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Abstract 

Debt that is demandable, such as deposits, is a common funding source for financial inter-
mediaries. This feature allows creditors to withdraw early, thus exposing the institution to run 
risk. A large literature justifies demandability with the need to provide liquidity insurance to 
investors that are risk averse and face uncertainty about their consumption needs. By contrast, 
we show that demandable debt can be optimal even when investors have no demand for liquidity 
(i.e., they are risk neutral and have no early consumption need) as part of a bank’s strategy for 
maximizing its own profits. Our paper therefore shows that debt demandability may be a much 
more generally optimal contractual feature than has been commonly assumed. 
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1 Introduction 

Demandable debt has been at the center of the literature on financial stability since its incep-

tion. Starting with the seminal paper by Diamond and Dybvig (1983), a large body of literature 

has analyzed demandable debt as a way to provide consumption flexibility for risk-averse deposi-

tors. Specifically, since investors are uncertain concerning the timing of their future consumption 

demand, deposit accounts represent claims that can provide investors with funds at a moment’s 

notice, usually with few, if any, penalties as a result of withdrawal. Thus, a standard rationale 

for demandable debt is that it allows banks to provide liquidity to investors and increase overall 

welfare, despite exposing the banks to the risk of disintermediation resulting from depositor runs 

(Goldstein and Pauzner, 2005). 

Importantly, the results summarized above are derived in settings where depositors are risk 

averse and the provision of liquidity serves to insure individuals against consumption uncertainty. 

Moreover, banks are assumed to operate in a perfectly competitive market for deposits and thus 

to act in the interest of depositors, maximizing their utility through the design of the deposit 

contracts. But to what extent are these elements — risk aversion, consumption uncertainty, and 

depositor utility maximization —necessary for demandability to emerge as a key design feature of 

the contracts offered to depositors? While other justifications for the issuance of demandable debt 

have been offered in the literature (see our discussion below), the literature on financial stability has 

generally considered these three ingredients as important for rationalizing demandability of deposit 

contracts. In this paper, we show, using a standard model of financial stability, that demandable 

debt may optimally be used by financial institutions even if none of these ingredients are included, 

and that banks may even offer “liquidity”to their investors by leveraging the benefit of their capital 

(i.e., equity) when setting the terms of deposit contracts. In other words, our paper shows that 

the demandability of debt can emerge as an optimal feature for deposit contracts in more general 

frameworks, independently of early consumption needs of risk averse depositors as well as of the 

degree of competition in the banking sector. 

Specifically, we develop a simple two-period model with a representative bank and numerous 

investors, each with one unit of endowment. At the initial date, the bank raises funds to invest in 

risky, long-term projects whose expected return at the final date depends on the fundamentals of 

the economy as well as on the bank’s costly monitoring effort. The fundamentals of the economy 
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are realized at the interim date and each depositor receives a private imperfect signal about their 

realization. Based on this signal and the terms of the deposit contract, depositors make their 

withdrawal decisions. Unlike canonical models (e.g., Diamond and Dybvig, 1983, and Goldstein 

and Pauzner, 2005), all parties are risk neutral and are not subject to any consumption shock. 

Also, the bank can decide to use internal capital as a funding tool in addition to debt in order to 

maximize expected profits. 

We show that the bank always finds it optimal to offer debtholders a demandable debt contract, 

i.e., a contract that allows depositors to withdraw early, at the intermediate date, and obtain a 

strictly positive repayment when doing so. Moreover, any repayment that is made must be done 

through the early liquidation of the long-term project. As a consequence, depositors may decide 

to withdraw early after observing a low signal on the economy’s fundamentals, thus triggering a 

run. The bank therefore exposes itself to the risk of large liquidity outflows despite the fact that 

offering only a long-term contract, with no possibility of early withdrawal, would satisfy depositors’ 

participation constraint and hence would be feasible for the bank. The intuition for the use of 

demandable debt is that by offering a positive early repayment, the bank can reduce the repayment 

at the final date and thus increase its expected profit by both lowering the probability of being 

insolvent and by increasing its payoff when no run occurs. 

We also show that the size of the early repayment offered to depositors depends on the level 

of bank capital (or leverage) and on the liquidation value of the bank’s project. In particular, the 

bank would like to offer as a high an early repayment as possible, as long as it can be honored by 

liquidating the project prematurely and does not trigger coordination failures among depositors, 

thus avoiding panic runs. The amount of this early repayment is increasing in the level of capital the 

bank has as well as in the project’s liquidation value. In fact, when the bank’s capital is suffi ciently 

large, the early repayment will entail a premium relative to the amount initially deposited (i.e., an 

early repayment greater than one). In other words, depositors may be offered a liquidity premium 

even though, given that they are risk neutral and face no consumption uncertainty, they have no 

actual demand for liquidity. Rather, it is the bank’s desire to increase its profits at the final date, 

which are the residual returns on the project after repaying its depositors, that drives the provision 

of liquidity. 

We present four main extensions to our model. First, since our results emphasize the role of 

bank capital in the provision of liquidity to depositors, we show that indeed banks have incentives 
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to use capital in addition to deposits to fund their projects as long as the cost of capital is not too 

high. Moreover, we also show that the amount of capital employed can be suffi ciently high, relative 

to the liquidation value of the bank’s project, that indeed the bank finds it optimal to offer an early 

repayment greater than the amount initially deposited. 

Second, we modify the baseline framework to allow for the possibility that the liquidation value 

is stochastic. We show that in this case, the bank still finds it optimal to offer demandable debt 

with a positive early repayment. However, since it faces the uncertainty on the resources it will 

have available to repay depositors who withdraw early, the optimal early repayment it chooses will 

be such that panic runs may arise with some positive probability. 

Third, we allow for bankruptcy costs to exist whenever the bank defaults on its promised 

payment to depositors at the final date. In practice, it is well documented that banks incur costs 

when insolvent (e.g., James, 1991), so our extension to introduce such costs can be viewed as adding 

realism to the framework. We show that having some value be destroyed when the bank defaults 

does not change the type of contract the bank chooses to offer depositors, and demandable debt 

will still be used. 

Fourth, we allow the bank itself to choose whether to liquidate the project at the interim date 

without having to rely on a run by depositors in order to do so. We show that even in this case the 

bank wants to offer depositors a strictly positive date 1 repayment. In fact, rather than pushing 

the promised date 1 repayment to be as low as possible, the bank will instead choose the same 

promised repayment as in the case where early liquidation is only triggered by depositors’ runs. 

In other words, allowing the bank to liquidate early and cash out investors has no impact on the 

equilibrium date 1 interest rate offered on deposits. 

Our paper contributes to the vast literature, originated with Diamond and Dybvig (1983), 

studying the optimality of demandable debt and liquidity provision despite the consequent risk of a 

bank run. In our framework, these two interrelated aspects arise as a result of the bank’s incentive 

to maximize its long-term return, while still satisfying depositors’ need to obtain at least some 

minimum return. In this sense, we provide a rationale for the assumption in Rochet and Vives 

(2004) and Vives (2014) of a positive face value of debt irrespective of the withdrawal date in the 

absence of liquidity shocks to investors and profit maximizing banks. 

An additional novel aspect of our framework concerns the role of bank capital. As we show, 

the promised early repayment embedded in the deposit contract increases with the level of bank 
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capital, and it entails no penalties when banks are suffi ciently well capitalized. This role for bank 

capital in determining banks’ exposure to depositor runs is reminiscent of Diamond and Rajan 

(2000), athough in our framework the bank avoids to be exposed to panic runs by setting the 

early repayment appropriately. Importantly, however, the optimality of demandable debt in our 

model does not depend on either the bank having equity financing, or on its monitoring effort being 

endogenous. In fact, a bank with zero capital and an exogenous success probability would still offer 

to depositors the possibility to redeem their debt at the intermediate date. 

