are compared. 

Section 7 discusses the importance of the definition of LGD and reviews evidence on market 

practices. Section 8 concludes the paper. 

 

2. OPTIMAL CAPITAL ALLOCATION FOR CREDIT RISKS  

It is assumed that capital allocations are set to maximize leverage using a single class 

of discount funding debt while ensuring that the bank is able to meet all the associated 

interest and principal payments with a minimum probability of .α  α  is the bank’s target 

solvency rate; .1 α− is the bank’s ex ante target probability of default  

Let T represent the capital allocation horizon of interest. The purchased asset A , has 

an initial market value 0A , a time T random value of TA~  with a cumulative density function 

),,~( TT AAΨ  and a probability density function ).,~( TT AAψ  Let ( )α−Ψ− 1,~1
TA  represent the 

inverse of the cumulative density function of TA~  evaluated at ( ) [ ].1,0,1 ∈− αα   Define an α  

coverage VaR measure, ( ),αVaR  as, 

( ) ( )αα −Ψ−= − 1,~1
0 TAAVaR                                                        (1) 

( )αVaR  is the loss amount that is exceeded by at most )1( α− of all potential future value 

realizations of TA~ . Expression (1) measures value-at-risk relative to the initial market value 

of the asset.  

Consider a capital allocation rule that sets equity capital equal to ( )αVaR . By 

construction, the probability of realizing a loss larger than ( )αVaR  at time T  is bounded 

above by ( )α−1100  percent. The probability that the bank will experience a loss that exceeds 

its initial equity value is at most ( )α−1100  percent. Under this capital allocation rule, the 

bank must borrow )(0 αVaRA −  to finance the investment. If the bank borrows )(0 αVaRA − , 

it must promise to pay back more than )(0 αVaRA −  if equilibrium interest rates and credit 

risk compensation are positive. Because the ( )αVaR  capital allocation rule ignores time and 

the equilibrium returns that are required by bank creditors, the probability that the bank will 

default on its funding debt is greater than α−1  if the bank’s debts can only be satisfied by 
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raising funds through the sale of TA~  at time .T  Thus a ( )αVaR  capital allocation rule does 

not meet management’s capital allocation objective of maximizing debt subject to 

maintaining a minimum solvency rateα . 

In order to meet the objective of maximizing leverage subject to maintaining a 

minimum solvency rate, the required capital allocation rule is: set equity capital equal to 

)(αVaR  plus the interest that will accrue on the bank’s borrowings. )(αVaR  is measured 

relative to initial asset value and thus capital includes both EL and UL. An equivalent 

allocation is achieved by setting the par (maturity) value of the funding debt equal to 

)(αVaR and estimating the funding debt’s market value at issuance. The difference between 

the initial market value of the purchased asset and the proceeds from the funding debt issue is 

the economic capital needed to fund the investment.  

UL Capital Allocation Rules 

The literature on capital allocation often recommends setting economic capital equal to 

unexpected loss which may be defined as, ( ) ( ) ,ELVaRUL −= αα  where, 

∫∫
∞−

−

∞−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

00

),~(),~(
1

0

A

TTTT

A

TTT dAAAAdAAAAEL ψψ . The second term in the expression for 

EL is the expected end-of-period asset value conditional on the asset posting a loss relative to 

the asset’s initial value. Because ,0 0AEL ≤≤  ( ) )(αα VaRELVaR ≤− . Since the default 

rate associated with a ( )αVaR  capital allocation rule exceeds ( )α−1  when interest rates are 

positive, it follows that the true default rate associated with a ( )αUL  capital allocation rule 

will exceed ( )α−1  if  EL>0.  The UL methodology is compared to the accurate approach for 

setting economic capital in Figure 1 for a 99 percent target solvency rate. 
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Figure 1: Alternative Capital Allocation Methodolgies
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3.  Optimal Capital Allocation in the Black-Scholes-Merton (BSM) Model 

Estimation of the equilibrium interest cost on funding debt requires the use of formal 

asset pricing models or an empirical approximation to value a bank’s funding debt.  If the 

risk-free term structure is flat and a firm issues only pure discount bonds, and asset values 
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follow geometric Brownian motion, under simplifying assumptions,6  BSM establish that the 

market value of a firm's debt issue is equal to the discounted value of the bond’s par value (at 

the risk free rate), less the market value of a Black-Scholes put option written on the value of 

the firm’s assets. The put option has a maturity identical to the bond’s maturity, and a strike 

price equal to the par value of the bond.  

