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Credit score is a good predictor of default, in general

Credit card defaults Mortgage defaults

Credit score is central to credit decisions 

Lenders primarily use credit scores to evaluate the probability that an individual will 
repay loans 

– GSEs have a minimum credit score of 620 

– Marcus and SunTrust have a minimum credit score of 660 for personal loan, 680 
for SoFi 
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“FICO scores are good, but they’re not perfect.” 
— Roger Hochschild, Discover Financial Services CEO 
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Credit Invisibles 
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Credit Invisibles 
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Credit Invisibles 
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Research questions:

– Broader credit access?

– Types of data?

– Proftable to lend to invisible primes?

– Are borrowers better off?

Empirical Challenge:

– Observing the counterfactual

Invisible Primes? 

The advent of fntech lenders has the potential to identify the prime borrowers 
among the credit invisibles 

– Sophisticated algorithms 

– Alternative data 

– Online presence 
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Our Setting: 

– Anonymized administrative data from Upstart, a major fntech lender 

– Why Upstart? 

– Use non-traditional variables such as education and job history for underwriting 

– CFPB granted a no-action letter (NAL) to Upstart regarding its automated model 

– Counterfactual based on a model developed by CFPB 
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Upstart’s model more accurately predicts the credit risk

≈ 25% of borrowers with low credit scores would have been rejected by traditional
models (extensive margin)

Signifcantly lower interest rates to low-credit score borrowers (intensive margin)

Larger impact for individuals with thin credit fles, younger borrowers, borrowers
with advanced degrees

Overall benefts:
– Higher IRR for Upstart
– Improved borrowers’ fnancial health: borrowers are 20% less likely to default on their

credit cards, their credit scores increase by about 9% and more likely to purchase a home

Similar results from publicly available mortgage data

Main Results 

Credit score is a poor predictor of default for Upstart loans 
– Particularly for low credit score borrowers 
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– Upstart’s probability of default estimate

– Traditional model - the counterfactual

– A panel of both the funded and rejected applicants

Data 

– 770,523 loans and 2,374,912 disqualifed applications from 2014 to 2021 (Q1) 

– Access to all credit report variables and performance data 

– Information on education, the type of the device (smartphone/computer) used by 
applicants, the operating system, the employment type and tenure, etc. 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Data 10 / 36 



– Traditional model - the counterfactual

– A panel of both the funded and rejected applicants

Data 

– 770,523 loans and 2,374,912 disqualifed applications from 2014 to 2021 (Q1) 

– Access to all credit report variables and performance data 

– Information on education, the type of the device (smartphone/computer) used by 
applicants, the operating system, the employment type and tenure, etc. 

– Upstart’s probability of default estimate 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Data 10 / 36 



– A panel of both the funded and rejected applicants

Data 

– 770,523 loans and 2,374,912 disqualifed applications from 2014 to 2021 (Q1) 

– Access to all credit report variables and performance data 

– Information on education, the type of the device (smartphone/computer) used by 
applicants, the operating system, the employment type and tenure, etc. 

– Upstart’s probability of default estimate 

– Traditional model - the counterfactual 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Data 10 / 36 



Data 

– 770,523 loans and 2,374,912 disqualifed applications from 2014 to 2021 (Q1) 

– Access to all credit report variables and performance data 

– Information on education, the type of the device (smartphone/computer) used by 
applicants, the operating system, the employment type and tenure, etc. 

– Upstart’s probability of default estimate 

– Traditional model - the counterfactual 

– A panel of both the funded and rejected applicants 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Data 10 / 36 



Upstart’s Loan Growth and Source 
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Descriptive Statistics: Funded vs. Disqualifed Applications 

Disqualifed Funded 

Number of Obs 2,374,912 770,523 

Credit Score 589.058 653.996 
Age of the borrower 37.106 37.674 
Annual income 54,258 66,958 
Debt-to-income 19.861 18.237 
Number of accounts 17.050 18.624 
Credit history in years 9.163 11.014 
Total credit balance 68,263 120,394 
Credit card utilization 58.366 66.940 
Has a mortgage 0.151 0.293 
Inquiries (last 6 months) 2.589 1.037 