The optimality of demandable debt has been justified in the literature by the presence of 

asymmetric information problems in credit markets (see, e.g., Flannery, 1986; and Diamond, 1991), 

conflicts between bank managers and shareholders (see e.g., Calomiris and Kahn, 1991; Diamond 

and Rajan, 2001; and Eisenbach, 2017), idiosyncratic liquidity shocks to banks’depositors (e.g., 

Diamond and Dybvig, 1983, and Goldstein and Pauzner, 2005) and the need of providing liquidity 

on demand on the asset side through credit lines (e.g., Kashyap, Rajan, and Stein, 2002). While 

these are likely important rationales for the pervasive use of demandability in deposit contracts, 

our analysis emphasizes that demandability may be a much more generally optimal feature, and 

is consistent with bank profit maximization in an environment where there is uncertainty about 

future returns and information about these returns is learned in the interim. 

2 The model 

Consider a three date economy (t = 0, 1, 2) with one representative bank and a continuum of 

atomistic investors, each with a unitary endowment at date 0.1 All agents are risk neutral. The 

bank has access to a risky project requiring one unit of investment, and must raise funds at date 

0 to finance this project in the form of (equity) capital, k, and debt/deposits, 1 − k.2 Investors 

have an outside option returning u ≥ 1 at date 2, while the outside option of capital is given by 

ρ > u. The variable u can be interpreted as a measure of competition in the deposit market. 

For instance, in a similar spirit as in Carletti and Leonello (2019), u could be viewed an inverse 

measure of the switching costs investors face when moving their funds across banks. When u is 

small, switching costs are high and the bank has all the bargaining power, with u = 1 representing 

1The exact number of banks is immaterial as long as there are relatively more investors than banks supplying 
funds to the bank inelastically whenever their reservation utility is satisfied. This is consistent with the idea of banks 
having some degree of market power in the deposit market. 

2We will use the terms debt and deposits as well as debtholders and depositors interchangeably throughout the 
paper. In addition, we will refer to 1 − k as the level of bank leverage. 

4 



a monopolistic market. The assumption that ρ > u, which is empirically supported (e.g., Schepens, 

2016) is standard in the literature on bank capital (see e.g., Hellmann, Murdock and Stiglitz, 2000; 

Repullo, 2004; Allen, Carletti and Marquez, 2011) and emerges naturally as an equilibrium outcome 

when investors incur a disutility from participating in financial markets (see, e.g., Allen, Carletti, 

and Marquez, 2015, or Caletti, Marquez, and Petriconi, 2020). 

The bank’s available project (or also technology) yields a fixed return or liquidation value L < 1 

if liquidated at date 1, while it yields a stochastic return Pe at date 2 equal to � 
Rθ w.p. qeP = 
0 w.p. 1 − q. 

The date 2 return on the project depends on the fundamental of the economy θ, with θ ∼ U [0, 1], 

and on an “effort” choice q of the bank, with q ∈ [0, 1]. The latter represents the effort exercised 

by the bank in reducing the riskiness of its investment through, for example, the monitoring of its 

loans. Choosing a higher probability of success q is costly, and we assume that the bank bears a 
qprivate non-pecuniary cost of c 
2 
.2 

The bank offers the 1 − k investors a debt/deposit contract with promised repayment r2 at 

date 2 and, in addition, a promised repayment r1 if instead repayment is made at date 1. For 

convenience, we write such a contract as {r1, r2}. We assume that a value of r2 exists such that R 1 R 1 2qqr2dθ ≥ u, for some q that satisfies q (Rθ − r2) dθ − c > 0. This implies that a contract 0 0 2 

with r1 = 0 and r2 > 0 is feasible for the bank. As we will show below, however, such a contract 

will never be optimal. In fact, we will show that the bank will always choose to offer a contract 

with qr2 ≥ r1 > 0. We will define a contract to be demandable if r1 is strictly positive and to be 

demandable without penalty if r1 ≥ 1, so that the promise to depositors is redeemable early at least 

at par. 

The promised repayment is made as long as the bank has enough resources. If depositors choose 

to withdraw at date 1, the bank liquidates as much of its assets as needed to satisfy withdrawals, 

obtaining L < 1 per unit liquidated, and carrying to time 2 any remaining amount. If the bank 

has insuffi cient resources to meet depositors’demands at date 1, all its assets are liquidated and 

the 1 − k depositors receive a pro-rata share of the liquidation value L. Similarly, if the bank has 

insuffi cient resources to meet depositors’demands at date 2, depositors receive a pro-rata share of 

the project proceeds Rθ. 

The variable θ is realized at the beginning of date 1, but is publicly revealed only at date 2. 
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After θ is realized at date 1, each depositor receives a private signal si of the form 

si = θ + εi, (1) 

where εi are small error terms that are independently and uniformly distributed over [−ε, +ε]. 

After the signal is realized, depositors decide whether to withdraw at date 1 or wait until date 2. 

The timing of the model is as follows. At date 0, the bank, equipped with amount of capital 

k of internal capital, raises external funds with a deposit contract {r1, r2}, and then chooses how 

much effort to exert to reduce the riskiness of their portfolios q. At date 1, after receiving the 

private signal about the state of the fundamentals θ, depositors decide whether to withdraw early 

or wait until date 2. At date 2, the bank’s project return is realized and depositors that chose to 

wait are repaid. 

3 Equilibrium 

We solve the model by backward induction, focusing first on depositors’withdrawal decisions, which 

occur at date 1. We then study the bank’s choice of contract at date 0, as well as its monitoring 

decision. We treat bank capital structure as exogenous in this section and endogenize it in Section 

4.1. 

3.1 Depositors’withdrawal decision 

In this section, we analyze depositors’withdrawal decisions at date 1, taking the deposit contract 

{r1, r2} and the riskiness of the portfolio q. The analysis relies on standard arguments in the global 

games literature (see, e.g., Goldstein and Pauzner, 2005) and allows to characterize the range of 

fundamentals where the bank faces a run by depositors. Differently from the literature on liquidity 

insurance á la Diamond and Dybvig (1983), investors are all patient in our model. This implies 

that their decision to withdraw early depends exclusively on their expectations about the date 2 

returns and the possibility of receiving r1 > 0 at date 1. We assume r1 > 0 here and we will later 

show that the bank finds indeed it optimal to offer a positive date 1 repayment. 

Since when receiving a high (low) signal a depositor expects a high (low) return of the bank’s 

project, as well as that other depositors have also received a high (low) signal, he has low (high) 

incentives to withdraw at date 1. This suggests that depositors withdraw at date 1 when the 

signal is low enough, and wait until date 2 when the signal is suffi ciently high. To show this 
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⎪
⎪

formally, we first examine two regions of extremely bad and extremely good fundamentals, where 

each depositor’s action is based on the realization of the fundamentals θ irrespective of his beliefs 

about other depositors’behavior. We start with the lower region. 

Lower Dominance Region. The lower dominance region of θ corresponds to the range [0, θ) 

in which running is a dominant strategy. Upon receiving a signal in this region, a depositor is n o 
Rθcertain that the date 2 expected repayment q max r2, is lower than the payment r1 from1−k 

withdrawing at date 1, even if no other depositor were to withdraw. Given that qr2 ≥ r1 must 

hold in order for intermediation to be feasible,3 we denote as θ the cutoff value of fundamentals at 

Rθwhich the minimum expected date 2 repayment, 1−k , equals r1; that is, θ solves: 

Rθ 
r1 = q ,

1 − k 

and is equal to 
(1 − k) r1

θ = . (2) 
qR 

Upper Dominance Region. The upper dominance region of θ corresponds to the range [θ, 1] in which 

fundamentals are so good that waiting to withdraw at date 2 is a dominant strategy. We make the 

same technological assumption as in Goldstein and Pauzner (2005) and construct this region by 

modifying the investment technology available to the bank. In particular, we assume that, for [θ, 1], 

there is no ineffi ciency in liquidation, so that L = R, and the date 2 project fully pays off, so that 

Pe = R. Given these assumptions, a bank needs to liquidate no more than 1 unit of its investment 

at date 1 for each withdrawing depositor and each depositor waiting until date 2 expects to receive 

qr2 ≥ r1 for sure. As in Goldstein and Pauzner (2005), we consider the limit case where θ → 1. 

