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ABSTRACT 

We model competition between banks and a bigtech platform that lend to a merchant 

with private information and subject to moral hazard. By controlling access to a valu-

able marketplace for the merchant, the platform enforces partial loan repayments, 

thus alleviating fnancing frictions, reducing the risk of strategic default, and con-

tributing to welfare positively. Credit markets become partially segmented, with the 

platform targeting merchants of low and medium perceived credit quality. However, 

conditional on observables, the platform lends to better borrowers than banks because 

bad borrowers self-select into bank loans to avoid the platform’s enforcement, causing 

negative welfare effects in equilibrium. 
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1 INTRODUCTION 

Bigtech platforms like Amazon, Alibaba, and Paypal provide marketplaces where users 
exchange goods, services, and money. In recent years, bigtech platforms have ventured 
also into a very different business: lending to merchants, and thus directly competing 
with banks and other lenders.1 Globally, bigtech frms have been expanding their lending 
activity at a dramatic pace, increasing credit more than fftyfold from 2013 to 2019. In 
2019, bigtech frms lent $572 billion, more than twice the amount of non-mortgage credit 
extended by fntech frms (Cornelli et al., 2021).2 

Unlike other lenders, bigtech frms provide a marketplace for merchants. More-
over, they typically implement revenue-based repayment plans, whereby borrowing mer-
chants pledge a percentage of their sales on the marketplace as loan repayment.3 Despite 
the growing relevance of bigtech platforms in credit markets, there is no theoretical frame-
work to understand their unique lending model. In this paper, we provide a model to 
explain these patterns. 

We make three main contributions. First, we identify a key advantage bigtech lenders 
possess over other lenders: control of a marketplace. By simply controlling access to a 
source of revenues for a borrower, the platform can enforce partial loan repayment, alle-
viate fnancing frictions, and even reduce the risk of strategic default. Second, we assess 
the welfare consequences of the platform entering the credit market and show the change 
in welfare is ambiguous and determined by two counteracting forces. On the one hand, 
the platform and banks offer loan contracts with a different level of enforcement, which 
screen borrowers in favor of the platform and at the expense of banks, causing a nega-
tive welfare effect in equilibrium. On the other hand, the platform can reduce default 
probabilities through better enforcement and increase output, leading to a positive wel-
fare effect. The net effect depends on the borrower’s characteristics and on the difference 
between the platform and banks’ cost of capital. Third, we show a platform with superior 
enforcement power does not necessarily beneft from possessing also superior informa-
tion about the borrower. Because of bank’s equilibrium reaction, the option to acquire 

1In the U.S., Amazon, Apple, DoorDash, eBay, and Paypal provide small business loans to their mer-
chants. 

2According to Frost et al. (2019) and Stulz (2019), bigtech frms are “technology companies with estab-
lished presence in the market for digital services.” Moreover, Petralia et al. (2019) observe that bigtech 
frms possess “large, developed customer networks established through, for example, e-commerce plat-
forms or messaging services.” Bigtech frms are thus distinct from fntech frms. In fact, a fntech frm is “a 
specialized frm that challenges a specifc product line of banks” (Stulz, 2019). 

3For example, Amazon, Alibaba, Doordash, Paypal, and Stripe implement such repayment plans. 
Merchant-cash-advance lenders implement similar schemes, whereby repayments are based on daily 
credit- and debit-card transactions. 
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information may lower the surplus the platform can extract from banks or borrowers 
through better enforcement. 

We study a model in which a merchant possesses private information about her cash 
fows and is subject to moral hazard. The merchant needs to borrow capital to produce 
over two periods and she is privately informed about whether her future sales will be 
high or low.4 The merchant could borrow from the platform or from competitive banks. 
The merchant is also subject to two forms of moral hazard. First, after obtaining fnancing, 
the merchant may choose not to sell on the platform’s marketplace, and sell instead in an 
alternative venue. Second, the merchant is subject to limited commitment. In particular, 
after the frst period, she has the option to default on the loan balance, forfeit produc-
tion in the second period, and abscond with the net revenues from the frst period. In 
equilibrium, a merchant with low revenue optimally chooses to default on banks because 
future revenues are insuffcient to motivate her to repay the loan balance and continue 
production. Lenders have a common prior about the merchant’s future revenues and we 
refer to it as the merchant’s credit quality. Because of the merchant’s limited commitment 
and the asymmetric information between the borrower and lenders, the equilibrium is 
characterized by fnancing frictions. 

Because the platform’s marketplace provides a valuable source of revenues for a mer-
chant, the platform exploits its control over the marketplace to alleviate fnancing frictions 
and to gain an advantage when competing with banks. Whereas banks offer standard 
one-period loan contracts, the platform also charges higher transaction fees on borrow-
ing merchants when they sell on the marketplace before the loan due date. The platform 
deducts the proceeds of these additional fees from the loan balance. We call these addi-
tional fees repayment fees. Because a merchant may sell on alternative venues after obtain-
ing fnancing from the platform, repayment fees are bounded by the value the merchant 
obtains from selling on the platform. Hence, the platform charges higher repayment fees 
to merchants who beneft more from using the platform compared to their outside option. 
The platform thus implements a revenue-based repayment plan, consistent with industry 
practice. Banks cannot implement similar revenue-based repayment plans because they 
do not add value to the merchant’s revenues. 

Compared to banks, the platform possesses two advantages that help it alleviate f-
nancing frictions and lend to merchants. First, a platform internalizes the transaction 
fees merchant pay on the marketplace. Second, more importantly, the platform enforces 

4In practice, the platform’s potential borrowers are typically small businesses, for which uncertain cash 
fows represent an important source of credit risk. Even though a merchant may not know her future cash 
fows with certainty, she may still have more information about them than the external creditors. 
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loan repayment more effectively than banks by charging repayment fees. By using re-
payment fees, the platform alleviates fnancing frictions in a direct and an indirect way. 
Specifcally, the platform obtains partial repayment from a merchant, even if the latter 
intends to default when the loan balance is due. Thus, part of the merchant’s income is 
directly pledged to the platform. Furthermore, by charging repayment fees, the platform 
indirectly improves the merchant’s ex-post incentives to repay the loan and continue pro-
duction. In fact, after paying the fees, the merchant is left with a smaller loan balance 
and the platform faces a lower risk of strategic default. Because the platform charges 
higher repayment fees on merchants that beneft more from participating in the market-
place, even a merchant of low credit quality may still obtain fnancing from the platform 
provided her outside option is particularly unattractive. 

When the platform lends in competition with banks, it acquires a third advantage be-
cause merchants of different types self-select into different loan contracts. As mentioned 
before, while the platform imposes repayment fees in its loan contracts, banks cannot. 
As a result, a borrower faces a menu of two contracts: a contract with repayment fees 
and high enforcement offered by the platform, and a contract with no repayment fees 
and low enforcement offered by banks. This is a screening menu of contracts. The low-
revenue merchant always prefers the low-enforcement contract offered by banks to mini-
mize pledgeable income ahead of her default. The low-revenue merchant thus self-select 
into the contract offered by banks. The high-revenue merchant is indifferent to the level 
of enforcement in a contract and selects the contract with the lowest interest rate.5 In 
equilibrium, the platform benefts from advantageous screening, whereas banks suffer from 
adverse screening. Whereas internalization of transaction fees and enforcement alleviates 
fnancing frictions, which tend to increase welfare, the platform’s advantageous screen-
ing is associated with negative welfare effects if the platform’s cost of capital exceeds the 
banks’. 

Our model provides a series of predictions and welfare implications. First, the model 
predicts credit markets become partially segmented when the platform competes with 
banks. Banks remain the only lenders to merchants of high credit quality, to whom they 
offer rates below or equal to the platform’s cost of capital. The platform becomes the only 
lender to merchants of low credit quality, provided they value access to the marketplace 
suffciently highly. The platform and banks compete for merchants of intermediate credit 
quality. 

5The platform could offer the same menu of screening contracts. However, such menu is not optimal. 
Because low-revenue merchants would self-select into a low-enforcement, the platform would beneft from 
pooling the two types into an high-enforcement contract with high repayment fees. 
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Second, because of the platform’s advantageous screening, we obtain nuanced pre-
dictions on the quality of the platform’s borrowers compared to bank borrowers. Al-
though the platform seems to specialize in merchants with lower perceived credit quality 
based on observable characteristics, the platform actually lends to a better pool of bor-
rowers than banks once we condition on such observable characteristics. According to 
the model, borrowers who are likely to default in the future prefer to borrow from banks 
to avoid pledging income to the platform through repayment fees. 

Third, when the platform enters the credit market, it generates heterogeneous wel-
fare effects depending on the credit quality of the merchant and the value the platform 
provides to her. By enforcing repayments better than banks and by internalizing trans-
action fees, the platform proftably extends credit to merchants of low credit quality who 
value access to the marketplace suffciently highly. If these merchants are not fnanced 
by banks, the platform improves the expected welfare by lending. However, when the 
platform directly competes with banks for a merchant, the expected welfare declines if 
the platform’s cost of capital suffciently exceeds the banks’. Because of adverse screen-
ing, banks lend more conservatively in equilibrium. Compared to an equilibrium where 
banks are the only lender, the merchant may be rationed with a higher probability and 
the project may be fnanced at a higher cost of capital. 

Finally, we provide an extension of the model where the platform may acquire supe-
rior information about the borrower’s future revenues at a cost, although infnitesimally 
small.6 Importantly, we obtain the same results and predictions identifed in the baseline 
model, thus highlighting that enforcement represents a crucial element in assessing the 
equilibrium implications of bigtech lenders in the market. Furthermore, we fnd that the 
platform uses superior information to either screen out bad borrowers or to customize 
interest rate offers in order to maximize the surplus it extracts from the merchant. In the 
frst case, after observing a negative signal about the merchant’s revenues, the platform 
denies credit and banks suffer from a winner’s curse. In the second case, after observing 
a negative signal, the platform offers a low rate to the merchant to discourage strategic 
default, thus lowering credit risk and improving welfare. The platform offers higher rates 
after observing a positive signal to extract more surplus from a merchant with low risk of 
strategic default. Banks respond by extending more credit to compete more aggressively 

6Existing literature shows bigtech platforms may also possess information advantage over banks (Frost 
et al., 2019) because, for example, platforms may use alternative data and methodologies to assess the 
borrower’s future revenues and, hence, default risk. Because we focus on a platform lending to merchants, 
we consider only information about the merchant. Kirpalani and Philippon (2020) study the equilibrium in 
the platform’s marketplace when the platform acquires information about consumers’ tastes but does not 
lend to merchants. 
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for a share of the surplus the platform extracts. 
Because of the equilibrium reaction of banks, the option to acquire information 

does not always beneft the platform. This result is in contrast to the standard credit-
competition literature in which the informed lender benefts from a superior screening 
technology when competing with other lenders (Hauswald and Marquez, 2003; He et al., 
2023). Our results differ because, in our model, the platform possesses better enforce-
ment power compared to banks. When the platform can also acquire superior informa-
tion, competing banks adjust their lending strategy in response. As a result, the platform 
may obtain lower profts from its superior enforcement power. If banks reduce lend-
ing because of the winner’s curse, the platform collects smaller rents from advantageous 
screening in equilibrium. If banks increase lending to compete for the surplus the plat-
form extracts, the platform faces more ferce competition in the credit market. We identify 
conditions under which banks’ equilibrium reaction causes the platform’s profts to de-
cline when it has the option to acquire information. We, therefore, highlight that private 
information may lower the rents the platform extracts through enforcement because of 
competitors’ equilibrium reaction. 

RELATED LITERATURE 

So far, researchers have identifed three advantages fntech and bigtech lenders possess 
over banks: superior information (Buchak et al., 2018; He et al., 2023; Huang, 2021a; 
Philippon, 2019; Di Maggio and Yao, 2021; Hu and Zryumov, 2022), less stringent reg-
ulation (Beaumont et al., 2021; Buchak et al., 2018; Gopal and Schnabl, 2022), and con-
venience (Fuster et al., 2019). Among those, our work is closely related to the recent 
literature on payment platforms making loans because of their information advantages 
(Parlour et al., 2020; Ghosh et al., 2021). However, we focus on a fourth advantage, which 
is specifc to bigtech platforms. According to our model, the bigtech platform’s advan-
tage can be primarily attributed to its control over a marketplace. Therefore, we establish 
a complementarity between lending and operating a product market. Recent work has 
studied how payment platforms make loans, again focusing on the 

The platform’s advantage is thus similar to the advantage of warehouse banks (Don-
aldson et al., 2018) and trade creditors (Biais and Gollier, 1997; Burkart and Ellingsen, 
2004; Petersen and Rajan, 1997). In particular, we micro-found the platform’s ability to 
enforce repayment from a borrowing merchant as a function of the value that the plat-
form provides to the merchant. We analyze how lenders differential enforcement power 
affects equilibrium outcomes for merchants with different credit risk. Unlike previous 
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contributions, we focus specifcally on bigtech frms that, by simply controlling access 
to a marketplace or a payment ecosystem, obtain a crucial advantage as a lender, even 
without superior information. 

Related, Huang (2021a) and Boualam and Yoo (2022) assume fntech lenders can seize 
an exogenous fraction of the borrower’s cash fow, and focus on other aspects of this mar-
ket. Huang (2021a) analyzes competition under a private-value setting, where lenders 
may be differentially informed. We study competition under a common-value setting, 
where lenders have different enforcement power. Boualam and Yoo (2022) study whether 
banks and the fntech emerge as competitors or partners in equilibrium. Relative to 
Boualam and Yoo (2022), we consider credit risk and information asymmetry between 
lenders and borrowers, while focusing on the competition among different lenders. Fi-
nally, compared to these existing literature, we identify a new channel whereby the plat-
form could lower equilibrium welfare when competing with banks because of its ability 
to enforce repayments. 

Our model builds upon the credit market competition literature (Broecker, 1990). In-
stead of focusing on lenders who are differentially informed (Hauswald and Marquez, 
2003; He et al., 2023; Goldstein et al., 2022), our competing lenders have different degrees 
of enforcement power. The welfare effects of the platform’s better enforcement resem-
ble the effects of a winner’s curse among bidders in a common-value auction (Milgrom 
and Weber, 1982; Engelbrecht-Wiggans et al., 1983; Hausch, 1987; Kagel and Levin, 1999). 
However, the underlying mechanism is very different. Whereas a winner’s curse orig-
inates from asymmetric information among bidders, advantageous screening originates 
because the platform and banks offer contracts that, in equilibrium, screen good and bad 
borrowers. Banks are then adversely affected by this equilibrium screening. 

More broadly, our research is also related to the theoretical literature on two-sided 
markets and lending with limited commitment. In particular, although we take fees as 
given,7 our research highlights that a platform profts not only from designing a two-
sided market (Weyl, 2010; Armstrong, 2006; Rochet and Tirole, 2002; Jullien et al., 2021), 
but also from fnancing the activity of market users. In contemporaneous work, Bouvard 
et al. (2022) fnd that a platform can use credit contracts to indirectly discriminate plat-
form participants with different wealth. Huang (2021b) analyzes the synergy between 
consumer lending and e-commerce. Similar to the limited-commitment literature (Al-
varez and Jermann, 2000; Kehoe and Levine, 1993; Kocherlakota, 1996; Ligon et al., 2002), 
in our model the borrower is motivated to (partially) repay the loan to maintain access to 

7According to our conversations with practitioners, transaction fees and loan terms are typically set by 
different divisions within a bigtech frm. 
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a valuable market which, in our case, is the platform’s marketplace instead of the credit 
market. 

The empirical literature studying lending by bigtech and fntech frms is expanding 
rapidly. Liu et al. (2022) fnd evidence of advantageous selection for bigtech lenders, 
whereas Frost et al. (2019), Hau et al. (2019), and Ouyang (2022) provide evidence that 
bigtech frms expand credit access, consistent with our model that bigtechs are able to 
reach borrowers who are under-served by traditional banks. Other authors focus on 
fntech frms lending strategies to consumers (Di Maggio and Yao, 2021; Balyuk, 2022), 
and the substitutability (Buchak et al., 2018; Eça et al., 2022; Gopal and Schnabl, 2022) or 
complementarity (Beaumont et al., 2021) between bank and fntech loans. Fuster et al. 
(2019) fnd fntech frms process mortgage applications faster but have higher default 
rates. Agarwal et al. (2021) and Di Maggio and Yao (2021) analyze fntech frms using 
alternative data to expand credits. Berg et al. (2020) show the alternative footprint data 
complements the traditional credit bureau information for predicting defaults. Finally, 
Dai et al. (2023) fnd fntech lenders can increase repayment likelihood on delinquent 
loans. Several recent review articles has summarized the developments and the literature 
on bigtech and fntech lending (Stulz, 2019; Petralia et al., 2019; Allen et al., 2020; Agarwal 
and Zhang, 2020; Berg et al., 2021). 

SET-UP 

We consider three types of players: a merchant, competitive banks, and a monopolistic 
platform. The merchant needs to borrow to produce and sell goods, banks provide f-
nancing, and the platform provides both fnancing and a marketplace for the merchant. 
The merchant has the option to participate in the platform’s marketplace or sell through 
other channels. The merchant is subject to moral hazard in the form of limited commit-
ment. Moreover, the merchant also possesses private information about the revenues she 
will produce after obtaining fnancing. 

TIMING. To model business dynamics in a tractable way, we use a model with three 
dates, t ∈ {0, 1, 2}, and two periods. Figure 1 shows the timeline of the model. At date 
t = 0, the merchant applies for fnancing. If the merchant obtains fnancing, she produces 
and sells goods in the frst period, which is between date zero and date one. The merchant 
chooses whether to sell on the platform’s marketplace or in an alternative venue. If she 
sells on the platform, she pays transaction fees over the course of the frst period, when 
revenues are realized. At date t = 1, the merchant decides whether to repay the loan or 
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Merchant produces If no default, merchant produces 
Platform collects fees Platform collects fees 

t = 0 t = 1 t = 2 

Merchant applies for a loan Merchant repays or defaults Players consume 
Lenders make lending decisions
Merchant chooses selling venue 

Figure 1: Timeline of the model. 

default. If the merchant repays, she produces and sells in the second period, which is 
between date one and date two. If she defaults, she absconds with the after-fee cash fow 
generated in the frst period and forfeits production in the second period. We normalize 
all players’ discount rates to zero. 

THE MERCHANT. The merchant requires one unit of capital at date t = 0 to start (or 
continue) her business. If the merchant obtains fnancing at date zero, she can generate 
revenues in the subsequent two periods. Revenues are either high, cH , or low cL, with 
cH > cL, and are constant over the two periods. At date zero, the merchant possesses 
private information about the revenues she will generate. We use θ ∈ {H, L} to denote 
the merchant’s type, and we refer to a merchant as good (bad) if her revenues are high 
(low) and θ = H (θ = L). The platform and banks do not know the merchant’s type at 
date t = 0, and they have common prior beliefs p := P (θ = H). However, they observe 
revenues when they are realized over the course of the two production periods. Beliefs 
p measure the creditworthiness of the merchant.8 We refer to a merchant with high p as 
having higher credit quality. 

As a seller, the merchant may sell goods either on the platform’s marketplace or on 
some alternative market. On the marketplace, a merchant of type θ pays a transaction fee 
f , thus netting (1−f)cθ. Alternatively, the merchant could sell goods outside the platform 
and earn revenues equal to (1−η)cθ (here η ≤ 1 is common knowledge among all players). 
We call η the merchant’s relative revenues, because it measures the proportional increase in 
gross revenues for a merchant who switches from the alternative market to the platform.9 

8We assume the platform and banks have the same information about the merchant’s revenues to high-
light how the platform enforces revenue-based repayments by controlling access to the marketplace, and 
not by possessing superior information about revenues. 

9By revealed preferences, merchants join marketplaces like Amazon and Doordash or payment services 
like Paypal because they obtain higher profts compared to alternative options. In addition, Higgins (2022) 
shows that using payment platforms also increases sales for local retail businesses. Dubey and Purnanan-
dam (2023) fnd the adoption of digital payment platforms spurs economic growth. 
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A merchant with relative revenue η ≥ f sells on the platform’s marketplace. Otherwise, 
the merchant sells on the alternative venue. We focus our analysis on the set of merchants 
with η ≥ f . 

A merchant’s relative revenue η is a key dimension of heterogeneity we focus on, and 
it potentially varies signifcantly across different merchants. For example, a local small 
business likely benefts a lot from being listed on Amazon and having access to a national 
market, i.e. it has a high η. On the other hand, internationally recognized brand does not 
beneft as much from being listed on Amazon, hence it has a smaller η. The advantage of 
the platform as a lender is larger for a borrower with high relative revenue for being on 
the platform. 

BANKS. Competitive banks provide loans to the merchant. Although we refer to these 
lenders as banks, they may represent traditional lenders who do not provide a market-
place. Banks obtain funds at a cost of capital RD > 0. If a merchant applies for a loan at a 
bank, the bank issues a credit decision (dB , RB ) with dB ∈ {0, 1} and RB ∈ R, specifying 
whether it agrees to lend (dB = 1) or not (dB = 0) and the gross interest RB rate required 
for the loan. 

THE PLATFORM. The platform operates a marketplace where merchants sell goods. The 
platform charges a transaction fee f on the merchant’s revenues to cover its operating 
costs. Because, in this paper, we focus on how the platform lends to merchants, we leave 
transaction fees as exogenous and focus on the platform’s lending decisions.10 

¯To lend to merchants, the platform pays a cost of capital R > 0. When a merchant 
applies for a loan from a platform, the platform issues a credit decision (dP , RP ) with 
dP ∈ {0, 1} and RP ∈ R. The credit decision specifes whether the platform agrees to 
lend to the merchant (dP = 1) or not (dP = 0), and RP specifes the gross interest rate the 
merchant has to repay. 

REPAYMENT FEES. As a lender, the platform benefts from its power of controlling ac-
cess to the marketplace. In particular, the platform can increase transaction fees for bor-
rowing merchants from f to f + fP , and apply the difference towards loan repayment. 

10In our framework, the platform sets merchants’ and buyers’ fees independently of its lending activity. 
To the best of our knowledge, this is an accurate characterization of the current business model of big-tech 
lenders. In particular, we assume the number of merchants who need to borrow capital is small relative to 
the total number of participants. Therefore, a platform frst optimally sets fees for merchants and buyers, 
as in the models by Armstrong (2006), Rochet and Tirole (2002), and Weyl (2010). It then learns about the 
merchant’s outside option and interaction benefts. Finally, a relatively small measure of merchants needs 
to borrow to operate on the platform. 
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Empirically, bigtech platforms such as Amazon, Alibaba, and Paypal take advantage of 
this option and obtain partial loan repayments in the form of increased transaction fees. 
We refer to the increased portion of the transaction fees as the repayment fees. 

A platform can implement such revenue-based repayment plans because merchants 
value access to the marketplace. If a merchant of type θ intends to avoid repayment fees 
by selling outside the platform, the merchant must forfeit net revenues equal to (η − f)cθ. 
This outside option endogenously limits how much the platform can set the repayment 
fees for the merchants. 

Unlike the platform, banks are unable to charge repayment fees, because banks cannot 
exclude borrowers from any source of revenue. Although banks could impose fees on 
incoming deposits, in normal circumstances a borrower could divert such deposits to 
another bank at a negligible cost.11 Therefore, whereas the platform can charge repayment 
fees fP because it controls access to a valuable marketplace, banks cannot. In our model, 
banks’ repayment fees are therefore fB = 0, consistent with empirically observed loan 
contracts between banks and merchants. 

Hence, when lending to a merchant, the platform specifes an interest rate RP and a 
revenue-based repayment fee fP . To enforce the revenue-based repayment, the platform 
collects additional fees fP when the transaction happens between date t = 0 and t = 1, 
thus increasing total fees from fcθ to (f + fP )cθ. The platform applies the additional fees 
fP cθ toward loan repayment. At date t = 1, the merchant owes the balance RP −fP cθ to the 
platform. Because revenue-based repayments are collected at the time of the transaction, a 
merchant cannot abscond with them. A merchant can, however, default on the remaining 
balance. 

MORAL HAZARD AND INCENTIVE COMPATIBILITY. As a borrower, the merchant is 
subject to moral hazard in the form of limited commitment. In particular, at date t = 1, 
after revenues are realized, the merchant decides whether to repay the loan and continue 
production in the second period, or default on the loan and cease production. 

Suppose that, at date t = 0, the merchant of type θ borrowed from lender J at rate RJ 

and with repayment fees fJ . By date t = 1, she has accumulated net revenues (1−f −fJ )cθ 

and she owes balance RJ − fJ cθ to the lender. The merchant then decides whether to 
repay the balance and continue production in the second period, or default, cease future 
production, and abscond with the revenues she accumulated by date t = 1. The merchant 
chooses to repay the loan if future net revenues, (1 − f)cθ, exceed the balance due, RJ − 

11In practice, there might be some non-zero cost when switching banks. However, what is important for 
our mechanism is that this cost is much smaller than the cost of migrating off the platform. 
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fJ cθ; that is, when 
(1 − f + fJ )cθ ≥ RJ . (1) 

Equation (1) is an incentive-compatibility condition which ensures a borrower of type 
θ will not default. This condition imposes an upper bound on the interest rate RJ . The 
upper bound increases with the repayment fees fJ . In other words, the repayment fee 
fJ not only directly increases the amount that the lender can recover, it also indirectly 
increases the amount repaid by reducing the borrower’s incentive to default. We thus 
make the following remark. 

REMARK 1. By using repayment fees, a lender improves the merchant’s ex-post incen-
tives to repay the loan balance. 

The repayment fee forces the merchant to prepay the loan when transactions take 
place in the frst period. As a result, the merchant has a lower loan balance at date t = 1, 
and hence, stronger incentives to repay and continue production in the second period. As 
discussed above, a platform can charge positive repayments fees on a merchant who val-
ues the platform’s marketplace; that is a merchant with η > f . Banks, on the other hand, 
cannot charge repayment fees because they cannot exclude a merchant from a source of 
revenues. Therefore, by controlling access to the marketplace, the platform will be able to 
improve the merchant’s ex-post incentives to repay by using repayment fees. 

Although repayment fees reduce ex-post incentives to default, the platform cannot 
increase the repayment fees without any limit. The platform faces an additional incentive-
compatibility condition in setting repayment fees. In particular, fees must be suffciently 
low that a merchant prefers remaining on the platform and pay the additional fees rather 
than selling outside the platform. This limits how high a repayment fee that the platform 
can set. 

If condition (1) is violated when the platform is the lender (J = P ), a merchant defaults 
on the remaining loan balance even after selling on the platform. Because repayment fees 
lower the ex-post incentive to default, the same merchant also defaults if she sells outside 
the platform in the frst period. In this case, an incentive-compatibility condition on fP 

imposes that the cost of selling on the platform, (f + fP )cθ, does not exceed the cost of 
selling outside the platform, ηcθ. That is, revenue-based repayment fees must satisfy 

fP ≤ η − f. (2) 

If condition (1) is satisfed, a merchant may still default after selling outside the plat-
form if (1 − f)cθ < RJ . In this case, an incentive-compatibility condition imposes that the 
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net revenues from staying on the platform and not defaulting, 2(1 − f)cθ − RP , should 
exceed the net revenues of leaving the platform and defaulting, (1 − η)cθ; that is, (1 − 2f + 

η)cg ≤ RP . However, this condition is redundant once we impose condition (1) and (2). 
One important feature of bank lending is that banks often lend against physical col-

lateral. Other papers have focused on this dimension of difference between bank lending 
and fntech lending (Huang, 2021a; Boualam and Yoo, 2022). We focus on small businesses 
at the startup stage that often lack collateral. In other words, we assume the borrowers 
do not have any collateral. This is also the type of businesses for whom the limited com-
mitment problem is the most severe. 

Throughout the rest of the paper, we focus on parameter values satisfying Assumption 
1 to ensure the model’s outcomes are not trivial. 

ASSUMPTION 1. We impose the following restrictions on parameter values: 

¯2cH > R ≥ RD > cL (3) 

(1 − f)cH > RD, η ≥ f (4) 

To begin with, we assume the platform has no advantage over banks in terms of cost 
¯of capital; that is, R ≥ RD. With this assumption, we emphasize that a platform can prof-

itably compete with banks even if its cost of capital is equal to or larger than banks’ cost 
of capital. Next, we assume a good merchant generates enough value over two periods 

¯to exceed the cost of capital of the platform. That is, 2cH > R. Without this assumption, 
the platform, and possibly banks, would not lend in equilibrium. 

For the fnancing frictions to be relevant in equilibrium, we assume bad merchants al-
ways default when they borrow from banks, even if fnanced at the banks’ cost of capital; 
that is, RD > cL. Because RD is the lowest rate banks could possibly offer and fB = 0, 
condition (1) is always violated in equilibrium when banks are the lenders (J = B) and 
banks ration credit in equilibrium when the perceived credit quality of the merchant is 
suffciently low. 

Moreover, we assume a good merchant is suffciently proftable that she chooses not 
to default if banks lend at their cost of capital; that is, (1 − f)cH > RD. Thanks to this 
assumption, high-revenue merchants choose not to default when banks are able to offer 
suffciently low rates. 

Finally, we focus on merchants who join the platform in equilibrium; that is, η ≥ f . As 
a lender, the platform can compete with banks only for merchants satisfying this condi-
tion. Otherwise, the merchants obtain no value by selling on the platform’s marketplace 
and, in equilibrium, they borrow exclusively from banks. Formally, for a merchant with 
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η < f , condition (2) becomes fP = 0 and, hence, a platform would be unable to charge 
repayment fees, just like a bank. 

We make no other parametric assumption. In particular, we impose no restriction on 
¯the relative value of 2cL and R or RD. For example, if 2cL < RD, it is socially ineffcient 

to fnance a bad merchant at the bank’s cost of capital, even if the merchant produces and 
¯sells for two periods. On the other hand, if 2cL > R, a merchant would improve social 

welfare if she produced for two periods, even if she borrowed from the platform. 
In this paper, we characterize the equilibrium in the credit market under arbitrary 

combinations of parameters satisfying conditions in Assumption 1. We focus on the two 
dimensions of heterogeneity: merchant’s credit quality p and relative revenue η. As we 
show ahead, the nature of the equilibrium and its welfare properties vary based on the 
parameters values. 