College degree 0.247 0.445 
Hourly worker 0.562 0.451 
Years at job 4.362 5.367 
Purpose = consolidation 0.629 0.788 
Used device type = computer 0.263 0.324 
Used a Mac 0.228 0.283 
Used an iPhone 0.585 0.644 
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Predictability of Default 
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Predictability of Default 
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Alternative data and/or sophisticated model? 
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Main drivers of Upstart’s credit model 

(1) (2) (3) (4) (5) (6) 

Credit score/100 -0.112*** -0.111*** -0.113*** -0.115*** -0.111*** -0.115*** 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

log(Annual income) -0.045*** -0.042*** -0.038*** -0.047*** -0.042*** -0.038*** 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

Debt-to-income 0.001*** 0.0005*** 0.0005*** 0.001*** 0.001*** 0.001*** 
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Age of the borrower 0.004*** 0.003*** 0.005*** 0.004*** 0.004*** 0.004*** 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Age of the borrower2 -0.00003*** -0.00003*** -0.00004*** -0.00003*** -0.00003*** -0.00003*** 
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

log(Number of accounts) 0.004*** 0.009*** 0.005*** 0.005*** 0.003*** 0.010*** 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

log(Number of inquiries) 0.035*** 0.033*** 0.035*** 0.033*** 0.034*** 0.032*** 
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

log(Total balance) -0.008*** -0.006*** -0.008*** -0.007*** -0.008*** -0.006*** 
(0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0004) 

log(Credit history) -0.027*** -0.025*** -0.028*** -0.027*** -0.026*** -0.026*** 
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003) 

log(Loan amount) 0.00004 0.002*** 0.0002 0.003*** 0.0002 0.004*** 
(0.001) (0.0005) (0.001) (0.0005) (0.0005) (0.0005) 

Zip code×Year Y Y Y Y Y Y 
Loan Term × Year Y Y Y Y Y Y 
Educational attainment N Y N N N Y 
Employment type N N Y N N Y 
Loan purpose N N N Y N Y 
Device/Technology N N N N Y Y 
N 770,299 770,299 748,796 770,299 687,370 667,777 
R2 0.431 0.451 0.435 0.439 0.439 0.463 
Maximum economic impact 0.042 0.028 0.028 0.047 0.056 
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Conditional on age, income and loan amount:

– High school to Advanced: 37 points

– Associate to Advanced: 23 points

– College to Advanced: 4 points

Education Exchange Rates 

Conditional on credit score, loan amount, and age: 

– To go from high school or less to an advanced degree: $107k 

– From associate to advanced: $114k 

– From college to advanced: $22k 
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Alternative data signifcantly contributes to the predictive power 
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Does the use of alternative data improve credit access? 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Financial Inclusion 19 / 36 



Upstart is more likely to approve applicants with low credit scores 
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Traditional vs. Upstart: Rejection rate 

0.00

0.25

0.50

0.75

1.00

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

β c
s

Large bank Traditional mode Traditional model + alternative vars

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Financial Inclusion 21 / 36 



Traditional vs. Upstart: Rejection rate 

0.00

0.25

0.50

0.75

1.00

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

β c
s

Large bank Traditional model Traditional model + alternative vars

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Financial Inclusion 22 / 36 



Traditional vs. Upstart: Interest rate difference 
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Who benefts the most due to the use of alternative data? 
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Borrower Differences 

Rejected by Trad. Model Trad. APR - Upstart APR 

(1) (2) (3) (4) 

Credit score/100 

Credit score < 660 

Income < 55k 

Advanced degree 

College degree 

Salaried employee 

Thin credit fle 

Credit score < 660 × Income < 55k 

Credit score < 660 × Advanced degree 

Credit score < 660 × College degree 

Credit score < 660 × Salaried employee 

Credit score < 660 × Thin credit fle 

-0.660*** 
(0.001) 