The Intermediate Region. When the signal indicates that θ is in the intermediate range, [θ, θ), 

a depositor’s decision to withdraw early depends on the realization of θ as well as on his beliefs 

regarding other depositors’actions. To see how, we first calculate a depositor’s utility differential 

between withdrawing at date 2 and at date 1. Using n to represent the fraction of depositors who 

choose to withdraw early, this differential is given by ⎧ 
qr2 − r1 if 0 ≤ n ≤ nb (θ)⎪ � �⎨ n(1−k)r1Rθ 1− 

v (θ, n) = q L − r1 if nb (θ) ≤ n ≤ n ,
(1−k)(1−n)⎪ L⎩ 0 − if n ≤ n ≤ 1(1−k)n 

3 If qr2 < r1, depositors would strictly prefer to withdraw early rather than waiting until date 2. This means that 
runs would occur for any θ, thus making unprofitable for the bank to operate. 
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where nb (θ) solves � � 
nb (1 − k) r1

Rθ 1 − 
L 

− (1 − bn) (1 − k) r2 = 0, (3) 

while n solves 

L = n (1 − k) r1. 

The threshold nb (θ) represents the proportion of depositors running at which the bank is no longer 

able to repay r2 to those waiting until date 2, while n captures the proportion of withdrawing 

depositors at which a bank liquidates the entire portfolio at date 1. 

Throughout, as is common in the literature on bank runs (e.g., Goldstein and Pauzner, 2005; 

Eisenbach, 2017; Allen et al., 2018), we focus our results on the limiting case where ε → 0, so that 

the noise in depositors’ information becomes vanishingly small. This implies that all depositors 

behave alike: they all either withdraw at date 1, thus originating a run, or wait until date 2. 

The following proposition characterizes depositors’withdrawal decisions and the threshold value of 

fundamentals θ below which runs occur. 

Proposition 1 The run risk depends on the level of bank capital as follows: 

a) When (1 − k) r1 ≤ L, runs are triggered only by low realizations of θ and they occur when 

θ < θ(r1, q) as given in (2). 

b) When (1 − k) r1 > L, runs are driven also by panics and they occur when θ < θ∗(r1, r2, q), 

which corresponds to the solution to � � Z Z 1 − n(1−k)r1 nb(θ) n Rθ L 
qr2dn + q dn = π1, (4)

(1 − k) (1 − n)0 nb(θ) R R 1n Lwhere π1 = r1dn + dn. Both thresholds θ and θ∗ increase with r1 and decrease with q.0 n (1−k)n 

Also, the threshold θ∗ decreases with r2. 

The proposition shows that the terms of the deposit contract, interacting with the level of bank 

capital, determine whether runs are driven only by poor fundamentals or also by depositors’panics. 

For a given level of r1 > 0, highly capitalized banks, those for which (1 − k) r1 ≤ L, always have 

enough resources to repay r1 by liquidating the project at date 1, even if all depositors were to 

withdraw. This implies that depositors do not have to worry about other depositors withdrawing 

early and so their decision to run is only driven by low fundamentals affecting the value of the 

expected date 2 repayment. Conversely, poorly capitalized banks, those for which (1 − k) r1 > L, 

8 



cannot satisfy depositors’promised repayment even if they liquidate the entire loan prematurely in 

the event of large withdrawals. As a result, these banks are exposed to runs driven by depositors’ 

fear of others running. In other words, poorly capitalized banks are subject to coordination failures 

among depositors for fundamentals in the range [θ, θ∗] and can therefore be subject to panics. 

Note that, differently from the classic bank run models in Diamond and Dybvig (1983) and 

Goldstein and Pauzner (2005) where banks are financed exclusively through deposits and panics 

occur when r1 > L = 1, here the condition for panics to potentially occur is (1 − k) r1 > L. As we 

will see below in the next section, the interest rate r1 and the amount of capital k jointly determine, 

together with the size of L, the bank run risk. 

As a final point, it is worth noting that the terms of the deposit contract affect the type of runs 

in addition to their probability. For a given level of bank capital, the bank can adjust its exposure 

to fundamental- and panic-driven runs by changing the promised repayments to depositors. In 

particular, both θ and θ∗ strictly increase with the date 1 promised repayment r1, while θ∗ decreases 

also with r2. Finally, the bank’s effort decision q affects run risk by reducing the probability of a 

run, whether based on fundamentals or as a result of a panic. 

3.2 Bank’s date 0 decisions 

Having characterized depositors’withdrawal decisions, we now solve for the bank’s effort q and the 

deposit contract {r1, r2}. The bank makes its date 0 decisions in order to maximize its expected 

profits, anticipating depositors’withdrawal decisions at date 1. 

To solve the bank’s maximization problem, we start by characterizing the bank’s payoff. If 

no run occurs, the bank obtains positive profits only if it is able to repay the date 2 promised 

repayment r2 to all (1 − k) investors. Thus, the bank is solvent if θ is above the cutoff θB , which 

is the solution to 

Rθ − (1 − k) r2 = 0, 

and is equal to 
(1 − k) r2

θB = . (5)
R 

Since, as discussed above, qr2 ≥ r1 must hold for intermediation to be feasible, it follows that 

θB ≥ θ for any k, where θ is the fundamental run threshold given in (2). The bank’s payoffs thus 

depend crucially on the amount of capital. When (1 − k) r1 < L, if there is no run and the bank’s 

monitoring is successful, the bank makes positive profits at date 2 only if θ > θB . If instead a run 
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occurs, the bank makes expected profits at date 2 on any remainder after liquidating only what is 

needed to repay depositors at date 1. By contrast, when (1 − k) r1 ≥ L, the bank’s entire project 

is liquidated at date 1 when a run occurs. Thus, the bank can only obtain positive profits at date � 
2 when no run occurs, i.e., for θ > max θ∗, θB , and when its effort q has proven successful. 

Denote now θR as the relevant run threshold, i.e., θR = θ when (1 − k) r1 ≤ L and θR = θ∗ 

when (1 − k) r1 > L. Given this, the maximization problem for the bank can be written as follows: Z θR � � � � Z 1 2(1 − k) r1 cq 
max Π = q max Rθ 1 − , 0 dθ + q [Rθ − (1 − k) r2] dθ − (6) 
q,r1,r2 L 20 max{θR,θB } 

subject to Z � � Z ZθR max{θR,θB } 1L Rθ 
min , r1 dθ + q dθ + qr2dθ ≥ u, (7) 

0 (1 − k) θR 1 − k max{θR,θB } 

r1 ≤ qr2, (8) 

and 

Π ≥ ρk. (9) 

The first two terms in (6) capture the instances when the bank expects to accrue positive profits 

at date 2 if monitoring turns out to be successful, i.e., with probability q. The first term represents 

the case in which a run occurs for θ ≤ θR and the bank can still obtain positive profits at date 2� � 
(1−k)r1on the residual after repaying depositors, 1 − . This is possible only when (1 − k) r1 < LL 

so that θR = θ. The second term captures the situation when there is both no run (for θ > θR) 

and the fundamentals are such that the bank remains profitable at date 2 (for θ ≥ θB). Moving to 

costs, the last term in (6) represents the monitoring cost cq
2 
the bank bears for the effort it exerts.2 

The condition in (7) represents depositors’participation constraint requiring that the expected 

repayments from depositing in a bank cannot be lower than investors’outside option u ≥ 1. By 

Ldepositing in a bank, depositors expect to receive the minimum between the pro-rata share 1−k 

and the promised repayment r1 if there is a run at date 1 (i.e., when θ ≤ θR), as represented in the 

first term of (7). If, instead, there is no run, then with probability q they receive the pro-rata share 

Rθ 
1−k of the bank’s available resources at date 2 if the bank turns out to be insolvent (i.e., when � � 
θ ∈ (θR , max θR, θB ]), and the full repayment r2 otherwise (i.e., when θ ∈ (max θR, θB , 1]). 