3.1 BENCHMARK MODELS: ONE TYPE OF LENDER 

We start by considering when only the banks or only the platform operates as lenders. 
With no competition between banks and the platform, we illustrate the relative advan-
tages and disadvantages of borrowing from either type of lender. 

3.1.1 BANKS AS THE ONLY LENDERS 

Suppose the platform does not offer loans. Banks can proftably lend to the merchant 
only if good merchants are willing to accept their loan offers and not default at date t = 1, 
that is, when RB ≤ (1 − f)cH . Otherwise, all merchants would default on the entire loan. 
Given a credit decision (dB, RB ), a bank’s profts are 

dB {pI[RB ≤ (1 − f)cH ]RB − RD}. 

Because banks are competitive, they earn zero profts in equilibrium. Hence, they agree 
to lend if p ≥ RD and they charge the break-even rate 

(1−f)cH 

RD
RB = . 

p 

If instead, p < RD , banks refuse to lend, because the break-even rate exceeds (1 − f)cH(1−f)cH 

and even good merchants would default. We, therefore, highlight the following remark. 

REMARK 2. When banks are the only lenders, only merchants with credit quality p ≥ 
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1 

RD 
(1−f)cH 

η 

Banks lend 

f 1 

Figure 2: Equilibrium with banks as the only lenders. The shaded area indicates the set of merchants 
(different combinations of relative revenues η and credit quality p) that banks extend credits to. 

RD receive funding. In particular, banks’ lending decisions are based on the mer-
(1−f )cH 

chant’s credit quality p, and not on the merchant’s relative revenues η. 

Because of adverse selection, banks ration credit based on the merchant’s credit qual-
ity. As we will discuss in section 3.2, banks ration credit excessively compared to the 
second-best allocation, causing welfare losses. Figure 2 provides an illustration of the 
equilibrium when banks are the only type of lenders. 

3.1.2 PLATFORM AS THE ONLY LENDER 

If the platform is a monopolistic lender, it chooses the revenue-based repayment fP and 
issues a credit decision (dP , RP ) to maximize its proft. By capping rates at RP ≤ (1 − 

f + fP )cθ, the platform makes sure a merchant of type θ will not default. In particular, 
if RP ≤ (1 − f + fP )cL, both types of merchants repay their loan at t = 1 and continue 
production in the second period. If instead RP ∈ ((1 − f + fP )cL, (1 − f + fP )cH ], only the 
good merchant repays at t = 1 and continues production in the second period. Therefore, 
the platform maximizes ⎧ ⎨ ¯dP {Rp − R + 2[pcH + (1 − p)cL]f} if RP ≤ (1 − f + fP )cL 

max (5) 
fP ,RP ,dP ∈{0,1} ⎩ ¯dP {pRP + (1 − p)fP cL − R + [2pcH + (1 − p)cL]f} if RP > (1 − f + fP )cL 

s.t. (2) and RP ≤ (1 − f + fP )cH 

The incentive-compatibility constraint on the repayment fee fP in (2) always binds. In 
fact, the objective function in problem (5) is weakly increasing in fP . 
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Moreover, with no competition from banks, the platform chooses the interest rate on 
the loan to maximize the expected surplus it extracts from the merchant. In particular, 
the platform increases the interest rate until either the high-revenue merchant or the low-
revenue merchant is indifferent between repaying the loan or defaulting strategically. 
That is, the incentive-compatibility condition (1) binds for one type of merchant. As a 
result, the platform sets its interest rate either to (1 − 2f + η)cL or to (1 − 2f + η)cH . If (1) 
binds for θ = L and the rate is (1 − 2f + η)cL, both types repay the loan in full and the 
platform extracts surplus (1 − 2f + η)cL from both types in addition to transaction fees. If 
(1) binds for θ = H and the rate is (1 − 2f + η)cH , only the high-revenue merchant repays 
the loan and the platform extracts surplus (1 − 2f + η)cH from this merchant. However, 
the platform can extract only repayment fees (η − f)cL as surplus from the low-revenue 
merchant. We describe the platform’s lending behavior in Lemma 1. 

LEMMA 1. When the platform is the only lender, a merchant receives funding if and only if 

¯ max{p(1 + η)cH + (1 − p)ηcL, (1 + η)cL + 2p(cH − cL)f} − R ≥ 0. (6) 

The monopolistic platform sets rate RP = (1 − 2f + η)cH if 

p ≥ 
cL 

, (7)
(1 − 2f + η)(cH − cL) + cL 

and it sets rate RP = (1 − 2f + η)cL otherwise. In particular, if it is effcient to fnance bad 
¯merchants with the platform’s capital, that is, if 2cL > R, then there exists η̂  ∈ (f, 1) such that 

the platform lends regardless of credit quality for η ≥ η̂. 

Lemma 1 is crucial to understanding the platform’s unique behavior and advantage 
as a lender. Whereas banks account only for the merchant’s perceived quality in their 
credit decision, the platform evaluates also the merchant’s relative revenue η when de-
ciding whether to lend or not. Everything else equal, a merchant who benefts more from 
selling on the platform (that is, a merchant with higher η) is more proftable to lend to. In 

¯fact, when 2cL > R and η is large enough (η ≥ η̂), the platform lends to any merchant, 
regardless of her credit quality. 

Furthermore, conditional on lending, the platform lends at a low interest rate, RP = 

(1 − 2f + η)cL, when the merchant’s credit quality is relatively low and condition (7) is 
not satisfed. In this case, neither the good type nor the bad type merchants default on 
their remaining loan balances. As a result, the platform is able to reduce default risks 
conditional on observables and increase total output. 

As we will discuss in Section 3.2.2, the platform’s control over the marketplace is cru-
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Platform lends 

f η̂  1 

Platform lends 

f 1 
¯(a) 2cL > R (b) 2cL < R̄ 

Figure 3: Equilibrium with the platform as a monopolistic lender. Figure 3(a) illustrates when the parameter 
values are such that it is effcient even to lend to bad merchants. In fgure 3(b) illustrates the case when it 
is ineffcient to lend to bad merchants. The shaded area indicates the set of merchants (with different 
combinations of relative revenues η and credit quality p) that receive funding the platform. 

cial for these results. Figure 3 provides an illustration of the equilibrium when the plat-
form is the only lender. 

3.2 DISCUSSION OF THE BENCHMARK MODELS 

Before analyzing the equilibrium when banks compete with the platform, we discuss the 
sources of ineffcient credit allocation in the model. We then highlight how the platform 
is able to partially alleviate these ineffciencies thanks to its control over a valuable mar-
ketplace. 

3.2.1 FINANCING FRICTIONS AND CREDIT RATIONING 

We frst study which fnancing frictions cause ineffcient allocations of credit when banks 
are the only type of creditors. These observations will be useful in understanding how 
the platform gains an advantage over banks thanks to its control of the marketplace. 

To disentangle the role of each of the model’s components, we start from the full infor-
mation benchmark with full income pledgeability. We then add asymmetric information 
about the merchant’s type, limited commitment, and moral hazard. Finally, we introduce 
transaction fees which further restrict pledgeable income to banks. 

Suppose banks are the only lenders. In the Pareto-effcient allocation of resources with 
full information, banks should fnance good merchants because 2cH > RD by Assump-
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tion 1. Moreover, if 2cL > RD, they should fnance also bad merchants. After introducing 
asymmetric information, banks cannot condition credit on the merchant’s type. There-
fore, banks would lend if and only if 

2(pcH + (1 − p)cL) ≥ RD. (8) 

In Appendix B, we show a social planner would lend to merchants satisfying condition 
(8) in the second-best allocation, when there are information asymmetry and limited en-
forcement. 

If 2cL ≥ RD, welfare does not decline because of asymmetric information, because all 
merchants would still receive fnancing. If, instead, 2cL < RD, lenders allocate capital 
ineffciently because of asymmetric information: bad merchants satisfying condition (8) 
would receive fnancing when they should not, whereas good merchants failing to satisfy 
condition (8) do not receive fnancing when they should. 

Next, we add limited commitment and the incentive-compatibility condition (1) with 
f = fB = 0. In this situation, each type of merchant can at most pledge their frst-period 
income to banks. Moreover, under Assumption (1), a bad merchant chooses to default 
when borrowing from banks in equilibrium.12 Hence, the set of merchants receiving f-
nancing is reduced to those satisfying pcH ≥ RD. If 2cL ≥ RD, welfare declines after 
introducing limited commitment because the set of merchants who are rationed expands. 
In expectation, welfare declines also when 2cL < RD. In this case, when parameters sat-
isfy condition (8) and credit is rationed, the expected welfare loss from not fnancing good 
merchants exceeds the expected welfare gain from avoiding bad merchants. 

Finally, the transaction fee f > 0 charged by the platform further decreases the cash 
fow that merchants can pledge to banks. As a result, the set of merchants receiving 
funding reduces to those with (1 − f)cH ≥ RD, and the expected welfare is smaller than 
the case without the transaction fee. 

3.2.2 THE PLATFORM’S ADVANTAGE 

The platform as a creditor is subject to similar fnancing frictions as banks: the platform 
does not possess better information about the merchant’s type, and merchants may still 
default on their loans from the platform. However, the platform possesses two key advan-
tages over banks: enforcement of early repayment and internalization of the transaction 
fees. 

12Default is an ex-post welfare loss, even if 2cL < RD. By defaulting, a merchant forfeits future produc-
tion opportunities after the capital investment was made. 
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ENFORCEMENT. Unlike banks, the platform controls access to a valuable source of rev-
enues for merchants. It thus can implement a revenue-based repayment plan by charging 
repayment fees fP = η−f . Thanks to repayment fees, the platform is able to better enforce 
loan contracts. 

In particular, repayment fees force merchants to credibly pledge part of their revenues 
to the platform. This effect operates through a direct channel and an indirect channel. The 
direct channel is straightforward: even when a merchant defaults, the platform is able to 
collect a partial repayment equal to fP cL. This partial loan repayment reduces the cost 
of fnancing frictions for the platform and allows the platform to lend to a broader set of 
merchants. 

The indirect channel is that the repayment fees improve the merchant’s ex-post incen-
tives to repay and continue production, as mentioned in Remark 1. By enforcing early 
repayment of the loan, the platform partially alleviates the limited-commitment problem. 
As a result, for a given merchant, he is more likely to repay his loan in full when borrow-
ing from the platform. In other words, the platform can reduce default risk for a given 
type of borrower. This allows the borrowers to continue production in future periods and 
increases welfare. 

Both the direct and indirect channels operate via the repayment fee fP . Since the 
repayment fee fP is limited by the merchant’s relative revenue for being on the platform 
(η), the advantage of the platform as a creditor is particularly strong among merchants 
that have large relative revenue (large η). 

INTERNALIZATION. Because the platform controls access to the marketplace, it inter-
nalizes the transaction fees f merchants pay. As the platform’s objective function (5) 
indicates, the platform accounts for the transaction fees the merchant generates over the 
course of the two production periods. Banks, on the other hand, can at most collect rev-
enues (1 − f)cθ from a merchant of type θ. Because the platform internalizes transaction 
fees, the platform has the potential to improve social welfare and expand credit compared 
to banks.13 

Because of better enforcement and internalization, the platform is able to expand 
¯credit and improve welfare compared to banks. Consider the case when 2cL > R and 

it is effcient to lend to bad merchants. According to Lemma 1, if η is suffciently large, a 
13More broadly, a platform may internalize also the network externalities a marginal merchant generates 

on buyers on the platform. At the margin, such network effects could be introduced in the same way we 
introduce transaction fees f in our model (Weyl, 2010; Jullien et al., 2021). However, to micro-fund network 
effects, one would need to explicitly model the market-design problem of the platform. To streamline our 
model and focus on the implications of the platform’s enforcement on the credit market, we abstract from 
network effects and leave them for future work. 
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merchant receives fnancing regardless of her credit quality p. Moreover, for small p, no 
merchant will default. For these merchants, the platform unambiguously improves social 
welfare compared to banks, which avoid lending to any merchants of low credit quality. 

4 EQUILIBRIUM WITH COMPETITION 

We now study the equilibrium and welfare implications when the platform competes 
with banks in the credit market. The merchant may receive credit offers from several 
banks and the platform. Unlike Section 3.1, where lenders use pure strategies, here the 
equilibrium is characterized by mixed strategies in the region where banks and the plat-
form are competing directly. We start by specifying the structure of the model at date 
t = 0 in more details when the merchant applies for fnancing and lenders compete. 

4.1 COMPETITION BETWEEN THE PLATFORM AND BANKS 

Consider date t = 0. First, competitive banks announce their lending mechanisms and 
commit to them. A lending mechanism specifes the probability the bank offers a loan, 
mB = P (dB = 1), and the distribution of the interest rate RB offered conditional on 
extending a loan, FB(R) := P (RB ≤ R). The merchant then chooses the bank offering the 
best mechanism for the merchant.14 We label this bank as the merchant’s preferred bank. 

The platform also selects a lending mechanism in order to compete with the mer-
chant’s preferred bank. The platform’s lending mechanism specifes the platform’s lend-
ing probability mP = P (dP = 1), and the distribution of rates FP (R) := P (RP ≤ R) 

the platform offers, conditional on lending. The platform also charges repayment fees fP 

such that the merchant prefers to operate on the platform, i.e. satisfying condition (2). 
The merchant simultaneously applies for a loan from her preferred bank and the plat-
form. The bank and the platform, therefore, issue their lending decisions, (dB, RB ) and 
(dP , RP ), at the same time. 

MERCHANT’S STRATEGY If only one lender grants credit, the merchant borrows from 
that lender regardless of the merchant’s type. If neither lender extends credit, the mer-
chant does not produce goods and generates zero value. If both lenders offer credit, the 
merchant will choose her best option. However, good and bad merchants face different 
incentives to repay the loan and may, therefore, choose differently. 

14We assume the merchant suffers a non-pecuniary cost when applying to multiple banks. Typically, 
when multiple banks pull the credit report of the borrower, the perceived credit quality of the borrower 
will be negatively affected in the future. 

20 



In equilibrium, a good merchant who receives offers from both lenders chooses the 
offer with the lowest rate. If a good merchant borrows from a bank at a rate greater than 
(1 − f)cH , she will default at date t = 1. Therefore, banks will never offer rates above 
(1 − f)cH and hence, FB((1 − f)cH ) = 1. Moreover, without loss of generality, we set 
FB (RD) = 0, because banks cannot lend below their cost of capital without experiencing 
losses. If a good merchant borrows from the platform with repayment fees fP , she will 
default if the platform’s rate exceeds (1 − f + fP )cH . Because repayment fees are bounded 
above by (η − f) (see condition (2)), a platform never offers rates above (1 − 2f + η)cH . 
Hence, we have FP ((1 − 2f + η)cH ) = 1. Given these upper limits on the interest rates 
offered by banks and by the platform, a good merchant who receives offers from both 
lenders chooses the offer with the lower rate.15 

Whereas a good merchant always chooses the lender offering the lowest rate, a bad 
merchant takes into account the option value to default. If cL(1−f) exceeds 2(1−f)cL −R, 
where R is the interest rate on the loan, a bad merchant prefers to default rather than keep 
producing. Therefore, when both lenders offer rates above (1 − f)cL, the bad merchant 
always defaults. Because the platform charges repayment fees, the option value of de-
faulting is lower if the loan is from the platform. Hence, in this case, the bad merchant 
always chooses to borrow from the bank and defaults in order to avoid the repayment 
fees on the platform. 

PLATFORM’S PROFIT Because the borrower’s choice and default decision depend on 
the interest rate offered, we need to consider three different regions of interest rates when 
analyzing the platform’s proft. When the platform offers very low interest rates, i.e. 
R ≤ (1 − f)cL, both types of merchants would produce and pay transaction fees for two 
periods. Furthermore, both types of merchants will borrow from the platform and not 
default.16 The platform’s proft of lending at rate R is given by 

l− ¯ 
P (R, mB, GB; p) := R − R + 2[pcH + (1 − p)cL]f, 

15In what follows, we assume the good merchant selects the platform if both lenders offer the same 
rate. This assumption is without loss of generality. In fact, if the merchant’s choice were endogenously 
determined in case of indifference, in equilibrium we would observe the same outcome. Therefore, to 
streamline the model and the exposition, we directly assume the good merchant borrows from the platform 
if indifferent between the two offers. 

16Because RD > (1 − f)cL, banks never offer rates below (1 − f)cL in equilibrium. 
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where we explicitly denote the dependence of the platform’s profts on the merchant’s 
credit quality p. This scenario could only be proftable for the platform if 

¯(1 − f)cL ≥ R − 2[pcH + (1 − p)cL]f. 

In other words, the platform could lend below its cost of capital and still make proft if 
the transaction fee f is high enough. 

In the second scenario, when the platform offers an intermediate interest rate, i.e. R ∈ 

((1 − f)cL, (1 − 2f + η)cL], a bad merchant who borrows from the platform will repay the 
balance and continue production in the second period. However, if a bank also makes an 
offer, the bad borrower prefers to borrow from the bank and default after one period. In 
this case, the platform’s expected proft at lending rate R is 

lP 
0 (R, mB, GB ; p) := mBpGB (R)(R − R̄) + (1 − mB)[R − R̄ + (1 − p)cLf ] + [2pcH + (1 − p)cL]f, 

where 
GB (R) := P (RB ≥ R) = 1 − lim FB (R − ε). 

ε→0+ 

With probability mB, a bank lends and only good borrowers accept the platform’s offer, 
provided RB ≥ R. The good merchant produces and pays transaction fees for two peri-
ods. If the merchant is bad, she borrows from banks and defaults, thus paying the trans-
action fee only in the frst period. With probability (1 − mB), the bank denies credit and 
thus, the merchant necessarily borrows from the platform. Because R ≤ (1 − 2f + η)cL, 
the rate is suffciently low that both types of borrowers repay the loan balance. In this 
case, both borrowers produce and pay transaction fees for two periods. 

Finally, if the platform lends at a high rate, i.e. R ∈ ((1 − 2f + η)cL, (1 − 2f + η)cH ], the 
rate is so high that a bad merchant defaults even when she borrows from the platform. 
Hence, the platform’s expected proft is 

lP 
1 (R, mB, GB ; p) := mBpGB (R)(R−R̄)+(1−mB)[pR+(1−p)(η−f)cL−R̄]+[2pcH +(1−p)cL]f. 

Similar to the previous case, with probability mB a bank lends and the platform attracts 
only good borrowers provided that RB ≥ R. With probability (1 − mB ), the bank denies 
credit. In this case, the good merchant fully repays the loan, but the bad merchant pays 
only the repayment fees fP cL and defaults on the balance. Regardless of the lender, the 
platform also collects revenues from transaction fees f in both periods from good mer-
chants and for one period from bad merchants. 

To summarize, conditional on lending at rate R ≤ (1 − 2f + η)cH , the expected profts 
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⎪⎪
⎪⎪

of the platform are ⎧ ⎪lP 
−(R, mB , GB; p) if R ≤ (1 − f)cL⎨ 

LP (R, mB , GB; p) := lP 
0 (R, mB, GB ; p) if R ∈ ((1 − f)cL, (1 − 2f + η)cL] (9) ⎪⎩l1 
P (R, mB, GB ; p) if R > (1 − 2f + η)cL. 

Unlike Section 3.1, where the platform earns zero profts when it does not lend, here 
the platform enjoys a better outside option. If the platform does not lend, it still earns 
transaction fees if a bank lends to the merchant, which happens with probability mB. 
Hence, the payoff of a platform that does not lend is mB[2pcH + (1 − p)cL]f instead of 
zero. 

BANK’S PROFIT On the bank side, conditional on lending at rate R ∈ [RD, (1 − f)cH ], a 
bank obtains the following expected profts: 

LB(R, mP , GP ; p) := mP [pGP (R)(R − RD) − (1 − p)GP ((1 − f)cL)RD] + (1 − mP )(pR − RD), 

(10) 
where 

GP (R) := P (RP > R) = 1 − FP (R). 

If the platform offers a loan, with probability p the merchant is good and borrows from 
the bank only if RP > R. With probability 1 − p, the merchant is bad and she borrows 
from the bank whenever the platform’s rate exceeds (1 − f)cL. If the platform does not 
offer a loan (with probability (1 − mP )), the merchant necessarily borrows from the bank. 
Whenever a bad merchant borrows from the bank, she defaults at date t = 1. A bank that 
decides not to lend earns its outside option, which is equal to zero. 

Let Δ([0, X]) be the set of non-decreasing, right-continuous functions satisfying F (x) = 

0 for all x < 0 and F (x) = 1 for all x ≥ X for any F ∈ Δ([0, X]). We defne equilibrium as 
follows. 

DEFINITION 1 (Equilibrium). An equilibrium is a set of lending probabilities (m ∗ 
P ,m ∗ 

B ) ∈ 

[0, 1]2 and rate distributions by the platform and the banks FP 
∗ ∈ Δ([0, (1 − 2f + η)cH ]) and 

F ∗ ∈ Δ([0, (1 − f)cH ]) with supports R∗ and R∗ and with G∗ (R) := 1 − limε→0+ F ∗ (R − ε)B P B B B 

and G∗ 
P (R) := 1 − FP 

∗ (R), such that: 

1. The platform and competitive banks set rates optimally: 

R ∗ 
P = arg max LP (R, mB 

∗ , G ∗ 
B; p) 

R≤(1−2f+η)cH 
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R ∗ 
B = arg max LB(R, m ∗ 

P , GP 
∗ ; p) 

R∈[RD ,(1−f)cH ] 

s.t. LB(R, m ∗ 
P , GP 

∗ ; p) ≤ 0. 

2. Lenders extend credit optimally: 

m ∗ ∈ arg max {mP LP (R, mB 
∗ , G ∗ 

B ; p) + (1 − mP )m ∗ 
B [2pcH + (1 − p)cL]f} ∀R ∈ R ∗ 

P P 
mP ∈[0,1] 

m ∗ 
B ∈ arg max mBLB(R, mP 

∗ , G ∗ 
P ; p) ∀R ∈ R ∗ 

B . 
mB ∈[0,1] 

3. Banks are competitive in the lending market; that is, no lending mechanism (FB,mB)R (1−f)cHexists such that 
0 LB(R, m∗ , G∗ 

P ; p) dFB(R) > 0 and U(1,m ∗ , FB, F ∗ ) >P P P 
∗ ∗ ∗U(mB,m , F ∗ , F ).P B P 

According to part 1, lenders select their rates in the set of best responses. Competitive 
banks offer rates so that, at best, they break even. According to part 2, lenders decide 
whether to lend or not optimally when comparing profts from lending activity with their 
outside option. Combining parts 1 and 2, we also have that banks earn zero profts in 
equilibrium. That is, 

m ∗ 
B LB (RB,m ∗ 

P , G ∗ 
P ; p) = 0 ∀RB ∈ R ∗ 

B. (11) 

Part 3 of the defnition specifes that banks offer competitive terms to merchants. In 
particular, a bank cannot deviate from the equilibrium mechanism and obtain a strictly 
positive proft while also increasing the good merchant’s utility. This condition ensures 
banks offer the best terms for a good merchant that are compatible with the other equilib-
rium conditions. 

Next, we provide a frst characterization of the platform’s interest-rate strategy. In 
particular, we show a platform never offers a rate equal to or below (1 − f)cL. Therefore, 
the frst case in equation (9) is not part of any equilibrium. 

LEMMA 2. For any mB ∈ [0, 1] and R ≤ (1 − f)cL, LP (R, mB , GB; p) < LP ((1 − 2f + 

η)cL,mB, GB ; p). Therefore, [0, (1 − f)cL] ∩ R∗ 
P = ∅. 

Thanks to Lemma 2, from now we focus on equilibria in which RP > (1 − f)cL. Thus, 
the bad merchant always prefers borrowing from banks and defaulting rather than bor-
rowing from the platform. 
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4.2 MARKET SEGMENTATION AND ADVANTAGEOUS SCREENING 

We begin by exploring some general features of the equilibrium. Lemma 3 establishes 
that, in equilibrium, the market will be partially segmented based on the merchant’s 
credit quality. Merchants of high credit quality borrow exclusively from banks, whereas 
merchants of low credit quality borrow exclusively from the platform. 

LEMMA 3 (Partial Segmentation). If p < RD , banks do not lend to the merchant, but if 
(1−f )cH 

condition (6) holds, the platform lends as in Lemma 1. If p ≥ R
R 
D , the merchant borrows exclusively ¯ 

from banks that offer loans with probability 1 at rate R
p 
D . 

If the merchant’s credit quality is low, i.e. p < RD , all banks refuse to lend to
(1−f )cH 

the merchant because the credit risk is too high, similar to Remark 2. Thus, the platform 
remains the only lender as long as condition (6) is satisfed. If the merchant’s credit quality 
is very high, i.e. p ≥ R

R 
D , the platform cannot proftably compete with banks because ¯ 

banks are able to offer very low interest rates to these borrowers. When banks offer loans 
at their most competitive rate R

p 
D , the platform could attract good borrowers by matching 

or undercutting the banks’ interest rate. However, if p ≥ R
R 
D , the platform’s cost of capital ¯ 

is equal to or exceeds the banks’ competitive rate. Thus, the platform has no incentives to 
compete with banks for borrowers of high credit quality. 

Markets are only partially segmented because, as we show in Lemma 4, the platform h � 
and banks compete for borrowers of intermediate credit quality, p ∈ RD , RD/R̄ .

(1−f)cH h � 
LEMMA 4 (Mixed Strategies). If p ∈ RD , RD/R̄ , banks offer loans with probability m ∗ 

B ∈(1−f )cH 

(0, 1) and the platform offers loans with probability m ∗ 
P ∈ (0, 1]. Moreover, the platform offers 

rates ranging between min R∗ ≤ RD/p and max R∗ ≥ (1−f)cH . In particular, min R∗ coincidesP P P 

either with RD/p or with (1 − 2f + η)cL. Banks offer rates up to sup R∗ 
B = (1 − f)cH . 

The platform and banks compete for borrowers of intermediate credit quality, and any 
equilibrium in this region is characterized by mixed strategies. Because of competition, 
the platform lowers interest rates below its monopolistic rate (1 − 2f + η)cH with strictly 
positive probability.17 At the same time, compared with the bank-only benchmark model, 
banks increase their rates up to their monopolistic rate (1 − f)cH . Moreover, banks also 
deny credit with positive probability 1 − mB 

∗ > 0. 

17In the proof of Lemma 4, we show that 

p(1 + η)cH + (1 − p)ηcL > (1 + η)cL + 2p(cH − cL)f 

when p ≥ RD . For these parameters, if the platform were a monopolistic lender, it would lend at a rate (1−f)cH 

equal to (1 − 2f + η)cH or not lend at all. 
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Banks ration credit and increase rates because they suffer from a worse adverse se-
lection problem compared with the benchmark model where the banks are the only type 
of lenders. Whereas a good borrower prefers the lender offering the lowest rate, a bad 
borrower prefers banks in order to avoid the increased fees on the platform. 

By implementing revenue-based repayments through increased fees, the platform thus 
benefts from a form of advantageous screening, whereby bad borrowers self-exclude from 
borrowing from the platform when the bank credit is available. Banks, on the other hand, 
suffer from adverse screening, worsening the adverse-selection problem. 

Interestingly, according to Lemma 3, the platform tends to lend to merchants of lower 
credit quality p. That is, based on public information, the platform provides credit to 
merchants with worse credit credentials. However, once we condition on public infor-
mation about the merchant’s credit quality, the platform’s borrowers reveal themselves 
to be of higher quality than banks’ borrowers, on average. We, therefore, summarize the 
equilibrium prediction of the platform’s advantageous screening in the following remark. 

REMARK 3. The platform lends to merchants with worse observable credit quality than 
banks. However, conditional on observable characteristics, the platform lends to a better 
pool of borrowers because of advantageous screening. 

Furthermore, because of advantageous screening, a platform competing with banks 
lends to a wider set of merchants than a monopolistic platform. Compared with the 
benchmark model where the platform is the only lender, the platform now extends credit 
to a merchant even if condition (6) is not satisfed (provided p ≥ RD ). In this case, 

(1−f)cH 

the platform profts from advantageous screening at the expense of banks. We further 
characterize the platform behavior in Lemma 5. h � 

RD RDLEMMA 5 (The Platform’s Strategy). Consider a merchant characterized by p ∈ , .¯(1−f )cH R

¯If p(1 + η)cH + (1 − p)ηcL > R, the platform lends with probability m ∗ 
P = 1 and the highest rate 
¯it offers is max R∗ 

P = (1 − 2f + η)cH . If p(1 + η)cH + (1 − p)ηcL ≤ R, the platform is indifferent 
¯between offering a loan or not. Moreover, if R > (1 − 2f + η)cL, the platform’s lowest rate is 

¯min R∗ 
P = RD/p > (1 − 2f + η)cL. If R ≤ (1 − 2f + η)cL and RD/p ≤ (1 − 2f + η)cL, 

min R∗ 
P = RD/p. 

Lemma 5 shows that in the region where the platform can proftably lend as the only 
¯lender, i.e. p(1+η)cH +(1−p)ηcL > R, the platform will continue lending with probability 

1 when it faces competition from the banks. However, in the region where the platform 
¯cannot proftably lend as the only lender, i.e. p(1 + η)cH + (1 − p)ηcL ≤ R, the platformh � 

RD RDwill now lend when there are also banks making loans. In particular, if p ∈ , ,¯(1−f )cH R
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then the platform collects rents from lending because of advantageous screening, at the 
expense of banks: the presence of banks increases the quality of the platform’s borrower 
pool endogenously. In equilibrium, the rents are enough to leave the platform indifferent 
between lending and not lending. 

Next, we fully characterize the equilibrium in the region where the banks and theh � 
RD RDplatform compete, i.e. p ∈ , . Based on Lemma 4 and Lemma 5, we distinguish ¯(1−f )cH R

three cases, with the second one including two sub-cases: h � 
¯ RD RDA: p(1 + η)cH + (1 − p)ηcL > R > (1 − 2f + η)cL, and p ∈ , ;¯(1−f)cH Rh � 

¯ RD RDB: R ≤ (1 − 2f + η)cL and p ∈ , ¯(1−f )cH R

B1: Like case B, but restricted to p ≥ RD ;
(1−2f +η)cL 

B2: Like case B, but restricted to p < RD ;
(1−2f+η)cL h � 

¯ RD RDC: p(1 + η)cH + (1 − p)ηcL ≤ R and p ∈ , .¯(1−f)cH R

Figure 4 provides a graphical illustration of the possible cases for different values of rel-
ative revenues η and credit quality p. Although the graphical illustration in the (η, p) 
space may vary depending on the parameters (the four cases may not always co-exist for 
all the parameter values), cases A, B1, B2, and C cover all possible combinations of pa-h � 

RD RDrameters satisfying Assumption 1, and p ∈ , (the region where both types of ¯(1−f)cH R

lenders offer loans with positive probability).18 In particular, we note that case C implies 
R̄ > RD and, hence, the platform’s cost of capital exceeds the banks’. Case B requires 
R̄ < 2(1 − f)cL ≤ 2cL and, hence, it is effcient to fnance bad merchants if they produce 
for two periods. 