Consider a bank whose only asset is a risky BSM discount bond that matures at date 

M and is issued by an unrelated counterparty. Assume that the bank will fund this bond with 

its own discount debt and equity securities. In this setting, the bank’s funding debt issue is a 

compound option. 

Let TA~  and PPar  represent, respectively, the time T value of the assets that support 

the discount debt investment and the par value of the purchased bond, 

zTT

T eAA
~

2
0

2

~~ σσμ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

where z~ is a standard normal variable and 0>σ is the asset’s 

instantaneous geometric return volatility. Equilibrium conditions restrict the asset’s physical 

drift rate, ,λσμ += fr  whereλ  is the market price of risk and fr  is the instantaneous risk 

free rate. 

Let FPar  represent the par value of the discount bond that is issued by the bank to 

fund the investment. To simplify the discussion, we restrict attention to the case where the 

maturity of the bank’s funding debt matches the maturity of the BSM asset and both equal 

to M .7   The end-of-period cash flows that accrue to the bank’s debt holders are, 

                                            ( )[ ]FPM ParParAMinMin ,,~  .                                              (2) 

                                                 
6 There are no taxes, transactions are costless, short sales are possible, trading takes place 
continuously, if borrowers and savers have access to the debt market on identical risk-
adjusted terms, and investors in asset markets act as perfect competitors. 

7 See Kupiec (2004a) for pricing when the funding debt matures before the investment. 



 

 - 10 -

The initial equilibrium market value of the bank’s discount bond issue is the 

discounted (at the risk free rate) expected value of the end-of-period funding debt cash flows 

taken with respect to the equivalent martingale probability distribution for ,~Q
MA   

                                
zMMr

Q
M

f

eAA
~

2
0

2

~~ σσ
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

                                (3) 

The initial market value of the bank’s funding debt is, 

( )[ ][ ] Mr
FP

Q
M

feParParAMinMinE −,,~
                                               (4) 

 At maturity, the payoff of the bank’s purchased bond is [ ]MP AParMin ~, .  Let ( )xΦ  

represent the cumulative standard normal distribution function evaluated at ,x  and ( )α1−Φ  

represent the inverse of this function for [ ]1,0∈α .  The upper bound on the funding debt par 

value consistent with the target solvency constraint is, 

( ) ( ) )1(
2

0
1

1
2

1,~ ασ
σ

μ

αα
−Φ+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−

=−Ψ=
MM

TF eAAPar .                            (5) 

The initial market value of this funding debt issue is, ( )α0FB , 

        ( ) ( ) ( )[ ][ ] Mr
FP

Q
MF

feParParAMinMinEB −= αα ,,~
0 .                            (6) 

The initial equity allocation consistent with the target solvency rateα , ( )αE , is,  

( ) ( ) ( )[ ][ ] Mr
FP

Q
M

feParParAMinMinEBE −−= αα ,,~
0  .                 (7) 

When the probability of default on the purchased bond exceeds )1( α− , capital is 

required, and .)( PF ParPar <α 8 In this case, expression (7) simplifies and the bank’s debt is 

valued as simple BSM bond with a par value of )(αFPar . In this case, the dollar value of 

required equity is, 

                                                 
8 In the single asset case, when the probability of default on the purchased bond is less than 
or equal to )1( α− , the bond can be financed 100 percent with bank debt ( PF ParPar =)(α ) 
without violating the solvency constraint. 
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(8)  

Portfolio Capital 

The portfolio capital calculation is analogous to the calculation for a single asset.  In 

most cases, credit portfolios do not have “user-friendly” density functions that admit a 

closed-form expression for either the par value of the funding debt or its initial market value. 

Monte Carlo simulation is often required to estimate )(αVaR  and the par value of the 

funding debt. Pricing the funding debt may require numerical evaluation of a high order 

integral.  The next section considers portfolio capital allocation under assumptions that 

reduce significantly the complexity of portfolio capital calculations. 

 

4. Optimal Capital Allocation under Asymptotic Single Factor Assumptions 

Optimal capital allocation calculations are simplified if a portfolio is perfectly 

diversified and asset values are driven by a single common factor in addition to individual 

idiosyncratic factors. Let MdW  represents a standard Wiener that is common in all asset price 

dynamics, and idW  represents a standard Weiner process idiosyncratic to the price dynamics 

of asset i . Asset price dynamics for firm i are given by, 

,iiiMiMii dWAdWAdtAdA σσμ ++=                                                 (9) 