Note that the second term in (7) is positive only if θR < θB as otherwise the bank would always 
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be solvent at date 2 in case of no runs and thus depositors would always obtain the full promised 

repayment r2. 

Finally, the constraint (8) is an incentive compatibility constraint on the deposit contract, so 

that depositors expect to receive a higher repayment if they wait until the final date, and as a 

result don’t have an incentive to always withdraw early. Similarly, the inequality in (9) is simply 

a non-negativity constraint on expected profits that requires that the bank can meet shareholders’ 

required return in expectation. 

3.2.1 Bank monitoring effort 

Having characterized the bank’s maximization problem, we now move on to solve it using backward 

induction. Hence, we start by computing the optimal monitoring level chosen by the bank for given 

repayments {r1, r2} and bank capital k. We have the following result. 

Proposition 2 For any k > 0 and r2 > r1 > 0, the bank chooses q ∈ (0, 1] as the solution to Z θ � � Z 1 � � 
(1 − k) r1 ∂θ (1 − k) r1

Rθ 1 − dθ + [Rθ − (1 − k) r2] dθ + qRθ 1 − − cq = 0, (10)
L θB ∂q L0 

if (1 − k) r1 ≤ L and to Z 1 
� 

∂ max θ∗, θB � � � 
[Rθ − (1 − k) r2] dθ − q R max θ ∗ , θB − (1 − k) r2 − cq = 0, (11)

∂q max{θ∗,θB } 

if (1 − k) r1 > L. 

As illustrated in the proposition, the bank chooses the monitoring effort q by trading off the 

marginal effort cost with its marginal benefits. Irrespective of the type of runs the bank is exposed 

to, a higher monitoring effort is associated with higher costs, as captured by the term −cq, and with 

higher profits as captured by the first two terms in (10) for the case where (1 − k) r1 ≤ L, and the 

first one in (11) when (1 − k) r1 > L. In addition, an increase in the level of monitoring also reduces 

the bank’s exposure to runs (i.e., ∂θ < 0 and ∂θ
∗ 
< 0). This allows the bank to accrue more profits in ∂q ∂q 

∂ max{θ∗,θB } � � � 
the case when (1 − k) r1 > L, as captured by the term − ∂q q R max θ∗, θB − (1 − k) r2 , 

while it shrinks the region where the bank remains solvent in the event of a run when (1 − k) r1 ≤ L,� � 
∂θ 1 − (1−k)r1as captured by the term ∂q qRθ L . 
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3.2.2 Deposit contract 

Having characterized the bank’s effort, we now move on to the choice of the deposit contract 

{r1, r2}. In doing so, we proceed in steps. First, we show that the bank always chooses the terms 

of the deposit contract in a way that panic runs never occur. Then, we characterize the choice of 

r1 and r2. 

LLemma 1 For any k > 0, the bank never finds it optimal to set r1 > In equilibrium, therefore, 1−k . 

there are no panic runs. 

The lemma establishes that, when all parties are risk neutral, the bank never offers a date 1 

promised repayment r1 so high that it would risk exposing itself to panic runs. Since panics arise 

only in the region (1 − k) r1 > L, the bank will never choose r1 to be above the ratio between the 

Lliquidation value L and the amount of leverage 1 − k. In other words, r1 must satisfy r1 ≤ 1−k . 

This result is consistent with the literature studying bank runs and the provision of liquidity (e.g., 

Diamond and Dybvig, 1983, Jacklin and Bhattacharya, 1988, Allen and Gale, 2007, and Goldstein 

and Pauzner, 2005), where panic runs arise only when intermediaries insure risk-averse depositors 

against the possibilty of early consumption needs, but they do not occur when investors are either 

risk neutral or have no need for early consumption. In these latter cases, the bank sets r1 equal to 

the liquidation value which, given the absence of capital, implies there are no coordination failures 

among depositors. The same result arises in our framework where investors are not exposed to any 

consumption shock and the bank maximizes its expected profit by choosing its deposit contract. 

While Lemma 1 establishes that coordination failures among depositors — i.e., panics — will 

never arise in equilibrium, it does not pin down the equilibrium deposit contract {r1, r2}, nor does 

it suggest that the deposit contract must be demandable (i.e., r1 > 0). In fact, common intuition 

would suggest that, given the absence of consumption shocks and depositors’risk aversion in our 

framework, the profit-maximizing bank could find it optimal to set r1 = 0 and repay investors only 

at date 2 when the project succeeds. The following result shows instead that this is not the case. n o 
LProposition 3 The bank chooses the deposit contract {r1, r2} as follows: r1 = min , u ,1−kn o 

ur2 = max re2, where re2 is the solution to (7) holding with equality, that is q 

(1−k)r2Z L Z R Z 1
qR L Rθ 

dθ + q dθ + qr2dθ = u, (12)
1 − k L 1 − k (1−k)r20 

qR R 
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and q is given by the solution to (10). 

The proposition shows that the bank finds it optimal to offer a demandable deposit contract, 

that is r1 > 0, for any level of capital k ∈ [0, 1], even if investors are not subject to any consumption 

shock as in the traditional literature on bank runs, and despite the fact that the bank maximizes its 

own expected profits. The reason behind this result is that by choosing r1 > 0, the bank can reduce 

the repayment to be made at date 2, r2, and thus increase its profits when no run occurs. In fact, 

lowering r2 benefits the bank in two ways. First, a lower r2 implies a reduction of the threshold θB 

above which the bank makes positive profits at date 2. Second, a lower r2 increases the net payoff 

of the bank at date 2 when it is solvent (i.e., θ > θB) and has exerted positive effort (i.e., with 

probability q). The key issue is that the tradeoff for the bank between increasing r1 and reducing 

r2 is different from that of depositors, who stand to benefit relatively more from an increase in r1. 
dr2In other words, the slope of depositors’iso-utility curve, dr1 

, is greater (in absolute magnitude) 
U 

than the slope of the isoprofit curve for the bank, dr2 , and the bank exploits this difference by dr1 Π 

setting the date 1 deposit rate as high as possible in order to maximize its date 2 profits. 

To understand the bank’s choice of deposit contract in more detail, it is worth noting that the 

bank would like to set r1 to be as high as possible without risking being exposed to panic runs, 

but is also subject to the incentive compatibility constraint r1 ≤ qr2, as otherwise depositors would 

always strictly prefer to withdraw at date 1. The highest r1 consistent with the bank not being 

Lexposed to panic runs is r1 = 1−k , which is increasing in k. Hence, we can denote as bk = 1 − L 
u 

Lthe level of capital for which r1 = u. For any k ≥ kb, were the bank to choose r1 = > u, then 1−k 

depositors’participation constraint could be rewritten as Z L Z Z 
(1−k)r2 1

qR L Rθ 
dθ + L

R q dθ + qr2 = u,
1 − k qR 1 − k (1−k)r20 

R 

thus showing that qr2 < r1 would be required for the constraint to hold with equality. As this is 

a violation of (8) and the bank always finds it optimal to have depositors’participation constraint n o 
Lbind, qr2 = r1 = u follows. These considerations imply that {r1, r2} = 1−k , re2 when the bank is 

highly leveraged and/or the deposit market is very competitive, i.e., for k < bk. Conversely, when 

the bank’s leverage is relatively low and/or competition in the deposit market is not intense (i.e.,n o 
u u is small, so that k ≥ bk), we have {r1, r2} = u, . q 

Importantly, the maximization of the bank’s expected profit does not imply eliminating runs. 