Next, we characterize the equilibrium for each case in detail and analyze the welfare 
implication of the platform offering credits. A challenge in characterizing the equilibrium 
is that the platform’s proft function is not continuous in the interest rate offered. The 
discontinuity originates from the bad merchant’s decision to default strategically when 
the interest rate exceeds (1 − 2f + η)cL. 

¯18By the observation in footnote 17, case B implies R < p(1 + η)cH + (1 − p)ηcL, whereas case C implies 
R̄ > (1 − 2f + η)cL. 
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¯ ¯(a) 2cL > R > RD (b) 2cL < R = RD 

Figure 4: Equilibrium with competition. The fgure illustrates when the platform, banks, or both lend to a 
merchant for different combinations of relative revenues η and credit quality p. In fgure 4(a), it is effcient 
to lend to a bad merchant and the platform’s cost of capital exceeds the banks’. In fgure 4(b), it is ineffcient 
to lend to a bad merchant and the platform’s cost of capital is equal to the banks’. 

4.3 EQUILIBRIUM WITH COMPETITION 

We fully characterize the equilibrium with competition between banks and the platform. 
We consider cases A, B, and C separately. 

CASE A. The merchants in this region have relatively high credit quality and relative 
revenue, hence the platform optimally lends with probability mP 

∗ = 1. In other words, 
there is no credit rationing and all the merchants receive credits. Compared with the 
platform-only benchmark, competition from banks forces the platform to offer lower 
rates. However, the monopolistic rate (1 − 2f + η)cH remains a best response for the 
platform. 

Moreover, the platform never offers a contract that enforces full repayment from bad 
merchants, because the merchant’s relative revenues η are too low compared to its cost 
of capital. The platform could either offer a high rate, in which case the bad type of mer-
chants will default, but the platform can earn high proft from the good type of merchants, 
or the platform could offer a low rate, in which case both types of merchants repay. In this 
region, to enforce full repayment, the platform needs to offer a very low rate, and that is 
not proft maximizing given the mix of good and bad merchants. 

Banks suffer from adverse screening in equilibrium, and they thus deny credit with 
positive probability 1 − mB 

∗ ∈ (0, 1). They also offer rates up to their monopolistic rate 
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(1 − f)cH . The following proposition fully characterizes the equilibrium in this case. 
On the merchant’s side, a good merchant never defaults and a bad merchant always 

defaults on their remaining balances, regardless of who the lender is. 

PROPOSITION 1. Assume parameters satisfy case A. The equilibrium is characterized as follows: 

1. The platform extends credit with probability m ∗ 
P = 1 and, conditional on making an offer, it 

chooses a rate from R∗ = [RD/p, (1 − f)cH ] ∪ {(1 − 2f + η)cH } so that P (RP > R) = P 

G∗ 
P (R), where G∗ 

P (·) is characterized by (A.7) in Appendix A. 

2. Banks extend credit with probability m ∗ 
B ∈ (0, 1), where the expression is given by (A.5) 

in Appendix A. Conditional on making an offer, they choose a rate from the support R∗ 
B = 

[RD/p, (1 − f)cH ] so that P (RB ≥ R) = G∗ 
B(R), where the expression for G∗ 

P (·) is given 
by (A.6) in Appendix A. 

Compared with the benchmark model where banks are the only type of lender, the 
merchant still receives credit offers from at least one lender, but now she pays borrowing 
costs strictly exceeding RD/p. 

Furthermore, banks now lend at their monopolistic rate (1 − f)cH with positive proba-
bility. By lending at the monopolistic rate, banks obtain profts when the platform denies 
credit to merchants or offers a higher rate. They use these profts to cover the losses they 
experience from adverse screening in equilibrium. 

CASE B. Merchants in this region have even higher credit quality and relative revenue, 
compared to those in case A. Similar to case A, the platform optimally lends with proba-
bility mP 

∗ = 1, and all merchants receive credits. However, unlike in case A, the platform 
may now offer a contract that induces full repayment from even the bad merchants; that 
is, a contract with RP ≤ (1 − 2f + η)cL. As before, the platform could either offer a 
high rate, in which case the bad merchants default, but it earns high proft from the good 
merchants, or the platform could offer a low rate, in which case both types of merchants 
repay. The relative revenue η in this region is high enough such that both strategies could 
be proft maximizing. 

In particular, in case B1 when RD/p ≤ (1 − 2f + η)cL, the lowest interest rate that 
could be offered by banks is below (1 − 2f + η)cL. In order to compete, the platform also 
offers rates lower than (1 − 2f + η)cL (this is formally shown in Lemma 4). When the 
interest rate is lower than (1 − 2f + η)cL, the bad type of merchants will also repay in full 
if they borrow from the platform (however, the bad type of borrowers only borrow from 
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the platform when banks deny them credits). Similar to what happens in the platform-
only benchmark model, the platform reduces the default probability of bad merchants 
and increases output. In this case, social welfare may increase because the bad borrower 
produces for two periods instead of one. The following proposition describes the equilib-
rium in case B1. 

PROPOSITION 2. Assume parameters satisfy case B1 and defne 

T := min {(1 − 2f + η)cL, (1 − f)cH }� �¯(1 − p)cL[(1 − 2f + η)cL − R]
U := min (1 − 2f + η)cL + , (1 − f)cH .¯ p(1 − 2f + η)cH − (1 − p)cL − pR 

The equilibrium is characterized as follows. 

1. The platform extends credit with probability mP 
∗ = 1 and, conditional on making an offer, it 

offers rates in R∗ = [RD/p, T ] ∪ [U, (1 − f)cH ] \ {(1 − f)cH } ∪ {(1 − 2f + η)cH } so thatP 

P (RP > R) = G∗ 
P (R), where the expression for G∗ 

P (R) is given by (A.11) in Appendix A. 

2. Banks extend credit with probability mB 
∗ ∈ (0, 1), where its exact expression is given by 

(A.8) in Appendix A. Conditional on making an offer, they choose a rate from the support 
R∗ 
B = [RD/p, T ) ∪ [U, (1 − f)cH ] so that P (RB ≥ R) = G∗ 

B(R), where GB 
∗ (R) is charac-

terized by (A.13) in Appendix A. 

Notice that in equilibrium, the platform’s optimal interest rate strategy R∗ 
P may con-

sist two disconnected regions. The reason is because the platform’s objective function is 
discontinuous in its interest rate around RP = (1−2f +η)cL. By moving from a rate equal 
to (1 − 2f + η)cL to marginally higher rate equal to (1 − 2f + η)cL + ε for a very small 
positive ε, the bad type of merchants switches from repaying the loan in full to default-
ing on the remaining balances. Hence, the platform’s profts change discontinuously and 
decline by at least 

(1 − mB 
∗ )(1 − p)cL − εG ∗ 

B((1 − 2f + η)cL). 

As a result, the platform only offers interest rates above (1 − 2f + η)cL if such rates are 
suffciently high to justify the decline in profts due to worse enforcement. The lowest of 
such rates, if they exist, is U ∈ ((1 − 2f + η)cL, (1 − f)cH ) such that, by offering interest 
rate U , the platform’s proft is equal to its proft when offering (1 − 2f + η)cL. That is, 

l1 (U, m ∗ , GB 
∗ ; p) = l0 ((1 − 2f + η)cL,m ∗ , G ∗ 

B ; p).P B P B 
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Furthermore, if the parameter values are such that (1 − 2f + η)cL < (1 − f)cH , the 
platform offers rate (1 − 2f + η)cL with strictly positive probability � � 

RD U − (1 − 2f + η)cL
P (RP = (1 − 2f + η)cL) = (1 − p) > 0, 

p [((1 − 2f + η)cL) − RD](U − RD) 

and banks are thus deterred from offering rates in ((1 − 2f + η)cL, U). 
In case B2, when RD/p > (1 − 2f + η)cL, the lowest interest rate could be offered by 

banks is above (1 − 2f + η)cL, so the platform does not necessarily need to offer contracts 
below (1−2f +η)cL, which induce full repayment from bad merchants. However, if RD/p 

is not too much higher than (1 − 2f + η)cL, the platform may still choose to undercut 
banks by offering a rate exactly equal to (1 − 2f + η)cL, which is lower than RD/p, with 
positive probability. This could be proft maximizing because the bad merchants will 
repay in full when they borrow from the platform. The following proposition describes 
the equilibrium in this case. 

PROPOSITION 3. Assume parameters satisfy case B2, if 

R̄ − 1−p R(1 − 2f + η)cH − cL 
¯ 

p (1−2f +η)cLRD/p ≥ (1 − 2f + η)cL (12)
R̄ − 1−p(1 − 2f + η)cH − 

p cL 

the equilibrium is the same as in case A and it is described by Proposition 1. Otherwise, defne ( )
(1 − 2f + η)cH − R̄ − 1−p cL

R̄ 
p (1−2f+η)cLV := min (1 − f)cH , (1 − 2f + η)cL . 

(1 − 2f + η)cH − R̄ − 1− 
p
p cL 

the equilibrium is characterized as follows. 

1. The platform extends credit with probability m ∗ 
P = 1 and, conditional on making an offer, it 

offers a rate from the support R∗ = [V, (1 − f)cH ] ∪ {(1 − 2f + η)cL, (1 − 2f + η)cH } soP 

that P (RP > R) = GP 
∗ (R), where GP 

∗ (R) is given by (A.17) in Appendix A. 

2. Banks extend credit with probability m ∗ 
B ∈ (0, 1), where the expression for m ∗ 

B is given 
by (A.15). Conditional on making an offer, they choose a rate from the support R∗ 

B = 

[V, (1 − f)cH ] so that, if V ∈ (RD/p, (1 − f)cH ), P (RB ≥ R) = GB 
∗ (R), where GB 

∗ (R) is 
given by (A.16) in Appendix A. If, instead, V = (1 − f)cH , then P (RB = (1 − f)cH ) = 1. 

To understand the platform’s equilibrium strategy, let RV be the lowest rate in [RD/p, (1− 

2f + η)cH ] such that by offering rate RV , the platform is earning as high proft as when 
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offering rate (1 − 2f + η)cL 

l1 ∗ ∗ 
P (R

V ,mB, GB 
∗ ; p) ≥ lP 

0 ((1 − 2f + η)cL,mB, GB 
∗ ; p). 

Since RV > (1 − 2f + η)cL, the platform receives lower profts from the good merchants 
when it offers the lower interest rate (1 − 2f + η)cL. However, at such a rate, it induces 
full repayment from the bad merchants. The rate RV corresponds to the rate at which the 
two forces are exactly equal to each other. 

If RD/p ≥ RV , this means the lowest possible rate offered by banks is relatively high 
compared to the rate at which the platform is willing to undercut. Hence then the plat-
form prefers to match banks’ rates rather than undercut banks and set (1 − 2f + η)cL. This 
is the case when condition (12) is satisfed. The equilibrium is then the same as in case A. 

If instead RV ∈ (RD/p, (1 − f)cH ], this means the platform can earn higher proft by 
undercutting the banks and offering rate (1 − 2f + η)cL (compared to matching the banks 
rate RD/p). Hence the platform offers the lower rate (1−2f +η)cL with positive probability 

(1 − p)RD/p
P (RP = (1 − 2f + η)cL) = 1 − > 0,

V − RD 

and banks are thus deterred from offering rates in ((1 − 2f + η)cL, V ]. 
Finally, if RV > (1 − f)cH exists, the platform always prefers to undercut banks rather 

than compete with them. We thus set V = (1 − f)cH . In this case, the platform offers only 
contracts with a rate equal to either (1 − 2f + η)cL or (1 − 2f + η)cH , each with positive 
probability. 

CASE C. We now consider parameters satisfying case C. Merchants in case C have low 
credit quality and also low relative revenue. With these parameters, the platform is un-
willing to lend to the merchant when it is the only lender in the market. However, as 
shown in Lemma 5, the platform is now indifferent between lending and not lending in 
equilibrium. Due to the effect of advantageous screening in equilibrium, the platform is 
able to extract rents from banks to cover its cost of capital. 

PROPOSITION 4 (Equilibrium in Case C). Assume parameters satisfy case C. The equilibrium 
is characterized as follows. 

¯1. If p(1 + η)cH + (1 − p)ηcL < R, the platform extends credit with probability mP 
∗ ∈ (0, 1), 

with the exact expression given by (A.20) in Appendix A. Conditional on making an offer, 
it chooses a rate from the support R∗ 

P = [RD/p, (1 − f)cH ] so that P (RP > R) = G∗ 
P (R), 

where G∗ 
P is given by (A.21) in Appendix A. 
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h i 
¯ (1−p)RD /pIf p(1+η)cH +(1−p)ηcL = R, there are multiple equilibria indexed by Q ∈ 0, 

(1−f )cH −RD 

whereby the platform extends credit with probability m ∗ 
P ∈ (0, 1], with the exact expression 

given by (A.22) in Appendix A. Conditional on making an offer, it chooses a rate from the 
support R∗ = [RD/p, (1 − f)cH ] ∪{(1 − 2f + η)cH } so that P (RP > R) = G∗ (R), where P P 

G∗ 
P (R) is given by (A.23) in Appendix A. 

2. Banks extend credit with probability mB 
∗ ∈ (0, 1), where mB 

∗ is given by (A.18) in Appendix 
A. Conditional on making an offer, they choose a rate from the support R∗ 

B = [RD/p, (1 − 

f)cH ] so that P (RB ≥ R) = G∗ 
B (R), where G∗ 

B(R) is given by (A.19) in Appendix A. 

¯If p(1 + η)cH + (1 − p)ηcL < R, the merchant is rationed with positive probability 
(1 − m ∗ 

B )(1 − m ∗ 
P ) > 0, whereas if banks were the only lenders, the merchants would 

always obtain fnancing. Furthermore, conditional on receiving a loan, the rate exceeds 
RD/p with strictly positive probability. In this case, the platform lends solely because it 
expects to proft from advantageous screening at the expense of banks. Therefore, the 
platform never offers its monopolistic rate (1 − 2f + η)cH because it is higher than what 
banks would offer and the platform is unable to extract any rents from banks at that rate. 

¯If p(1 + η)cH + (1 − p)ηcL = R, multiple equilibria exist and they are indexed by Q. In 
(1−p)RD /pthe knife-edge equilibrium with Q = , the merchant is not rationed, but she is 

(1−f)cH −RD 

rationed in all the other equilibria with smaller values of Q. We obtain multiple equilibria 
because the platform is indifferent between lending at the monopolistic rate (1−2f +η)cH 

and not lending. Therefore, a continuum combinations of Q = P (RP = (1 − 2f + η)cH ) 

and mP 
∗ = P (dP = 1) satisfy the equilibrium conditions. 

4.4 ENFORCEMENT AND COMPETITION 

In our model, banks are fully competitive and earn zero profts, hence the beneft of the 
platform entering the credit market is not to increase competition. Moreover, the plat-
form’s cost of capital is weakly larger than banks, so the platform cannot compete on 
costs. As discussed in the literature review, other research in fntech assumes fntech 
lenders enter the credit market because of superior information, regulatory advantage, 
or consumers’ taste. The platform from our model does not beneft from any of these 
advantages. So, why does the bigtech platform enter the credit market and compete with 
banks? 

Similar to the benchmark model in Section 3.1.2, the platform enters the credit market 
because it can alleviate fnancing frictions by enforcing partial repayments with fees. In 
addition, it also internalizes transaction fees. Thanks to these two advantages, the plat-
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form has the potential to compete with banks and to improve social welfare because more 
income can be credibly pledged to the platform than to banks. 

However, when the platform directly competes with banks, it lends also for a third 
reason: advantageous screening, which is particularly stark in case C. As a monopolist, 
the platform would not lend when parameters satisfy case C. However, when the banks 
are present, the platform will offer credits. Whereas internalization and better enforce-
ment were insuffcient to justify lending in case C, the additional rents accruing from 
equilibrium screening convince the platform to lend in competition with banks. 

With advantageous screening, the platform earns higher profts when banks lend more 
because the platform can extract larger rents from them. In fact, in case C, the platform’s 
expected profts when lending are given by 

mB 
∗ [2pcH + (1 − p)cL]f 

In equilibrium, the platform’s lending profts increase with the probability that banks 
offer a loan. In contrast, in case A and B, the competition from banks decreases the plat-
form’s equilibrium proft, i.e. the platform’s proft is decreasing in the bank’s lending 
probability mB. This is because fercer competition from banks decreases how much sur-
plus the platform can extract from the borrowers. The difference in how banks and the 
platform interact across different regions is crucial for understanding the role of informa-
tion advantage in Section 5. 

Unlike better enforcement and internalization, advantageous screening could lower 
equilibrium welfare. Because the platform extracts rents from banks, banks lend more 
conservatively by denying credit with higher probability and by offering higher inter-
est rates, as Lemma 4 shows. The equilibrium effects of the platform’s advantageous 
screening are similar to the effect of a winner’s curse on banks. Whereas a winner’s curse 
originates from asymmetric information among lenders or bidders (Milgrom and We-
ber, 1982; Engelbrecht-Wiggans et al., 1983; Hausch, 1987; Kagel and Levin, 1999), in our 
model, advantageous screening originates from the platform’s superior ability to enforce 
repayments from a bad merchant. If the bad merchant prefers defaulting to repaying the 
loan, she chooses to borrow from banks when possible. We formally explore the welfare 
implications of the platform on credit markets in the next section. 

4.5 WELFARE 

We now evaluate how welfare changes when the platform enters the credit market in 
competition with banks. Whereas lenders always improve welfare by providing credit to 
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a good merchant, denying credit to a bad merchant is effcient if 2cL < RD. To properly 
evaluate the welfare effect of the platform in the credit market, we assess the expected 
welfare based on public information about the merchant, thus not conditioning on the 
merchant’s type. We then compare the expected welfare when the platform and banks 
compete to the expected welfare when banks are the only type of lenders. 

Changes in expected welfare are determined by the combination of the positive effects 
of the platform’s better enforcement and internalization on the one hand, and the negative 
effects of the platform’s advantageous screening on the other. 

If p < RD , the platform does not compete with banks and, therefore, there is no
(1−f)cH 

advantageous screening. If condition (6) is satisfed and the platform lends, then the 
expected welfare increases because more cash fow is credibly pledged to the lender. In 
this case, social welfare strictly increases and it is at least as large as 

¯2pcH + (1 − p)cL − R ≥ 0, 

where the inequality follow from condition (6) and it is strict when η < 1. Welfare is even 
larger if p < cL , in which case the equilibrium interest rate is such that even 

(1−2f+η)(cH −cL)+cL 

the bad merchant does not default and produces for two periods. The platform lowers 
default probability for the bad merchant and increase welfare even more. 

If p ≥ RD , expected welfare is 2cH + cL − RD when banks are the only lenders. 
(1−f)cH 

In the region where p ≥ RD/R̄ , the expected welfare does not change when the platform 
enters the credit market because the merchant would keep borrowing exclusively from 
banks. h � 

In the intermediate region with p ∈ RD , RD/R̄ , when the platform enters the
(1−f )cH 

credit market, the change in the expected welfare is given by 

ΔW (R̄) = − (1 − m ∗ 
B)(1 − m ∗ 

P )[2pcH + (1 − p)cL − RD]| {z } 
credit rationing � �Z 1−2f+η 

∗ ∗ ∗ G ∗ ∗ ( ¯− mP (1 − mB ) + mBp B (R)dFP (R) R − RD) 
RD /p (13)| {z } 

higher cost of capital 

∗ ∗ ∗ + (1 − mB)mP (1 − p)FP ((1 − 2f + η)cL)cL,| {z } 
lower default risk 

The change in welfare depends on three components. First, welfare declines when credit 
is rationed in equilibrium. Without a platform, banks always lend to merchants with p ∈h � 

RD , RD/R̄ but, with competition from the platform, lenders may ration credit with 
(1−f )cH 
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¯positive probability. Second, welfare declines if R > RD because merchants are fnanced 
at a higher cost of capital. This happens when the platform offers credit and banks do not, 
or when the merchant is good the platform offers a lower rate than banks. Third, welfare 
increases when the platform offers contracts satisfying the incentive-compatibility condi-
tion (1) for θ = L and a bad merchant does not default when borrowing from the plat-
form. This happens when banks do not lend and the platform offers a rate equal to or 
below (1 − 2f + η)cL. 

The following corollary establishes how welfare changes when the platform enters the 
credit market. 

COROLLARY 1. Relative to the bank-only economy, when the platform competes with the banks, 
welfare changes as follows. 

1. For merchants of high credit quality with p ≥ RD/R̄, expected welfare remains unchanged. 

2. For merchants of low credit quality with p < RD , expected welfare increases if (6) is
(1−f)cH 

satisfed. Otherwise, expected welfare remains unchanged. 

3. For merchants of intermediate credit quality with parameters satisfying case A, expected 
welfare declines if R̄ > RD. Otherwise, expected welfare remains unchanged. 

4. For merchants of intermediate credit quality with parameters satisfying B, the change in 
expected welfare depends on the platform’s cost of capital. In particular, there exists R̄M ∈ 

[RD, RD/p) such that welfare increases if R̄ < R̄M , welfare remains unchanged if R̄ = R̄M , 
R̄Mand it declines if R̄ > . 

5. For merchants of intermediate credit quality with parameters satisfying case C, expected 
welfare declines. 

In case A, m ∗ 
P = 1 and FP 

∗ ((1 − 2f + η)cL) = 0. Hence, the frst and third effects 
in (13) are zero. The change in welfare depends entirely on the difference between the 
platform’s and the bank’s cost of capital. In particular, the expected welfare does not 
change if the two lenders have the same cost of capital and the expected welfare declines 
if the platform’s cost of capital exceeds the bank’s. 

In case B, m ∗ 
P = 1 and, hence, credit is not rationed. As shown in Propositions 2 

and 3, it is possible that FP 
∗ ((1 − 2f + η)cL) > 0. In this case, with positive probability, 

the bad merchant borrows from the platform and produces for two periods. Welfare 
depends on the trade-off between the positive effects of the platform’s better enforcement 
on credit risk and the negative effects of equilibrium screening on the cost of capital. 
¯If R is suffciently close to RD, the positive effect of better enforcement dominates, and 
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¯expected welfare increases. If R is suffciently high, the negative effects of equilibrium 
screening prevail over the benefts of enforcement, and welfare declines. 

Finally, in case C, we have FP 
∗ ((1−2f +η)cL) = 0, i.e. enforcement and credit risk do not 

improve when the platform enters the credit market. In addition, merchants are rationed 
with positive probability under competition, and the platform’s cost of capital strictly 
exceeds the banks’. Hence, for these parameters, social welfare declines unambiguously. 

5 INFORMATION ACQUISITION 

Bigtech platforms may obtain an advantage over banks because they possess superior 
information. For example, a platform may observe the past history of transactions of 
the merchant or of similar merchants and infer useful information about a borrower’s 
future sales. In this section, we consider an extension of the model where the platform 
can acquire superior information about the borrower’s credit quality. 

The platform and banks share a common prior p, but the platform can acquire an 
informative signal of the borrower’s type at a cost. The effects discussed in Section 4 
remain. Moreover, for certain types of merchants, the platform uses the additional infor-
mation to customize interest rates offered, which further increases repayment incentives 
and decreases default risk. We also fnd that the ability to acquire information may actu-
ally hurt the platform’s proft in certain regions. We briefy describe the setting and the 
implications here. We leave the details regarding the equilibrium to Appendix C. 

5.1 INFORMATION-ACQUISITION TECHNOLOGY 

By paying a cost c > 0, the platform acquires a private signal s that is informative about 
the borrower’s type θ. Similar to He et al. (2023), we assume the platform may observe 
either a high or a low signal, i.e., s ∈ {h, l}. The low signal fully reveals the borrower is 
bad, whereas the high signal offers increased (although not conclusive) evidence that the 
merchant is good. That is, 

P (s = l|θ = H) = 0 and P (s = l|θ = L) > 0. 

Let 
ψ := p + (1 − p)P (s = h|θ = L) 
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be the probability the platform observes a high signal. Also, let 

p 
p h := P (θ = H|s = h) = 

ψ 

be the platform’s posterior belief about the probability that the merchant generates high 
revenue after observing a high signal. When the platform observes a low signal, its pos-
terior belief is pl := P (θ = H|s = l) = 0. 

The platform chooses whether to acquire the signal or not at a cost c > 0. We study the 
equilibrium in the limit where c → 0. The merchant and banks do not observe whether 
the platform acquires information. We allow for mixed strategies, and a ∈ [0, 1] denotes 
the probability the platform acquires information. We call a platform uninformed when it 
does not acquire information. If the platform acquires information and observes a high 
signal, we refer to it as optimistic. If it acquires information and observes a low signal, 
we refer to it as pessimistic. We denote the three types of the platform with subscript 

ui ∈ {u, h, l} respectively and defne p := p. 
When banks compete with a platform that acquires superior information, they suffer 

from the winner’s curse. Banks cannot observe the information the platform acquires. 
When a borrower accepts their credit offer, they, therefore, fear the platform observed a 
low signal about the borrower and refused to lend. As a result, banks will lend more 
conservatively when the platform acquires information in equilibrium. 

Banks are unable to acquire the platform’s signal. We, therefore, think of p as the best 
assessment of the merchant’s credit quality based on standard credit-evaluation models. 
We interpret the platform’s signal-acquisition technology as an evaluation model relying 
on innovative methodologies or alternative data. 

5.2 INFORMATION ACQUISITION AND COMPETITION 

Like in Section 4, the equilibrium features mixed strategies in the credit decisions of the 
lenders. The formal defnition of the equilibrium is in Defnition C.1 of Appendix C. 

Several results we obtained in Section 4 are extended to this framework. First, Lemma 
C.3 establishes the same results as Lemma 3, showing that the market is partially seg-
mented in the same way as in Section 4. Second, according to Lemma C.4, banks deny 
credit with positive probability and offer rates up to (1 − f)cH , as in Section 4. Moreover, 
the uninformed platform and the optimistic platform combined offer rates that span a 
set similar to the one in Lemma 4. However, the uninformed and optimistic platform 
may offer rates over different supports. Importantly, the platform still benefts from ad-
vantageous screening in equilibrium, and Remark 3 applies also to this extension of the 
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model. 
Next, we discuss the implications of the option to acquire information when the plat-h � 

RD RDform and banks directly compete for merchants of intermediate quality p ∈ , .¯(1−f )cH R

As we discuss ahead, social welfare and the platform’s profts may change in non-trivial 
ways because of the banks’ equilibrium reaction to the platform’s information-acquisition 
strategy.19 Based on the results in Appendix C, we distinguish three main cases, which 
are analogous to those we studied in Section 4. 

h � 
¯ RD RDCASE I.A: ph(1 + η)cH + (1 − ph)ηcL > R > (1 − 2f + η)cL, p ∈ , In this ¯(1−f)cH R

case, the platform earns positive profts as a monopolist and always acquires informa-
tion. However, depending on the platform’s cost of capital, the platform either uses the 
information to screen out bad borrowers or to adjust interest rates and maximize the sur-
plus it extracts from the borrower. When the platform’s cost of capital R̄ exceeds (1+η)cL, 
the platform denies credit upon receiving a low signal. When R̄ ≤ (1 + η)cL and the plat-
form observes a low signal, it lends at interest rate RP = (1 − 2f + η)cL, thus satisfying 
the incentive-compatibility condition (1) for θ = L. 

In the latter case, the platform charges higher rates after observing good signals in 
order to extract more rents from merchants with a low perceived risk of strategic default. 
The platform charges lower rates after observing bad signals to discourage strategic de-
fault from low-revenue merchants. Because the platform reduces the risk of strategic 
default, welfare increases. 

The banks’ lending probability and distribution of rate offers are identical to those of 
case A in Section 4, when the platform has no option to acquire information. Moreover, 
the optimistic platform offers interest rates from the same distribution as the uninformed 
platform in case A of Section 4. 

h � 
¯ RD RDCASE I.B: R ≤ (1 − 2f + η)cL, p ∈ , In this case, the merchant’s relative ¯(1−f)cH R

revenues are suffciently high that the platform is always willing to lend, regardless of 
its posterior pi . The platform acquires information with positive probability. When it 
does acquire information, it always uses the information to customize interest rates and 
maximize the surplus it extracts. In particular, a pessimistic platform offers interest rates 
satisfying the incentive-compatibility condition (1) for θ = L, thus ensuring a bad mer-
chant always repays in full and improving welfare. 

19When p ≥ RD/R̄ , neither welfare nor the platform’s profts change with the option to acquire infor-
RDmation because banks remain the only lenders. When p < , both welfare and the platform’s profts (1−f )cH 

increase with the option to acquire information provided the platform lends. In this case, information alle-
viates fnancing frictions between the borrower and the platform, which is the only lender for this merchant. 
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Interestingly, when the platform can acquire information, banks lend with higher 
probability compared to the analogous case B from section 4.20 With better information, 
the platform raises the interest rate charged to the good merchants to extract more sur-
plus, which increases the chance that a bank lends to a good merchant. As a result, banks 
lend more aggressively to compete with the platform. 

h � 
CASE I.C: ph(1 + η)cH + (1 − ph)ηcL ≤ R̄ , p ∈ RD , R

R̄ 
D In this case, the platform 

(1−f)cH 

acquires information with positive probability and lends only when it receives high sig-
nal. Upon receiving a high signal, the platform lends with probability 1 and offers rates 
with the same distribution as described in Proposition 4 of section 4. The platform re-
mains uninformed with positive probability and, in this case, it denies credit. Overall, the 
platform denies credit with higher probability compared to the baseline model, because 
it can better screen out bad merchants. 

