Borrowing from a Bigtech Platform

Jian Li¹ Stefano Pegoraro²

¹Columbia Business School ²University of Notre Dame, Mendoza College of Business

FDIC Bank Research Conference September 29, 2023

1

Bigtech vs Fintech Firms

- \star Bigtech
 - "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
 - Amazon, Alibaba, Tencent
- Fintech
 - "Specialized firm that challenges a specific product line of banks" (Stultz, 2019)
 - Affirm, CashApp, Robinhood
- Bigtech credit booming globally (Cornelli et al., 2021)
 \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

Conclusio

Bigtech vs Fintech Firms

- \star Bigtech
 - "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
 - Amazon, Alibaba, Tencent
- Fintech
 - "Specialized firm that challenges a specific product line of banks" (Stultz, 2019)
 - Affirm, CashApp, Robinhood

Bigtech credit booming globally (Cornelli et al., 2021) \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

Conclusior

Bigtech vs Fintech Firms

- ★ Bigtech
 - "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
 - Amazon, Alibaba, Tencent
- Fintech
 - "Specialized firm that challenges a specific product line of banks" (Stultz, 2019)
 - Affirm, CashApp, Robinhood
- * Bigtech credit booming globally (Cornelli et al., 2021)
 - \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment
 - Higher transaction fees used as loan repayment.
 - PayPal: "You repay with a share of your PayPal sales"

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment
 - Higher transaction fees used as loan repayment.
 - PayPal: "You repay with a share of your PayPal sales"

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment
 - Higher transaction fees used as loan repayment.
 - PayPal: "You repay with a share of your PayPal sales"

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment
 - Higher transaction fees used as loan repayment
 - PayPal: "You repay with a share of your PayPal sales"

This Paper

\star Model that explains these patterns

- * A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- * Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

★ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- * Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

★ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- \star Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

★ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- \star Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - $\star\,$ Banks do not control access to a source of revenues

Questions

Q: What is the advantage of a platform as a lender?

- A: The platform controls access to a marketplace
- * Better enforcement of loan repayments

Q: What are the equilibrium implications of its competition with banks?

- In equilibrium, menu of contracts with different enforcement
- The platform benefits from advantageous screening at the expense of banks

- A: Improves for merchants rationed by banks
- A: Possibly declines when competing with banks
- Negative effects of equilibrium screening

Q: What is the advantage of a platform as a lender?

- A: The platform controls access to a marketplace
- ★ Better enforcement of loan repayments

Q: What are the equilibrium implications of its competition with banks?

- In equilibrium, menu of contracts with different enforcement
- The platform benefits from advantageous screening at the expense of banks

- A: Improves for merchants rationed by banks
- A: Possibly declines when competing with banks
- Negative effects of equilibrium screening

Q: What is the advantage of a platform as a lender?

- A: The platform controls access to a marketplace
- ★ Better enforcement of loan repayments

Q: What are the equilibrium implications of its competition with banks?

- In equilibrium, menu of contracts with different enforcement
- The platform benefits from advantageous screening at the expense of banks

- A: Improves for merchants rationed by banks
- A: Possibly declines when competing with banks
- Negative effects of equilibrium screening

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - $\star\,$ Better enforcement of loan repayments

Q: What are the equilibrium implications of its competition with banks?

- In equilibrium, menu of contracts with different enforcement
- The platform benefits from advantageous screening at the expense of banks

- A: Improves for merchants rationed by banks
- A: Possibly declines when competing with banks
- Negative effects of equilibrium screening

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - $\star\,$ Better enforcement of loan repayments
- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement
 - $\star\,$ The platform benefits from advantageous screening at the expense of banks
- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - $\star\,$ Better enforcement of loan repayments
- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement
 - $\star\,$ The platform benefits from advantageous screening at the expense of banks
- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Contribution

- $\star\,$ Enforcement as a key advantage of a bigtech platform and its equilibrium implications
 - Not only information, convenience, and regulation
 - cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- * Superior information may lower the platform's profits
 - In equilibrium, lower surplus extracted from enforcement
 - cf. Broecker (1990), Goldstein, Huang, and Yang (2022), Hauswald and Marquez (2003), Hausch (1987), He, Huang, and Zhou (2023), Kagel and Levin (1999), Milgrom and Weber, (1982)
- \star Credit with limited commitment and industrial organization
 - A platform can relax financial constraints
 - cf. Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota (1996), Ligon, Thomas, and Worrall (2002)
 - cf. Armstrong (2006), Bouvard, Casamatta, Xiong (2022), Jullien, Pavan, and Rysman (2021), Rochet and Tirole (2002), Weyl (2010