In fact, even though by assumption choosing r1 = 0 and having no runs at all is feasible, the bank 
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chooses to be exposed to fundamental-driven runs. The presence of capital allows the bank to offer 

r1 ≥ L and yet not trigger coordination problems among investors. 

So far we have shown that the bank finds it optimal to offer depositors a demandable deposit 

contract, that is, a contract whereby they can withdraw at date 1, even though depositors don’t 

anticipate having any early consumption needs. Going further, it is straightforward to see, from 

Proposition 3, that the bank may even find it optimal to offer a return r1 > 1 to early withdrawing n o 
Ldepositors. Since r1 = min , u , offering a demandable debt contract with no penalties, i.e.,1−k 

r1 > 1, is optimal whenever 1−k < L. This shows that whether r1 is greater or less than 1 depends 

on value of the bank’s project under liquidation, L, relative to the bank’s leverage, 1 − k, with a 

higher payment being promised the more capital the bank has and/or the higher is the liquidation 

value L. In other words, the bank provides “liquidity”to depositors even though there is no demand 

for liquidity from the investors and thus liquidity plays no insurance role. The intuition is that 

both a high level of capital k or a larger liquidation value L allows the bank to increase r1 without 

exposing itself to panic runs. 

Our analysis highlights a novel mechanism for why a bank may find it optimal to offer de-

mandable debt without penalties, and highlights that neither risk-aversion for investors subject to 

consumption shocks, nor a competitive banking sector, are necessary ingredients for demandable 

debt to be optimal. In this respect, the result of Proposition 3 illustrates that the optimality of 

demandable debt (i.e., r1 > 0) is more general than what is commonly discussed in the existing 

banking literature, and arises even in settings where banks enjoy substantial monopoly power. 

4 Extensions 

In this section, we present four extensions to the model that address issues of robustness and 

realism. First, we endogenize the bank’s capital structure and characterize the bank’s choice of k. 

Second, we consider the case of a stochastic liquidation value and ask whether the bank nevertheless 

finds it optimal to issue demandable debt despite the potential occurence of panic runs. Third, 

we analyze the situation where the bank incurs bankruptcy costs in the event of default at date 2. 

Such costs have been well-documented and are often regarded as substantial. Fourth, we study the 

case where, rather than passively investing at date 0 and holding its position until date 2 in the 

absence of runs, we allow the bank to itself choose to liquidate the project early. 
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4.1 Bank capital structure 

In our analysis in Section 3, we treated k as a parameter for the bank, and showed that r1 can 

be strictly greater than 1 if the bank is suffi ciently capitalized. In this section, we prove that it is 

indeed optimal for the bank to finance itself with capital even if it is a more expensive source of 

funds than deposits. In other words, we endogenize the level of bank capital k, assuming that the 

bank takes such choice at date 0 before setting the terms of the deposit contract {r1, r2} and its 

monitoring effort q. Hence, we solve the problem by backward induction, taking the choice of the 

optimal monitoring effort q and the deposit contract {r1, r2} from the previous section. 

As shown before, the bank chooses not to be exposed to panic runs, so the relevant thresholds 

are θ and θB , as characterized in (2) and (5), respectively, with θB ≥ θ. We have the following 

result. 

Proposition 4 The bank chooses an amount of capital as follows: 

(1) When ρ − u > 0 is suffi ciently small, the bank chooses k > 0; 

(2) Fix the difference ρ − u such that the result in (1) holds, i.e., that k > 0. Then, there is a 

value Lb < 1 such that, for L > Lb, r1 (k) > 1. 

The proposition shows that it is optimal for the bank to be financed by a mix of debt and 

equity, despite equity being more costly to raise for the bank, when ρ − u is not too large. The 

reason is that capital allows the bank to support its effort in reducing the riskiness of its investment 

project and also it reduces the run risk by lowering the run threshold (2). The positive level of 

bank capital pushes the interest rate on deposit r1 above the liquidation value L and also implies 

that, for suffi ciently large L, the bank finds it optimal to offer depositors demandable debt that 

can be redeemed early with a positive return, i.e., r1 > 1. 

The result in Proposition 4 shows again the importance of bank capital in our model. In 

particular, the bank has an incentive to raise a positive amount of capital because of the endogeneity 

of the bank’s monitoring effort. In other words, as in other standard frameworks (e.g., Holmstrom 

and Tirole, 1997, and numerous subsequent papers such as Repullo, 2004, Allen, Carletti, and 

Marquez, 2011, Mehran and Thakor, 2011, Dell’Ariccia, Laeven and Marquez, 2014), here capital 

not only provides depositors with a buffer in case of losses, but it also provides the bank with an 

incentive to exert greater effort (see also Thakor, 2014, for a survey). 

If instead q were to be exogenous, the bank would prefer to be entirely deposit financed given 
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ρ − u > 0 since there would be no commitment value associated with bank capital. This suggests 

that the demandability of the deposit contract in our framework does not hinge on its discipline 

role for the bank’s incentives as in Calomiris and Kahn (1991), but rather exclusively on its role 

as a cost-minimizing tool. Indeed, even with no capital and a fixed q, in our framework the bank 

would still find it optimal to offer a deposit contract with r1 > 0 as a way to reduce its funding 

costs. 

4.2 Stochastic L and panic runs 

So far we have shown that banks find it optimal to offer demandable debt with a date 1 promised 

repayment that exposes them to fundamental-driven runs but not to panic runs. This result was 

obtained in a framework with one single source of uncertainty related to the fundamentals of the 

economy. In this section, we study whether banks still find it optimal to offer demandable debt 

when there are other sources of uncertainty present, so that coordination failures among investors 

and panic runs may emerge. 

There are various reasons why panics may arise even if banks take actions to minimize their 

likelihood. One simple reason may be the presence of uncertainty at date 0 about what the bank’s 

project may be worth if liquidated at date 1. While in the analysis above we treat the liquidation 

value L as given and known at date 0, in reality this value may be uncertain at the time the bank 

is raising financing in order to invest. 

We incorporate this type of uncertainty in the simplest way possible. Specifically, we modify 

the baseline model by assuming a binary stochastic liquidation value as given by � eL = 
LL 

LH 

w.p. p 
w.p. 1 − p, 

. 

with LL < LH . The distribution of Le is common knowledge at date 0, and uncertainty is resolved 

4at the beginning of date 1. Depositors observe the realization of Le before they decide whether 

to withdraw at date 1. This implies that the run thresholds, as characterized in Proposition 1, 

continue to hold, with the only difference that in the expression (4) there will be Li, with i = L, H. 

The model is again solved backward so that the bank anticipates depositors’withdrawal decisions 

as a function of the realized liquidation value when choosing the terms of the contract {r1, r2}. 
4We assume that the distribution of Le is uncorrelated with that of θ. This reflects the case when θ is not observable 

outside the bank at date 1 so that the liquidation value L can be viewed as independent of future realizations of 
θ. We make this assumption for tractability, but the analysis would go through in case Le and θ were (positvely) 
correlated. 
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Since our only goal is to show that the bank will choose a strictly positive r1, we simplify the 

analysis relative to the baseline model and assume that both q and k are exogenously positively 

given so that intermediation is feasible. In addition, we assume u > LL so that the optimal date 11−k 

payment is a function of the project’s liquidation value. We have the following preliminary result. 

LL LHLemma 2 It is never optimal for the bank to choose r1 < or r1 >1−k 1−k . 