If the platform were the only lender for a merchant in case I.C, it would deny credit 
even after observing a high signal. However, similar to case C in Section 4, the platform 
benefts from advantageous screening when competing with banks. The platform, there-
fore, lends with positive probability in equilibrium to extract advantageous-screening 
rents. 

In Case I.C, banks lend with lower probability when the platform has the ability to 
acquire superior information compared to Case C from Section 4.21 Because the platform 
denies credit after observing a low signal, banks suffer from winner’s curse when the plat-
form possesses superior information. As both the platform and banks scale back lending, 
credit is rationed more frequently compared to case C in Section 4. 

THE VALUE OF INFORMATION AND WELFARE. Usually, better information increases 
the informed lender’s proft in equilibrium (Hauswald and Marquez, 2003; He et al., 
2020). Perhaps surprisingly, in our setting, the ability to acquire superior information 
does not always increase the platform’s proft. In our model, because of bank’s equilib-
rium reaction to the platform information-acquisition strategy, the option to acquire in-
formation may lower the profts the platform obtains because of its superior enforcement 
power. 

In case I.B, because of the platform’s enforcement power, the pessimistic platform 
offers lower rates than an optimistic platform to incentivize full repayment and avoid 

20Case I.B in the superior information case does not overlap exactly with Case B in the common informa-
tion case. The comparison here applies only to the over-lapping region. 

21Case I.C in the superior information case does not overlap exactly with Case C in the common infor-
mation case. The comparison here applies to the overlapping region. 
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strategic default. An optimistic platform offers higher rates to extract more surplus from 
the borrowers. As a result, banks expand lending and compete more aggressively for the 
good merchant, which leads to lower proft for the platform. 

In case I.C, the platform lends solely to extract advantageous-screening rents at the 
expense of banks. When the platform acquires superior information and denies credit 
to bad borrowers, banks suffer from winner’s curse and lend more conservatively. As a 
result, the platform extracts less rents in equilibrium, and its profts decline. 

Finally, the welfare effect of having better information is also ambiguous. On the one 
hand, welfare may decline because less informed lenders reduce credit in response to 
their winner’s curse, as in He et al. (2020). On the other hand, better information allows 
the platform to customize interest rates and discourage a bad merchant from defaulting, 
thus increasing welfare. The latter effect is unique to our setting because of the platform’s 
better enforcement power, and it serves to alleviate fnancial frictions. 

CONCLUSIONS 

We study the equilibrium and welfare implications of a bigtech platform entering the 
credit market and competing with banks. The unique feature of the platform is that it is 
the monopolistic provider of a valuable marketplace. Because of its control to the market-
place, a platform can implement revenue based repayment plans and better enforce loan 
repayments. For high-risk borrowers, the platform can incentivize full loan repayment 
even though the same borrowers would default if they borrowed from banks. As a result, 
the platform can lend to small businesses of high credit risk, who are traditionally denied 
credits by banks. When borrowing from the platform, these high-risk merchants are more 
likely to remain in business and continue production. For such merchants, the platform 
generally increases welfare. 

We also fnd that when the platform competes directly with banks, the platform ben-
efts from advantageous screening — conditional on the observable characteristics, the 
platform attracts a better pool of borrowers compared to the banks. As a result, banks 
scale back lending and increase interest rates. Banks do so to cover the losses they incur 
when the platform extracts advantageous-screening rents from them. Our theory predicts 
that the platform lends to a worse pool of borrowers based on observable characteristic 
than banks. But conditional on observables, the platform lends to a better pool of borrow-
ers than banks. Because banks are adversely affected by equilibrium screening, they lend 
more conservately. Social welfare may thus decline when the platform enters the credit 
market and competes with banks for merchants of intermediate credit quality. 
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To study the interaction effect between enforcement power and information advan-
tage, we extend the baseline model allowing the platform to acquire superior information 
about the borrowers at a small cost. We fnd that conditional on having better enforce-
ment power, additional information advantage does not always increase the platform’s 
proft. Depending on whether the platform uses the information to screen out bad mer-
chants or to tailor interest rates to incentivize full repayment, banks may either decrease 
or increase lending in response. 

There are many other features unique to platforms making loans. For example, there 
might be synergies between lending and platform’s marketplace business through net-
work effects. It would also be interesting to explore how credit decisions feed back to 
platform’s optimal fee design for different users. We leave those interesting questions for 
future research. 
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A PROOFS FOR THE MAIN MODEL 

A.1 PROOF OF LEMMA 1 

From the optimization problem (5), we have that the platform offers loans either at rate 
(1 − 2f + η)cH or at rate (1 − 2f + η)cL. Hence, its optimized profts are given by 

¯ max{p(1 + η)cH + (1 − p)ηcL, (1 + η)cL + 2p(cH − cL)f} − R. 

The platform lends only if profts are non-negative, yielding condition (6). 
In setting its interest rate, the platform prefers to offer rate (1 − 2f + η)cH if 

p(1 + η)cH + (1 − p)ηcL ≥ (1 + η)cL + 2p(cH − cL)f, 

which can be rearranged to become (7). Otherwise, the platform optimally offers a rate 
equal to (1 − 2f + η)cL. 

¯To conclude the proof, assume 2cL > R. Let 

R̄ 
η̂  := − 1. 

cL 

¯ ¯Note η̂  < 1 because 2cL > R. Note also η > f because R ≥ RD > (1 − f)cL. Then, for any 
η ≥ η̂  we have 

¯(1 + η)cL + 2p(cH − cL)f − R ≥ 0, 

for all p ∈ [0, 1]. Therefore, if η ≥ η̂, (6) holds and the platform lends for any p ∈ [0, 1]. 

A.2 AUXILIARY LEMMAS 

We now introduce some lemmas which will be useful in characterizing the equilibrium 
with competition. 

LEMMA A.1. mB 
∗ > 0 if and only if p ≥ RD 

(1−f)cH 
. 

∗ RD ∗Proof. First, we show mB > 0 if p ≥ 
(1−f)cH 

. By way of contradiction, suppose m = 0.B 

Then R∗ 
P = {(1 − 2f + η)cH } and G∗ 

P (R) = I(R < (1 − 2f + η)cH ). Then, for any mP 
∗ ∈ [0, 1] 

and ε ∈ (0, (1 − f)cH − RD/p), LB(RD/p + ε, m∗ 
P , G

∗ 
P ; p) > 0, contradicting that mB 

∗ = 0 is 
the bank’s equilibrium strategy. 

∗ RD RDSecond, we show mB = 0 if p < . When p < 
(1−f )cH 

, for any R ≤ (1 − f)cH we
(1−f)cH 

have 
LB(R, m ∗ 

P , G ∗ 
P ; p) ≤ p(1 − f)cH − RD < 0 

and, by (11), mB 
∗ = 0. 
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LEMMA A.2. If m ∗ 
B ∈ (0, 1), then sup R∗ 

B = (1 − f)cH . 

Proof. We proceed by contradiction and assume R̃ := sup RB 
∗ < (1 − f)cH . Because mB 

∗ ∈ 
(0, 1), by Lemma A.1, we have p ≥ RD , which also implies (7). Hence, LP (R, m∗ , GB 

∗ ; p) <
(1−f)cH B 

∗LP ((1 − 2f + η)cH ,mB, G
∗ 
B ; p) for any R ∈ (R,˜ (1 − 2f + η)cH ). Therefore, an ε > 0 exists 

such that LB(R̃ + ε, m∗ 
P P ; p) > LB ( ˜ P , G

∗ 
P ; p)., G∗ R, m∗ 

Hence, for a small enough ε, a lending mechanism (mB, FB ) with mB = 1 and with do-R ˆ ∗ ∗main R∗ ∪{R̃+ε} exists such that R+ε 
LB(R, m∗ , G∗ 

P ; p)dF (R) > 0 and U(1,m , FB, F ) >B P P P0 
∗ ∗ ∗U(mB ,m , F ∗ , F ), contradicting the assumption that R∗ is the domain of the equilibrium P B P B 

lending mechanism offered by banks. 

LEMMA A.3. inf R∗ ∈ R∗ and inf R∗ ∈ R∗ 
P P B B. 

Proof. Defne := inf R∗ and := inf R∗ and consider lender J ∈ {P, B} and lender RP P RB B¯ ¯ 
I ∈ {P, B} with J 6= I . 

∈ R∗ )∞ ∈ R∗If RJ / J , then a sequence (Rn n=0 exists such that Rn > RJ and Rn J for all n and 
¯ ¯ 

Rn → RJ as n →∞. We, therefore, must have LJ (RJ ,m ∗ 
I , GI 

∗ ; p) < limn→∞ LJ (Rn,m ∗ 
I , GI 

∗ ; p)
¯ ¯ which, in turn, implies G∗ 

I (RJ ) < limn→∞ G
∗ 
I (Rn). This result, however, contradicts that 

¯ 
G∗ 
I is a weakly decreasing function. Therefore, RJ ∈ R∗ 

J . ¯ 
LEMMA A.4. Assume m ∗ 

P > 0 and m ∗ 
B > 0. Then min RP 

∗ ≤ RD/p. Moreover, min RP 
∗ = RD/p 

or min R∗ 
P = (1 − 2f + η)cL. Also, if min R∗ 

P 6= (1 − 2f + η)cL, then min R∗ 
B = RD/p. 

Proof. Defne RP := min RP 
∗ and RB := min RB 

∗ . First, we establish RP ≤ RD/p. We 
¯ ¯ ¯ proceed by contradiction and assume RP > RD/p. By competition between banks, we 

¯ thus have m ∗ = 1 and R∗ = {RD/p}. In this case, if RD/p < (1 − 2f + η)cL, the platform’s B B 

best response is RD/p. If instead RD/p ≥ (1−2f +η)cL, the platform’s best response could 
be either RD/p or (1 − 2f + η)cL. In both cases, R ≤ RD/p, contradicting RP > RD/p. 

¯ ¯ Having established RP ≤ RD/p, we now prove RP = RD/p or R = (1 − 2f + η)cL. If 
¯ ¯ ¯ 

RD/p ≤ (1 − 2f + η)cL, then LP (R, mB 
∗ , GB 

∗ ; p) < LP (RD/p, mB 
∗ , GB 

∗ ; p) for any R < RD/p, 
implying RP = RD/p. If instead RD/p > (1 − 2f + η)cL, LP (R, mB 

∗ , GB 
∗ ; p) < LP ((1 − 2f + 

¯ 
η)cL,m ∗ 

B, G
∗ 
B ; p) for any R < (1 − 2f + η)cL and LP (R

0,m ∗ 
B , GB 

∗ ; p) < LP (RD/p, mB 
∗ , G∗ 

B; p) 
for any R0 ∈ ((1 − 2f + η)cL, RD/p), implying R = RD/p or R = (1 − 2f + η)cL. 

¯ ¯ To prove the last part of the lemma, consider RP = RD/p =6 (1 − 2f + η)cL. We proceed 
¯ by contradiction and assume RB > RD/p. Because RP =6 (1−2f +η)cL, an ε > 0 exists such 

¯ ¯ that LP (RD/p + ε, mB 
∗ , GB 

∗ ; p) > LP (RD/p, mB 
∗ , GB 

∗ ; p), contradicting RD/p ∈ R∗ 
P . Hence, if 

RP = RD/p 6= (1 − 2f + η)cL, the RB = RD/p. 
¯ ¯ 

∗ ∈ R∗LEMMA A.5. If mB > 0 and R̄ > (1 − 2f + η)cL, then (1 − 2f + η)cL / P . 

Proof. Note that LP ((1 − 2f + η)cH ,m ∗ 
B , G

∗ 
B ; p) ≤ LP ((1 − 2f + η)cL,m ∗ 

B , G
∗ 
B; p) if and only 

if 

∗ ∗ ∗ (1−mB)[p(1+η)cH +(1−p)ηcL] ≤ mBp[(1−2f +η)cL −R̄]+(1−mB )[(1+η)cL +2p(cH −cL)f ] 
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From the proof of Lemma 1, we have that p(1+η)cH +(1−p)ηcL > (1+η)cL +2p(cH −cL)f 
if an only if 

p > 
cL 

. (A.1)
(1 − 2f + η)(cH − cL) + cL 

Note that RD > cL and (1 − f)cH < (1 − 2f + η)(cH − cL) + cL. Hence, because we are 
considering p ≥ RD , inequality (A.1) is satisfed. We must thus have LP ((1 − 2f +

(1−f)cH 

¯η)cH ,m ∗ 
B , G

∗ 
B ; p) > LP ((1 − 2f + η)cL,m ∗ 

B, G
∗ 
B ; p) whenever (1 − 2f + η)cL − R < 0. 

LEMMA A.6. If mP 
∗ > 0 and m ∗ ∈ (0, 1), then max R∗ ∈ {(1 − f)cH , (1 − 2f + η)cH }.B P 

Furthermore, if m ∗ 
P = 1, then max R∗ 

P = (1 − 2f + η)cH . 

Proof. First, note sup R∗ ∈ R∗ by the left-continuity of G∗ (·) and the platform’s objective P P B 

function LP (·,mB, GB ; p). Hence, sup R∗ 
P = max R∗ 

P . Also note that LP (R, m∗ 
B, G

∗ 
B; p) < 

LP ((1 − 2f + η)cH ,mB 
∗ , G∗ 

B ; p) for R ∈ ((1 − f)cH , (1 − 2f + η)cH ) because mB 
∗ ∈ (0, 1). 

Therefore, ((1−f)cH , (1−2f +η)cH )∩R∗ 
P = ∅. Finally, by Lemma A.2, sup R∗ 

B = (1−f)cH . 
To prove the frst part of the lemma, we proceed by contradiction and assume RM := 

max R∗ < (1−f)cH . In this case, G∗ (R) = 0 for all R ≥ RM , along with sup R∗ = (1−f)cH ,P P B 

implies that (1 − f)cH ∈ RB 
∗ and R ∈/ RB 

∗ for all R ∈ (RM , (1 − f)cH ). Otherwise, an 
R0 ∗≥ RM with R0 ∈ R∗ 

B would exist such that LB(R0,mP , GP 
∗ ; p) =6 0, contradicting the 

defnition of equilibrium. Moreover, LB ((1 − f)cH ,m ∗ 
P , G

∗ 
P ; p) = 0 and RM < (1 − f)cH 

imply mP 
∗ ∈ (0, 1). 

If RM > (1−2f+η)cL or if RM < (1−f)cH ≤ (1−2f+η)cL then LP ((1−f)cH ,m ∗ , G∗ 
B B ; p) > 

L(RM ∗ ,mB, G
∗ 
B; p), contradicting RM := max R∗ 

P . It remains to consider RM ≤ (1 − 2f + 
η)cL < (1 − f)cH . In this case, by Lemma A.4 we have min R∗ 

P = RD/p ≤ (1 − 2f + η)cL. 
¯ , G∗ ∗Moreover, we have R < RD/p. Therefore, LP (RD/p, m∗ 

B B; p) > mB [2pcH + (1 − p)cL]f . 
But this implies m ∗ = 1, which contradicts LB ((1−f)cH ,m ∗ , G∗ 

P ; p) = 0. Hence, max R∗ ∈P P P 

{(1 − f)cH , (1 − 2f + η)cH }
To prove the second part of the lemma for m ∗ 

P = 1, we proceed again by contra-
diction and assume R∗ 

P = (1 − f)cH . In this case, LB ((1 − f)cH , 1, GP 
∗ ; p) < 0. Therefore, 

G∗ ((1−f)cH ) = 0. But then, LP ((1−2f +η)cH ,m ∗ , G∗ 
B; p) > LP ((1−f)cH ,m ∗ , G∗ 

B; p), con-B B B 

tradicting R∗ = (1 − f)cH . Thus, if m ∗ = 1 and m ∗ ∈ (0, 1), then max R∗ = (1 − 2f + η)cH .P P B P 

LEMMA A.7. Suppose m ∗ 
B ∈ (0, 1) and m ∗ 

P > 0. If R1 ∈ R∗ 
B and R2 ∈ RB 

∗ are such that 
R1 < R2 ≤ (1−2f +η)cL or (1−2f +η)cL < R1 < R2, then we must have [R1, R2] ⊆ R∗ 

B ∩RP 
∗ . 

Proof. Assume, by contradiction, that an Rk ∈ (R1, R2) exists such that Rk ∈/ R∗ 
B. By 

the right-continuity of GP 
∗ (·) and LB(·,mP 

∗ , GP 
∗ ; p), we have that an ε > 0 exists such that 

LB(R, m∗ , GP 
∗ ; p) < 0 for all R ∈ (Rk, Rk + ε). Let R0 := sup{R : R ∈ R∗ and R < Rk}.P 1 B 

Hence, LB(R, m∗ 
P , G

∗ 
P ; p) < 0 for all R ∈ (R1 

0 , Rk + ε), thus implying 

G ∗ (1 − mP 
∗ )(RD − pR) (1 − p)RD (1 − mP 

∗ )(RD − pR1 
0 ) (1 − p)RD 

P (R) < + ≤ + . (A.2) 
m ∗ 
P p(R − RD) p(R − RD) m ∗ 

P p(R1 
0 − RD) p(R1 

0 − RD) 

Because R ∈/ RB 
∗ for all R ∈ (R1 

0 , Rk + ε), we must have R ∈/ R∗ 
P for any R ∈ (R1 

0 , Rk + ε). 
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If R1 
0 ∈ RB 

∗ , then the last term in (A.2) coincides with GP 
∗ (R1 

0 ) and therefore GP 
∗ (R) < 

G∗ 
P (R1 

0 ) for any R ∈ (R1 
0 , Rk + ε). But this implies that there exists R0 ∈ (R1 

0 , R) such 
that R0 ∈ RP 

∗ , contradicting the previous result that R0 ∈/ R∗ 
P for any R0 ∈ (R1 

0 , Rk + 
ε). If instead, R0 ∈/ RB 

∗ , then we must have limR→R0 − G∗ (R) > G∗ (R1 
0 ), which implies 1 P P1 

R0 ∈ R∗ ∗ 
1 P . However, if R1 

0 ∈/ RB 
∗ , LP (R

k + ε, mB 
∗ , GB 

∗ ; p) > LP (R1 
0 ,mB, G

∗ 
B; p), generating a 

contradiction. 
Hence, [R1, R2] ⊆ R∗ 

B. In particular, LB(R, m∗ 
P , GP 

∗ ; p) = 0 for all R ∈ [R1, R2], which 
implies 

G ∗ (1 − mP 
∗ )(RD − pR) (1 − p)RD

(R) = +P m ∗ 
P p(R − RD) p(R − RD) 

is strictly decreasing for R ∈ [R1, R2]. 
Suppose now, by way of contradiction, an Ry ∈ [R1, R2] exists such that R ∈/ RP 

∗ . By 
the left-continuity of G∗ 

B (·) and LP (·,mB 
∗ , GB 

∗ ; p), we have that an ε > 0 exists such that 
R ∈/ R∗ 

P for all R ∈ (Ry − ε, Ry). However, this observation implies G∗ 
P (R) is constant in 

(Ry − ε, Ry), contradicting the previous result. Hence, we also obtain [R1, R2] ⊆ R∗ 
P . 

A.3 PROOF OF LEMMA 2 

First, note LP (R, mB , GB; p) < LP ((1 − f)cL,mB, GB ; p) for any R < (1 − f)cL, and 
hence [0, (1 − f)cL) ∩ R∗ 

P = ∅. To prove the lemma, it suffces to show that LP ((1 − 

f)cL,mB, GB ; p) < LP ((1 − 2f + η)cL,mB, GB ; p). We proceed by contradiction and as-
sume 

LP ((1 − f)cL,mB , GB; p) ≥ LP ((1 − 2f + η)cL,mB, GB; p). 

After some manipulations, this inequality implies 

¯(η − f)cL − mB (1 − p)[(1 − f + η)cL − R] ≤ 0. 

Because η ≥ f , then (1 − f + η)cL − R̄ ≥ 0. This observation further implies that the same 
inequality holds for mB = 1 and p = 0, which is equivalent to 

R̄ − cL ≤ 0. 

However, R̄ > cL by Assumption 1. 
Hence, this result contradicts the hypothesis that LP ((1 − f)cL,mB, GB ; p) ≥ LP ((1 − 

f)cL,mB, GB ; p). We therefore conclude that LP (R, mB, GB; p) < LP ((1 − f)cL,mB, GB; p) 

for any any mB ∈ [0, 1] and R ≤ (1 − f)cL. 
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A.4 PROOF OF LEMMA 3 

When p < RD , Lemma A.1 implies m ∗ = 0. The platform is thus a monopolistic lender 
(1−f)cH B 

for a merchant provided (6) is satisfed, and the results of Lemma 1 apply. 
For the rest of the proof, we thus focus on p ≥ RD/R̄ . By Lemma A.1, banks lend 

with positive probability m ∗ > 0. We want to show that m ∗ = 1, R∗ = {RD/p}, andB B B 

m ∗ 
P (1 − G∗ 

P (RD/p)) = 0. Together, these conditions imply merchants borrow exclusively 
from banks when p ≥ RD/R̄ 

¯As a preliminary observation, notice that, if m ∗ 
P > 0, RD/p ∈ R∗ 

P . In fact, if R > 

(1 − 2f + η)cL, by Lemma A.5, (1 − 2f + η)cL ∈/ RP 
∗ . If instead R̄ ≤ (1 − 2f + η)cL, we have 

¯RD/p ≤ R ≤ (1 − 2f + η)cL. By Lemmas A.4 and A.3, we thus have RD/p ∈ R∗ 
P in both 

cases. 
Suppose, by way of contradiction, mB 

∗ ∈ (0, 1). Which, in turn, implies mP 
∗ > 0 and 

RP ≤ RD/p, otherwise competitive banks would offer rate RD/p with probability one and 
¯ 
m ∗ 
B = 1. It also implies sup R∗ 

B = (1 − f)cH by Lemma A.2. 
First, we exclude m ∗ 

P = 1. By the previous observation, RD/p = R∗ 
P . We must therefore 

have LP (RD/p, m∗ 
B, G

∗ 
B ; p) ≥ LP ((1 − 2f + η)cH ,mB 

∗ , G∗ 
B; p

i), which implies � 
¯ mB 

∗ p((1 − 2f + η)cH − R) − I(RD/p)(1 − p)[RD/p − (η − 2f)cL] 
(A.3) 

≥ p((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − p)[RD/p − (η − 2f)cL]. 

Notice we have (1 − 2f + η)cH ≥ RD/p when p ≥ RD and η ≥ f and (1 − 2f +
(1−f)cH 

¯ ¯η)cH − R ≤ (1 − 2f + η)cH − RD/p because we are considering R ≥ RD/p. Finally, 
we also have p((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − p)[RD/p − (η − 2f)cL] because 
either RD/p > (1 − 2f + η)cL, or RD/p ≤ (1 − 2f + η)cL, along with p ≥ RD , implies

(1−f)cH 

p((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − p)[RD/p − (η − 2f)cL] > 0. Therefore, if p((1 − 2f + 

η)cH − R̄) − I(RD/p)(1 − pi)[RD/p − (η − 2f)cL] ≤ 0, the inequality (A.3) is a contradiction. 
¯If p((1 − 2f + η)cH − R) − I(RD/p)(1 − p)[RD/p − (η − 2f)cL] > 0, the inequality (A.3) 

∗ ∗ ∗implies m ≥ 1, which contradicts m ∈ (0, 1). Therefore, when p ≥ RD/R̄ , m = 1.B B B 

Next, we show m ∗ 
P (1 − G∗ 

P (RD/p)) = 0. Assume, by way of contradiction, m ∗ 
P (1 − 

G∗ 
P (RD/p)) > 0. By our previous result in the proof, if m ∗ 

P > 0, then RD/p ∈ R∗ 
P . 

∗Consider, p > RD/R̄ . Because mB = 1, the platform’s profts from lending are thus 
LP (RD/p, 1, G∗ 

B ; p) < [2pcH + (1 − p)cL]f , and hence mP 
∗ = 0, contradicting mP 

∗ (1 − 

G∗ 
P (RD/p)) = 0. 

Consider now p = RD/R̄, then LP (RD/p, 1, G∗ 
B; p) = [2pcH +(1 − p)cL]f and, moreover, 

LP (R, 1, G∗ 
B ; p) ≤ LP (RD/p, 1, G∗ 

B; p) for any R > RD/p, thus implying G∗ 
B (R) ≤ 0. Hence, 

banks offer rate RD/p with probability one, and, for this to be the banks’ best response, 

50 



we must have mP 
∗ (1 − G∗ 

P (RD/p)) = 0. 

A.5 PROOF OF LEMMA 4 

We prove m ∗ > 0. Suppose m ∗ = 0, then competitive banks would set R∗ = {RD/p} andP P B 

m ∗ 
B = 1. For a small enough ε > 0, LP (RD/p − ε, 1, GB 

∗ ; p) > [p2cH + (1 − p)cL]f , which 
contradicts m ∗ 

P = 0. Hence m ∗ 
P > 0. 

By Lemma A.1, we have m ∗ 
B > 0. We now prove m ∗ 

B ∈ (0, 1). We proceed by con-
tradiction and assume mB 

∗ = 1. In this case, LP (R, 1, G∗ 
B; p) = [2pcH + (1 − p)cL]f < 

LP (RD/p, 1, G∗ 
B ; p) for any R such that G∗ (R) = 0. Hence, m ∗ = 1 but R ∈/ R∗ ifB P P 

G∗ 
B (R) = 0. 

Let R̃ = sup RB 
∗ ≤ (1 − f)cH . If R̃ ∈ RB 

∗ , LB(R,˜ 1, GP 
∗ ; p) = 0 implies GP 

∗ (R̃) > 0 and 
an R > R̃ exists with R ∈ R∗ 

P . If instead R̃ ∈/ R∗ 
B, then limR→R̃− G∗ 

P (R) > 0, implying an 
R ≥ R̃ exists with R ∈ RP 

∗ . In either case, GB 
∗ (R) = 0, thus contradicting the previous 

result. 
Because m ∗ 

B ∈ (0, 1), Lemma A.2 implies sup R∗ 
B = (1 − f)cH , Moreover, by Lemmas 

A.3 and A.4, we have that min R∗ ≤ RD/p and min R∗ ∈ {(1 − 2f + η)cL, RD/p}. TheP P 

result that max R∗ ∈ {(1 − f)cH , (1 − 2f + η)cH } follows from Lemma A.6. P 

A.6 PROOF OF LEMMA 5 

Throughout the proof, recall that m ∗ 
B ∈ (0, 1) and m ∗ 

P > 0 by Lemma 4. In particular, an 
R exists such that LP (R, m∗ 

B , G
∗ 
B; p) ≥ mB 

∗ [2pcH + (1 − p)cL]f . 
¯We frst consider a merchant with p(1 + η)cH + (1 − p)ηcL > R. To establish our claim, 

it is suffcient to note 

LP ((1 − 2f + η)cH ,m ∗ 
B , G ∗ 

B ; p) > m ∗ 
B [p2cH + (1 − p)cL]f 

¯because mB 
∗ ∈ (0, 1) and p(1 + η)cH + (1 − p)ηcL > R. Therefore, mP 

∗ = 1. 
¯Next, we consider p(1 + η)cH + (1 − p)ηcL ≤ R. Because (7) holds as a strict inequality 

when p ≥ RD , we also have RD/p ≥ R̄ > (1 − 2f + η)cL. By Lemmas A.3, A.4, and
(1−f)cH 

A.5, we thus have min R∗ 
B ≥ RD/p > (1 − 2f + η)cL. 

We proceed by contradiction and assume that maxR LP (R, m∗ 
B , G

∗ 
B; p) > m ∗ 

B[p2cH + 

(1 − p)cL]f . In this case m ∗ 
P = 1. Moreover, by Lemma 4 we have RM := max R∗ 

P ∈ 

{(1 − f)cH , (1 − 2f + η)cH } and, by the previous result, RM ≥ min R∗ > (1 − 2f + η)cL.P 

If RM = (1 − 2f + η)cH , then LP (R
M ,m ∗ 

B, G
∗ 
B ; p) ≤ m ∗ 

B[p2cH + (1 − p)cL]f , generating a 
contradiction. We thus consider RM = (1 − f)cH . In this case, because sup R∗ 

B = (1 − f)cH 
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and m ∗ = 1, we must have limR→(1−f)c − G∗ (R) > 0 and G∗ ((1 − f)cH ) = 0. Therefore, P P P
H 

(1 − f)cH ∈/ RB 
∗ and GB 

∗ ((1 − f)cH ) = 0. Hence, LP (R
M ,m ∗ 

B, G
∗ 
B; p) < LP ((1 − 2f + 

η)cH ,m ∗ , G∗ ∗ [p2cH +(1 − p)cL]f , where the frst inequality follows from (1 − 2f +B B ; p) ≤ mB 

η)cL < RM < (1 − 2f + η)cH . But this result also generates a contradiction. We therefore 
obtain maxR LP (R, m∗ 

B, G
∗ 
B ; p) = mB 

∗ [p2cH + (1 − p)cL]f . 
When R̄ > (1 − 2f + η)cL, Lemma A.5 implies min R∗ 

P =6 (1 − 2f + η)cL. Therefore, by 
Lemmas A.3 and A.4, we obtain min R∗ 

P = RD/p > (1 − 2f + η)cL, where the inequality 
follows because R̄ > (1 − 2f + η)cL and p ≤ RD/R̄ . 

Finally, when RD/p ≤ (1 − 2f + η)cL, Lemmas A.3 and A.4 imply min R∗ 
P = RD/p ≤ 

(1 − 2f + η)cL. 
When the platform and the banks are in competition, the expected proft of a good 

merchant facing lending mechanisms (mB , FB) and (mP , FP ) is thus 

U(mB ,mP , FB , FP ) :=[1 − (1 − mB)(1 − mP )]2(1 − f)cH Z (1−f )cH 
Z (1−2f +η)cH 

− mB(1 − mP ) R dFB(R) − (1 − mB)mP R dFP (R) 
0 0Z (1−2f+η)cH 

Z (1−f)cH 

− mBmP min{R, R0} dFB (R) dFP (R
0). 