Contribution

- $\star\,$ Enforcement as a key advantage of a bigtech platform and its equilibrium implications
 - Not only information, convenience, and regulation
 - cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- ★ Superior information may lower the platform's profits
 - In equilibrium, lower surplus extracted from enforcement
 - cf. Broecker (1990), Goldstein, Huang, and Yang (2022), Hauswald and Marquez (2003), Hausch (1987), He, Huang, and Zhou (2023), Kagel and Levin (1999), Milgrom and Weber, (1982)
- \star Credit with limited commitment and industrial organization
 - A platform can relax financial constraints
 - cf. Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota (1996), Ligon, Thomas, and Worrall (2002)
 - cf. Armstrong (2006), Bouvard, Casamatta, Xiong (2022), Jullien, Pavan, and Rysman (2021), Rochet and Tirole (2002), Weyl (2010

Contribution

- $\star\,$ Enforcement as a key advantage of a bigtech platform and its equilibrium implications
 - Not only information, convenience, and regulation
 - cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- ★ Superior information may lower the platform's profits
 - In equilibrium, lower surplus extracted from enforcement
 - cf. Broecker (1990), Goldstein, Huang, and Yang (2022), Hauswald and Marquez (2003), Hausch (1987), He, Huang, and Zhou (2023), Kagel and Levin (1999), Milgrom and Weber, (1982)
- \star Credit with limited commitment and industrial organization
 - A platform can relax financial constraints
 - cf. Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota (1996), Ligon, Thomas, and Worrall (2002)
 - cf. Armstrong (2006), Bouvard, Casamatta, Xiong (2022), Jullien, Pavan, and Rysman (2021), Rochet and Tirole (2002), Weyl (2010

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

Competitive banks

- Lend to merchant at rate R_B
- Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\overline{R} \ge R_D$

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

- Competitive banks
 - Lend to merchant at rate R_B
 - Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\overline{R} \ge R_D$

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

- Competitive banks
 - Lend to merchant at rate R_B
 - Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\bar{R} \ge R_D$

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c_{ heta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant
- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1 \eta)c_{ heta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant

- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c_{ heta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant
- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c_{ heta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant
- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \ge f$
- We study lending after transaction fees are set
 - Platform design taken as exogenous

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t = 1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t = 1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t = 1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t = 1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t = 1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t = 2: Game ends

Financing Frictions

Set-Up

\star Asymmetric information and moral hazard

• Asymmetric information

• Merchant is privately informed about her future revenues c_{θ}

 $c_H > c_L$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low enough: $(1 f)c_H > R_D$

Financing Frictions

Set-Up

- \star Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

 $c_H > c_L$

- Credit quality $p \in [0, 1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low enough: $(1 f)c_H > R_D$

Conclusior

Financing Frictions

Set-Up

- \star Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

 $c_H > c_L$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - · Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low enough: $(1 f)c_H > R_D$
Financing Frictions

Set-Up

- \star Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

 $c_H > c_L$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low enough: $(1 f)c_H > R_D$

Repayment Fees and Enforcement

Set-Up

• The platform charges an additional fee f_P as partial loan repayment

- Paid when the merchant generates sales, before loan maturity
- \star An optimal response to the risk of strategic default

 \star The platform has an advantage in enforcing repayment

- Based on its control of the marketplace
- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Repayment Fees and Enforcement

Set-Up

- The platform charges an additional fee f_P as partial loan repayment
 - Paid when the merchant generates sales, before loan maturity

$\star\,$ An optimal response to the risk of strategic default

- \star The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace
- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Conclusior

Repayment Fees and Enforcement

Set-Up

- The platform charges an additional fee f_P as partial loan repayment
 - · Paid when the merchant generates sales, before loan maturity
- \star An optimal response to the risk of strategic default
- \star The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace
- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Repayment Fees and Enforcement

Set-Up

- The platform charges an additional fee f_P as partial loan repayment
 - · Paid when the merchant generates sales, before loan maturity
- \star An optimal response to the risk of strategic default
- \star The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace
- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Limited Commitment and Incentive Compatibility