The result in Lemma 2 shows that it is never optimal for the bank to be always exposed to 

panic runs, as would be the case if the bank were to choose r1 > 1 
L 
− 
H 
k . Hence, the optimal r1 must h i 

LLbe in the interval LH and we can now state the following. 1−k , 1−k 

Proposition 5 There is a value p ∈ (0, 1) such that, for p ≤ p, the bank chooses r1 > LL and is1−k 

subject to panic runs whenever Le = LL. 

The proposition shows that, differently from the case of a deterministic value of L, the bank 

may find it optimal now to increase r1 to a level that exposes itself to panic runs. This occurs when 

the probability of the low realization of the liquidation value, LL, is suffi ciently low (i.e., p ≤ p) as 

this also implies a relatively low likelihood of panic runs. The equilibrium date 1 payment is again 

a function of the level of bank capital so that for large enough k, r1 > 1 emerges in equilibrium. 

4.3 The existence of bankruptcy costs 

In this section we extend the model to include bankruptcy costs that may be incurred whenever 

the bank fails to meet its obligations to depositors and, hence, is insolvent. This is consistent with 

empirical evidence showing the existence of significant bankruptcy costs when banks enter into 

liquidation (e.g., James, 1991). To do so, we modify the model slightly as follows. The promised 

repayments {r1, r2} are paid as long as the bank has enough resources, as above. However, if the 

bank fails to repay depositors r2 at date 2, the bank enters a bankruptcy procedure and depositors 

experience losses as a result.5 For simplicity, and to maximize the possible costs that may arise, we 

assume bankruptcy costs are 100%, so that depositors receive nothing upon insolvency of the bank 

at date 2. The bankruptcy costs may originate either from coordination failures among a bank’s 

creditors, which makes it diffi cult and costly for them to seize the remaining value of the bank, or 
5Following Goldstein and Pauzner (2005) and related papers, we assume that there are no bankruptcy costs at 

date 1 beyond the 1 − L units of resources that are lost due to the premature liquidation of banks’loans. Assuming 
full costs stemming from bankruptcy at date 1 does not qualitatively affect our results. Calculations can be provided 
to interested readers. 
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from the illiquidity of the bank’s assets, where some value is lost when selling them to alternative 

users/lenders. The rest of the model is unchanged. 

The analysis is similar to that above in that there is a run threshold below which it is optimal 

to run, and this threshold depends on whether (1 − k) r1 is greater or less than L. However, when 

(1 − k) r1 ≤ L, given the presence of bankruptcy costs, each depositor knows that at date 2 he will 

receive qr2 ≥ r1 only if the bank is solvent and thus able to make the promised repayment r2 to 

all 1 − k depositors, and 0 otherwise. Thus, his incentives to run depend on whether the bank is 

solvent or not, which boils down to how the fundamentals compare with the solution to 

Rθ = (1 − k) r2, (13) 

which is the same as the threshold θB defined above in (5). Hence, for the case where (1 − k) r1 ≤ L, 

withdrawing early is optimal with bankruptcy costs when θ < θB . 

Similarly, applying the same arguments as in Proposition 1, one can show that for the case where 

(1 − k) r1 > L, a run threshold θ∗ > θB exists below which it is optimal for depositors to withdraw 

early. However, a minor extension of Proposition 1 establishes that, as in the case analyzed above 

without bankruptcy costs, it is never optimal for the bank to set r1 such that (1 − k) r1 > L and 

allow panic runs to arise in equilibrium. To keep the analysis concise we therefore leave out the 

construction of θ∗ and restrict our focus to the case where (1 − k) r1 ≤ L and only fundamental 

runs are possible. 

With this, we can now write the bank’s profit as Z θB � � Z 
(1 − k) r1 1 cq2 

Π = qRθ 1 − dθ + q (Rθ − (1 − k) r2) dθ − . (14)
L0 θB 2 

The main difference between bank profits in (14) and those in (6) for the case where there are no 

bankruptcy costs is in the region of fundamental runs, where now runs occur for a larger parameter 

space than before (i.e., for θ < θB instead of θ < θ, with θB > θ as defined in (5)). In other 

words, early withdrawals occur more frequently simply because depositors recognize that, if θ is 

not suffi ciently high that the bank will avoid default, waiting until date 2 will lead to losses arising 

from bankruptcy costs. Given that in default states depositors are effectively the residual claimants 

on any resources available at the bank, they also incur all of the losses that acrrue in bankruptcy � � 
and, hence, prefer to run for θ ∈ θ, θB rather than wait until date 2. 
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For depositors, their participation constraint becomes ZZ θB 1 

r1dθ + qr2dθ ≥ u, (15) 
0 θB 

where again the main difference from before stems from the larger region over which depositor runs 

occur. We can now state the following result, which is essentially equivalent to the main result 

presented above. 

Proposition 6 For large enough k, the bank sets the deposit contract {r1, r2} as follows: r1 = n o 
Lmin , u and r2 = max {u, re2}, where re2 corresponds to the value of r2 that makes depositors’ 1−k 

participation constraint (15) binding, with monitoring effort q chosen to maximize (14). 

The proposition shows that even in the case of bankruptcy costs at date 2, the bank still finds 

it optimal to offer a demandable deposit contract, even with a premium for large enough levels of 

capital k. 

4.4 What if the bank can liquidate early? 

So far, we have considered that the early liquidation of the project is only driven by depositors’ 

decision to run and we have shown that the bank finds it optimal to offer investors a demandable 

debt contract. In doing this, we have ignored the possibility that the bank itself may prefer 

to liquidate the project prematurely rather than keeping it until the final date. Yet, when θ is 

suffi ciently low, it may be more profitable for the bank to turn the project into cash at date 1 and 

repay depositors early. In this section, we analyze this possibility and show that offering a strictly 

positive repayment, and even sometimes a premium, at date 1 is still optimal. In other words, this 

means that the optimality of a debt contract that can be repaid early in our model is not driven by 

the bank’s need to use depositors’runs as a way to achieve the premature projection liquidation. 

In what follows, we ignore bank runs and focus on the case when the bank can itself decide to 

interrupt the project at date 1. 

We start by characterizing the banks’payoffs in the various instances. As in the baseline model, 

if the bank keeps the project until date 2, it accrues 

Rθ − (1 − k) r2, 

which is positive only for θ > θB as given in (5). By contrast, when liquidating at date 1, the bank 

can decide to liquidate either the entire project or only a fraction of it, enough to repay r1 to the 
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(1 − k) depositors. In the former case, the bank earns profits 

L − (1 − k) r1, 

while in the latter case, it earns instead � � 
1 − k 

Rθ 1 − r1
L 

with probability q. Thus, the bank prefers to liquidate the project entirely when θ < θT , where θT 

solves � � 
1 − k 

L − (1 − k) r1 = qRθ 1 − r1 ,
L 

Land is then equal to θT = qR . For θ > θ
T , the bank instead would prefer to partially liquidate the 

project at date 1 rather than carrying it all over to date 2 as long as θ < θL , where θL solves � � 
1 − k 

Rθ 1 − r1 = Rθ − (1 − k) r2,
L 

r2 Land is thus equal to θL = .R r1 � � 
In sum, there are two regions where early repayment of depositors occurs: (1) for θ ∈ 0, θT , the � � 

bank liquidates fully and gets L − (1 − k) r1; (2) for θ ∈ θT , θL , the bank only partially liquidates � � 
and gets qRθ 1 − 1−k r1 . Having characterized the liquidation thresholds θL and θT , we can write L 

bank’s expected profits and depositors’participation constraint, respectively, as follows: 

Z Z � � ZθT θL 1(1 − k) r1
Π = (L − (1 − k) r1) dθ + q Rθ 1 − dθ + q (Rθ − (1 − k) r2) dθ, 

0 θT L θL 

and Z θL 1Z 
U = r1dθ + qr2dθ ≥ u. (16) 

0 θL 

We can now establish the following result. n o n o 
L uProposition 7 The bank chooses to set r1 = min , u and r2 = min re2, , where re2 solves1−k q 

(16) with equality. 