.,0

.,,0

idWdW

jidWdW

imMi

ijji

∀==

∀==

ρ

ρ
 

Under these dynamics, asset prices are log normally distributed, 

( ) ( ) TzzTr

iiT

iiMMiMMf

eAA
~~

2
1

0

22~ σσσσσλ ++⎥⎦
⎤

⎢⎣
⎡ +−+

= ,                                   (10) 
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where Mz~ and iz~  are independent standard normal random variables. Under the equivalent 

martingale change of measure, asset values at time T are distributed, 

( ) ( ) TzzTr

i
Q
iT

iiMMiMf
eAA

~~
2
1

0

22~ σσσσ ++⎥⎦
⎤

⎢⎣
⎡ +−

= .                                       (11) 

Under these price dynamics, the correlation between geometric asset returns is, 

( ) ( )
.,,
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⎛

σσσσ

σ                       (12) 

If the model is further specialized so that the volatilities of assets’ idiosyncratic factors are 

assumed identical, ,,, jiji ∀== σσσ  the pair-wise asset return correlations are, 
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ρ                                       (13) 

Asset Return Distributions 

The T-period rate of return on BSM risky bond i that is held to maturity is, 

( )( ) 1,~1~

0

−= iiT
i

iT ParAMin
B

M .                                                (14) 

iTM~  is bounded in the interval [ ]ia,1− , where 1
0
−=

i

i
i B

Par
a .  A bond’s physical return 

distribution (14) has an associated equivalent martingale return distribution,  

( )( ) 1,~1~

0
−= i

Q
iT

i

Q
iT ParAMin

B
M .                                            (15) 

By construction, expressions (14) and (15) have identical support. 
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Asymptotic Portfolio Return Distribution 

The T-period return on a portfolio of n risky individual credits, TP M~ , is 

∑

∑

=

=≡ n

i
i

n

i
iiT

TP

B

BM
M

1
0

1
0

~
~

                                                                  (16) 

Let ( ) MTPMMTP zMzzM ~~~
==  represent the portfolio return conditional on a realization of the 

common market factor, Mm zz =~ , 

( )

∑

∑

=

=

⋅

=
n

i
i

n

i
iMiT

MTP

B

BzM
zM

1
0

1
0

~
~

                                                (17) 

Let ( )MiT zM~ψ  represents the conditional return density function. Under the single common 

factor assumption, ( )MiT zM~ψ  and ( )MjT zM~ψ  are independent for .ji ≠∀ 9 

Consider a portfolio composed of equal investments in individual bonds that share 

identical ex ante credit risk profiles; that is, the bonds in the portfolio are identical regarding 

par value },,{ jiParPar ji ∀= , maturity {T }, and volatility characteristics, 

}.,,{ jiji ∀== σσσ  The bonds have conditional returns that are independent and 

                                                 
9 Independence in this non-Gaussian setting requires that an observation of the return to bond 
j  be uninformative regarding the conditional distribution function for bond i , 
( ) ( )( ) .,,~thatgiven|~Pr|~Pr jiaMMazMazM jtjtMitMit ≠∀=<=<  This condition is 

satisfied under the single common factor model assumption. 
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identically distributed with finite means. As the number of bonds in portfolio, ,N  grows 

without bound, the Strong Law of Large Numbers requires, 

[ ] ( )[ ] MMiTsa

n

i
MiT

n
MTP

n
zzME

n

zM

LimzMLim ∀⎯→⎯
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=
∑
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~
~

|~
.

1 ψ                     (18) 

The notation  ..sa  indicates convergence with probability one. Under the BSM single factor 

assumptions, expression (18) is, 

[ ] ( )( )[ ]

( )( )[ ] 11)(

1~

*

0

*

0

−+−Φ−+

Φ−=
∞→

iTMiT
i

M

MiT
i

i
MTP

n

zw
B
zG

zw
B
ParzMLim

γ
                                     (19) 

where, 

( ) [ ] ( ) TzTrAz MMiMMfiMiT σσσλσμ +⎥⎦
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The conditional equivalent martingale portfolio return distribution is given by, 
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where, 

( ) [ ] ( ) TzTrAz MMiMfiM
Q
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Optimal Portfolio Capital Allocation  

 Expressed as a proportion of the portfolio’s initial market value, the optimal par 

value of funding debt can be determined by setting ( )α−Φ= − 11
Mz  and using expression 

(19) to solve for the end-of-horizon portfolio critical value, 
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To determine the market value of the funding debt, it is necessary to solve for the 

limits of integration, ,ˆMz under the equivalent martingale measure,  

T
zM

λα +−Φ= − )1(ˆ 1                                                                    (22) 

Expressed as a proportion of the investment portfolio’s market value, the initial market value 

of the funding issue, ( )αP
Fb 0 , is ,    
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The economic capital allocation for the portfolio, expressed as a proportion of the portfolio’s 

initial market value, ( )αP
BSMK  is, 
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 The dollar value capital requirement is ( )∑
=

n

i

P
BSMi KB

1
0 α .  