IC-θ: The merchant of type θ repays the loan
 * R_J ↑ if f_J ↑

$$\underbrace{R_J - f_J c_{\theta}}_{\text{priving loss balance}} \leq \underbrace{(1 - f) c_{\theta}}_{\text{I}} \quad , \quad J \in \{B, P\}$$

remaining loan balance

future net revenues

 Repayment fees f_P as optimal solution for the limited-commitment problem

- \times Recover some payment ahead of default
- Lower ex-post incentives to default

Limited Commitment and Incentive Compatibility

• IC- θ : The merchant of type θ repays the loan $* R_J \uparrow \text{ if } f_J \uparrow$

$$\underbrace{R_J - f_J c_\theta}_{\text{remaining loan balance}} \leq \underbrace{(1 - f) c_\theta}_{\text{future net revenues}}, \quad J \in \{B, P\}$$

 \star Repayment fees f_P as optimal solution for the limited-commitment problem

- $\star\,$ Recover some payment ahead of default
- Lower ex-post incentives to default

Limited Commitment and Incentive Compatibility

• IC- θ : The merchant of type θ repays the loan $\star R_J \uparrow \text{ if } f_J \uparrow$ $R_J = f_J c_0 \qquad (1 - f_J) c_0 \qquad J \in \{B\}$

 $\underbrace{R_J - f_J c_{\theta}}_{\text{remaining loan balance}} \leq \underbrace{(1 - f) c_{\theta}}_{\text{future net revenues}} , \quad J \in \{B, P\}$

- \star Repayment fees f_P as optimal solution for the limited-commitment problem
 - $\star\,$ Recover some payment ahead of default
 - $\star\,$ Lower ex-post incentives to default

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales
- IC-f_P: The merchant remains on the platform and pays the fees Always binding

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees
 Always binding

 \star Better enforcement for merchants with high relative revenues η

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees Always binding

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees Always binding

 \star Better enforcement for merchants with high relative revenues η

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{p}$
- Lend only if high-revenue merchants are willing to repay (IC-H): ^R_D ≤ (1 − f)c_H
- Banks lend based on credit quality

$$p \geq \frac{R_D}{(1-f)c_H}$$

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{p}$
- Lend only if high-revenue merchants are willing to repay (IC-H): ^R_D ≤ (1 − f)c_H
- Banks lend based on credit quality

$$p \geq \frac{R_D}{(1-f)c_H}$$

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{p}$
- Lend only if high-revenue merchants are willing to repay (IC-H): ^R_D ≤ (1 − f)c_H
- Banks lend based on credit quality

$$p \geq rac{R_D}{(1-f)c_H}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta f$
- Two options to set *R_P* as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

$$\mathsf{Revenues} = \underbrace{p(1 - 2f + \eta)c_H + (1 - p)(\eta - f)c_L}_{\mathsf{loan}} + \underbrace{[p2c_H + (1 - p)c_L]f}_{\mathsf{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

$$Revenues = \underbrace{(1 - 2f + \eta)c_L}_{loan} + \underbrace{2[pc_H + (1 - p)c_L]f}_{transactions}$$

• The platform lends if

Monopolistic revenues $\geq \bar{R}$

Conclusion

Benchmark: Borrowing from the Platform Only (1)

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

$$\text{Revenues} = \underbrace{p(1 - 2f + \eta)c_H + (1 - p)(\eta - f)c_L}_{\text{loan}} + \underbrace{[p2c_H + (1 - p)c_L]f}_{\text{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

$$Revenues = \underbrace{(1 - 2f + \eta)c_L}_{loan} + \underbrace{2[pc_H + (1 - p)c_L]f}_{transactions}$$

• The platform lends if

Monopolistic revenues $\geq \bar{R}$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

$$\mathsf{Revenues} = \underbrace{p(1-2f+\eta)c_H + (1-p)(\eta-f)c_L}_{\mathsf{loan}} + \underbrace{[p2c_H + (1-p)c_L]f}_{\mathsf{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

$$\mathsf{Revenues} = \underbrace{(1 - 2f + \eta)c_L}_{\mathsf{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\mathsf{transactions}}$$