The proposition shows that the bank finds it optimal to offer a positive early repayment also 

when it is free to liquidate the project prematurely. Again, this result arises in a more general 

framework as a way for the bank to optimze its profits without the need of assuming risk averse 

depositors and uncertainty about their consumption preferences. 
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5 Conclusion 

In this paper, we have shown that demandable debt can arise as the optimal contract arrangement 

in a model with risk neutral investors and profit maximizing banks. The key intuition is that banks 

may prefer to allow depositors to obtain an early repayment as this allows the bank to reduce the 

interest rate in the final date, and thus increase its overall return. The promised early repayment is 

set to be equal to the maximum amount compatible with having only fundamental-based runs, and 

its level depends on the bank’s capital: when capital is high enough, the bank offers demandable 

debt with a premium, i.e., depositors are promised to receive more than the amount deposited 

initially when withdrawing prematurely. In other words, the bank provides liquidity to depositors 

when it is suffi ciently capitalized despite depositors not demanding such liquidity since they have 

no insurance needs. These results are robust to modifications of the baseline model. In particular, 

they emerge also when banks choose their capital structure, when they can be subject to panic 

runs due to stochastic liquidation values, when there are bankruptcy costs in the final date, and 

when the bank can unilateraly decide to prematurely terminate the project. 
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7 Appendix 

Proof of Proposition 1: The proof follows closely that in Carletti, Leonello, Marquez (2022). 

Their arguments establish that depositors run if and only if the signal they receive is below a 

common signal s ∗(r1) and, at the limit when ε → 0, this threshold converges to the upper-bound 

of the lower dominance region θ (r1) for any (1 − k) r1 ≤ L, and to θ∗ (r1, r2, q) > θ (r1, q) for any 

(1 − k) r1 > L. The key difference relative to their framework is that that there are no bankruptcy 
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costs and so depositors acquire a pro-rata share of bank’s available resources in the event the bank 

is unable to repay r2 to depositors at date 2. 

Depositors’withdrawal decisions are characterized by the pair {s ∗, θ∗}, as given by the solution 

of the following system of equations: � �

� 
n (θ, s∗) (1 − k) r1 − (1 − n (θ, s ∗ )) (1 − k) r2 = 0, (17)Rθ 1 − 

L 

and �⎧⎨ ⎩ 
⎫⎬ ⎭ 1 − n(θ,s

∗)(1−k)r1Rθ L 
qr2 Pr (θ > θ 

∗ | s ∗ ) + q max Pr (θ < θ ∗ | s ∗ ) (18), 0 
(1 − n (θ, s∗)) (1 − k) 

L 
= r1 Pr (θ > θn| s ∗ ) + ∗ ) ,Pr (θ < θn

(1 − k) n (θ, s∗) 
| s 

∗ Lwhere n (θ, s∗) is the fraction of depositors withdrawing early and θn = s + ε − 2ε represents (1−k)r1 

the level of θ for which the bank liquidates the entire portfolio at date 1. The former is equal to 

∗the probability of receiving a signal below s and so equal to 

n (θ, s ∗ ) = 

⎧⎨ ⎩ s 
1 if θ ≤ s ∗ − ε 

∗−θ+ε ∗if s ∗ − ε < θ ≤ s + ε ,2ε 
∗0 if θ > s + ε 

while the latter is equal to the solution to 

n (θ, s ∗ ) (1 − k) r1 = L. 

Condition (17) identifies the level of fundamentals, θ∗ , at which the bank is at the brink of 

∗insolvency at date 2 when n (θ∗ , s ∗) > 0 depositors run, for given s . When no depositor is expected 

to run, i.e., n (θ∗ , s ∗) = 0, (17) simplifies to 

Rθ − (1 − k) r2 = 0, 

and we denote as θB the level of fundamental solving the condition above, i.e., 

(1 − k) r2
θB = . 

R 

Condition (18) is depositors’ indifference condition: the LHS represents a depositor’s expected 

utility from withdrawing at date 2, while the RHS represents the expected utility from withdrawing 

∗at date 1. This condition pins down s given θ∗ (s ∗) from (17), so that together the two equations 

characterize the equilibrium withdrawal decisions {s ∗, θ∗}. 
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Rearranging (17) as follows: �� 
(1 − k) r1

Rθ − (1 − k) r2 − n (.) Rθ − (1 − k) r2 ,
L 

it is easy to see that when θ < θB , the bank can never repay the promised repayment r2 at date 2 

for any n, so that depositors expect to receive: 

q max 

⎧⎨ ⎩ 
�� 

1 − n(.)(1−k)r1Rθ L 
0, 

(1 − n (.)) (1 − k) 

⎫⎬ ⎭ . 
� � 

n(.)(1−k)r1Rθ 1− 
Rθ For any n (.) > 0, L < Hence, at θ = θ (r1, q), as defined in (2), depositors (1−n(.))(1−k) 1−k . 

∗strictly prefer to run. This implies that, at the limit, when ε → 0 and s → θ∗ , θ∗ > θ. Symmet-

rically, when θ > θ, (17) is always slack so that depositors expect to receive qr2 and so have never 

∗ an incentive to run. This implies that when ε → 0 and s → θ∗ , θ∗ < θ. 

Differentiating (17) with respect to θ and n, we obtain, respectively, � � �� 
1 − 

n (θ, s∗) (1 − k) r1 − 
∂n (θ, s∗) 

Rθ 
(1 − k) r1

R − (1 − k) r2 > 0,
L ∂θ L 

and 
(1 − k) r1−Rθ + (1 − k) r2 < 0,

L 
∂n(θ,s∗)as long as (17) is not negative and for any θ > θB since (1 − k) r1 > L and < 0. Since∂θ 

n (θ, s∗) is a decreasing function of θ, it follows that the LHS in (17) strictly increases in θ and so 

does the expected utility at date 2. This also implies that a depositor’s expected utility differential 

between withdrawing at date 2 and date 1, which corresponds to the difference between the LHS and 

∗RHS in (18). Hence, it follows that a unique threshold s exists at which a depositor is indifferent 

between withdrawing at date 2 and at date 1. 

To obtain the expression for θ∗ (r1, r2, q) as in the proposition, we perform a change of variable 

∗ ∗by defining θ∗ (n) = s + ε (1 − 2n) and evaluate (18) at the limit when ε → 0, θ∗ (n) → s . 

Having characterized the panic run threshold, we now move on to show that the relevant run 

threshold is θ (r1, q) when (1 − k) r1 ≤ L and θ∗ (r1, r2, q) when (1 − k) r1 > L. To do this, it is 

useful to rearrange the expression in (4) as follows: 

Z ⎧⎨ ⎩ 
�� 

1 − n(1−k)r1Rθ L 

⎫⎬ ⎭ n 

q min r2, 
(1 − n) (1 − k) 

dn = π1, (19) 
0 

24 



R R 1n Lwith π1 = r1dn + dn as in the proposition. 0 n (1−k)n 

Consider first the case in which (1 − k) r1 ≤ L. When (1 − k) r1 = L, the RHS in (19) simplifies 

to r1 since n = 1 when (1 − k) r1 = L. The LHS (19) simplifies to Z 1 � � 
Rθ 

q min r2, dn 
1 − k0 

Rθ whose sign depends on the level of θ. When θ > θB , > r2, so that the indifference condition in 1−k 

(19) can be written as 

qr2 = r1. 