Because idiosyncratic risk is fully diversified, when an additional credit is added to 

the portfolio, the marginal capital required to maintain the target solvency margin is equal to 

the portfolio’s average capitalization rate multiplied by the market value of the marginal 

credit added to the portfolio. Expression (24) represents the required capitalization rate for 

both the average and the marginal credit in an asymptotic portfolio when credit risks are 

priced to satisfy BSM equilibrium conditions. While the evaluation of expression (24) is 

straightforward as a numerical exercise, the expression for optimal capital does not include 

inputs that are recognizable and familiar to risk managers (e.g., PD, LGD, asset correlation). 

This can be addressed by approximating the optimal capitalization rule using a Gaussian 
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asymptotic single factor approximation. The resulting model, developed in the following 

section, is new and will be referred to as the Gaussian credit return model, or GCRM.     

    

5. The Gaussian Single Risk Factor Framework 

 A Gaussian factor model approach can be used to construct a simplified version of the 

BSM structural model of credit risk. The standard Gaussian specification for modeling 

portfolio credit risk is uses a standardized normal random variable with the properties, 

.,0)~~()~~(
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−+=

φ
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                                          (25)                         

iV~  is normally distributed with ( ) ,0~
=iVE  and ( ) .1~2 =iVE  Me~  is the market factor common 

to all firm asset values. The correlation between asset values is .ρ   

Firm i defaults when ii DV <
~

. The unconditional probability that firm i will default is, 

( ).iDPD Φ=  The loss incurred should the firm default, LGD, is specified exogenously and 

does not include restrictions as to how LGD is measured.  In most applications, LGD is set 

equal to a constant value calibrated from historical loss data. Time does not play an 

independent role in these models but is implicitly recognized through the calibration of input 

values; generally PD differs according to the capital allocation horizon. 

 Consider a portfolio composed of N credits with identical initial market values, 

promised future values, correlations, ρ , and default thresholds, .DDi =   The loss 

distribution for a portfolio is defined using an indicator function, 
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iI~  has a binomial distribution with an expected value of ( ).DΦ   Define Mi eI |~  to be the 

value of the indicator function conditional on a realized value for Me . Conditional default 

indicators are independent and identically distributed binomial random variables,  
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Define MeX |~  as the proportion of credits in the portfolio that default conditional on 

a realization of ,Me  
( )

n

eI
eX

n

i
Mi

M

∑
== 1

|~

|~  .  Because Mi eI |~  are independent and identically 

distributed, the Strong Law of Large Numbers requires, for all Me , 
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The unconditional distribution function of X~  can be derived using expression (28) and 

information on the density of Me~ .  Because realized values of X are monotonically 

decreasing in Me ,  



 

 - 19 -

[ ] ( )

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −Φ−
Φ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −Φ−
≤−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −Φ−
≥=≤

−−

−

ρ
ρ

ρ
ρ

ρ
ρ

DxDx
e

xD
exX

M

M

11

1

11~Pr

1~Pr~Pr
                 (29) 

Substituting for the default barrier, ( ),1 PDD −Φ=  the unconditional cumulative distribution 

function for X~ , the proportion of portfolio defaults, is given by, 
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Capital Allocation under the Gaussian Credit Loss Model (GCLM) 

If LGD  represents the percentage of a credit’s value that is lost if a credit defaults, 

the portfolio credit loss rate is defined by the distribution of ,~X  
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The CGLM literature is not specific as to how LGD should be defined. LGD can be defined 

as a loss rate measured relative to credit’s promised future value (principal + accrued 

interest) or a loss rate relative to a credit’s initial value, or perhaps in other ways.  