• The platform lends if

Monopolistic revenues $\geq ar{R}$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

$$\mathsf{Revenues} = \underbrace{p(1 - 2f + \eta)c_H + (1 - p)(\eta - f)c_L}_{\mathsf{loan}} + \underbrace{[p2c_H + (1 - p)c_L]f}_{\mathsf{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

$$\text{Revenues} = \underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

• The platform lends if

Monopolistic revenues $\geq ar{R}$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

$$\mathsf{Revenues} = \underbrace{p(1 - 2f + \eta)c_H + (1 - p)(\eta - f)c_L}_{\mathsf{loan}} + \underbrace{[p2c_H + (1 - p)c_L]f}_{\mathsf{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

$$\text{Revenues} = \underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

• The platform lends if

Monopolistic revenues $\geq \bar{R}$

- $2c_L \geq \bar{R}$
 - IC-L may bind

- $2c_{I} < \bar{R}$
 - IC-H always binds

- $2c_L \geq \bar{R}$
 - IC-L may bind

- $2c_L < \bar{R}$
 - IC-H always binds

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer
- Contract terms similar to benchmark models
 - Same maturity and repayment fees
- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer
- Contract terms similar to benchmark models
 - Same maturity and repayment fees
- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer
- Contract terms similar to benchmark models
 - Same maturity and repayment fees
- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

Platform profits

Segmentation by Credit Quality

- \star Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- - Welfare ↑
- - Ambiguous welfare effects

Segmentation by Credit Quality

- \star Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- ★ Only the platform lends to low-quality merchants
 - Welfare ↑
- - Ambiguous welfare effects

Segmentation by Credit Quality

- \star Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- ★ Only the platform lends to low-quality merchants
 - Welfare ↑
- ★ Competition for intermediate-quality merchants
 - Ambiguous welfare effects
 - The platform lends even when monopolistic revenues $< \bar{R}$ (case C)

Equilibrium Screening

 $\star\,$ The platform benefits from advantageous screening in equilibrium

- Conditional on observables, the platform lends to a better pool of borrowers than banks
- * The platform extracts rents from banks

 \star Jointly, the platform and banks offer a menu of screening contracts

- The good merchant picks the lender offering the lowest rate
- The bad merchant self-selects into bank loans to avoid enforcement

Banks tighten lending standards

- * Will deny credit with positive probability
- \star Will increase rates up to $(1-f)c_H$

Equilibrium Screening

 $\star\,$ The platform benefits from advantageous screening in equilibrium

- Conditional on observables, the platform lends to a better pool of borrowers than banks
- * The platform extracts rents from banks
- $\star\,$ Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement
- Banks tighten lending standards
 - Will deny credit with positive probability
 - \star Will increase rates up to $(1-f)c_H$

- \star The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of borrowers than banks
 - $\star\,$ The platform extracts rents from banks
- $\star\,$ Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement
- Banks tighten lending standards
 - * Will deny credit with positive probability
 - \star Will increase rates up to $(1-f)c_H$

- * The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of borrowers than banks
 - $\star\,$ The platform extracts rents from banks
- $\star\,$ Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement
- Banks tighten lending standards
 - * Will deny credit with positive probability
 - \star Will increase rates up to $(1-f)c_H$

- 1. Internalization of fees f
 - * Relaxes financial constraints

2. Enforcement

- More income can be credibly pledged to the platform
- Lower default risk
- * Relaxes financial constraints

3. Advantageous screening

- Extract rents from banks
- Tightens financial constraints

- 1. Internalization of fees f
 - ★ Relaxes financial constraints

- More income can be credibly pledged to the platform
- Lower default risk

- Extract rents from banks

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - ✓ Good for welfare

- More income can be credibly pledged to the platform
- Lower default risk

- Extract rents from banks

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - ✓ Good for welfare
- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - ★ Relaxes financial constraints

- Extract rents from banks
Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - Good for welfare
- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - ★ Relaxes financial constraints
 - Good for welfare

- Extract rents from banks

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - Good for welfare
- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints
 - Good for welfare
- 3. Advantageous screening
 - Extract rents from banks
 - ★ Tightens financial constraints

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - Good for welfare
- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints
 - Good for welfare
- 3. Advantageous screening
 - Extract rents from banks
 - ★ Tightens financial constraints
 - X Bad for welfare

Conclusior

Borrowing with Competition: Cases

- Cases A and B
 - Monopolistic revenues $\geq \bar{R}$
- Case B
 - Loans satisfying IC-L are profitable: $\bar{R} \leq (1 2f + \eta)c_L$
- Case C
 - The platform lends only because of advantageous screening