-0.108*** 
(0.001) 
0.067*** 
(0.002) 
0.036*** 
(0.001) 
0.027*** 
(0.001) 
0.032*** 
(0.001) 

0.332*** 
(0.003) 
-0.128*** 
(0.002) 
0.046*** 
(0.002) 
0.016*** 
(0.002) 
0.032*** 
(0.002) 
0.005*** 
(0.002) 
0.048*** 
(0.003) 
0.024*** 
(0.003) 
0.024*** 
(0.003) 
-0.013*** 
(0.002) 
0.047*** 
(0.003) 

-15.229*** 
(0.033) 

-4.996*** 
(0.028) 
4.153*** 
(0.041) 
2.762*** 
(0.029) 
1.648*** 
(0.027) 
-0.578*** 
(0.027) 

9.067*** 
(0.068) 
-4.859*** 
(0.033) 
3.615*** 
(0.051) 
2.521*** 
(0.035) 
1.506*** 
(0.033) 
-0.774*** 
(0.033) 
-0.615*** 
(0.064) 
1.085*** 
(0.095) 
0.100 
(0.067) 
0.476*** 
(0.064) 
-0.285*** 
(0.064) 

Zip code Y Y Y Y 
N 717,524 717,524 717,524 717,524 
Adjusted R2 0.267 0.149 0.335 0.243 
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Regional Differences 

Dep.var = Rejected by trad. model Dep. var = Trad. APR - Upstart APR 

(1) (2) (3) (4) (5) (6) 

Minority fraction in middle third 

Minority fraction in top third 

Fraction of renters in middle third 

Fraction of renters in top third 

Foreign born fraction in middle third 

Foreign born fraction in top third 

Credit score 

log(Annual income) 

Debt-to-income 

0.014*** 
(0.003) 
0.023*** 
(0.004) 

-0.006*** 
(0.00004) 
0.137*** 
(0.003) 
0.002*** 
(0.001) 

0.007** 
(0.003) 
0.014*** 
(0.003) 

-0.006*** 
(0.00004) 
0.138*** 
(0.003) 
0.002*** 
(0.001) 

0.012*** 
(0.003) 
0.022*** 
(0.004) 
-0.006*** 
(0.00004) 
0.137*** 
(0.003) 
0.002*** 
(0.001) 

0.569*** 
(0.065) 
0.823*** 
(0.125) 

-0.141*** 
(0.002) 
7.248*** 
(0.060) 
0.029** 
(0.011) 

0.228*** 
(0.076) 
0.610*** 
(0.104) 

-0.141*** 
(0.002) 
7.271*** 
(0.059) 
0.029** 
(0.011) 

0.671*** 
(0.088) 
0.960*** 
(0.109) 
-0.141*** 
(0.002) 
7.243*** 
(0.061) 
0.029** 
(0.011) 

State Y Y Y Y Y Y 
N 736,896 736,896 736,902 736,896 736,896 736,902 
Adjusted R2 0.283 0.283 0.283 0.368 0.368 0.368 
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Is lending to ‘invisible primes’ value enhancing for the lender? 
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Internal Rate of Return: 3-year loans, full history 
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Internal Rate of Return: By Model Outcome 
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Are the borrowers better off? 
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We exploit a discontinuity in the probability of approval 
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Fuzzy RDD 

Fundedi = β0 + β1 × I(DTI > 50%) × DTI + β2X + µzt + ηi (1) 

\Yi = γ0 + γ1 × Fundedi + γ2 × DTI + Γ3X + µzt + µi (2) 
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The Effects of Credit Access: RD 

Credit score ≤ 660 Credit score ≥ 660 
Credit card delinq Credit score change Mortgage Credit card delinq Credit score change Mortgage 

(1) (2) (3) (4) (5) (6) 

\Funded -0.198* 0.087*** 0.134* -0.074 0.012 0.010 
(0.102) (0.026) (0.072) (0.074) (0.015) (0.087) 

Debt-to-income -0.003* 0.001*** 0.002* -0.004 0.001* 0.003 
(0.002) (0.0004) (0.001) (0.003) (0.001) (0.003) 