0 0 
(A.4) 

A.7 PROOF OF PROPOSITION 1 

By Lemma 4, m ∗ 
B ∈ (0, 1). Moreover, by Lemma 5, m ∗ 

P = 1, min R∗ 
P = RD/p, and max R∗ 

P = 

(1 − 2f + η)cH . Hence, LP (RD/p, mB 
∗ , GB 

∗ ; p) = LP ((1 − 2f + η)cH ,mB 
∗ , GB 

∗ ; p), from which 
we obtain that mB 

∗ is given by 

(1 − 2f + η)cH − RD/p 
mB 
∗ = ∈ (0, 1) (A.5)¯(1 − 2f + η)cH − R 

¯Because min R∗ 
P = RD/p ≥ R > (1 − 2f + η)cL, Lemma A.4 implies min R∗ 

B = RD/p > 

(1 − 2f + η)cL. Moreover, sup R∗ 
B = (1 − f)cH by Lemma 4. Hence, Lemma A.7 implies 

all rates in [RD, (1 − f)cH ) are best responses for both the platform and banks. From 
LP (R, mB 

∗ , G∗ 
B; p) = LP ((1 − 2f + η)cH ,mB 

∗ , GB 
∗ ; p) for R ∈ [RD, (1 − f)cH ), we obtain the 

expression for GB ∗ in after using (A.5) 

RD/p − R̄ (1 − 2f + η)cH − R 
G ∗ (R) = . (A.6)¯B (R − R) (1 − 2f + η)cH − RD/p 

Note that limR→(1−f)c − G∗ (R) > 0, hence (1 − f)cH ∈ R∗ 
B B . 

H 
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From LB (R, 1, G∗ 
P ; p) = 0 for [RD, (1 − f)cH ] we fnally obtain the expression for G∗ 

P 

(1 − p)RD/p
G ∗ 
P (R) = for R ∈ [RD/p, (1 − f)cH ]. (A.7)

R − RD 

A.8 PROOF OF PROPOSITION 2 

Lemmas 4 and 5 imply m ∗ ∈ (0, 1) and m ∗ = 1, respectively. By Lemma 5, min R∗ = RD/pB P P 

and max R∗ 
P = (1 − 2f + η)cH . Also, Lemma A.4 implies min R∗ 

B = RD/p. Therefore, 
l0 ∗(RD/p, m∗ , GB 

∗ ; p) = l1 ((1 − 2f + η)cH ,m , G∗ 
B; p), from which we obtain the expression 

p(1 − 2f + η)cH + (1 − p)(η − 2f)cL − RD/p + RD − pR 

P B P B 

for m ∗ 
B in (A.8). 

∗ mB = 
p(1 − 2f + η)cH + (1 − p)(η − 2f)cL − RD/p 

¯ ∈ (0, 1) (A.8) 

Let T := min{(1 − 2f + η)cL, (1 − f)cH }. If T = (1 − f)cH , Lemmas A.2 and A.7 imply 
all rates in [RD, (1 − f)cH ) are best responses for both the platform and banks. From 
l0 ∗(R, m∗ , G∗ 

B ; p) = l1 ((1 − 2f + η)cH ,m , GB 
∗ ; p) for R ∈ [RD, (1 − f)cH ), we obtain G∗ isP B P B B 

given by 

¯RD/p − R p(1 − 2f + η)cH + (1 − p)(η − 2f)cL − R 
G ∗ 
B (R) = for R ∈ [RD/p, T ]¯(R − R) p(1 − 2f + η)cH + (1 − p)(η − 2f)cL − RD/p 

(A.9) 
In particular, limR→(1−f)c − G∗ (R) > 0, hence (1 − f)cH ∈ R∗ 

B . Using LB (R, 1, GP 
∗ ; p) = 0B

H 

for R ∈ [RD, (1−f)cH ], we obtain G∗ 
P is given by the following equation for R ∈ [RD/p, T ], 

(1 − p)RD/p
G ∗ 
P (R) = (A.10)

R − RD 

We focus the rest of the proof on T = (1 − 2f + η)cL < (1 − f)cH . We want to show 
that any rate in [RD/p, (1 − 2f + η)cL) is a best response for both the platform and banks. 
It is suffcient to show that (1 − 2f + η)cL = sup{R∗ ∩ [RD/p, (1 − 2f + η)cL]}. Lemma A.7 B 

will then imply [RD/p, (1 − 2f + η)cL) is a set of best responses for lenders. We proceed by 
contradiction and assume R̃0 := sup{R∗ ∩ [RD/p, (1 − 2f + η)cL]} < (1 − 2f + η)cL. Hence,B 

∗l0 (R, m∗ , G∗ 
B ; p) < l0 ((1 − 2f + η)cL,m , GB 

∗ ; p) for any R ∈ (R̃0 , (1 − 2f + η)cL). Therefore, P B P B 

an ε > 0 exists such that LB(R̃0 + ε, m∗ 
P , G

∗ 
P ; p) > 0 = LB((1 − f)c + H, m∗ 

P , G
∗ 
P ; p), where 

R̃0 + ε < (1 − f)cH . 
Therefore, for a small enough ε, a lending mechanism (mB, FB) with mB = 1 

and with domain [RD/p, R̃0 + ε] exists such that 
R 
0 
R̂0+ε 

LB (R, m∗ 
P , G

∗ 
P ; p)dF (R) > 0 and 
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∗ ∗ ∗ ∗U(1,m , FB , F ∗ ) > U(mB,m , F ∗ , F ), contradicting the assumption that R∗ is the do-P P P B P B 

main of the equilibrium lending mechanism offered by banks. Hence, (1 − 2f + η)cL = 

sup R∗ 
B ∩ [RD/p, (1 − 2f + η)cL] and any rate in [RD/p, (1 − 2f + η)cL) is a best response for 

the lenders. 
Hence, from lP 

0 (R, m∗ 
B , G

∗ 
B ; p) = lP 

1 ((1−2f +η)cH ,m ∗ 
B , GB 

∗ ; p) for R ∈ [RD, T ), we obtain 
G∗ 
B is the same as (A.9). From LB(R, 1, G∗ 

P ; p) = 0 for [RD/p, T ), we obtain G∗ 
P is given by 

(A.10) for R ∈ [RD/p, T ) as well. To summarize 

(1 − p)RD/p
G ∗ 
P (R) = for R ∈ [RD/p, T ] ∪ [U, (1 − f)cH ]. (A.11)

R − RD 

Let U := min{RB 
∗ ∩ ((1 − 2f + η)cL, (1 − f)cH ]}. Note that such a U exists because 

sup R∗ 
B = (1−f)cH > (1−2f +η)cL and because of a reasoning analogous to that in Lemma 

A.3. By Lemmas A.2 and A.7, if U < (1 − f)cH , [U, (1 − f)cH ) is a set of best responses for 
lenders. Because l0 ((1 − 2f + η)cL,m ∗ , G∗ 

B ; p) > limR→(1−2f+η)c + l1 (R, m∗ , GB 
∗ ; p), a δ > 0P B P B

L 

exists such that U ≥ (1−2f +η)cL +δ. The same result holds immediately if U = (1−f)cH . 
Also note l1 (U, m∗ , G∗ 

B; p) > l1 (R, m∗ , GB 
∗ ; p) for all R ∈ ((1 − 2 + η)cL, U). Hence,P B P B 

from LB(U, 1, G∗ 
P ; p) = 0 and U ≥ (1 − 2f + η)cL + δ, we obtain 

P (RP = (1 − 2f + η)cL) = lim G ∗ (R) − G ∗ (U) > 0, 
R→(1−2f+η)c − P P 

L 

thus implying (1 − 2f + η)cL ∈ R∗ 
P and that the platform offers rate (1 − 2f + η)cL with 

positive probability. 
Because of this latest result, G∗ (U) < limR→(1−2f+η)c − G∗ (R), thus implying LB ((1 −P P

L 

2f + η), 1, G∗ 
P ; p) < limR→(1−2f +η)c − LB(R, 1, GP 

∗ ; p) = 0. Hence, (1 − 2f + η)cL ∈/ RB 
∗ . 

L 

Therefore, G∗ 
B((1 − 2f + η)cL) = G∗ 

B (U). 
Let RU be such that 

m ∗ 
BpGB 

∗ ((1−2f +η)cL)(R
U −R̄)+(1−m ∗ 

B)[pR
U +(1−p)(η−f)cL −R̄]+[2pcH +(1−p)cL]f 

= lP 
0 ((1 − 2f + η)cL,mB 

∗ , G ∗ 
B; p), 

from which we obtain 

¯(1 − p)cL[(1 − 2f + η)cL − R]
RU := (1 − 2f + η)cL + ≥ (1 − 2f + η)cL¯ p(1 − 2f + η)cH − (1 − p)cL − pR 

after substituting for mB 
∗ . We thus set U := min{RU , (1 − f)cH }. 

If RU ∈ ((1 − 2f + η)cL, (1 − f)cH ), then U = RU , and Lemma A.7 implies [U, (1 − f)cH ) 
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is a set of best responses for lenders. From lP 
1 (R, m∗ 

B , GB 
∗ ; p) = lP 

1 ((1−2f +η)cH ,m ∗ 
B, G

∗ 
B; p) 

for R ∈ [U, (1 − f)cH ), we obtain the expression for G∗ 
B in (A.12). 

¯RD/p − R p(1 − 2f + η)cH − pR
G ∗ 
B (R) = for R ∈ [U, (1 − f)cH ].¯(R − R) p(1 − 2f + η)cH + (1 − p)(η − 2f)cL − RD/p 

(A.12) 
Note that limR→(1−f)c − G∗ 

B (R) > 0, hence (1 − f)cH ∈ R∗ 
B. From LB(R, 1, G∗ 

P ; p) = 0 for 
H 

[RD, (1 − f)cH ] we obtain G∗ 
P same as in (A.10) for R ∈ [U, (1 − f)cH ]. 

If RU ≥ (1 − f)cH , then U = (1 − f)cH . Banks offer rate (1 − f)cH with probability 
G∗ 
B ((1 − 2f + η)cL) using the expression for G∗ 

B (R) in (A.9). From LB ((1 − f)cH , 1, G∗ 
P ; p) = 

0, we obtain P (RP = (1−2f +η)cH ) = G∗ 
P (U) as given in (A.11). In particular, the platform 

offers rates in R∗ 
P = [RD/p, (1 − 2f + η)cL] ∪ {(1 − 2f + η)cH }. 

To summarize, ⎧ ⎨RD /p−R̄ p(1−2f +η)cH +(1−p)(η−2f)cL−R for R ∈ [RD/p, T ]
(R−R̄) p(1−2f +η)cH +(1−p)(η−2f)cL−RD /pG ∗ (R) = B ⎩RD /p−R̄ p(1−2f+η)cH −pR for R ∈ [U, (1 − f)cH ] if U < (1 − f)cH(R−R̄) p(1−2f +η)cH +(1−p)(η−2f)cL−RD /p 

(A.13) 

A.9 PROOF OF PROPOSITION 3 

By Lemmas 4 and 5, we have, m ∗ ∈ (0, 1), m ∗ = 1 and max R∗ = (1 − 2f + η)cH .B P P 

Let V 0 := min R∗ 
B . Note that such a V 0 exists because sup RB 

∗ = (1 − f)cH > 

(1 − 2f + η)cL and because of a reasoning analogous to that in Lemma A.3. Note 
also that V 0 ≥ RD/p > (1 − 2f + η)cL. By Lemmas A.2 an A.7, if V 0 < (1 − f)cH , 
[V 0 ∗ , (1−f)cH ) is a set of best responses for lenders. Because lP 

0 ((1−2f +η)cL,mB , GB 
∗ ; p) > 

limR→(1−2f +η)c + l1 (R, m∗ , G∗ 
B ; p), a δ > 0 exists such that V 0 ≥ (1 − 2f + η)cL + δ. The same P B

L 

result holds immediately if V 0 = (1 − f)cH . 
(V 0 ∗Because LB (V 0 , 1, G∗ 

P ; p) = 0 and because lP 
1 (R, mB 

∗ , GB 
∗ ; p) < lP 

1 ,mB, G
∗ 
B ; p) for all 

R ∈ ((1 − 2f + η)cL, V 0), we have 

V 0 − RD/p
P (RP = (1 − 2f + η)cL) = . (A.14)

V 0 − RD 

In particular, if V 0 > RD/p, we must have P (RP = (1 − 2f + η)cL) > 0 and hence, 
(1 − 2f + η)cL ∈ R∗ 

P . 
Because max R∗ 

P = (1 − 2f + η)cH , we must have LP ((1 − 2f + η)cH ,m ∗ 
B, GB 

∗ ; p) ≥ 
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LP ((1 − 2f + η)cL,mB 
∗ , G∗ 

B ; p), which implies 

p(1 − 2f + η)(cH − cL) − (1 − p)cL 
mB 
∗ ≤ .¯ p(1 − 2f + η)cH − (1 − p)cL − pR 

If V 0 > RD/p, this expression holds as an equality. 
Moreover, from LP ((1 − 2f + η)cH ,m ∗ 

B, GB 
∗ ; p) ≥ LP (V 0,m ∗ 

B, G
∗ 
B ; p), we obtain 

(1 − 2f + η)cH − V 0 
m ∗ ≤ m̃ B (V 0) := .¯B (1 − 2f + η)cH − R 

By Lemma A.7, if V 0 < (1 − f)cH , this expression holds as an equality. 
Let RV be defned so that 

p(1 − 2f + η)(cH − cL) − (1 − p)cL 
m̃ B(R

V ) = ,¯ p(1 − 2f + η)cH − (1 − p)cL − pR 

which implies 

(1 − 2f + η)cH − R̄ − 1−p cL
R̄ 

p (1−2f +η)cLRV = (1 − 2f + η)cL > (1 − 2f + η)cL. 
R̄ − 1−p(1 − 2f + η)cH − 

p cL 

The rate V 0 is thus determined as V 0 := min{(1 − f)cH , max{RD/p, RV }}. 
If V 0 = RD/p, then min RP 

∗ = min R∗ 
B = RD/p and the equilibrium is as described in 

Proposition 1. 
If V 0 ∈ (RD/p, (1 − f)cH ), then by Lemma A.7, all rates in [V 0 , (1 − f)cH ) are best 

responses for the lenders. Moreover, the platform offer rate (1 − 2f + η)cL with positive 
probability given by (A.14). In particular, 

(1 − p)RD/p
P (RP > (1 − 2f + η)cL) = 1 − P (RP > (1 − 2f + η)cL) = ,

V 0 − RD 

For ease of exposition, defne V ≡ V 0 in this case. From LP ((1 − 2f + η)cL,m ∗ 
B, GB 

∗ ; p) = 

LP ((1 − 2f + η)cH ,m ∗ 
B , G

∗ 
B; p) we obtain m ∗ 

B 

p(1 − 2f + η)(cH − cL) − (1 − p)cL 
mB 
∗ = ∈ (0, 1) (A.15)¯ p(1 − 2f + η)cH − (1 − p)cL − pR 

From LP (R, m∗ 
B, G

∗ 
B; p) = LP ((1 − 2f + η)cH ,mB 

∗ , G∗ 
B; p) for R ∈ [V, (1 − f)cH ) we obtain 
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the expression for G∗ 
B 

¯ p(1 − 2f + η)cL − pR (1 − 2f + η)cH − R 
G ∗ 
B(R) = for R ∈ [V, (1 − f)cH ];¯ p(1 − 2f + η)(cH − cL) − (1 − p)cL R − R 

(A.16) 
This also implies P (RB = (1 − f)cH ) > 0 and, hence, (1 − f)cH ∈ RB 

∗ . From 
LB(R, 1, G∗ 

B ; p) = 0 for R ∈ [V, (1 − f)cH ] we instead obtain G∗ 
P is given by 

(1 − p)RD/p
G ∗ 
P (R) = 

R − RD 

Hence, to summarize ⎧ ⎨ (1−p)RD /p if R = (1 − 2f + η)cLV −RDG ∗ 
P (R) = (A.17)⎩ (1−p)RD /p 

R−RD 
if R ∈ [V, (1 − f)cH ]. 

Finally, if V = (1 − f)cH , the platform offers only rates (1 − 2f + η)cL and (1 − 2f + 

η)cH , with probabilities given by (A.17) after we use V = (1 − f)cH . From LP ((1 − 2f + 
∗ ∗ ∗η)cL,mB, GB 

∗ ; p) = LP ((1 − 2f + η)cH ,mB, GB 
∗ ; p) we again obtain mB is as in (A.15), but 

now banks lend at rate (1 − f)cH with probability 1. 

A.10 PROOF OF PROPOSITION 4 

¯To begin with, we observe that, in case C, RD/p ≥ R > (1 − 2f + η)cL. Next, by Lem-
mas 4 and 5, the platform is indifferent between lending at rate RD/p and not lending. 
Therefore, LP (RD/p, m∗ 

B, G
∗ 
B ; p) = m ∗ 

B[2pcH + (1 − p)cL]f from which we obtain m ∗ 
B 

R̄ − RD − (1 − p)(η − f)cL − [2pcH + (1 − p)cL]f 
m ∗ = ∈ (0, 1) (A.18)B (1 − p)[R̄ − (η − f)cL] − [2pcH + (1 − p)cL]f 

Next, by Lemma A.4, min R∗ 
B = RD/p > (1−2f + η)cL. Furthermore, Lemma 4 implies 

sup R∗ 
B = (1−f)cH . Therefore, by Lemma A.7, all rates in [RD, (1−f)cH ) are best responses 

for both the platform and banks. 
Because [RD/p, (1 − f)cH ) ⊆ R∗ 

P , we have that 

LP (R, mB 
∗ , GB 

∗ ; p) = mB 
∗ [2pcH + (1 − p)cL]f for all R ∈ [RD/p, (1 − f)cH ). 

We therefore solve for G∗ 
B(R) 

¯1 − mB 
∗ pR + (1 − p)(η − f)cL − R + [2pcH + (1 − p)cL]f 

G ∗ 
B (R) = − ∗ ¯ mB p(R − R) 
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for any R ∈ [RD/p, (1 − f)cH ), after substituting for mB 
∗ , we obtain 

¯ ¯RD/p − R R − pR − (1 − p)(η − f)cL − [2pcH + (1 − p)cL]f 
G ∗ 
B (R) = ∀R ∈ R ∗ (A.19)¯ ¯R − R R − RD − (1 − p)(η − f)cL − [2pcH + (1 − p)cL]f B . 

Because G∗ 
B(·) is left-continuous, G∗ 

B((1 − f)cH ) = limε→0+ G∗ 
B((1 − f)cH − ε) > 0. 

Therefore, (1 − f)cH ∈ R∗ 
B and, in particular, R∗ 

B = [RD/p, (1 − f)cH ]. 
Using the left-continuity of G∗ 

B (·) again, we obtain 

LP ((1 − f)cH ,m ∗ 
B, GB 

∗ ; p) = lim LP (R, m ∗ 
B, GB 

∗ ; p) = m ∗ 
B [2pcH + (1 − p)cL]f. 

R→(1−f)c − 
H 

Therefore, R∗ 
P = [RD/p, (1 − f)cH ]. 

¯To derive the platform’s strategy, we frst consider p(1 + η)cH + (1 − p)ηcL < R. In this 
case, (1 − 2f + η)cH ∈/ RP 

∗ because 

LP ((1 − 2f + η)cH ,mB 
∗ , G ∗ 

B; p) 

¯ = (1 − mB 
∗ )[p(1 + η)cH + (1 − p)ηcL − R] + mB 

∗ [2pcH + (1 − p)cL]f 

< mB 
∗ [2pcH + (1 − p)cL]f. 

Therefore, G∗ 
P ((1 − f)cH ) = 0. Using this result in equation 11 for R = (1 − f)cH ∈ RB 

∗ , we 
obtain 

(1 − p)RD 
mP 
∗ = 1 − , 

p[(1 − f)cH − RD] 

after some manipulation, we get 

(1 − f)cH − RD/p 
m ∗ = ∈ (0, 1) (A.20)P (1 − f)cH − RD 

Moreover, using equation 11 again for all R ∈ R∗ 
B = [RD/p, (1 − f)cH ], we have 

R − RD/p
G ∗ 
P (R) = 1 − , 

mP 
∗ (R − RD) 

after substituting for mP 
∗ and rearranging, we get 

(1 − p)RD (1 − f)cH − R 
G ∗ (R) = ∀R ∈ R ∗ (A.21)P p(1 − f)cH − RD R − RD

P . 

¯Next, we consider p(1 + η)cH + (1 − p)ηcL = R. Now, we cannot conclude (1 − 2f + 
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η)cH ∈/ R∗ 
P because LP ((1 − 2f + η)cH ,m ∗ 

B, GB 
∗ ; p) =h m ∗ 

B [2pcH + (1i − p)cL]f . Therefore, let 
(1−p)RD /pP (RP = (1 − 2f + η)cH ) = G∗ ((1 − f)cH ) = Q ∈ 0, . Using equation 11 for P (1−f)cH −RD 

R = (1 − f)cH ∈ RB 
∗ , we get 

(1 − f)cH − RD/p 
mP 
∗ = ∈ (0, 1] (A.22)

(1 − Q)[(1 − f)cH − RD] h i 
(1−p)RD /p ∗Because Q ∈ 0, , m ∈ [0, 1]. We then use equation 11 for all R ∈ R∗ = 

(1−f )cH −RD P B 

[RD/p, (1 − f)cH ], from which we obtain the following after substituting for the value of 
∗ mP ⎧ ⎨ (1−p)RD [(1−f)cH −R]+Q[p(1−f )cH −RD ](pR−RD) if R ∈ [RD/p, (1 − f)cH )(R−RD )[p(1−f)cH −RD ]G ∗ 
P (R) = ⎩Q if R ∈ [(1 − f)cH , (1 − 2f + η)cH ). 

(A.23) 

A.11 PROOF OF COROLLARY 1 

The proof for parts 1, 2, 3, and 5 is included in the discussion that precedes Corollary 1 in 
section 4.5. We, therefore, prove part 5 of the corollary. 

If parameters satisfy case C, m ∗ 
P = 1 and LP (R, m∗ 

B , G
∗ 
B ; p) = LP ((1 − 2f + 

η)cH ,mB 
∗ , GB 

∗ ; p) for all R ∈ [RD/p, (1 − f)cH ]. Hence, the function GB 
∗ (·) can be writ-

1−m A(R)ten as G∗ 
B (R) = 

m ∗ 
B 
∗ 

R−R̄ , for some positive function A(·). Therefore, the welfare change 
B 

can be written as 
ΔW (R̄) = −(1 − mB 

∗ )w(R̄). 

where � �Z 1−2f +η 

w( ¯ = ( ¯ 
A(R) ∗ ∗ R) : R − RD) + 1 dFP (R) − (1 − p)FP ((1 − 2f + η)cL)cL 

RD /p R − R̄ 

¯Given the parameter values considered in case A2, R may range from RD to RD/p. 
Note that w(RD) > 0 because FP 

∗ ((1 − 2f + η)cL) > 0 in case A2. Moreover, 

� � � �Z 1−2f+η1 A(R) 
w(RD/p) = (1 − p)RD + 1 dF ∗ (R) − (1 − p)pF ∗ ((1 − 2f + η)cL)cL > 0 

p RD /p R − RD/p P P 

where the inequality follows because RD > cL by Assumption 1 andR 1−2f+η 
� 

A(R) 
� 

∗ ∗+ 1 dF (R) > 1 > pF ((1 − 2f + η)cL).RD /p R−RD /p P P 
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The function w(·) is also continuous and strictly increasing, with � �Z 1−2f +η 
0( ¯ 

A(R)(R − RD) ∗ w R) = + 1 dFP (R) > 0. 
RD /p (R − R̄)2 

By the intermediate value theorem and because w(·) is strictly increasing, there exists 
R̄W ∈ (RD, RD/p) such that ΔW (R̄) > 0 if R̄ ∈ (RD, R̄

W ), ΔW (R̄) = 0 if R̄ = R̄W , and 
ΔW (R̄) < 0 if R̄ ∈ (R̄W , RD/p). 

B SECOND BEST 

We now examine the second-best allocation for the setup discussed in Section 4. We 
consider a social planner who aims to maximize social welfare while facing the same 
frictions lenders face. Specifcally, the planner lacks information about the merchant’s 
type, and the merchant retains the option to strategically default. 

The planner offers loans at rate RS . Because the interest rate RS represents a transfer 
from the merchant to the planner, the planner selects a rate that maximizes the merchant’s 
output by discouraging default among bad merchants. Any rate that satisfes (1 − f + 

fS )cL ≥ RS is optimal. Without loss of generality, we assume that the planner sets RS = 0. 
To fnance the merchant, the planner has the option to obtain capital either from banks 

¯ or the platform. Because R ≥ RD, the planner will always obtain fnancing from the 
platform. 

The planner lends with probability mS to maximize social welfare: 

max mS {2 [pcH + (1 − p)cL] − RD} . 
mS 

Hence, the planner lends if 
RD − 2cL 

p ≥ . 
2(cH − cL) 

RD−2cL RDSeveral observations can be made. First, since < , the planner extends 
2(cH −cL) (1−f )cH 

loans to more merchants than banks do. By setting RS = 0 and incentivizing produc-
tion for two periods, the planner lends at a fnancial loss to maximize the value of the 
merchant’s production and, consequently, social welfare. In particular, if the parameter 
values are such that it is effcient to fnance the bad merchant, i.e. 2cL ≥ RD, the planner 
lends regardless of the value of p. 

Second, in the region where the platform lends but p < cL (condition
(1−2f+η)(cH −cL)+cL 

(7) is not satisfed), the platform implements the social planner’s allocation. In such cases, 
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the platform offers loans at rates such that even the low-type merchants repay in full, and 
hence are able to produce for two periods. 

Finally, unlike the platform, the planner does not base lending decisions on relative 
revenues. The platform offers low rates and enforce full repayment only for merchants 
with high relative revenue. The planner, on the other hand, always chooses to motivate 
full repayment, even if losses are incurred on the loan itself. 

C COMPETITION WITH INFORMATION ACQUISITION 

We solve for the equilibrium in the credit market when the platform has the option to 
acquire information with the same technology described in section 5.1. 

C.1 EQUILIBRIUM WITH INFORMATION ACQUISITION 

Similar to Section 4, each bank announces a lending mechanism for which it lends with 
probability mB = E[dB] ∈ [0, 1] and offers rates according to the distribution FB (R) := 

P (RB ≤ R). The merchant chooses one bank to apply for credit. We maintain the as-
sumption the merchant faces large non-pecuniary costs that prevent him from applying 
to multiple banks. 

After receiving an application, the platform privately acquires the signal with proba-
bility a. A platform of type i ∈ {u, h, l} chooses a lending mechanism whereby it lends 
with probability mP,i ∈ [0, 1] and offers rates according to a distribution FP,i := P (RP,i ≤ 

0) for i ∈ {u, h, l}. Like in section 4, we defne 

GB (R) := P (RB ≥ R) = 1 − lim FB (R − ε) 
ε→0+ 

GP,i(R) := P (RP,i > R) = 1 − FP,i(R) for i ∈ {u, h, l}. 

The merchant simultaneously receives credit decisions from the bank and the plat-
form. If both extend credit, a good merchant selects the offer with the lowest rate. We 
maintain the convention that, if rates are identical, the good merchant borrows from the 
platform. A bad merchant always selects the bank’s offer if both lenders offer credit. The 
good merchant chooses the lender offering the lowest rate and her expected utility is 

U I (a, mB,mP,u,mP,h,mP,l, FB , FP,u, FP,h, FP,l) := 

(1 − a)U(mB ,mP,u, FB, FP,u) + a[ψU(mB ,mP,h, FB, FP,h) + (1 − ψ)U(mB,mP,h, FB , FP,h)], 
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which is equal to U(mB,mP
A, FB, FP

A), where U is defned as in equation (A.4) and 

mP
A := (1 − a)mP,u + a[ψmP,h + (1 − ψ)mP,u] 

F A(R) := {(1 − a)mP,uFP,u(R) + a[ψmP,hFP,h(R) + (1 − ψ)mP,uFP,l(R)]}/mA 
P P 

Given posterior pi, the platform’s profts conditional on lending at rate R are still given by 
the function LP (R, mB, GB ; pi) defned in equation (9) in Section 4. In fact, conditional on 
lending at a given rate R, profts vary across platform types only because different types 
possess different beliefs. 

Conditional on lending at rate R, a bank’s profts now depend on the distribution 
of lending decisions of the three types of platform and on the probability the platform 
acquires information, a. If a bank offers a loan at rate R, its expected profts are thus 

LI (R, a, mP,u,mP,h, GP,u, GP,h; p) :=(1 − a)p {mP,uGP,u(R)(R − RD) + (1 − mP,u)(R − RD)}B 

+ aψph {mP,hGP,h(R)(R − RD) + (1 − mP,h)(R − RD)} 

− (1 − p)RD. 

With probability 1 − a, the platform does not acquire information, and if the merchant is 
good, she chooses the bank only if R < RP or if the platform does not lend, that is, dP = 0. 
With probability a, the platform acquires information and, with probability ψ, it observes 
a high signal. A good merchant will, once again, choose the bank only if R < RP or 
dP = 0. Regardless of whether the platform acquires information or not, a bad merchant 
always borrows from the bank and never repays. The platform’s profts are also equal to 

aLB(R, mP
a , GP

a ; p), where LB is defned in equation (10), mP := (1 − a)mP,u + amP,h, and 
Ga 
P (R) := [(1 − a)mP,uGP,u(R) + amP,hGP,h(R)]/m

a
P . 

In this framework, we defne an equilibrium when the platform can acquire informa-
tion at cost c. 

DEFINITION C.1 (Equilibrium with Information Acquisition). An equilibrium with infor-
mation acquisition is an information-acquisition probability aI∗ ∈ [0, 1], lending probabilities for 

I∗ I∗ I∗ I∗the three platforms types and for banks, (mP,u,mP,h,mP,l,m ) ∈ [0, 1]4, distributions of the rates B 

offered by the three types of the platform and by banks, (F I∗ , F I∗ , F I∗ , F I∗) ∈ Δ([0, 1 − f ])4 
P,u P,h P,l B 

with supports RI∗ 
P,h, RI∗ , and RB

I∗ and with GI∗(R) := 1 − limε→0+ F I∗(R − ε), GI∗ (R) := P,u, RI∗ 
P,l B B P,i 

1 − F I∗ (R), and P,i 

a∗ I∗ I∗ I∗ mP := (1 − a I∗ )mP,u + a mP,h 

Ga∗ I∗ )m I∗ GI∗ I∗ I∗ GI∗ 
P (R) := [(1 − a P,u P,u(R) + a mP,h P,h(R)]/m

a
P 
∗ 

A∗ I∗ I∗ mP : 
I∗ )mP,u + a I∗ [ψmI∗ 

P,l]= (1 − a P,h + (1 − ψ)m 
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I∗ I∗ F A∗ (R) := {(1 − a I∗ )m P,u(R) + a I∗ [ψmI∗ 
P,h(R) + (1 − ψ)m P,l(R)]}/mA∗ 

P P,uF I∗ 
P,hF I∗ 

P,lF I∗ 
P 

such that: 

1. The platform and competitive banks set rates optimally: 

R ∗I = arg max LP (R, m
I
B 
∗ , GI∗ i) for i ∈ {u, h, l}P,i B ; p 

R≤(1−2f +η)cH 

RI∗ 
B = arg max LB (R, mP

a∗ , GP
a∗ ; p) 

R∈[RD ,(1−f)cH ] 

s.t. LB(R, ma
P 
∗ , Ga

P 
∗ ; p) ≤ 0. 