The GCLM model (expression (30)), introduced by Vasicek (1991), is widely used 

for modeling portfolio credit losses and setting credit risk capital allocations. Credit value-at-

risk (VaR) techniques often recommend setting economic capital equal to unexpected credit 

loss (UL). For a solvency margin target of α , ( )αUL  is defined as the difference between the 

)1( α− critical value of the GCLM loss distribution, less the portfolio’s expected loss, 

.PDLGD ⋅  The ( )αUL  capital allocation measured as a percentage of the investment 

portfolio’s initial value is, 
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The Basel II AIRB approach is based on expression (32). The AIRB capital rule is for 

corporate, bank and sovereign credits is, 
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where EAD is exposure at default, PD is a credit’s probability of default expressed as a 

percentage, LGD is a credit’s expected loss given default expressed as a percentage, M is the 

credit’s maturity in measured in years, and K represents the dollar capital requirement. The R 

function and maturity adjustment factor and are ad hoc functions that were introduced by the 

BCBS as a means for “tuning” the capital calibration. The R function is a regulatory rule that 

links a portfolio’s asset correlation to the PD of its individual credits–low PD credits are 

specified to have higher asset correlation values. The finial term in parenthesis in equation 

(33) is the maturity adjustment factor.  When 1=M , there is no  capital adjustment for 

maturity, 
( ) .1

5.11
5.21

=
−
−+

b
bM

   

 

Capital Allocation under the Gaussian Credit Return Model (GCRM) 

In order to estimate an optimal capital allocation in a manner consistent with the BSM 

model, it is necessary to derive the end-of-horizon return distribution for a portfolio of 
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credits.10  Let YTM represent the yield to maturity calculated using initial market value of an 

individual credit. Let LGD represent the loss from initial loan value should a loan default.  

Conditional on a realized value of ,~ XX = the end-of-horizon return on the portfolio is given 

by,  

( ) XLGDYTMYTMXRp )(| +−=                                                   (34) 

The portfolio’s conditional end-of-period return is monotonically decreasing in the portfolio 

default rate .X   The unconditional cumulative return distribution for the portfolio, PR~  is, 

[ ]

( )
( )[ ]YTMLGDR

LGDYTM
RYTM

PD

LGDYTM
RYTM

XRR

p

p

p
Pp

,1,
1

~Pr1~Pr

11

−−∈

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−
Φ−−Φ

Φ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−
<−=≤

−−

ρ

ρ            (34) 

 
 

Under a target solvency margin of ,α the par value of the funding debt is determined by the 

( )α−1  critical value of expression (35).  Measured as a proportion of the investment 

portfolio’s initial value, the par value of the funding debt is, 
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Because the GCRM does not include dynamic restrictions that ensure absence of arbitrage 

equilibrium conditions hold, the model does not contain the information necessary to 

construct the equivalent martingale measure to price the funding debt. If the portfolio is 
                                                 
10 In the remainder of the discussion, consistent with Basle II capital rules, the horizon is 
assumed to be 1 year. 
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100 percent debt financed, in the absence of taxes or government safety net subsidies to the 

bank, the Modigliani-Miller (1958) theorem ensures that equilibrium interest rate required on 

the bank’s funding debt at the time of issuance is equal to the YTM on the credits in the banks 

investment portfolio.11  When the share of equity funding is increased above zero, the 

equilibrium issuance YTM on the bank’s funding debt will decline. Using YTM as a 

conservative estimate of the required market rate of return on the bank’s funding debt at 

issuance, the initial market value of the funding debt measured as a proportion of the 

investment portfolio’s initial market value is, 
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The required capitalization rate for the investment portfolio and its constituent credits is, 
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6. Capital Allocation Performance 

 
In the analysis that follows, portfolio capital requirements are calculated using the full 

structural equilibrium model (expression (24)), the GCLM (expression (32)), and the GCRM 

(expression (38)) for asymptotic portfolios of BSM credits where the credits have a wide 

range of risk characteristics. Consistent with BCBS Basel II objectives, capital allocations are 

                                                 
11 Merton (1974) provides a more modern proof of the Modigliani-Miller theorem. Kupiec 
(2004b) discusses the implications of non-priced implicit or explicit safety net guarantees on 
a bank’s capital allocation process. 
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estimated for the 99.9 percent solvency margin and BSM capital allocations are taken as the 

benchmark or “true” capital required. 

The asset price dynamics that are maintained throughout the analysis appear in 

Table 1. All individual credits have identical firm specific risk factor volatilities of 20 

percent and a common factor volatility of 10 percent; these imply an asset return correlation 

of 20 percent. The market price of risk is 10 percent and the risk free rate is 5 percent.   

All credits in an asymptotic portfolio have the same initial value, identical promised 

par values and all share identical ex ante credit risk profiles. The par values of individual 

credits are altered to change the credit risk characteristics of an asymptotic portfolio. The 

calibration analysis focuses on a one-year capital allocation horizon for one-year credits. 