 $\Delta \mathsf{Welfare} = -\Delta \mathsf{Credit} \ \mathsf{rationing} - \Delta \mathsf{Cost} \ \mathsf{of} \ \mathsf{capital} + \Delta \mathsf{Enforcement}$

 \star If R is sufficiently large, welfare declines unambiguously

 $\Delta \mathsf{Welfare} = -\Delta \mathsf{Credit} \ \mathsf{rationing} - \Delta \mathsf{Cost} \ \mathsf{of} \ \mathsf{capital} + \Delta \mathsf{Enforcement}$

 \star If \overline{R} is sufficiently large, welfare declines unambiguously

 Δ Welfare = $-\Delta$ Credit rationing $-\Delta$ Cost of capital + Δ Enforcement

 $\Delta \mathsf{Welfare} = -\Delta \mathsf{Credit} \ \mathsf{rationing} - \Delta \mathsf{Cost} \ \mathsf{of} \ \mathsf{capital} + \Delta \mathsf{Enforcement}$

- Case A
 - Cost of capital \uparrow iff $\bar{R} > R_D$
- Case B
 - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement \uparrow / \sim
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

 \star If \overline{R} is sufficiently large, welfare declines unambiguously

 $\Delta \mathsf{Welfare} = -\Delta \mathsf{Credit} \ \mathsf{rationing} - \Delta \mathsf{Cost} \ \mathsf{of} \ \mathsf{capital} + \Delta \mathsf{Enforcement}$

 \star If $ar{R}$ is sufficiently large, welfare declines unambiguously

- The platform can acquire information at cost c
 ightarrow 0
 - High signal: *P*(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - * Banks lend less because of winner's curse
 - Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - Banks compete more aggressively
 - Smaller advantageous-screening rents
- $\star\,$ For some parameters, lower profits with the option to acquire information
 - Smaller rents extracted from enforcement

- The platform can acquire information at cost c
 ightarrow 0
 - High signal: *P*(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - ★ Banks lend less because of winner's curse
 - \star Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - Banks compete more aggressively
 - Smaller advantageous-screening rents
- $\star\,$ For some parameters, lower profits with the option to acquire information
 - Smaller rents extracted from enforcement

- The platform can acquire information at cost c
 ightarrow 0
 - High signal: *P*(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - * Banks lend less because of winner's curse
 - ★ Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - \star Banks compete more aggressively
 - \star Smaller advantageous-screening rents
- $\star\,$ For some parameters, lower profits with the option to acquire information
 - Smaller rents extracted from enforcement

Conclusior

- The platform can acquire information at cost c
 ightarrow 0
 - High signal: *P*(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - $\star\,$ Banks lend less because of winner's curse
 - ★ Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - \star Banks compete more aggressively
 - * Smaller advantageous-screening rents
- $\star\,$ For some parameters, lower profits with the option to acquire information
 - Smaller rents extracted from enforcement

Concluding Remarks

- $\star\,$ The platform controls access to a marketplace
 - Can enforce partial loan repayment

\star Benefits from advantageous screening when competing with banks

- Contracts with different level of enforcement
- * Negative welfare effects

* Ambiguous value of private information

• May lower the rents the platform extracts from superior enforcement

Concluding Remarks

- $\star\,$ The platform controls access to a marketplace
 - Can enforce partial loan repayment

\star Benefits from advantageous screening when competing with banks

- Contracts with different level of enforcement
- \star Negative welfare effects

* Ambiguous value of private information

• May lower the rents the platform extracts from superior enforcement

Concluding Remarks

- $\star\,$ The platform controls access to a marketplace
 - Can enforce partial loan repayment

\star Benefits from advantageous screening when competing with banks

- Contracts with different level of enforcement
- \star Negative welfare effects

- * Ambiguous value of private information
 - May lower the rents the platform extracts from superior enforcement

Conclusion

Thank You!

jl5964@columbia.edu s.pegoraro@nd.edu

The Bank's Objective Function

Profits from borrowing at rate R:

 $L_B(R, m_P, G_P; p) := m_P[pG_P(R)(R - R_D) - (1 - p)R_D] + (1 - m_P)(pR - R_D)$