2. Lenders extend credit optimally: � 
I∗ I∗ i mP,i ∈ arg max mP LP (R, m

I
B 
∗ , GI

B 
∗ ; p i) + (1 − mP )mB [2p cH + (1 − p i)cL]f ∀R ∈ R ∗ 

P 
mP ∈[0,1] 

for i ∈ {u, h, l}, and 

m IB 
∗ ∈ arg max mBLB(R, m

a
P 
∗ , Ga

P 
∗ ; p) ∀R ∈ R ∗ 

B . 
mB ∈[0,1] 

3. The platform acquires information optimally: n 
I∗ I∗ I∗ a ∈ arg max a[ψLI∗ (m , GB

I∗ ; p h) + (1 − ψ)LI∗ (m , GB
I∗ ; p l) − c]P B P B 

a∈[0,1] o 
+ (1 − a)LIP 

∗ (m IB 
∗ , GB

I∗ ; p u) , (C.1) 

where 

LI∗ I∗ I∗ I∗ I∗ 
P (mB , GB

I∗ ; p i) := mP,iLP (R, mB
I∗ , GB

I∗ ; p i) + (1 − mP,i)mB [2pcH + (1 − p)cL]f 

∀R ∈ RP,i, i ∈ {u, h, l}. 

4. Banks are competitive in the lending market; that is, no lending mechanism (FB,mB)R (1−f)cHexists such that LB(R, ma∗, Ga
P 
∗ ; p) dFB (R) > 0 and U(mB ,m

A∗, FB , F A∗) >
0 P P P 

I∗ A∗U(mB ,m , F I∗, F A∗),.P B P 

Similar to Section 4, competitive banks earn zero profts in equilibrium; that is, 

I∗ I∗ I∗ m LI (R, aI∗ ,m , GI∗ , GI∗ for any R ∈ RI∗ 
B B P,u,mP,h P,u P,h; p) = 0 B . 

Before solving for the equilibrium fully, we characterize some general properties in a 
series of lemmas. We frst show that, if the platform acquires information in equilibrium, 
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it lends with probability one after observing a high signal. All the proofs are in Appendix 
D. 

I∗ I∗LEMMA C.1 (Lending with Optimistic Beliefs). If a ∈ (0, 1], then mP,h = 1. That is, if the 
platform acquires information with positive probability, then it lends after observing a high signal. 

Intuitively, if the platform weakly prefers to abstain from lending after observing good 
news about the borrower, it would strictly prefer to deny credit with no or worse news. 
Because not lending is the platform’s optimal strategy regardless of information, costly 
information acquisition is sub-optimal. We, therefore, rule out equilibria where the plat-

I∗form denies credit after acquiring a high signal. Thus, hereafter, we consider mP,h = 1. 
To characterize the equilibrium, we frst describe the platform’s strategy when it is a 

monopolistic lender, i.e. when banks do not lend and mB
I∗ = 0. The optimal strategy of 

the platform depends on two considerations analogous to those in Lemma 1 of Section 
3.1.2. First, if 

¯ max{p i(1 + η)cH + (1 − p i)ηcL, (1 + η)cL + 2p i(cH − cL)f} − R ≥ 0 (C.2) 

the platform earns profts by lending when its beliefs are equal to pi . If this inequality 
if violated, the platform prefers not to lend to a merchant whose perceived quality is pi . 
Second, if 

cL 
p i > , (C.3)

(1 − 2f + η)(cH − cL) + cL 

the platform’s unique proft-maximizing rate is (1 − 2f + η)cH ; otherwise, the platform 
offers a rate equal to (1 − 2f + η)cL, with indifference between the two rates in case pi = 

cL . The following lemma characterizes the equilibrium when the platform 
(1−2f+η)(cH −cL)+cL 

is a monopolistic lender 

LEMMA C.2. In any equilibrium with mB 
∗ = 0, the following holds. 

1. If max{ph(1 + η)cH + (1 − ph)ηcL, (1 + η)cL +2p
h(cH − cL)f}− R̄ < 0 the platform does 

not acquire information and does not lend to the merchant. 

2. If max{ph(1+η)cH +(1−ph)ηcL, (1+η)cL +2p
h(cH −cL)f}−R̄ ≥ 0 but (1+η)cL −R̄ < 0 

the platform acquires information with probability 1 and does not lend after observing a low 
signal. After observing a high signal, it lends at rate (1 − 2f + η)cH if (C.3) holds for i = h, 
otherwise it lends at rate (1 − 2f + η)cL. 

3. If max{ph(1+ η)cH +(1 − ph)ηcL, (1+ η)cL +2p
h(cH − cL)f}− R̄ ≥ 0, (1+ η)cL − R̄ ≥ 0, 

and (C.3) holds for i = h, the platform acquires information with probability 1 and lends 
regardless of the signal. It lends at rate (1 − 2f + η)cH if the signal is high, whereas it lends 
at rate (1 − 2f + η)cL if the signal is low. 
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4. If max{ph(1+ η)cH +(1 − ph)ηcL, (1+ η)cL +2p
h(cH − cL)f}− R̄ ≥ 0, (1+ η)cL − R̄ ≥ 0, 

and (C.3) does not hold for i = h, the platform does not acquire information and lends with 
probability one at rate (1 − 2f + η)cL. 

Next, we observe the results in Lemmas 2 and in Section 4 hold also for an equilib-
rium with information acquisition. The results hold for any p, and thus apply also to an 
informed platform. 

We also obtain a Lemma identical to Lemma 3. We state it below because its proof is 
different from Lemma 3 because we need to account for the platform’s option to acquire 
information. 

LEMMA C.3 (Partial Segmentation with Information Acquisition). If p < RD , banks do 
(1−f)cH 

not lend to the merchant, but if (C.3) holds as a weak inequality, the platform lends in the way 
described in Lemma C.2. If p ≥ R

R 
D , the merchant borrows exclusively from banks that offer loans ¯ 

with probability 1 at rate R
p 
D . 

Hence, when p > R
R̄ 
D , banks remain the only lenders because the platform’s cost of 

capital exceeds banks’ competitive rate RD/p. When p < RD , banks are unwilling
(1−f)cH 

to enter the lending market because the merchant’s creditworthiness is too low to justify 
the loan, even if the platform were not competing. Hence, like in 4, the platform is a 
monopolistic lender when p < RD .

(1−f)cH 

We also obtain the counterpart of Lemma 4. h � 
LEMMA C.4 (Mixed Strategies with Information Acquisition). If p ∈ RD , RD/R̄ and

(1−f)cH 

c is suffciently small, banks offer loans with probability mB
I∗ ∈ (0, 1) and the platform acquires 

I∗ I∗ I∗ I∗information with probability a > 0 and offers loans so that (1 − aI∗)mP,u + a mP,h ∈ (0, 1]. 
Moreover, the uninformed and optimistic platform offer rates ranging between min{R∗ ∪R∗ } ≤ P,u P,h 

RD/p and max{R∗ ∪ R∗ } ≥ (1 − f)cH . In particular, min{R∗ ∪ R∗ } coincides either with P,u P,h P,u P,h 

RD/p or with (1 − 2f + η)cL. Banks offer rates up to sup RI
B 
∗ = (1 − f)cH . 

Like in section 4, banks always deny credit with positive probability and offer rates up 
to (1 − f)cH when they directly compete with the platform of merchants of intermediate 
credit quality. Moreover, the ex-ante set of rates offered by the platform coincides with 
the set identifed in Lemma 4. However, the uninformed platform and the optimistic 
platform may offer different rates. 

Lemma C.4 also indicates the platform still benefts from advantageous selection when 
competing with banks. In particular, the platform lends with positive probability whenh � 
ph(1 + η)cH + (1 − ph)ηcL < R̄ , but p ∈ RD , RD/R̄ . According to Lemma C.2 the 

(1−f)cH 

platform would not lend in this situation when mB
I∗ = 0. Remark 3 thus also apply to this 

extension of the model. 
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We also obtain a result similar to those in Lemma 5 about the equilibrium strategy of 
the platform. 

LEMMA C.5 (The Platform’s Strategy with Information Acquisition). Consider a merchant h � 
RD RDcharacterized by p ∈ , and assume c is suffciently small. If ph(1 + η)cH + (1 −¯(1−f)cH R

I∗ I∗ I∗ ph)ηcL > R̄, the platform acquires information and lends so that (1 −aI∗)mP,u +a mP,h = 1 and 
¯ max RI

P,h 
∗ = (1 −2f + η)cH . If ph(1+η)cH +(1− ph)ηcL ≤ R, the platform is indifferent between 

¯acquiring information and not lending. Moreover, if R > (1 − 2f + η)cL, then min R∗ = P,u 
¯min R∗ = RD/p > (1 − 2f + η)cL. If R ≤ (1 − 2f + η)cL and RD/p < (1 − 2f + η)cL,P,h 

R∗ 
P,h = RD/p. 

We focus on the region where the banks and the platform compete for borrowers; h � 
that is borrowers with intermediate credit quality p ∈ RD , RD . Using results from ¯(1−f )cH R

Lemma C.4 and D.9, we consider cases analogous to those we had in section 4. h � 
¯ RD RDA: ph(1 + η)cH + (1 − ph)ηcL > R > (1 − 2f + η)cL, and p ∈ , ;¯(1−f)cH Rh � 

¯ RD RDB: R ≤ (1 − 2f + η)cL and p ∈ , ¯(1−f )cH R

B1: Like case B, but restricted to p ≥ RD ;
(1−2f +η)cL 

B2: Like case B, but restricted to p < RD ;
(1−2f+η)cL h � 

¯ RD RDC: ph(1 + η)cH + (1 − ph)ηcL ≤ R and p ∈ 
(1−f)cH 

, 
R .¯ 

C.2 EQUILIBRIUM IN CASE I.A 

¯First, we consider case I.A. If R > (1 + η)cL, the platform obtains positive profts only 
when lending to a good borrower. Hence, after acquiring information, a platform will 
deny credit if the merchant is revealed to be bad. It will extend credit if the signal is good. 
For an arbitrarily low cost of information acquisition c, the value of potentially screening 
borrowers exceeds the information cost. Hence the platform always acquires information. 

¯If instead, R ∈ ((1 − 2f + η)cL, (1 + η)cL], the platform obtains positive profts even 
when lending to a bad merchant by setting a rate equal to (1−2f +η)cL. However, because 
R̄ > (1 − 2f + η)cL, an optimistic platform has no incentive to undercut banks by setting 
a rate equal to (1 − 2f + η)cL < RD/p. 

The following proposition characterizes the equilibrium. 

PROPOSITION C.1. Consider a merchant with parameters satisfying I.A. There exists � > 0 
such that, for any c ∈ (0, �), the equilibrium is characterized uniquely as follows. 

1. Banks lend as described in Proposition 1. 
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2. The platform acquires information with probability aI∗ = 1. 

¯ ¯3. If R > (1 + η)cL, a pessimistic platform offers loans with probability mP,l 
I∗ = 0. If R ∈ 

((1 − 2f + η)cL, (1 + η)cL], a pessimistic platform offers loans with probability mP,l 
I∗ = 1 

and offers rate (1 − 2f + η)cL. 

4. An optimistic platform lends with probability mI∗ = 1 and offers rates with the sameP,h 

distribution described in equation (A.7) of Proposition 1. 

The banks’ lending probability and distribution of rate offers are identical to case A 
in Section 4. Moreover, the optimistic platform offers interest rates from the same dis-
tribution as the uninformed platform in case A of Section 4, when the platform had no 

¯option to acquire information. However, when R > (1 + η)cL, the platform lends only 
with probability ψ < 1, because it refuses to lend if the merchant is revealed to be bad. 

C.3 EQUILIBRIUM IN CASE I.B 

In case I.B, the platform may proftably offer rates equal to or below (1−2f +η)cL because 
¯(1−2f +η)cL ≥ R. Moreover, the platform can proftably lend after observing a low signal 

by offering rates equal to (1 − 2f + η)cL. 
In case I.B1, competitive banks do force the platform to offer rates weakly below (1 − 

2f + η)cL. After observing a low signal, the platform thus lends at rate (1 − 2f + η)cL 

to maximize the surplus extracted from a bad merchant when banks do not lend. After 
observing a high signal, the platform faces a trade-off: either it offers low rates to compete 
with banks for a borrower of high perceived quality, or it offers high rates to extract more 
surplus from the borrower. Because information allows the platform to customize interest 
rates, the platform will acquire information in equilibrium with positive probability. The 
next proposition characterizes the equilibrium in case I.B1. 

PROPOSITION C.2. Assume parameters satisfy case I.B1 and defne 

T := min{(1 − 2f + η)cL, (1 − f)cH } 
(1 − mI∗)(1 − ph)cL

U c := min{(1 − 2f + η)cL + B , (1 − f)cH }I∗GI∗ I∗ p[mB B ((1 − 2f + η)cL) + (1 − mB )] 

There exists � > 0 such that, for any c ∈ (0, �), there exists a unique equilibrium characterized by 
the following: 

1. Banks extend credit with probability 

ph(1 − 2f + η)cH + (1 − ph)(η − 2f)cL − RD/p 
m IB 

∗ = ∈ (0, 1). 
ph(1 − 2f + η)cH + (1 − ph)(η − 2f)cL − RD/p + phRD/p − phR̄ 

(C.4) 

67 



∗ I∗ ∗Compared with mB in Proposition 2, we have mB > mB. Conditional on making an 
offer, they choose a rate from the support R∗ 

B = [RD/p, T ) ∪ [U c , (1 − f)cH ] so that, if 
(1 − f)cH < (1 − 2f + η)cH , 

¯RD/p − R ph(1 − 2f + η)cH + (1 − ph)(η − 2f)cL − R 
GI∗ 
B = for R ∈ [RD/p, T ].¯(R − R) ph(1 − 2f + η)cH + (1 − ph)(η − 2f)cL − RD/p 

(C.5) 
If, instead, T = (1−2f +η)cL, GI

B 
∗ coincides with equation (C.5) above for R ∈ [RD/p, Rc], 

where 
c 

Rc := (1 − 2f + η)cL − , (C.6)
(1 − ψ)(1 − mI

B 
∗) 

whereas for R ∈ [Rc, (1 − 2f + η)cL], GI
B 
∗ is given by 

¯ 
GI∗ RD/p − R 1 − mB

I∗ ψRD/p + (1 − ψ)(1 − 2f + η)cL − R c 
B (R) = + − 

R − R̄ mB
I∗ p(R − R̄) mI

B 
∗ p(R − R̄) 

. 

(C.7) 

Furthermore, 

RD/p − R̄ ph(1 − 2f + η)cH − phR 
GI∗ 
B (R) = for R ∈ [U c , (1−f)cH ].¯(R − R) ph(1 − 2f + η)cH + (1 − ph)(η − 2f)cL − RD/p 

(C.8) 

2. If T = (1 − f)cH < (1 − 2f + η)cL, the platform acquires information with probability 
aI∗ = 1. If T = (1 − 2f + η)cL, the platform acquires information with probability 

U c − Rc (1 − p)RD/p 
a I∗ = 1 − ∈ (0, 1). (C.9)

U c − RD Rc − RD 

3. The pessimistic platform offers loans with probabilities mI∗ = 1 at a rate equal to (1 − 2f +P,l 

η)cL. 

I∗4. An optimistic platform lends with probability mP,h = 1. If T = (1−f)cH < (1−2f +η)cL, 
offers rates in RI∗ = [RD/p, (1 − f)cH ) ∪{(1− 2f + η)cH } so that P (RP > R) = GI∗(R),P,h P 

where 
(1 − p)RD/p

G ∗ (R) = for R ∈ [RD/p, (1 − f)cH ]. (C.10)P,h R − RD 

If T = (1 − 2f + η)cL, the platform offers rates in RI∗ = [RD/p, Rc] ∪ [U c , (1 − f)cH ] \P,h 

{(1 − f)cH } ∪ {(1 − 2f + η)cH } so that P (RP > R) = G∗ 
P (R), where ( 

1 (1−p)RD /p for R ∈ [RD/p, Rc]
G ∗ a R−RD 

I∗ (C.11)P,h(R) = 
1 (1−p)RD /p 
a R−RD 

, (1 − f)cH ].for R ∈ [U c 
I∗ 

I∗5. If T = (1 − 2f + η)cL, the uniformed platform extends credit with probability mP,u = 1 and 
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offers rates in RI∗ = [Rc , (1 − 2f + η)cL], so thatP,u 

I∗GI∗ (1 − p)RD/p a P,h(U
c)

GI∗ 
P,u = − for R ∈ [Rc , (1 − 2f + η)cL). (C.12)

(1 − aI∗)(R − RD) 1 − aI∗ 

Competition between banks and the platform forces lenders to offer rates in [RD/p, T ]. 
If T = (1−f)cH < (1−2f +η)cL, the optimistic and pessimist platform offer different rates 
and the platform thus acquires information with positive probability. If T = (1−2f +η)cL, 
the incentive to customize is limited because, if the platform always acquired information, 
the optimistic and pessimist platform would share a best response. Hence, in equilibrium, 
the platform remains uniformed with positive probability and the uninformed platform 
offers different rates from both the optimistic and pessimistic one. 

In case I.B2, the optimal response of a pessimistic platform remains to lend at rate 
(1 − 2f + η)cL to maximize the surplus it extracts from a bad borrower when banks do not 
lend. Although the platform would like to offer high rates to extract more surplus from 
the merchant after observing a high signal, competition from banks force the platform to 
offer rates down to RD/p, which, if close enough to (1 − 2f + η)cL, may be dominated by 
the latter rate. The following proposition describes the equilibrium in this case. 

PROPOSITION C.3. Assume parameters satisfy case I.B2. Defne 

h 
R̄ − 1−p R(1 − 2f + η)cH − cL 

¯ 
ph (1−2f +η)cLV c := min{(1 − f)cH , max{RD/p, (1 − 2f + η)cL }}

(1 − 2f + η)cH − R̄ − 1− 
p
ph 
cLh 

There exists � > 0 such that, for any c ∈ (0, �), there exists an equilibrium characterized by 
the following 

1. If V c = RD/p, the equilibrium is the same as in case I.A and it is described by Proposition 
C.1. 

2. If V c ∈ (RD/p, (1 − f)cH ], the equilibrium is characterized as follows: 

(a) Banks extend credit with probability 

I∗ ph(1 − 2f + η)(cH − cL) − (1 − ph)cL − c/ψ 
mB = ∈ (0, 1). (C.13) 

ph(1 − 2f + η)cH − (1 − ph)cL − phR̄ 

∗ I∗ ∗Compared with m in Proposition 3, we have m > m Conditional on makingB B B . 
an offer, they choose a rate from the support R∗ 

B = [V c , (1 − f)cH ] so that, if V c ∈ 
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(RD/p, (1 − f)cH ), P (RB ≥ R) = GI
B 
∗(R), where 

ph(1 − 2f + η)cL − phR̄ + c/ψ (1 − 2f + η)cH − R 
GI∗ 
B (R) = for R ∈ [V c , (1−f)cH ]; 

ph(1 − 2f + η)(cH − cL) − (1 − ph)cL R − R̄ 
(C.14) 

if, instead, V c = (1 − f)cH , P (RB = (1 − f)cH ) = 1. 

(b) The platform acquires information with probability 

I∗ (1 − p)RD/p 
a = ∈ (0, 1). (C.15)

V c − RD 

I∗ I∗(c) The pessimist and the uniformed platform offer loans with probabilities mP,l = mP,u = 
1 at a rate equal to (1 − 2f + η)cL. 

(d) An optimistic platform lends with probability mI∗ = 1 and offers rates with the sameP,h 

distribution described in Proposition 3 for the uniformed platform. 

When V c > RD/p, the pessimistic and uniformed platform offer rate (1 − 2f + η)cL 

with positive probability, thus deterring banks from offering rates below V c . The platform 
thus uses information to offer customized interest rates and to extract surplus based on 
the default risk of the merchant. 

C.4 EQUILIBRIUM IN CASE I.C 

We now study a merchant whose parameters satisfy I.C. The following proposition char-
acterizes the equilibrium and shows that the platform acquires information with proba-
bility strictly between zero and one. 

PROPOSITION C.4. Assume parameters satisfy case I.C. There exists � > 0 such that, for any 
c ∈ (0, �), the equilibrium is characterized as follows. 

1. The bank lends with probability mB
I∗ ∈ (0, 1) given by 

¯ 
I∗ R − RD/ψ − (1 − ph)(η − f)cL − [2phcH + (1 − ph)cL]f + c/ψ 

mB = 
h) ¯ 

. (C.16)
(1 − p R − (1 − ph)(η − f)cL − [2phcH + (1 − ph)cL]f 

and, conditional on lending, they offer rates in RI
B 
∗ = [RD/p, (1 − f)cH ] so that P (RB ≥ 

R) = GI
B 
∗(R) where 

(1 − mI
B 
∗)[R̄ − phR − (1 − ph)(η − f)cL − (2phcH + (1 − ph)cL)f ] + c/ψ

GI∗ (R) = 
I∗ .B mB p

h(R − R̄) 
(C.17) 

∗ I∗ ∗2. Compared to mB in Proposition 4, mB < mB. 
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3. The platform acquires information with probability aI∗ ∈ (0, 1) equal to m ∗ 
P from Proposi-

tion 4. 

I∗ I∗4. The uninformed and the pessimistic platform do not lend; that is, m = m = 0.P,u P,l 

I∗5. The optimistic platform lends with probability mP,h = 1 and offers rates with the same 
distribution described in Proposition 4 for the uninformed platform. 

The platform acquires information with probability aI∗ that is equal to its lending 
probability in case C of Section 4. However, it denies credit at a higher probability, equal 
to 1 − aI∗ψ. Moreover, banks offer loans with lower probability than in case C. There-
fore, credit is rationed more often when the platform can acquire information, because 
of the combined effect of the platform’s better screening and of banks’ reluctance to lend 
because of their winner’s curse. 

¯When ph(1+ η)cH +(1− ph)ηcL = R, multiple equilibria still exist and they are indexed h i 
(1−p)RD /p I∗by Q ∈ 0, whereby P (RP = (1 − 2f + η)cL) = Q and a is given by the 

(1−f )cH −RD 

right-hand side of equation (A.22) in Proposition 4. 

D PROOFS FOR THE INFORMATION ACQUISITION EXTENSION 

D.1 PROOF OF LEMMA C.2 

First, we consider max{ph(1+ η)cH +(1− ph)ηcL, (1+η)cL +2p
h(cH −cL)f}− R̄ < 0. In this 

case, even after observing a high signal, the platform has no incentive to lend. Therefore, 
the platform does not acquire information. 

Next, max{ph(1+η)cH +(1−ph)ηcL, (1+η)cL +2p
h(cH −cL)f}−R̄ ≥ 0 but (1+η)cL −R̄ < 

0. In this case, the platform can proftably lend after observing a high signal but prefers 
to deny credit after a low signal. Therefore, for a suffciently small c, 

LP (R, m
I∗ , GI∗ u) = max{max{p u(1+η)cH +(1−p u)ηcL, (1+η)cL +2p u(cH −cL)f}−R,¯ 0}B B ; p� 

¯ < ψ max{p h(1 + η)cH + (1 − p h)ηcL, (1 + η)cL + 2p h(cH − cL)f} − R + (1 − ψ)0 − c 
I∗ I∗ = ψLIP 

∗ (mB , G
I
B 
∗ ; p h) + (1 − ψ)LP

I∗ (mB , G
I
B 
∗ ; p l) − c, 

and the platform acquires information with probability aI∗ = 1. 
¯We now consider max{ph(1 + η)cH + (1 − ph)ηcL, (1 + η)cL + 2p

h(cH − cL)f} − R ≥ 0, 
¯(1 + η)cL − R ≥ 0, and assume (C.3) holds for i = h. Now, the platform optimally lends 

¯regardless of the signal it receives because (1 + η)cL − R ≥ 0. However, the optimal rate 
for an optimistic platform is (1 − 2f + η)cH , whereas the optimal rate for a pessimistic 
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platform is (1 − 2f + η)cL. Let RU ∈ {(1 − 2f + η)cH , (1 − 2f + η)cL} be the optimal rate 
for an uninformed platform. For a small enough c we have 

I∗ I∗ I∗ LP (RU ,mB , G
I
B 
∗ ; p u) = ψLP (RU ,mB , G

I
B 
∗ ; p h) + (1 − ψ)LP (RU ,mB , G

I
B 
∗ ; p u) 

I∗ I∗ < ψLP ((1 − 2f + η)cH ,mB , G
I
B 
∗ ; p h) + (1 − ψ)LP ((1 − 2f + η)cL,mB , GB

I∗ ; p u) − c 

= ψLIP 
∗ (m IB 

∗ , GB
I∗ ; p h) + (1 − ψ)LIP 

∗ (R, mI
B 
∗ , GB

I∗ ; p u) − c, 

and the platform thus acquires information with probability aI∗ = 1. 
Finally, we consider max{ph(1 + η)cH + (1 − ph)ηcL, (1 + η)cL +2p

h(cH − cL)f}− R̄ ≥ 0, 
(1 + η)cL − R̄ ≥ 0, and assume (C.3) does not hold for i = h. In this case, the rate (1 − 2f + 

η)cL is optimal for the platform regardless of the information it possesses. Therefore, for 
any positive cost of information acquisition, c, the platform does not acquire information 
and lends with probability one at rate (1 − 2f + η)cL. 

D.2 AUXILIARY LEMMAS 

We now introduce some lemmas which will be useful in characterizing the equilibrium 
with competition. Some lemmas contain new results which are specifc to a model with 
information acquisition. Others are extensions or modifcations of lemmas derived in the 
main model with no information acquisition. 

LEMMA D.1. Consider pi > 0. If R > (1 − 2f + η)cL and R ∈ R∗ 
P,i, then for any R0 < 

(1 − 2f + η)cL, we have R0 ∈/ RP,y 
∗ for py > pi . Moreover, R ∈ RP,y 

∗ for py > pi . 

Proof. Note 

L(R, mB, GB; p i) 
¯ ¯ = mB GB(R)(R − R) + (1 − mB )[p iR + (1 − p i)(η − f)cL − R] + [2p i ch + (1 − p i)cL]f 

+ I(R)(1 − mB )(1 − p i){R − (η − f)cL + fcL} 

where I(R) := I[R ≤ (1 − 2f + η)cL]. Because L(R, mB , GB; pi) ≥ L(R0,mB, GB; pi) for any 
R0 , 

¯ ¯ mB[GB (R)(R − R) − GB (R
0)(R0 − R)] 

1 − pi ≥ −(1−mB )(R−R0)−(1−mB ) 
pi 

{I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)} 

Now consider L(R, mB, GB ; py) − L(R0,mB , GB; py), which is equal to 

y ¯ ¯ p mB[GB(R)(R − R) − GB(R
0)(R0 − R)] + (1 − mB)(R − R0) 
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+ (1 − mB)1 − py {I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)}� � 
py 

≥ py(1 − mB) 1 − 
pi 

{I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)} 

If R > (1−2f +η)cL and R0 ≤ (1−2f +η)cL, then I(R)(R+(2f −η)cL)−I(R0)(R0 +(2f − 
η)cL) < 0. If py > pi , then 1 − py/pi < 0. Hence L(R, mB, GB ; py) − L(R0,mB , GB ; py) > 0 
and R0 cannot be a best response for py > pi . 

Therefore, RRI∗ ⊆ ((1 − 2f + η)cL, (1 − 2f + η)cH ]. For R > (1 − 2f + η)cL, we haveP,y 

arg maxR>(1−2f +η)cL L(R, m
I
B 
∗, GB

I∗ ; pi) = arg maxR>(1−2f+η)cL L(R, m
I
B 
∗, GI

B 
∗ ; py). Hence, R ∈ 

R∗ y > pi P,y for p . 

LEMMA D.2. If R ≤ (1−2f +η)cL and R ∈ R∗ , then for any R0 < R and R0 > (1−2f +η)cL,P,i 

∈ R∗ y < piwe have R0 / P,y with p . 

Proof. Because L(R, mB, GB ; pi) ≥ L(R0,mB , GB ; pi) for any R0 , 

¯ ¯ mB[GB (R)(R − R) − GB (R
0)(R0 − R)] 

1 − pi ≥ −(1−mB)(R−R0)−(1−mB) {I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)} , 
pi 

where I(R) := I[R ≤ (1 − 2f + η)cL] 
Now consider L(R, mB, GB ; py) − L(R0,mB , GB; py), which is equal to 

y ¯ ¯ p mB[GB(R)(R − R) − GB(R
0)(R0 − R)] + (1 − mB)(R − R0) 

+ (1 − mB)1 − py {I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)}� � 
py 

≥ py(1 − mB) 1 − 
pi 

{I(R)(R + (2f − η)cL) − I(R0)(R0 + (2f − η)cL)} 

If py < pi , then 1 − py/pi > 0. If R ≤ (1 − 2f + η)cL and R0 < R, then I(R)(R + (2f − 
η)cL) − I(R0)(R0 + (2f − η)cL) > 0. If R0 > (1 − 2f + η)cL, then I(R)(R + (2f − η)cL) − 
I(R0)(R0 + (2f − η)cL) > 0. Hence, in either case, L(R, mB, GB; py) − L(R0,mB , GB; py) > 0 
and R0 cannot be a best response for py < pi . 