 

Table 1: Calibration Assumptions 

risk free rate 05.=fr  

market price of risk 10.=λ  

market factor volatility 10.=Mσ  

Firm specific volatility 20.=iσ  

Initial market value of assets 1000 =A  

correlation between asset returns 20.=ρ  

 

Under the single common factor BSM model assumptions, the physical probability 

that a bond defaults is, 
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The expected value of the bond’s payoff given a default is, 
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A bond’s LGD measured from initial market value is, 
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Each row in Table 2 describes the characteristic of the credits in a different 

asymptotic portfolio.  Individual credit PDs range from 23 basis points—for a bond with par 

values of 55, to 3.99 percent for a bond with a par value of 70.  LGD characteristics 

(measured from initial market value) range from 1.40 percent to 3.28 percent. Measured as 

loss relative to par value, loss rates range from 6.22 to 8.34 percent. While the LGDs of the 

bonds examined in this analysis are modest relative to the observed default loss history on 

corporate bonds, the GCLM and GCRM capital allocation rules explicitly account for loss 

given default, so a priori, there is no reason any specific set of LGD values should 

compromise the performance of these capital rules.12   

 

                                                 
12 Some industry credit risk models include a stochastic default barrier such as in the Black 
and Cox (1976) model to increase the LGD relative to a basic BSM model and thereby 
improve correspondence with observed market data. 
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expected
initial probability value loss given loss given yield

par market of default given default from default from to
value value in percent default initial value par value maturity

55 52.31 0.233 51.58 1.40 6.22 5.142
56 53.26 0.298 52.45 1.53 6.35 5.145
57 54.20 0.379 53.31 1.64 6.47 5.166
58 55.15 0.476 54.17 1.78 6.60 5.168
59 56.10 0.593 55.03 1.91 6.73 5.169
60 57.04 0.732 55.88 2.03 6.87 5.189
61 57.98 0.896 56.73 2.16 7.00 5.209
62 58.92 1.088 57.57 2.29 7.14 5.227
63 59.86 1.311 58.41 2.42 7.28 5.246
64 60.80 1.568 59.25 2.55 7.43 5.263
65 61.73 1.862 60.08 2.68 7.57 5.297
66 62.66 2.196 60.90 2.80 7.72 5.330
67 63.59 2.574 61.73 2.93 7.87 5.362
68 64.51 2.997 62.54 3.05 8.03 5.410
69 65.43 3.469 63.35 3.17 8.18 5.456
70 66.34 3.992 64.16 3.28 8.34 5.517

Table 2: Credit Risk Characteristics of 1-Year Credits

in percent

 

 

The alternative recommendations for capital consistent with a 99.9 percent solvency 

margin are reported in Table 3. Capital requirements generated under the GCLM unexpected 

loss capital rule (expression (32)) are substantially smaller than the capital needed to achieve 

the regulatory target default rate of 0.1 percent.  The shortfall depends on the characteristics 

of the credit portfolio. If one constructs a multiplier to correct for the GCLM bias, the 

multiplier is very unstable and ranges from 3.8 to 5.7 for the credits analyzed in this 

calibration exercise. 

GCRM capital estimates (expression (38)), while downward biased, are closer to 

achieving the target solvency objective. Because the bias is stable across portfolios, a 
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multiplier can be used correct the bias, but the multiplier will vary according to the target 

solvency margin selected. Calibration results for a target 99.9 percent solvency margin 

reported in Table 3, suggest that the multiplier varies between 1.16 and 1.31. A capital 

allocation rule based on expression (38) with a multiplier 26.1≈M  would produce capital 

allocations that are very close to the targeted solvency margin of 99.9 percent. 

 

    
BSM    

probability structural GCRM GCLM implied implied
par of default model capital capital GCRM GCLM

value in percent capital estimate estimate multiplier multiplier
55 0.233 0.396 0.325 0.070 1.217 5.660
56 0.298 0.487 0.402 0.092 1.210 5.272
57 0.379 0.593 0.486 0.117 1.221 5.076
58 0.476 0.715 0.584 0.149 1.224 4.803
59 0.593 0.854 0.734 0.184 1.164 4.652
60 0.732 1.011 0.809 0.225 1.249 4.501
61 0.896 1.187 0.951 0.274 1.249 4.336
62 1.088 1.384 1.100 0.328 1.258 4.224
63 1.311 1.601 1.264 0.388 1.267 4.125
64 1.568 1.839 1.445 0.456 1.273 4.030
65 1.862 2.098 1.639 0.530 1.280 3.958
66 2.196 2.379 1.852 0.610 1.285 3.900
67 2.574 2.681 2.073 0.696 1.293 3.850
68 2.997 3.005 2.316 0.789 1.298 3.811
69 3.469 3.348 2.567 0.885 1.304 3.784
70 3.992 3.712 2.831 0.983 1.311 3.776