Credit score -1.949 -6.627*** 1.039 3.851*** -3.843*** 2.323** 
(1.574) (0.382) (1.155) (1.135) (0.209) (1.113) 

Credit score2 9.455*** 0.323 -0.822 -0.283 -0.672*** 0.854 
(0.812) (0.206) (0.527) (0.699) (0.137) (0.628) 

log(Annual income) -0.030*** -0.003 0.031*** -0.035** 0.008** 0.025 
(0.010) (0.002) (0.006) (0.017) (0.003) (0.017) 

Age of the borrower -0.004** -0.00003 0.002* -0.001 -0.001 0.002 
(0.002) (0.0005) (0.001) (0.003) (0.001) (0.003) 

Age of the borrower2 0.00004** 0.00000 -0.00002 -0.00001 0.00000 -0.00003 
(0.00002) (0.00000) (0.00001) (0.00003) (0.00001) (0.00003) 

log(Number of accounts) 0.048*** -0.006*** 0.022*** 0.023 -0.004 0.021 
(0.009) (0.002) (0.006) (0.018) (0.004) (0.015) 

log(Number of inquiries) 0.008 -0.010*** 0.007** -0.005 -0.010*** 0.027*** 
(0.006) (0.002) (0.003) (0.011) (0.002) (0.010) 

Total liabilities 7.150*** -1.333*** 1.326 3.817*** -0.719*** -4.806 
(0.973) (0.239) (2.720) (1.046) (0.216) (3.207) 

Credit history -5.817*** 2.187*** -0.203 -2.042* 1.577*** 2.205* 
(0.936) (0.231) (0.604) (1.124) (0.227) (1.173) 

log(No of recently opened accounts) -0.067*** -0.010*** 0.004 -0.018 -0.027*** 0.020* 
(0.008) (0.002) (0.005) (0.015) (0.003) (0.011) 

log(Pct. of revolving liabilities) 0.055*** -0.018*** -0.053*** 0.044*** -0.022*** -0.082*** 
(0.005) (0.001) (0.004) (0.009) (0.002) (0.010) 

log(Pct. of mortgage liabilities) 0.020*** -0.004*** 0.008 -0.004** 
(0.005) (0.001) (0.010) (0.002) 

Credit card utilization 9.374*** -8.078*** 1.465*** 0.016 -5.398*** 3.480*** 
(0.726) (0.182) (0.435) (0.876) (0.182) (0.833) 

log(Pct. trades ever delinquent) 0.055*** -0.010*** -0.003*** 0.068*** -0.009*** -0.002 
(0.001) (0.0003) (0.001) (0.002) (0.0004) (0.002) 

Zip code × Year Y Y Y Y Y Y 
N 29,692 29,692 21,183 13,171 13,171 7,890 
Adjusted R2 0.320 0.304 0.039 0.317 0.498 0.231 
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External Validity 

We compare the performance of mortgages originated by the three largest banks (Bank of 
America, Chase and Wells Fargo) to the performance of mortgages originated by Quicken 
Loans. 

FICO is not a good predictor of default for a fntech lender like Quicken borrowers 

Panel A: Non-agency mortgages Panel B: Mortgages sold to Freddie Mac 
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FICO Score Distribution 

Large Banks

Quicken Loans
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Conclusion 

A superior ability to predict default translates into broader access to credit 

Benefts for low-score borrowers on both the extensive and intensive margins 

Signifcant decrease in other liabilities defaults, increase in credit score and home 
purchase 

These positive fndings do not refute arguments around some of the potential 
concerns around privacy and potential for statistical discrimination 

However, they do show that there are quantifable benefts to both borrowers and 
lenders 

Di Maggio, Ratnadiwakara, & Carmichael Invisible Primes— Conclusion 36 / 36 


	Introduction
	Data
	Model vs. Data
	Financial Inclusion
	Who benefits the most?
	Value enhancing for the lender?
	Are the borrowers better off?
	External Validity
	Conclusion
	Untitled