¯LEMMA D.3. Suppose R ≥ R. LP (R, mB, GB ; x) − mI
B 
∗[2xcH + (1 − x)cL]f is increasing 

I∗ I∗ i I∗in x. Moreover, if LI∗(m , GB
I∗ ; pi) = m [2p cH + (1 − pi)cL]f , then LI∗(m , GI

B 
∗ ; py) = P B B P B 

I∗ i y imB [2p cH + (1 − pi)cL]f ≥ maxR LP (R, mB
I∗, GI

B 
∗ ; py) for all p < p , with strict inequality if 

¯R > R and mB
I∗ ∈ (0, 1). 

Proof. Defne I(R) = I(R ≤ (1 − 2f + η)cL). One can immediately verify 

LP (R, mB , GB; x) − mB
I∗ [2xcH + (1 − x)cL]f 

= mBxGB(R)(R−R̄)+(1−mB)[x(R+2cH f)+(1−x)ηcL −R̄]+I(R)(1−x)[R−(η−2f)cL] 
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I∗ I∗ iis increasing in x. Using this observation, we obtain that, if LI∗(m , GB
I∗ ; pi) = m [2p cH +P B B 

(1 − pi)cL]f and py < pi, then 

I∗ I∗ i0 = LIP 
∗ (mB , GBI∗; p i) − mB [2p cH + (1 − p i)cL]f 

I∗ I∗ y≥ LI∗ (m , GB I∗; py) − m [2p cH + (1 − py)cL]fP B B 

for py < pi . If R > R̄ and mI
B 
∗ ∈ (0, 1), the last inequality is strict. 

I∗ RDLEMMA D.4. m > 0 if and only if p ≥ .B (1−f)cH 

I∗ RD I∗Proof. First, we show m > 0 if p ≥ . By way of contradiction, suppose m = 0.B (1−f )cH B 

Then RI∗ = RI∗ = {(1 − 2f + η)cH } and Ga∗(R) = I(R < (1 − 2f + η)cH ). Then, for any P,u P,h P 

ma
P 
∗ ∈ [0, 1] and ε ∈ (0, (1 − f)cH − RD/p), LB (RD/p + ε, ma

P 
∗, GP

a∗ ; p) > 0, contradicting 
that mB

I∗ = 0 is the bank’s equilibrium strategy. 
I∗ RD RDSecond, we show m = 0 if p < . When p < , for any R ≤ (1 − f)cH weB (1−f )cH (1−f)cH 

have 
LB (R, m

a
P 
∗ , Ga

P 
∗ ; p) ≤ p(1 − f)cH − RD < 0 

and, by (11), mI
B 
∗ = 0. 

LEMMA D.5. If mB
I∗ ∈ (0, 1), then sup RI

B 
∗ = (1 − f)cH . 

Proof. We proceed by contradiction and assume R̃ := sup RI
B 
∗ < (1 − f)cH . Because mB

I∗ ∈ 
(0, 1), by Lemma A.1, we have p ≥ RD , which also implies (7). Hence, LP (R, m∗ , GB 

∗ ; pi) <
(1−f)cH B 

∗LP ((1−2f +η)cH ,m , GB 
∗ ; pi) for any R ∈ (R,˜ (1−2f +η)cH ) and for i ∈ {u, h}. Therefore, B 

an ε > 0 exists such that LB(R̃ + ε, ma∗, Ga
P 
∗ ; p R,ma∗, GP

a∗ ; pi) for i ∈ {u, h}.P
i) > LB ( ˜ P 

Hence, for a small enough ε, a lending mechanism (mB, FB ) with mB = 1 and with do-R R̂+εmain RI∗∪{R̃+ε} exists such that LB (R, ma∗, Ga
P 
∗ ; p)dF (R) > 0 and U(1,mA∗, FB, F A∗) >B P P P0 

I∗ A∗U(mB ,m , F I , F A∗), contradicting the assumption that RI∗ is the domain of the equilib-P B P B 

rium lending mechanism offered by banks. 

I∗ I∗LEMMA D.6. Suppose mB ∈ (0, 1) for all c > 0. Then a m̄ ∈ (0, 1) exists such that mB ≤ m̄ 
for any c > 0. That is, as c → 0, lim sup mB

I∗ < 1. 

)∞ 

I∗ I∗ I∗ 
Proof. We proceed by contradiction and assume a sequence (cn n=0 with cn > 0 and cn → 0 
such that m → 1, where m is the equilibrium value of m when c = cn. In this case, B,n B,n B 

for any i ∈ {u, h} and for a suffciently large N , LP (R, mI∗ , GI∗ i) = (1 − mI∗ )[2pcH +B,N B ; p B,N 

(1 − p)cL]f < LP (RD/p, 1, GI∗ i) for any R such that GI∗(R) = 0. Hence, mI∗ = 1 butB ; p B P,i 

R ∈/ RI∗ if GI∗(R) = 0.P,i B 

By Lemma D.5, sup RI
B 
∗ = (1 − f)cH . If (1 − f)cH ∈ RB

I∗ , LB((1 − f)cH , 1, GP
a∗ ; p) = 0 

implies Ga∗(R̃) > 0 and an R > (1 − f)cH exists with R ∈ RI∗ for some i ∈ {u, h}. IfP P,i 

instead (1 − f)cH ∈/ RI
B 
∗, then limR→R̃− GP

a∗(R) > 0, implying an R ≥ (1 − f)cH exists with 
R ∈ RI∗ for some i ∈ {u, h}. In either case, GI∗(R) = 0, thus contradicting the previous P,i B 

result. 

LEMMA D.7. inf RI∗ ∈ RI∗ for i ∈ {u, l, h} and inf RI∗ ∈ RI∗ 
P,i P,i B B . 
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Proof. Defne := inf RI∗ and := inf RI∗ If ∈/ RB
I∗ , then a sequence (Rn)

∞RP,i P,i RB B . RB n=0¯ ¯ ¯ exists such that Rn > RB and Rn ∈ RB
I∗ for all n and Rn → RB as n → ∞. We therefore 

¯ ¯ must have 
a∗ a∗ LB(RB ,mP , GP

a∗ ; p) < lim LB (Rn,mP , GP
a∗ ; p)

¯ n→∞ 

which, in turn, implies GP
a∗(RJ ) < limn→∞ GP

a∗(Rn). This result, however, contradicts that 
¯ 

Ga
P 
∗ is a weakly decreasing function. Hence, RB ∈ RI

B 
∗ . 

¯ 
/ P,i, a sequence (RnSimilarly, if RP,i ∈ RI∗ )∞ exists such that Rn > RP,i and Rn ∈ RI∗ 

n=0 P,i ¯ ¯ for all n and Rn → RP,i as n →∞. Using a similar reasoning to the one above, we would 
¯ then conclude GI∗(RJ ) < limn→∞ G

I∗(Rn), contradicting that GI∗ is a weakly decreasing B B B¯ function. Hence, RP,i ∈ RI∗ for i ∈ {u, l, h}.P,i ¯ 
a∗ I∗LEMMA D.8. Assume m > 0 and m > 0. Then min{RI∗ ∪RI∗ } ≤ RD/p. Moreover, either P B P,u P,h 

min{RI∗ ∪RI∗ } = RD/p or min{RI∗ ∪RI∗ } = (1−2f +η)cL. Finally, if min{RI∗ ∪RI∗ } 6= P,u P,h P,u P,h P,u P,h 

(1 − 2f + η)cL, then min RI
B 
∗ = RD/p. 

Proof. Defne RP = min{RI∗ 
P,h} and : min RI∗ RP: P,u ∪ RI∗ RB = B . First, we establish ≤ RD/p. 

¯ ¯ ¯ We proceed by contradiction and assume RP > RD/p. By bank competition, we thus 
¯ have mI∗ = 1 and RI∗ = {RD/p}. In this case, if RD/p < (1 − 2f + η)cL, the uniformed B B 

and optimistic platform’s best response is RD/p. If instead RD/p ≥ (1 − 2f + η)cL, the 
platform’s best response could be either RD/p or (1 − 2f + η)cL. In both cases, R ≤ RD/p,

¯ contradicting RP > RD/p. 
¯ Having established RP ≤ RD/p, we now prove RP = RD/p or R = (1 − 2f + η)cL. 

¯ ¯ ¯ If RD/p ≤ (1 − 2f + η)cL, then LP (R, mB
I∗, GB

I∗ ; pi) < LP (RD/p, mB
I∗, GI

B 
∗ ; p) for any R < 

RD/p and any i ∈ {u, h}, implying RP = RD/p. If instead, RD/p > (1 − 2f + η)cL,
¯ 

LP (R, mB
I∗, GB

I∗ ; pi) < LP ((1 − 2f + η)cL,mB
I∗, GI

B 
∗ ; pi) for any R < (1 − 2f + η)cL and 

LP (R
0,mI

B 
∗, GB

I∗ ; pi) < LP (RD/p, mB
I∗, GB

I∗ ; pi) for any R0 ∈ ((1 − 2f + η)cL, RD/p), implying 
R = RD/p or R = (1 − 2f + η)cL. 
¯ ¯ To prove the fnal part of the lemma, consider RP = RD/p =6 (1−2f +η)cL. We proceed 

¯ by contradiction and assume RB > RD/p. Because RP 6= (1 − 2f + η)cL, an ε > 0 exists 
¯ ¯ such that LP (RD/p + ε, mI

B 
∗, GI

B 
∗ ; pi) > LP (RD/p, mB

I∗, GI
B 
∗ ; pi) for i ∈ {u, h}, contradicting 

RD/p ∈ {RI∗ ∪ RI∗ }. Hence, if = RD/p 6= (1 − 2f + η)cL, the = RD/p.P,u P,h RP RB
¯ ¯ 

I∗∪ RI∗ I∗)mLEMMA D.9. Assume min{RI
P,u 
∗ 

P,h} = RD/p 6= (1 − 2f + η)cL. If (1 − a P,u = 0, then 
I∗ I∗RD/p ∈ RI∗ , whereas if a mP,h P,u. Furthermore, if RD/p > (1−2f +η)cL,P,h = 0, then RD/p ∈ RI∗ 

then min RI∗ = Similarly, if RD/p < (1 − 2f + η)cL, but c is suffciently small, then P,h RD/p. 
min RI∗ = RD/p.P,h 

Proof. For the frst part of the lemma, notice that, if (1 − aI∗)mI∗ = 0 and min{RI∗ } >P,u P,h 

RD/p, then an ε > 0 exists such that LB (RD/p + ε, ma
P 
∗, Ga

P 
∗ ; p) > 0, thus contradicting part 

I∗ I∗4 of the equilibrium defnition C.1. A similar reasoning can be used to rule out a mP,h = 0 
and min{RI∗ } > RD/p.P,u 

To prove the next part of the lemma, we proceed by contradiction and assume min RI∗ 6= P,h 

∈ RI∗RD/p, thus implying RD/p / P,h. Hence, we must have RD/p = min RI∗ If RD/p >P,u. 
(1 − 2f + η)cL, Lemma D.1 implies RD/p ∈ RI∗ , thus generating a contradiction.P,h 
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We now focus on RD/p < (1 − 2f + η)cL. If aI∗ = 1, the frst result of this lemma shows 
min{RI∗ } = RD/p. If instead aI∗ 

P,h. Then, for a suffciently small c,P,h ≤ 1, consider R ∈ RI∗ 

ψLP (R, m
I∗ , GI

B 
∗ ; p h) ≤ LP (RD/p, m

I∗ , GB
I∗ ; p u) − (1 − ψ)LI∗ (m I∗ , GI

B 
∗ ; p h) + cB B P B 

≤ LP (RD/p, m
I
B 
∗ , GB

I∗ ; p u) − (1 − ψ)LP (RD/p, m
I
B 
∗ , GB

I∗ ; p h) 

− (1 − m IB 
∗ )[(1 − 2f + η) − RD/p] + c 

< ψLP (RD/p, m
I
B 
∗ , GI

B 
∗ ; p h), 

where the last inequality equality follows from RD/p < (1 − 2f + η)cL and Lemma D.6. 
Therefore, min RI∗ = RD/p when RD/p < (1 − 2f + η)cL, but c is suffciently small. P,h 

I∗ ∈ RI∗LEMMA D.10. If m > 0 and R̄ > (1 − 2f + η)cL, then (1 − 2f + η)cL / for i ∈ {u, h}.B P,i 

I∗ I∗Proof. Note that LP ((1 − 2f + η)cH ,mB , GB
I∗ ; pi) ≤ LP ((1 − 2f + η)cL,mB , G

I
B 
∗ ; pi) if and 

only if 

I∗ I∗ I∗ (1−mB )[p i(1+η)cH +(1−p i)ηcL] ≤ mB p i[(1−2f+η)cL−R̄]+(1−mB )[(1+η)cL+2p i(cH −cL)f ] 

We have that pi(1 + η)cH + (1 − pi)ηcL > (1 + η)cL +2p
i(cH − cL)f if an only if (C.3) holds. 

Note that RD > cL and (1 − f)cH < (1 − 2f + η)(cH − cL) + cL. Hence, because we are 
considering p ≥ RD , the inequality (C.3) is satisfed for i ∈ {u, h}. We must therefore 

(1−f)cH 
I∗ I∗have LP ((1 − 2f + η)cH ,m , GI∗ i) > LP ((1 − 2f + η)cL,m , GI∗ i) for for i ∈ {u, h}B B ; p B B ; p 
¯whenever (1 − 2f + η)cL − R < 0. 

a∗ I∗¯LEMMA D.11. Assume R ≤ RD/p. If m > 0 and m ∈ (0, 1), then max{RI∗ ∪ RI∗ } ∈P B P,u P,h 

{(1 − f)cH , (1 − 2f + η)cH }. Moreover, if ma∗ = 1 then max RI∗ = (1 − 2f + η)cH .P P,h 

Proof. First, note sup RI∗ ∈ RI∗ for i ∈ {u, l, h} by the left-continuity of GI∗(·) and the P,i P,i B 

platform’s objective function LP (·,mB , GB; pi). Hence, sup RI∗ = max RI∗ ∗. Also noteP,i P,i 

that LP (R, mB
I∗, GB

I∗ ; pi) < LP ((1−2f +η)cH ,mB
I∗, GI

B 
∗ ; pi) for R ∈ ((1−f)cH , (1−2f +η)cH ) 

because mI∗ ∈ (0, 1). Hence ((1 − f)cH , (1 − 2f + η)cH ) ∩ RI∗ = ∅. Finally, by Lemma D.5, B P,i 

sup RI
B 
∗ = (1 − f)cH . 

To prove the frst part of the lemma, we proceed by contradiction and assume RM := 
{RI∗ ∪ RI∗ } < (1 − f)cH . In this case, Ga∗(R) = 0 for all R ≥ RM , along with sup RI∗ = P,u P,h P B 

(1 − f)cH , imply that (1 − f)cH ∈ RI
B 
∗ and R ∈/ RI

B 
∗ for all R ∈ (RM , (1 − f)cH ). Otherwise, 

an R0 ≥ RM with R0 ∈ RB
I∗ would exist such that LB (R

0,mP
a∗, GP

a∗ ; p) =6 0, contradicting the 
defnition of equilibrium. Moreover, LB((1 − f)cH ,m

a
P 
∗, Ga

P 
∗ ; p) = 0 and RM < (1 − f)cH 

imply mP
a∗ ∈ (0, 1). 

If RM > (1 − 2f + η)cL or if RM < (1 − f)cH ≤ (1 − 2f + η)cL then LP ((1 − 
I∗ I∗f)cH ,m , GB

I∗ ; pi) > L(RM ,m , GI
B 
∗ ; pi) for i ∈ {u, h}, contradicting RM := max{RI∗ ∪B B P,u 

RI∗ }. It remains to consider RM ≤ (1 − 2f + η)cL < (1 − f)cH . In this case, be-P,h 

cause mI
B 
∗ ∈ (0, 1) and R̄ ≤ RD/p, LP (RD/p, mB 

∗ , GB 
∗ ; pi) > m ∗ 

B[2pcH + (1 − p)cL]f for 
a∗ a∗i ∈ {u, h}. But this implies m = 1, which contradicts LB((1 − f)cH ,m , Ga∗ = 0.P P P ; p) 

Hence, max{RI∗ ∪ RI∗ } ∈ {(1 − f)cH , (1 − 2f + η)cH }P,u P,h 
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To prove the second part of the lemma for ma
P 
∗ = 1, we proceed again by contradiction 

and assume (1 − 2f + η)cH ∈/ RI∗ By Lemma D.1, this observation also implies (1 −P,h. 
2f + η)cH ∈/ RI∗ and, therefore, Ga∗((1 − f)cH ) = 0. Furthermore, from the previous P,u P 

results, (1 − f)cH = max{RI∗ ∪ RI∗ }. Hence, LB ((1 − f)cH , 1, Ga
P 
∗ ; p) < 0. Therefore, P,u P,h 

GI∗ I∗ I∗((1 − f)cH ) = 0. But then, LP ((1 − 2f + η)cH ,m , GI
B 
∗ ; pi) > LP ((1 − f)cH ,m , GB

I∗ ; pi)B B B 

for i ∈ {u, h}, contradicting that max{RI∗ ∪ RI∗ } = (1 − f)cH . Thus, if ma∗ = 1 andP,u P,h P 

mB
I∗ ∈ (0, 1), then max RI∗ 

P,h = (1 − 2f + η)cH . 

I∗ a∗LEMMA D.12. Suppose m ∈ (0, 1) and m > 0. If R1 ∈ RI∗ and R2 ∈ RI∗ such thatB P B B 

R1 < R2 ≤ (1 − 2f + η)cL or such that (1 − 2f + η)cL < R1 < R2, then we must have 
[R1, R2] ⊆ RI∗ ∩{RI∗ ∪RI∗ }. In particular, Ga∗(·) and GI∗(·) are strictly decreasing in [R1, R2].B P,u P,u P B 

Proof. Assume, by way of contradiction, that an Rk ∈ (R1, R2) exists such that Rk ∈/ RI
B 
∗ . 

By the right-continuity of Ga
P 
∗(·) and LB(·,ma

P 
∗, GP

a∗ ; p), we have that an ε > 0 exists such 
that LB(R, ma∗, GP

a∗ ; p) < 0 for all R ∈ (Rk, Rk +ε). Let R0 := sup{R : R ∈ RI∗ and R < Rk}.P 1 B 

Hence, LB(R, ma
P 
∗, Ga

P 
∗ ; p) < 0 for all R ∈ (R1 

0 , Rk + ε), thus implying 

a∗ a∗(1 − mP )(RD − pR) (1 − p)RD (1 − mP )(RD − pR1 
0 ) (1 − p)RD

Ga∗ (R) < + ≤ + . (D.1)P a∗ a∗ mP p(R − RD) p(R − RD) mP p(R1 
0 − RD) p(R0 1 − RD) 

∈ RI∗ ∈ {RI∗ ∪ RI∗Because R / B for all R ∈ (R1 
0 , Rk + ε), we must have that R / P,u P,u} for any 

R ∈ (R1 
0 , Rk + ε). 

If R1 
0 ∈ RI

B 
∗, then the last term in equation (D.1) coincides with Ga

P 
∗(R1 

0 ) and, therefore, 
GP
a∗(R) < GP

a∗(R1 
0 ) for any R ∈ (R1 

0 , Rk + ε). But this implies there exists R0 ∈ (R1 
0 , R) 

such that R0 ∈ {RI∗ ∪ RI∗ }, contradicting the previous result that R0 ∈/ {RI∗ ∪ RI∗ }P,u P,u P,u P,u 

for any R0 ∈ (R1 
0 , Rk + ε). If instead, R0 1 ∈/ RB

I∗ , then we must have limR→R0 − Ga
P 
∗(R) > 

1 

Ga∗(R0 ), which implies R0 P,u ∪RI∗ 
1 ∈ RI∗ 

B B ; p) >P 1 1 ∈ {RI∗ 
P,u}. However, if R0 / B , LP (R

k +ε, mI∗, GI∗ 

LP (R
0 I∗ 
1,mB , G

I
B 
∗ ; p), generating a contradiction. 

Hence, [R1, R2] ⊆ RI
B 
∗ . In particular, LB (R, ma∗, Ga∗ = 0 for all R ∈ [R1, R2], whichP P ; p) 

implies 

Ga∗ (1 − mP
a∗)(RD − pR) (1 − p)RD 

P (R) = 
a∗ + 

mP p(R − RD) p(R − RD) 

is strictly decreasing for R ∈ [R1, R2]. 
Suppose now, by way of contradiction, an Ry ∈ [R1, R2] exists such that R ∈/ {RI∗ ∪P,u 

RI∗ }. By the left-continuity of GI∗(·) and LP (·,mI∗, GI
B 
∗ ; pi) for i ∈ {u, h}, we have that an P,u B B 

ε > 0 exists such that R ∈ {/ RI∗ ∪ RI∗ } for all R ∈ (Ry − ε, Ry). However, this observation P,u P,u 

implies Ga
P 
∗(R) is constant in (Ry − ε, Ry), contradicting the previous result. Hence, we 

also obtain that [R1, R2] ⊆ {RI∗ ∪ RI∗ }.P,u P,u 

D.3 PROOF OF LEMMA C.1 

To prove the frst part, we proceed by contradiction and assume that LP (R, mI
B 
∗, GI

B 
∗ ; ph) ≤ 

I∗ h I∗ hmB [2p cH +(1−ph)cL]f for all R. By Lemma D.3, we have LP (R, mB
I∗, GI

B 
∗ ; pi) ≤ mB [2p cH + 
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I∗ I∗ i(1 − ph)cL]f for i ∈ {u, l}. Therefore, for i ∈ {u, h, l}, LI∗(m , GI∗ i) = m [2p cH + (1 −P B B ; p B 
I∗ I∗ pi)cL]f and the maximizer in (C.1) is a = 0, contradicting a ∈ (0, 1]. 

To prove the second part, we proceed again by contradiction and assume an R exists 
such that R ∈ RI∗ and LP (R, mI∗, GB

I∗ ; pi) ≥ mI∗[2picH + (1 − pi)cL]f for i ∈ {l, h}. In this P,i B B 

case, for any c > 0, 

LI∗ I∗ (m , GI
B 
∗ ; p u) ≥ LP (R, m

I∗ , GB
I∗ ; p u)P B B 

= ψLP (R, m
I
B 
∗ , GI

B 
∗ ; p h) + (1 − ψ)LP (R, m

I
B 
∗ , GB

I∗ ; p l) 

> ψLP (R, m
I
B 
∗ , GB

I∗ ; p h) + (1 − ψ)LP (R, m
I
B 
∗ , GB

I∗ ; p l) − c, 

contradicting that aI∗ > 0. 

D.4 PROOF OF LEMMA C.3 

RD I∗When p < , Lemma D.4 implies mB = 0. The platform is thus a monopolistic
(1−f )cH 

lender for a merchant provided (C.2) is satisfed for i = h, and the results of Lemma C.2 
apply. 

For the rest of the proof, we thus focus on p ≥ RD/R̄ . By Lemma D.4, banks lend 
with positive probability m ∗ > 0. We want to show that mI∗ = 1, RI∗ = {RD/p}, andB B B 

ma
P 
∗(1 − GP

a∗(RD/p)) = 0. Together, these conditions imply merchants borrow exclusively 
from banks when p ≥ RD/R̄ 

a∗ ∪ RI∗As a preliminary observation, notice that, if mP > 0, RD/p = P,u }.min{RI∗ InP,h 

fact, if R̄ > (1 − 2f + η)cL, by Lemma D.10, (1 − 2f + η)cL ∈/ RI∗ for i ∈ {u, h}. If instead P,i 

¯ ¯R ≤ (1 − 2f + η)cL, we have RD/p ≤ R ≤ (1 − 2f + η)cL. By Lemmas D.8, we thus have 
RD/p = min{RI∗ ∪ RI∗ } in both cases.P,u P,h 

I∗ a∗Suppose, by way of contradiction, mB ∈ (0, 1). Which, in turn, implies mP > 0, 
otherwise competitive banks would offer rate RD/p with probability one and mB

I∗ = 1. It 
also implies sup RI

B 
∗ = (1 − f)cH by Lemma D.5. 

a∗ ∪ RI∗First, we exclude mP = 1. By the previous observation, RD/p = P,u }.min{RI∗ 
P,h 

Hence, RD/p ∈ RI∗ for some i ∈ {u, h}. We must therefore have LP (RD/p, mI∗, GI
B 
∗ ; pi) ≥P,i B 

LP ((1 − 2f + η)cH ,mB
I∗, GB

I∗ ; pi), which implies � 
¯ m IB 

∗ p i((1 − 2f + η)cH − R) − I(RD/p)(1 − p i)[RD/p − (η − 2f)cL] 
(D.2) 

≥ p i((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − p i)[RD/p − (η − 2f)cL], 

where I(R) = I(R ≤ (1−2f+η)cL). Notice we have (1−2f+η)cH ≥ RD/p when p ≥ RD 
(1−f)cH 
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and η ≥ f and (1 − 2f + η)cH − R̄ ≤ 1 − 2f + η)cH − RD/p because we are considering R̄ ≥ 

RD/p. Finally, we also have pi((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − pi)[RD/p − (η − 2f)cL] 

because either RD/p > (1 − 2f + η)cL, or RD/p ≤ (1 − 2f + η)cL, along with p ≥ RD ,
(1−f)cH 

implies pi((1 − 2f + η)cH − RD/p) − I(RD/p)(1 − pi)[RD/p − (η − 2f)cL] > 0. Therefore, 
¯if pi((1 − 2f + η)cH − R) − I(RD/p)(1 − pi)[RD/p − (η − 2f)cL] ≤ 0, the inequality (D.2) 

¯is a contradiction. If pi((1 − 2f + η)cH − R) − I(RD/p)(1 − pi)[RD/p − (η − 2f)cL] > 0, 
I∗ I∗the inequality (D.2) implies mB ≥ 1, which contradicts mB ∈ (0, 1). Therefore, when 

p ≥ RD/ ¯ I∗R, mB = 1. 
a∗ a∗Next, we show m (1 − Ga∗(RD/p)) = 0. Assume, by way of contradiction, m (1 −P P P 

Ga∗ a∗ ∪RI∗(RD/p)) > 0. By our previous result in the proof, if m > 0, then RD/p ∈ {RI∗ }.P P P,u P,h 

Consider, p > RD/R̄ . Because mB
I∗ = 1, the profts from lending for the platform are 

LP (RD/p, 1, GI
B 
∗ ; pi) < [2picH + (1 − pi)cL]f for an i ∈ {u, l}, and hence mP,i 

I∗ = 0. By 
Lemma D.9, we must therefore have RD/p ∈ RI∗ for y ∈ {u, l} and y =6 i. But this would P,y 

I∗ a∗also imply mP,i = 0, thus contradicting mP (1 − Ga
P 
∗(RD/p)) = 0. 

Consider now p = RD/R̄ , then for an i ∈ {u, l} LP (R, 1, GI
B 
∗ ; pi) ≤ LP (RD/p, 1, GI

B 
∗ ; p) 

for any R > RD/p, thus implying GI
B 
∗(R) ≤ 0. Hence, banks offer rate RD/p with probabil-

ity one, and, for this to be the banks’ best response, we must have ma
P 
∗(1 − Ga

P 
∗(RD/p)) = 

0. 

D.5 PROOF OF LEMMA C.4 

We prove ma∗ > 0. Suppose ma∗ = 0, then competitive banks would set RI∗ = {RD/p}P P B 

and mI
B 
∗ = 1. For a small enough ε > 0, LP (RD/p − ε, 1, GI

B 
∗ ; pi) > [p2cH + (1 − p)cL]f for 

a∗ a∗i ∈ {u, h}, which contradicts m = 0. Hence m > 0.P P 
I∗ I∗By Lemma D.4, we have mB > 0. We now prove mB ∈ (0, 1). We proceed by 

contradiction and assume mI∗ = 1. In this case, for any i ∈ {u, h}, LP (R, 1, GI∗ i) = B B ; p 

[2pcH + (1 − p)cL]f < LP (RD/p, 1, GI
B 
∗ ; pi) for any R such that GI∗(R) = 0. Hence, mI∗ = 1B P,i 

but R ∈/ RI
P,i 
∗ if GI

B 
∗(R) = 0. 

Next, we show aI∗ > 0. Assume, by contradiction, that aI∗ = 0. Then, the equilibrium 
is described by one of the cases of Section 4. In each of those cases, an R ∈ RI∗ = R∗ 

P,u P 

exists such that R 6= (1 − 2f + η)cL. Therefore, for a suffciently small c, 

I∗ I∗ ψLIP 
∗ (mB , GB

I∗ ; p h) + (1 − ψ)LIP 
∗ (mB , GB

I∗ ; p l) − c 

> ψLP (R, m
I
B 
∗ , GB

I∗ ; p h) + (1 − ψ)LP (R, mB
I∗ , GI

B 
∗ ; p l) 

= LI∗ I∗ u)P (mB , GB
I∗ ; p 
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where the strict inequality follows because R 6= (1 − 2f + η)cL and Lemma D.6, contra-
dicting aI∗ = 0. 

Let R̃ = sup RI
B 
∗ ≤ (1−f)cH . If R̃ ∈ RI

B 
∗ , LB (R,˜ 1, G

a
P 
∗ ; p) = 0 implies Ga

P 
∗(R̃) > 0 and an 

R > R̃ exists with R ∈ RI∗ for some i ∈ {u, h}. If instead R̃ ∈/ RI∗, then limR→R̃− Ga∗(R) >P,i B P 

0, implying an R ≥ R̃ exists with R ∈ RI∗ for some i ∈ {u, h}. In either case, GI∗(R) = 0,P,i B 

thus contradicting the previous result. 
Because mB

I∗ ∈ (0, 1), Lemma D.5 implies sup R∗ 
B = (1 − f)cH , Moreover, by Lemmas 

D.7 and D.8, we have that min{RI∗ ∪ RI∗ } ≤ RD/p and min{RI∗ ∪ RI∗ } ∈ {(1 − 2f +P,u P,h P,u P,h 

η)cL, RD/p}. The result that max min{RI∗ ∪ RI∗ } ∈ {(1 − f)cH , (1 − 2f + η)cH } followsP,u P,h 

from Lemma D.11. 

D.6 PROOF OF LEMMA C.5 

I∗ a∗ I∗Throughout the proof, recall that mB ∈ (0, 1), mP > 0, and a > 0 by Lemma C.4. In 
particular, an R exists such that LP (R, mI

B 
∗, GI

B 
∗ ; ph) ≥ mI

B 
∗[2phcH + (1 − p)cL]f . 