1.256 4.360
1.164 3.776
1.311 5.660maximum multiplier

Table 3: Capital Allocation for a 99.9 Solvency Margin Under Alternative 
Models

average multiplier
minimum multiplier
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BSM    

probability structural GCRM GCLM implied implied
par of default model capital capital GCRM GCLM

value in percent capital estimate estimate multiplier multiplier
55 0.233 0.095 0.100 0.019 0.950 5.000
56 0.298 0.121 0.129 0.027 0.938 4.481
57 0.379 0.152 0.163 0.035 0.933 4.343
58 0.476 0.19 0.204 0.046 0.931 4.130
59 0.593 0.235 0.248 0.059 0.948 3.983
60 0.732 0.287 0.304 0.075 0.944 3.827
61 0.896 0.348 0.370 0.095 0.941 3.663
62 1.088 0.418 0.443 0.117 0.944 3.573
63 1.311 0.498 0.527 0.143 0.945 3.483
64 1.568 0.588 0.623 0.174 0.944 3.379
65 1.862 0.69 0.730 0.208 0.945 3.317
66 2.196 0.804 0.851 0.247 0.945 3.255
67 2.574 0.93 0.982 0.290 0.947 3.207
68 2.997 1.069 1.132 0.338 0.944 3.163
69 3.469 1.221 1.291 0.390 0.946 3.131
70 3.992 1.387 1.465 0.446 0.947 3.110

0.943 3.690
0.931 3.110
0.950 5.000maximum multiplier

Table 4: Capital Allocation for a 98 Percent Solvency 
Margin Under Alternative Models

average multiplier
minimum multiplier

 

 

  

Table 4 reports capital estimates for a 98 percent target solvency margin. At the 98 

percent solvency level, the GCLM still understates capital by a wide and variable margin. In 

contrast, the GCRM capital allocation estimator (expression (38)) overstates the true capital 

required and the overstatement is again fairly uniform. At a 98 percent solvency rate, the 

multiplier for expression (38) is slightly less than 1. 

7.  THE DEFINITION OF LOSS GIVEN DEFAULT 

The BSM model (expression (24)) sets capital requirements by referencing a credit 

portfolio’s return distribution. Returns are measured relative to a portfolio’s initial market 
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value (current exposure) and negative portfolio returns represent portfolio credit losses. The 

GCRM framework is analogous by construction, and so the only measure of LGD consistent 

with the GCRM is loss relative to a credit’s initial market value. Define this measure of loss 

given default as current exposure LGD, or CELGD . An alternative way to measure LGD is to 

measure shortfall from promised future value (principal plus accrued interest) at the end of 

the capital allocation horizon. Define this measure of loss given default as FELGD  where the 

FE superscript denotes future exposure basis. These alternative LGD measures satisfy, 

YTM
YTMLGDLGD

CE
FE

+
+

=
1

                                                            (42) 

A comparison of expression (32) with expression (38) will show that, provided the EL 

adjustment is excluded from the GCLM capital calculation, the GCLM and GCRM model 

capital allocations converge provided FELGD  is used in the GCLM. 

The GCLM literature is not prescriptive as to how LGD should be measured. The 

Basel Committee on Banking Supervision (2006b, Paragraph 297) specifies that,  ”LGD be 

measured as… a percentage of the EAD,” and,  “…banks must estimate EAD at no less than 

the current drawn amount, subject to recognizing the effects of on-balance sheet 

netting...(paragraph 474) ”.  The U.S. Basel II NPR (p.123) defines “EAD for the on-balance 

sheet component of a wholesale or retail exposure means (i) the bank’s carrying value for the 

exposure (including accrued but unpaid interest and fees)…”. Basel II documents do not 

include guidance that suggests that EAD must be higher than the current carrying value of a 

simple fully-drawn loan.  Since the AIRB framework does not restrict when default is 

assumed to occur during the year, the recommended LGD measure does not clearly 

recommend the future exposure measure and yet it clearly does allow use of the current 

exposure measure–a measure which always produces a smaller LGD estimate.         

A recent report produced jointly by the International Association of Credit Portfolio 

Managers (IACPM) and the International Swap Dealers Association (ISDA) (2006) studies 

the performance of capital allocation vendor models and the internal capital models used by 

28 participant banks for a selected portfolio of credit positions. The study finds wide 

variation in the definition of LGD across vendor and bank internal capital models. Many 

banks use vendor models in their capital calculations either directly, in modified form, or as 
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inputs into their internal processes. Bank models that are similar to Moody’s KMV Portfolio 

Manager use an LGD measure that is similar to a future exposure measure and include 

coupon EAD  payments in loss estimates. Models similar to RiskMetrics Group’s Credit 

Manager and Credit Suisse First Boston’s CreditRisk+ appear to use LGD measures that are 

close to a current exposure measure where interest earnings are excluded from loss estimates. 