- Platform lends w.p. m_P
 - Borrower is good w.p. p
 - Borrows from banks and repay if $R < R_P$, w.p. $G_P(R)$
 - Borrower is bad w.p. 1 p
 - Always borrows from banks and never repays
- Platform does not lend w.p. $1 m_P$
 - Both types borrow from banks
 - Only the good type repays

The Platform's Objective Function

Profits from borrowing at rate R:

$$L_P(R, m_B, G_B; p) := \begin{cases} l_P^0(R, m_B, G_B; p) & \text{if } R \in ((1-f)c_L, (1-2f+\eta)c_L] \\ l_P^1(R, m_B, G_B; p) & \text{if } R > (1-2f+\eta)c_L. \end{cases}$$

- Bad borrower repays the platform if $R \leq (1 2f + \eta)c_L$
- Bad borrower does not repay the platform if $R > (1 2f + \eta)c_L$

$$\star$$
 Discontinuity at $R=(1-2f+\eta)c_L$

The Platform's Profits when $R \leq (1 - 2f + \eta)c_L$

$$I_P^0(R, m_B, G_B; p) \coloneqq m_B \{ pG_B(R)(R - \bar{R}) + [2pc_H + (1 - p)c_L]f \} + (1 - m_B) \{ R - \bar{R} + 2[pc_H + (1 - p)c_L]f \},$$

- Banks lend w.p. m_B
 - Borrower is good w.p. p
 - Borrows from the platform and repay if $R \leq R_B$, w.p. $G_B(R)$
 - Pays transaction fees twice
 - Borrower is bad w.p. 1 p
 - Never borrows from the platform
 - Pays transaction fees once
- Banks do not lend w.p. 1 m_B
 - Both types borrow from the platform
 - Both types repay
 - Both types pay transaction fees twice

The Platform's Profits when $R > (1 - 2f + \eta)c_L$

$$\begin{split} I_P^1(R, m_B, G_B; p) &:= m_B p G_B(R) (R - \bar{R}) \\ &+ (1 - m_B) [p R + (1 - p) (\eta - f) c_L - \bar{R}] \\ &+ [2 p c_H + (1 - p) c_L] f, \end{split}$$

- Banks lend w.p. m_B
 - Borrower is good w.p. p
 - Borrows from the platform and repay if $R \leq R_B$, w.p. $G_B(R)$
 - Borrower is bad w.p. 1 p
 - Never borrows from the platform
- Banks do not lend w.p. $1 m_B$
 - Both types borrow from the platform
 - Good borrower repays the loan
 - Bad borrower repays only repayment fees $(\eta f)c_L$
- In both cases
 - Good type pays transaction fees twice
 - Bad type pays transaction fees once

Definition of Equilibrium

Lending probabilities $(m_P^*, m_B^*) \in [0, 1]^2$ and rate distributions by the platform and the banks F_P^* and F_B^* with supports \mathcal{R}_P^* and \mathcal{R}_B^* such that:

- 1. The platform and competitive banks set rates optimally
- 2. Lenders extend credit optimally
- 3. Banks are competitive in the lending market; that is, no lending mechanism (F_B, m_B) exists such that it improves the bank's and the good merchant's profits.

Case A

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability
- Lenders randomize rate offers
 - Banks lend above their competitive rate:
 [R_D/p, (1 f)c_H]
 - Platform competes on rates: $[R_D/p, (1-f)c_H] \cup \{(1-2f+\eta)c_L\}$

Case A

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability
- Lenders randomize rate offers
 - Banks lend above their competitive rate:
 [R_D/p, (1 f)c_H]
 - Platform competes on rates: $[R_D/p, (1-f)c_H] \cup \{(1-2f+\eta)c_L\}$

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability
- * The platform may offer rates $R_P \leq (1 2f + \eta)c_L$
 - Bad merchant may repay the platform in full
- More complex price-dispersion equilibrium
 - * Discontinuity in the platform's objective function

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability
- * The platform may offer rates $R_P \leq (1-2f+\eta)c_L$
 - Bad merchant may repay the platform in full
- More complex price-dispersion equilibrium
 - * Discontinuity in the platform's objective function

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability
- * The platform may offer rates $R_P \leq (1 2f + \eta)c_L$
 - Bad merchant may repay the platform in full
- More complex price-dispersion equilibrium
 - Discontinuity in the platform's objective function

Case C

Case C

Case C