¯We frst consider a merchant with ph(1 + η)cH + (1 − ph)ηcL > R. Suppose, by contra-
a∗ I∗ I∗diction, that m ∈ (0, 1). By Lemma C.1, we must have a ∈ (0, 1) and mP,u ∈ (0, 1). By 

Lemma D.3, we derive also mP,l 
I∗ = 0. Note that 

LI∗ I∗ I∗ (m , GI
B 
∗ ; p h) − m [p h2cH + (1 − p h)cL]fP B B 

I∗ I∗≥ LP ((1 − 2f + η)cH ,mB , GB
I∗ ; p h) − mB [p h2cH + (1 − p h)cL]f 

¯ = (1 − m IB 
∗ )[p h(1 + η)cH + (1 − p h)ηcL − R] > 0 

¯where the second inequality follows from ph(1 + η)cH + (1 − ph)ηcL > R. Therefore, for a 
suffciently small c > 0, 

I∗ I∗ ψLIP 
∗ (mB , G

I
B 
∗ ; p h) + (1 − ψ)LIP 

∗ (mB , G
I
B 
∗ ; p l) − c 

I∗ I∗ ¯≥ mB [p h2cH + (1 − p h)cL]f + (1 − mB )[p h(1 + η)cH + (1 − p h)ηcL − R] − c 

= LI∗ I∗ I∗ ¯(m , GB
I∗ ; p u) + (1 − m )[p h(1 + η)cH + (1 − p h)ηcL − R] − cP B B 

≥ LI∗ I∗ ¯ 
P (mB , GB

I∗ ; p u) + (1 − m̄ )[p h(1 + η)cH + (1 − p h)ηcL − R] − c 

> LIP 
∗ (mB

I∗ , GI
B 
∗ ; p u), 

where the second inequality follows from Lemma D.6 and the last one from c being suff-
I∗ a∗ciently small. However, this result contradicts a ∈ (0, 1). Therefore, mP = 1. 

¯Next, we consider ph(1 + η)cH + (1 − ph)ηcL ≤ R. Because (C.3) holds for i = h when 
¯ p ≥ RD , we also have RD/p ≥ R > (1 − 2f + η)cL. By Lemmas D.7, D.8, and D.10, we

(1−f )cH 
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thus have min RI∗ ≥ RD/p > (1 − 2f + η)cL for i ∈ {u, h}.P,i 
I∗ I∗ I∗Because a > 0, we need to rule out LI∗(m , GI

B 
∗ ; pu) < ψLI∗(m , GI

B 
∗ ; ph) + (1 −P B P B 

I∗ a∗ψ)LI∗(m , GI∗ l) − c by contradiction. If this inequality holds, then also m = 1 becauseP B B ; p P 

mI∗ = 1. From Lemma D.11, D.1, and RD/p > (1 − 2f + η)cL, we obtain max RI∗ = P,h P,h 

(1 − 2f + η)cH . But then 

I∗ I∗ I∗ LI∗ h) h)(m , GI
B 
∗ ; p = LP ((1 − 2f + η)cH ,m , GB

I∗ ; p ≤ m [p2cH + (1 − p)cL]f. P B B B 

I∗ I∗By Lemma D.3, LI∗(m , GI∗ i) = m [p2cH + (1 − p)cL]f also for i ∈ {u, l}, contradicting P B B ; p B 

LI∗ I∗ I∗ I∗(m , GI
B 
∗ ; pu) < ψLI∗(m , GI

B 
∗ ; ph) + (1 − ψ)LI∗(m , GI

B 
∗ ; pl) − c.P B P B P B 

I∗ I∗ I∗We therefore have LI∗(m , GI
B 
∗ ; pu) = ψLI∗(m , GB

I∗ ; ph) + (1 − ψ)LI∗(m , GI
B 
∗ ; pl) −P B P B P B 

I∗ I∗ c. It remains to show that LI∗(m , GI
B 
∗ ; pu) = m [p2cH + (1 − p)cL]f . We proceed byP B B 

I∗ I∗ I∗contradiction and assume LI∗(m , GB
I∗ ; pu) > m [p2cH + (1 − p)cL]f . Then, m = 1P B B P,u 

a∗ I∗and m = 1. From the previous reasoning, we would then conclude LI∗(m , GB
I∗ ; ph) ≤P P B 

I∗ I∗ I∗ mB [p2cH +(1−p)cL]f , which implies LIP 
∗(mB , G

I
B 
∗ ; pu) = mB [p2cH +(1−p)cL]f by Lemma 

¯D.3, thus generating a contradiction. Therefore, when ph(1 + η)cH + (1 − ph)ηcL ≤ R, we 
have 

I∗ I∗ I∗ I∗ ψLI∗ (m , GI
B 
∗ ; p h)+(1−ψ)LI∗ (m , GI

B 
∗ ; p l)−c = m [p2cH +(1−p)cL]f = LI∗ (m , GB

I∗ ; p u)P B P B B P B 

When R̄ > (1 − 2f + η)cL, Lemma D.10 implies min R∗I =6 (1 − 2f + η)cL for i ∈ {u, h}.P,i 

Therefore, by Lemmas D.7, D.8, and D.9, we obtain min R∗ = min R∗ = RD/p > (1 −P,h P,u 

2f + η)cL, where the inequality follows because R̄ > (1 − 2f + η)cL and p ≤ RD/R̄ . 
Finally, when RD/p < (1 − 2f + η)cL, Lemmas D.7, D.8, and D.9 imply min RI∗ = P,h 

RD/p ≤ (1 − 2f + η)cL when c is suffciently small. 

D.7 PROOF OF PROPOSITION C.1 

I∗ a∗ I∗ I∗By Lemmas C.1, C.4 and C.5, we have m = m = 1, a > 0, m ∈ (0, 1), andP,h P B 

min{RI∗ ∪ RI∗ } = RD/p > (1 − 2f + η)cL. Because arg maxR>(1−2f+η)cL LP (R, mB , GB; pi)P,u P,h 

does not depend on pi , R∗ = R∗ 
P,u P,h. 

First notice, 

LP (R, mB
I∗ , GB

I∗ ; p l) < LP ((1 − 2f + η)cL,mB
I∗ , GI

B 
∗ ; p l) (D.3) 

¯ ¯for all R 6= (1 − 2f + η)cL. Thus, if R > (1 + η)cL, mP,l 
I∗ = 0. If, instead, R ∈ ((1 − 2f + 

η), (1 + η)cL], mI∗ = 1 and RI∗ = {(1 − 2f + η)cL}.P,l P,l 
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Because R∗ = R∗ , consider R ∈ RP,u 
∗ . Then, for a suffciently small c,P,u P,h 

I∗ I∗ ψLIP 
∗ (mB , GB

I∗ ; p h) + (1 − ψ)LIP 
∗ (mB , G

I
B 
∗ ; p l) − c 

> ψLP (R, m
I
B 
∗ , GB

I∗ ; p h) + (1 − ψ)LP (R, mB
I∗ , GI

B 
∗ ; p l) 

= LP (R, m
I∗ , GB

I∗ ; p u) = LI∗ (m I∗ , GB
I∗ ; p h)B P B 

where the strict inequality follows from (D.3) and Lemma D.6. Hence, aI∗ = 1. 
Using Lemma D.8 and D.5, we obtain (1 − 2f + η)cL < RD/p = min RI

B 
∗ ≤ sup RI

B 
∗ = 

(1−f)cH . By Lemma D.12 we have GI∗ (·) and GI∗(·) are strictly decreasing in [RD/p, (1−P,h B 

f)cH ] because aI∗ = 1. Moreover, by D.11, we have (1 − 2f + η)cH ∈ RI∗ 
P,h. 

The rest of the proof is thus identical to the proof of Proposition 1 with mB
I∗ replacing 

∗ 
B, GI∗ 

B , and GI∗ m B replacing G∗ 
P,h replacing GP 

∗ . 

D.8 PROOF OF PROPOSITION C.2 

I∗ a∗ I∗ I∗By Lemmas C.1, C.4 and C.5, we have m = m = 1, a > 0, and m ∈ (0, 1). By D.11, P,h P B 

∈ RI∗ ¯ I∗ we have (1 − 2f + η)cH Finally note that, because R < (1 + η)cH , m = 1 andP,h. P,l 

RI∗ ∈ RI∗ 
P,l = {(1 − 2f + η)cL}. Thus, by C.1, (1 − 2f + η)cL / P,h. 

¯First, we observe that, because R < RD/p < (1 + η)cH , mI∗ = 1 and RI∗ = {(1 − 2f +P,l P,l 

η)cL}. 
Next, by Lemma D.8 , min RI∗ = RD/p. By Lemma D.11, max RI∗ = (1 − 2f + η)cH .P,h P,h 

I∗ I∗From LP ((1−2f +η)cH ,m , GB
I∗ ; ph) = LP (RD/p, mI∗, GI

B 
∗ ; ph), we thus obtain m is given B B B 

by (C.4). 
We frst consider T = (1 − f)cH < (1 − 2f + η)cL. We want to show that, in this 

I∗ I∗ case, a = 1. Suppose, by way of contradiction, that a ∈ (0, 1). I want to show that, if 
R < (1 − 2 + η)cL, then R ∈/ RI∗ for a suffciently small c. We proceed by contradiction P,u 

and assume an R < (1 − 2 + η)cL exist such that R ∈ RI∗ for all c. ThenP,u 

ψLIP 
∗ (mB

I∗ , GB
I∗ ; p h) ≥ LP (R, mB

I∗ , GB
I∗ ; p h) 

= LP (R, m
I
B 
∗ , GB

I∗ ; p u) − (1 − ψ)LP (R, mB
I∗ , GI

B 
∗ ; p l) 

I∗ I∗ > LIP 
∗ mB , GB

I∗ ; p u) − (1 − ψ)LP
I∗ mB , GB

I∗ ; p l) + c 

where strict inequality follows because R < (1 − 2 + η)cL and because of Lemma D.6. 
But this result contradicts aI∗ < 1. Hence, for a suffciently small c, min RI∗ > (1 −P,u 

f)cH . Because (C.3) holds for i = u, we must thus have RI∗ = {(1 − 2f + η)cH }, thusP,u 

contradicting the previous result that RI∗ ⊆ [Rc , (1 − 2f + η)cH ].P,u 
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Therefore, if T = (1 − f)cH < (1 − 2f + η)cL, we have aI∗ = 1. The rest of the 
results can then be derived as in the proof of Proposition 2 when T < (1 − 2f + η)cL 

with mI
B 
∗ replacing m ∗ 

B , GB
I∗ replacing G∗ 

B, and GI
P,h 
∗ replacing G∗ 

P . In particular, using 
LP (R, mB

I∗, GB
I∗ ; ph) = LP (RD/p, mB

I∗, GI
B 
∗ ; ph) for all R ∈ [RD/p, T ], we obtain (C.5). Using 

using LB(R, 1, GI∗ = LB (RD/p, 1, GI∗ h) for all R ∈ [RD/p, T ], we obtain GI∗ isP,h; p) P,h; p P,h 

given by (C.10). 
Next, we consider T ≥ (1 − 2f + η)cL. By a reasoning identical to the one in the proof 

of Proposition 2, we have (1 − 2f + η)cL = sup{RI∗ ∩ [RD/p, (1 − 2f + η)cL]}. By Lemma B 

D.12, [RD/p, (1 − 2f + η)cL] ⊆ RI∗ and [RD/p, (1 − 2f + η)cL] ⊆ {RI∗ ∪ RI∗ }. By the B P,u P,u 

left-continuity of GI
B 
∗ , an Rc ∈ [RD/p, (1 − 2f + η)cH ) exists such that Rc = P,h max{RI∗ ∩ 

[RD/p, (1 − 2f + η)cL]}. Otherwise, we would have (1 − 2f + η)cL ∈ RI∗ , contradicting a P,h 

result we established earlier. 
Because (1−2f +η)cL > RD/p ∈ RI∗ , Lemma D.2 implies R ∈/ RI∗ for all R > (1−2f +P,h P,u 

η)cL. Furthermore, by the same Lemma and because [RD/p, (1−2f +η)cL] ⊆ {RI∗ ∪RI∗ },P,u P,u 

we must also have RI
P,u 
∗ = [Rc , (1−2f +η)cH ]. Finally, because Ga

P 
∗(R) is strictly decreasing 

from R ∈ [RD/p, (1 − 2f + η)cL], but R ∈/ RI∗ for R ∈ (Rc , (1 − 2f + η)cL], then aI∗ ∈ (0, 1).P,h 

Because, aI∗ ∈ (0, 1), RD/p ∈ RI∗ ∈ RI∗ for in{u, h}, and (1 − 2f + η)cL ∈ RI∗ 
P,h, Rc 

P,i P,i, 
for i ∈ {u, l}, we use the following system of equations to determine GI∗((1 − 2f + η)cL),B 

GI
B 
∗(RC ), and Rc respectively: 

LP ((1 − 2f + η)cL,m IB 
∗ , GB

I∗ ; p u) = ψLP (RD/p, mB
I∗ , GI

B 
∗ ; p h) 

+ (1 − ψ)LP ((1 − 2f + η)cL,m IB 
∗ , GI

B 
∗ ; p l) − c 

LP (RD/p, mB
I∗ , GB

I∗ ; p h) = LP (R
c ,mB

I∗ , GB
I∗ ; p h) 

I∗ I∗ LP (R
c ,mB , G

I
B 
∗ ; p u) = LP ((1 − 2f + η)cL,mB , G

I
B 
∗ ; p u). 

In particular, we obtain Rc is given by (C.6) and the the frst equation implies 

GI∗ 
B ((1 − 2f + η)cL) > 0. (D.4) 

From LP (R, mB
I∗, GB

I∗ ; ph) = LP (RD/p, mB
I∗, GI

B 
∗ ; ph) for all R ∈ [RD/p, Rc], we obtain 

GI
B 
∗ coincides with the expression in (C.5) for R ∈ [RD/p, Rc]. From LP (R, mB

I∗, GB
I∗ ; pu) = 

LP ((1 − 2f + η)cL,mI
B 
∗, GI

B 
∗ ; pu) for all R ∈ [Rc , (1 − 2f + η)cL], we obtain GI

B 
∗ coincides 

with (C.7) for R ∈ [Rc , (1 − 2f + η)cL]. 
Let U c := (1−f)cL if (1−f)cH = (1−2f +η)cL; otherwise let U c := min{RB 

I∗ ∩((1−2f + 

η)cL, (1−f)cH ]} if (1−f)cH > (1−2f +η)cL. In the frst case with (1−f)cH = (1−2f +η)cL, 
(D.4) implies P (RB = (1 − f)cH ) = GI

B 
∗((1 − 2f + η)cL) > 0. 
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In the second case with (1 − f)cH > (1 − 2f + η)cL, note that such a U c ex-
ists because sup RI

B 
∗ = (1 − f)H > (1 − 2f + η)cL and because of a reasoning anal-

ogous to that in Lemma D.7. By Lemmas D.5, D.12, and D.2, if U c < (1 − f)cH , 
[U, (1 − f)cH ) is a set of best responses for banks and the optimistic platform. Because 
l0 I∗ l1 
P ((1 − 2f + η)cL,mB , G

I
B 
∗ ; ph) > limR→(1−2f+η)c + P (R, m

I
B 
∗, GB

I∗ ; ph), a δ > 0 exists such that 
L 

U c ≥ (1 − 2f + η)cL + δ. The same result holds immediately if U c = (1 − f)cH . Also 
note lP 

1 (U, mI
B 
∗, GI

B 
∗ ; ph) > lP 

1 (R, mB
I∗, GB

I∗ ; ph) for all R ∈ ((1 − 2 + η)cL, U c). Hence, from 
LB(U

c , 1, Ga
P 
∗ ; p) = 0 and U c ≥ (1 − 2f + η)cL + δ, we obtain 

Ga∗ (1 − a I∗ )P (RP,u = (1 − 2f + η)cL) = lim 
− 

(R) − Ga∗ (U c) > 0. (D.5)P P 
R→(1−2f+η)cL 

Hence, Ga
P 
∗(U c) < limR→(1−2f+η)c − Ga

P 
∗(R), thus implying LB ((1 − 2f + η), 1, Ga

P 
∗ ; p) < 

L 

limR→(1−2f +η)c − LB(R, 1, GP
a∗ ; p) = 0. This result implies (1 − 2f + η)cL ∈/ RI∗ andB

L 

GI
B 
∗((1 − 2f + η)cL) = GI

B 
∗(U c). 

Let RUc be such that 

I∗ hGI∗ ((1−2f+η)cL)(RUc− ¯ I∗ h mB p B R)+(1−mB )[p hRUc+(1−p h)(η−f)cL−R̄]+[2p cH +(1−p h)cL]f 

= l0 I∗ 
P ((1 − 2f + η)cL,mB , G

I
B 
∗ ; p h), 

from which we obtain 

(1 − mI∗)(1 − ph)cL
RUc B:= (1 − 2f + η)cL + > (1 − 2f + η)cL.I∗GI∗ I∗ p[mB B ((1 − 2f + η)cL) + (1 − mB )] 

We thus set U c := min{RUc , (1 − f)cH }. 
RUc If RUc ∈ ((1 − 2f + η)cL, (1 − f)cH ), then U c = , and Lemma D.12 implies 

[U, (1 − f)cH ) is a set of best responses for banks and the optimistic platform. From 
l1 (R, mI∗, GI

B 
∗ ; ph) = l1 ((1 − 2f + η)cH ,m

I∗, GB
I∗ ; p) for R ∈ [U, (1 − f)cH ), we obtain the P B P B 

expression for GI∗ in (C.8). Note that limR→(1−f)c − GI∗(R) > 0, hence (1 − f)cH ∈ RB
I∗ .B B

H 

From LB(R, 1, Ga∗ = 0 and GI∗ (R) = 0 for R ∈ [U c , (1 − f)cH ] we obtain GI∗ 
P ; p) P,u P,h as in 

(C.11) for R ∈ [U c , (1 − f)cH ]. 
If RUc ≥ (1 − f)cH , then U c = (1 − f)cH . Banks offer rate (1 − f)cH with probability 

GI
B 
∗((1 − 2f + η)cL) > 0 and, from LB ((1 − f)cH , 1, Ga

P 
∗ ; p) = 0, we obtain P (RP,h = 

(1 − 2f + η)cH ) = Ga
P 
∗(U). 

To characterize the distribution of the optimistic and informed platform when T ≥ 

(1 − 2f + η)cL, LB(R, 1, Ga
P 
∗ ; p) = 0 for all R ∈ [RD/p, (1 − 2f + η)cL). If R ∈ [RD/p, Rc], 

GI
P 
∗(R) = P,h(R). If R ∈ [Rc , (1 − 2f + η)cL,,1 and we obtain the frst case in (C.11) for GI∗ 
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GI∗ (R) = GI∗ (U c) and we obtain (C.12) for GI∗ (R).P,h P,h P,h 

To pin down aI∗ when T ≥ (1 − 2f + η)cL, note GI∗ (Rc) = 1 andP,u 

1 (1 − p)RD/p
GI∗ (Rc) = GI∗ (U c) = P,h P,h . 

aI∗ U c − RD 

Using LB(Rc , 1, Ga
P 
∗ ; p) = 0, we obtain 

(1 − p)RD−(1 − p)RD + (1 − a I∗ )p(Rc − RD) + (1 − p)RD ,
U c − RD 

which yields (C.9). 
Finally, we compare mB

I∗ with mB 
∗ from Proposition 2. Let 

x(1 − 2f + η)cH + (1 − x)(η − 2f)cL − RD/p
MB1(x; c) := ¯ x(1 − 2f + η)cH + (1 − x)(η − 2f)cL − RD/p + xRD/p − xR 

and notice mI
B 
∗ = MB1(p

h; c) and m ∗ 
B = MB1(p; 0). Taking the derivative for c = 0, we have 

¯dMB1(x; 0) (RD/p − R)[(RD/p − (η − 2f)cL)] 
= � > 0 

dx ¯ 2 
x(1 − 2f + η)cH + (1 − x)(η − 2f)cL − RD/p + xRD/p − xR 

¯because RD/p > R and RD/p ≥ RD > cL ≥ (η − 2f)cL). Hence, for a suffciently small c, 
mI∗ = MB1(p

h; c) > MB1(p; 0) = m ∗ 
B B. 

D.9 PROOF OF PROPOSITION C.3 

I∗ a∗ I∗ I∗By Lemmas C.1, C.4 and C.5, we have m = m = 1, a > 0, and m ∈ (0, 1). By D.11, P,h P B 

∈ RI∗ ¯ I∗ we have (1 − 2f + η)cH Finally note that, because R < (1 + η)cH , m = 1 andP,h. P,l 

RI∗ ∈ RI∗ 
P,l = {(1 − 2f + η)cL}. Thus, by C.1, (1 − 2f + η)cL / P,h. 

We proceed as in the proof of Proposition 3. Specifcally, Let V c := min RB
I∗ . Note that 

such a V c exists because sup RI
B 
∗ = (1 − f)H > (1 − 2f + η)cL and because of a reasoning 

analogous to that in Lemma D.7. Note also that V c ≥ RD/p > (1 − 2f + η)cL. By Lemmas 
D.5 an D.12, if V c < (1−f)cH , [V c , (1−f)cH ) is a set of best responses for lenders. Because 
l0 ((1−2f +η)cL,mI∗, GB

I∗ ; pi) > limR→(1−2f +η)c + l1 (R, m∗ , GB 
∗ ; pi) for any i ∈ {u, h}, a δ > 0P B P B

L 

exists such that V c ≥ (1−2f+η)cL+δ. The same result holds immediately if V c = (1−f)cH . 
(1−p)RD /pBecause LB(V c , 1, Ga

P 
∗ ; p) = 0, we have Ga

P 
∗ = 

V c−RD 
. We thus observe that 

l1 (R, mI∗, GI
B 
∗ ; pi) < l1 (V, mI∗, GB

I∗ ; pi) for all R ∈ ((1 − 2f + η)cL, V ) and all i ∈ {u, h},P B P B 
I∗ I∗and lP 

0 (R0,mB , GB
I∗ ; pi) < lP 

0 ((1 − 2f + η)cL,mB , GB
I∗ ; pi) for all R < (1 − 2f + η)cL. After 
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∈ RI∗recalling (1 − 2f + η)cL / P,h, we conclude 

V c − RD/p
(1 − a I∗ )P (RP,u = (1 − 2f + η)cL) = . (D.6)

V − RD 

In particular, if V c > RD/p, we must have (1−aI∗)P (RP,u = (1−2f +η)cL) > 0 and hence, 
(1 − 2f + η)cL ∈ RI∗ 

P,u. 
For a suffciently small c, because max RI∗ = (1 − 2f + η)cH and (1 − 2f + η)cL ∈/ RI∗ 

P,h P,h, 
I∗ I∗ we must have LP ((1 − 2f + η)cH ,mB , GB

I∗ ; p) ≥ LP ((1 − 2f + η)cL,mB , GB
I∗ ; ph) + c/ψ, 

which implies 
I∗ ph(1 − 2f + η)(cH − cL) − (1 − ph)cL − c/ψ 

mB ≤ . 
ph(1 − 2f + η)cH − (1 − ph)cL − phR̄ 

If V c > RD/p and hence, (1 − aI∗)P (RP,u = (1 − 2f + η)cL) > 0, this expression holds as 
an equality because it is equivalent to 

I∗ I∗ I∗ ψLIP 
∗ (mB , GB

I∗ ; p h) + (1 − ψ)LIP 
∗ (mB , GB

I∗ ; p l) − c = LIP 
∗ (mB , GB

I∗ ; p u). 

I∗ I∗Moreover, from LP ((1 − 2f + η)cH ,mB , G
I
B 
∗ ; ph) ≥ LP (V c,mB , G

I
B 
∗ ; ph), we obtain 

I∗ (1 − 2f + η)cH − V c 
mB ≤ m̃ B (V c) := .¯(1 − 2f + η)cH − R 

∈ RI∗By Lemmas D.12 and D.1, if V c < (1 − f)cH , V c P,h and this expression holds as an 
equality. 

Let RV,c be defned so that 

ph(1 − 2f + η)(cH − cL) − (1 − ph)cL − c/ψ 
m̃ B (R

V c) = 
h ¯ , 

ph(1 − 2f + η)cH + (1 − ph)cL + p R 

which implies 

h 
R̄ − 1−p R(1 − 2f + η)cH − 

p (1−2f 
¯

+η)cL 
h cL 

RV c = (1 − 2f + η)cL h > (1 − 2f + η)cL. 
R̄ − 1−p(1 − 2f + η)cH − 

p cLh 

The rate V c is thus determined as V c := min{(1 − f)cH , max{RD/p, RV c}}. 
If V c = RD/p, then min RI∗ = min RI∗ = RD/p and the equilibrium is as described in P,h B 

Proposition C.1. 
If V c ∈ (RD/p, (1 − f)cH ), by Lemmas A.7 and D.1, all rates in [V, (1 − f)cH ) are best 
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responses for banks and the optimistic platform. Therefore, for any R ∈ RI∗ 
P,h, 

LP (R, m
I
B 
∗ , GB

I∗ ; p h) = LP ((1 − 2f + η)cH ,m IB 
∗ , GB

I∗ ; p h) 

= LP ((1 − 2f + η)cL,m IB 
∗ , GI

B 
∗ ; p h) + c/ψ, 

as previously discussed. From the last equality, we obtain mB
I∗ is given by (C.13). From 

the frst equality, we obtain GI
B 
∗ is given by (A.16). 

Furthermore, by Lemma D.3, for a suffciently small c, LP (R, mI
B 
∗, GB

I∗ ; pu) < LP ((1 − 

2f + η)cL,mI
B 
∗ 

B ; p
u). Hence, for all RI∗ = {(1 − 2f + η)cL}. From D.6 with P (RP,u =, GI∗ 

P,u 

(1 − 2f + η)cL) = 1, we obtain (C.15). 
The rest of the proof for the case V C ∈ (RD/p, (1 − f)cH ) is identical to the proof of 

Proposition 3 with mI∗ replacing m ∗ 
B, GI∗ replacing G∗ , and GI∗ replacing G∗ 

P .B B B P,h 

Finally, if V c = (1−f)cH , we have RI∗ = (1−2f +η)cL, RI∗ = (1−2f +η)cH , aI∗ is still P,h P,u 

given by (C.15), and mB
I∗ is given by (C.13). Banks lend at rate (1 − f)cH with probability 

1. 
To conclude, we compare mB

I∗ with mB 
∗ from Proposition 3. Let 

x(1 − 2f + η)(cH − cL) − (1 − x)cL − c/ψ
MB2(x; c) := ¯ x(1 − 2f + η)cH − (1 − x)cL − xR 

and notice mB
I∗ = MB2(p

h; c) and mB 
∗ = MB2(p; 0). Taking the derivative for c = 0, we have 

¯dMB2(x; 0) cL[(1 − 2f + η)cL − R] 
= � 2 > 0 

dx ¯ x(1 − 2f + η)cH − (1 − x)cL − xR 

¯because R < (1 − 2f + η)cL when RV c > RD/p ≥ (1 − 2f + η)cL. Hence, for a suffciently 
I∗ h ∗small c, mB = MB2(p ; c) > MB2(p; 0) = mB. 

D.10 PROOF OF PROPOSITION C.4 

I∗ I∗ I∗By Lemmas C.1, C.4 and C.5, we have m = 1, a > 0, m ∈ (0, 1), and min{RI∗ ∪P,h B P,u 

RI∗ } = RD/p > (1 − 2f + η)cL. Notice arg maxR>(1−2f +η)cL LP (R, mB, GB; pi) does notP,h 

depend on pi . Therefore, R∗ = R∗ 
P,u P,h. 

For a suffciently small c, by Lemma C.5 we have 

I∗ I∗ I∗ = LI∗ I∗ u).ψLIP 
∗ (mB , GB

I∗ ; p h)+(1−ψ)LPI∗ (mB , G
I
B 
∗ ; p l)−c = mB [p2cH +(1−p)cL]f P (mB , GB

I∗ ; p 
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I∗ I∗By Lemma D.3, we also have LI∗(m , GI
B 
∗ ; pl) = m [p2cH +(1−p)cL]f . Using RD/p ∈ R∗ 

P B B P,h, 

ψLP (RD/p, m
I
B 
∗ , GI

B 
∗ ; p h) = ψmB

I∗ [p2cH + (1 − p)cL]f + c, 

from which we obtain (C.16). The previous equation also implies that, for a suffciently 
small c, LP (RD/p, mI∗, GI

B 
∗ ; pu) < ψmI∗[p2cH + (1 − p)cL]f and, hence, mI∗ = 0.B B P,u 

Using Lemma D.8 and D.5, we obtain (1 − 2f + η)cL < RD/p = min RI
B 
∗ ≤ sup RI

B 
∗ = 

(1−f)cH . By Lemma D.12 we have GI∗ (·) and GI∗(·) are strictly decreasing in [RD/p, (1−P,h B 
I∗ a∗ I∗f)cH ] because (1 − aI∗)m = 1. Further note m = a and Ga∗(·) = GI∗ (·). Hence, the P,u P P,h 

rest of the proof is identical to the proof of Proposition 4 with aI∗ replacing mP 
∗ , GI∗ 

P,h 

replacing GP 
∗ , and GB

I∗ replacing GI
B 
∗ . In particular, from LP (R, mB

I∗, GB
I∗ ; ph) = mB

I∗[p2cH + 
c(1 − p)cL]f + 
ψ we obtain (C.17). 

We then need to compare mI
B 
∗ with m ∗ 

B from Proposition 4. Let 

R̄ − xRD/p − (1 − x)(η − f)cL − [2xcH + (1 − x)cL]f + c/ψ
MC (x; c) := 

(1 − x)R̄ − (1 − ph)(η − f)cL − [2xcH + (1 − x)cL]f 

and notice mB
I∗ = MC (p

h; c) and mB 
∗ = MC (p; 0). Taking the derivative for c = 0, we have 

dMC (x; 0) [R̄ − ηcL](R̄ − RD/p) 
= � 2 < 0 

dx (1 − x)R̄ − (1 − ph)(η − f)cL − [2xcH + (1 − x)cL]f 

¯ ¯because R ≥ RD/p > ηcL and R < RD/p. Hence, for a suffciently small c, mI
B 
∗ = 

MC (p
h; c) < MC (p; 0) = mB 

∗ . 
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