Model differences in LGD are an important source of variation in bank capital estimates.  For 

an identical portfolio, differences in the LGD definitions resulted in a 20 percent variation in 

assigned capital across the study’s participating banks. 

Figure 2 compares the capital allocations that are recommended by the alternative 

approaches discussed in this study with capital allocations that are set using the Basel II 

AIRB approach. To control for the absence of reserves in this static model, Basel AIRB 

capital requirements are modified to include UL and EL. All estimates assume a maturity of 

one year, and the AIRB is estimated for two different measures of LGD , CELGD and 
FELGD . The AIRB capital rules plotted are, 
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where, ⎟⎟
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Capital requirement estimates are also plotted for the BSM model (expression (24)), forthe 

uncorrected GCRM (expression (38)), and for the GCLM, (expression (32)), where GCLM 

estimatea use the current exposure measure of LGD.  

The plots in Figure 2 show that the Basel AIRB approach undercapitalizes credit risk 

relative to the BSM model benchmark. If the AIRB approach is applied using a current 

exposure measure of LGD, a measure that is both permitted under existing Basel II guidance 

and is commonly used by many banks, the AIRB substantially understates portfolio capital 

needs. Relative to Vasicek GCLM capital estimates, this implementation of the AIRB rule 
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understates capital needs for credits with high PDs because the regulatory correlation 

function understates correlations.  

If alternatively, banks were required to use a future exposure measure of LGD, AIRB 

requirements would be roughly equivalent to capital calculated using the GCRM for credits 

with PD less than 0.81 percent.  For these credits, if the AIRB were augmented with a 

multiplier equal to about 1.26, the AIRB would approximate the capital required by the BSM 

benchmark. For credits with higher PDs, the AIRB approach requires less capital than the 

GCRM because the regulatory correlation function reduces implied correlations below 

20 percent. For these higher risk credits, the 1.26 multiplier correction would be insufficient.  

  

                          probability of default in percent

Figure 2: Alternative Capital Requirement Estimates for 99.9 
percent solvency rate 
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  A particularly interesting feature of Figure 2 is the range of variability of capital 

requirements under the AIRB. By changing the definition of LGD used in the AIRB capital 
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rule and moving from CELGD  to FELGD , capital requirements may increase by more than 

350 percent. The sensitivity of AIRB capital to the definition of LGD may explain in part the 

variability of the capital estimates reported in QIS 4 and QIS 5. 

 

8.  CONCLUSIONS 

Although it has become common practice to use Gaussian copula methods to model 

portfolio credit risk and estimate capital allocations, these methods do not produce accurate 

estimates of portfolio credit risk and capital requirements.  Comparisons with capital 

allocations estimated using a full BSM equilibrium model show that the Vasicek GCLM 

approach produces downward biased capital estimates. The bias is substantial in magnitude 

as estimates may be only one-fifth as large as the true capital needed to achieve targeted 

solvency rates.   

An alternative model, the Gaussian credit return model or GCRM, can reproduce 

capital requirements that are accurate relative to capital requirements calculated using a 

portfolio model consistent with the BSM for pricing credit risk. The improvement in 

accuracy is achieved without an increase in computational complexity over the GCLM 

approach. This new alternative capital rule uses the YTM of individual credits as well as PD, 

current exposure LGD, and asset correlations as inputs into the capital allocation assignment 

function. A multiplier is employed to improve the accuracy of the capital estimator relative to 

the allocations set using the full equilibrium model of credit risk.  

Analysis of the GCRM identifies important sources of bias in the Basel II AIRB 

approach. The AIRB approach is derived from the Vasicek GCLM and thereby includes the 

biases identified in this study. The GCLM is focused on the distribution of the default rate for 
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an asymptotic portfolio and is silent on the definition of LGD that should be used in CGLM 

capital calculation. Depending on the definition of LGD used in CGLM capital calculations, 

capital estimates may vary by more than 350 percent.  A comparison with the GCRM shows 

that adequate capitalization under a GCLM capital rule can be achieved ii the GCLM capital 

rule is employed using the future exposure measure of LGD and a regulatory multiplier of 

about 1.26.  The modified capital rule calls for a substantial increase in minimum capital 

requirements over the existing Basel II A-IRB regulatory capital function.
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