This means that depositors expect to receive the same repayment at date 2 and date 1, in which 

Rθ case, they choose not to run. When θ < θB , < r2, thus depositors expect to receive a pro-rata1−k 

Rθ share of bank’s available resources q and the indifference condition simplifies to(1−k) 

Rθ 
q = r1. 
1 − k 

This is the same as the condition pinning down the fundamental run threshold θ (r1, q), as defined 

in (2). Then, it follows that running is optimal when θ ≤ θ (r1, q) that is the relevant run threshold 

is θ (r1, q) when (1 − k) r1 = L. When (1 − k) r1 falls below L, the expression for the pro-rata 

share in the LHS of condition (19) increases for any n when (1 − k) r1 falls below L. This implies 

that (19) is still satisfied for θ = θ (r1, q), that is θ (r1, q) is still the relevant run threshold when 

(1 − k) r1 < L. 

Consider now the case where (1 − k) r1 > L. Since (17) is negative when θ = θ (r1, q), it follows 

that θ∗ (r1, r2) > θ (r1) when (1 − k) r1 > L. 

To complete the proof, we characterize the effect that r1, r2, q and k have on the run thresholds. 

Consider first the case where (1 − k) r1 ≤ L, so that the relevant run threshold is θ. It is easy to 

see that 
∂θ (1 − k) θ 

= = > 0,
∂r1 qR r1 

and 
∂θ (1 − k) r1 θ 
= − = − < 0. 

∂q q2R q 

Consider now the case where (1 − k) r1 > L, so that the relevant run threshold is θ∗ as given by 
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∂θ∗ 
the solution to (4). We use the implicit function theorem to compute ∂θ

∗ 
, and ∂θ

∗ 
and obtain: ∂r1 ∂r2 ∂q R (1−k) 

n qRθ∗ n 
L dn − ∂π1∂θ∗ − nb(θ∗) (1−k)(1−n) ∂r1 = − � � 
n(1−k)r1∂r1 R R 1−n L q dn nb(θ∗) (1−k)(1−n) R (1−k) 

n qRθ∗ n 
L ∂π1dn + nb(θ∗) (1−k)(1−n) ∂r1 = � � > 0,
n(1−k)r1R R 1−n L q dn nb(θ∗) (1−k)(1−n) R nb(θ∗)

∂θ∗ qdn 
= − 0� � < 0,

n(1−k)r1∂r2 R R 1−n L q dn nb(θ∗) (1−k)(1−n) 

and 

� � 
(1−k)r1R nb(θ∗) R n Rθ∗ 1−n 

L r2dθ + dn∂θ∗ 
0 nb(θ∗) (1−k)(1−n) 

= − � � < 0,
n(1−k)r1∂q R R 1−n L q dn nb(θ∗) (1−k)(1−n) R

∂π1 nsince the derivatives of the extreme of the integrals cancel out and = dn > 0. Hence, the∂r1 0 

proposition follows. � 

Proof of Proposition 2: The proof is straightforward. The two expressions in the proposition 

are obtained by differentiating (6) with respect to q after evaluating it for the case (1 − k) r1 ≤ L 

and (1 − k) r1 > L, respectively. � 

Proof of Proposition 1: The proof proceeds in steps. We first show that for a fixed q, it is 

optimal for a bank to choose r1 not to be exposed to panic runs. Then, we move on to the case 

where q is endogenous. Suppose (1 − k) r1 > L, so that the bank’s payoff is Z Z max{θ∗,θB } 1 cq2 

0dθ + q [Rθ − (1 − k) r2] dθ − − ρk 
20 max{θ∗,θB } 

and for depositors either Z Z Zθ∗ θB 1L Rθ 
U1 = dθ + q dθ + qr2dθ − u 

1 − k (1 − k)0 θ∗ θB 

when θ∗ < θB or Z Zθ∗ 1L 
U2 = dθ + qr2dθ − u,

1 − k0 θ∗ 

when θ∗ > θB . 
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Recall that ∂θ
∗ 
> 0, while θB does not depend on r1. Then, it is easy to see that bank’s profits ∂r1 

are weakly decreasing in r1, which implies that the bank always has an incentive to reduce r1 below 

the value that triggers panic runs, i.e., (1 − k) r1 = L. 

Let’s now move on to see how a change in r1 affects depositors. We start with the case where 

θ∗ > θB . Since (1 − k) r1 > L ⇔ r1 > 1−k 
L , and qr2 ≥ r1 > 1−k 

L must hold for the deposit contract 

to be incentive compatible and θ∗ < θ, then U2 will increase if r1 decreases since less weight will be 

1−k , and more weight on the term with qr2. Lput on the term with Therefore, depositors are better 

off with lower r1. 

L 
1−k to q 

Rθ , or(1−k)Consider now the opposite case where θ∗ < θB . For this case, we compare 

L 

(1−k)r1more simply L to qRθ. Since θ∗ ≥ θ = qR , and we are in the region where θ ≥ θ∗ , this 

immediately gives us that L < qRθ for θ ≥ θ∗ . Hence, reducing r1, which reduces θ∗ , increases U1, 

and is hence again good for depositors. As a result, if (1 − k) r1 > L so that there are panic runs, 

depositors would always be better off if r1 were to be reduced. Since this is also beneficial for the 

bank, when q is exogenous, the bank will never choose r1 such that there could be panic runs. 

Consider now the case where q is endogenous and is given by the solution to (10) and (11), 

1 |kP 

Pdepending on whether (1 − k) r1 R L. Suppose that r 1−k , and that at the bank’s optimal>1� � ∗choice of q, q P P , there exists an r that satisfies depositors’participation constraint, i.e., ≥ rr 2 1� � 
rP , r 1 

P 
2 is a feasible contract. Define also the contract rM M Mthe deposit contract where= r , r 1 2 

1 1−k
LM M 

2� 
|k . We can interpret this as the “maximal” contract that allows only fundamental 

and r is obtained from satisfying depositors’ participation constraint with equality, r = 

∗for q = q rM 
1 

runs, and note that rM 
1 < r

P 
1 . � � 

P 
1 , r 

and depositors’participation constraint will be satisfied. 

M M PSuppose now that the bank offers the contract rather than , which implies it r , r r1 2 2� � � � 
will choose q ∗ ∗M Prather than q|k |kr r1 1 � � � � � � � ∗ ∗We want to show that ΠM M M M 

P 

P 

P 

P 
1 , r2 , q � � � 
1 , r2 , q 

P = ΠP . To see why, |k |k |k |k= Π r > Π, r , q r r r1 2 1 1 

M Mconsider an arbitrary q, and notice that Π by the argument above for> Πr , r , q r1 2 

PP 

fixed q (for ease of notation, we leave out the conditioning on k in the bank’s profits). Now � � � � �� � � �� 
1 , r2 , q 

∗ ∗ ∗P M M P Plet q , and note that as a result Π But|k |k |k> Π= q r r , r , q r r r .1 1�� 2 1 1� �� � � ∗ ∗ ∗P 
1 |k 

ΠM > ΠP , as desired. Hence, the bank never wants to offer a contract where r1 > 

M M M M Msince Π by optimality of q , this immediately implies |k ≥ Πr , r , q r r , r , q r1 2 1 1 2 

L 
1−k , or in other 

words where depositor panics may arise. � 

Proof of Proposition 3: Based on the result of Proposition 1, the bank is only exposed to 
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fundamental runs so that its maximization problem simplifies to Z θ � � Z 1 2(1 − k) r1 cq 
maxΠ = qRθ 1 − dθ + q [Rθ − (1 − k) r2] dθ − (20) 
r1,r2 L 20 θB 

subject to Z Z θB Zθ 1Rθ 
r1dθ + q dθ + qr2dθ ≥ u. (21)

1 − k θB0 θ 

The choice of r2 is straightforward since profits in (20) are strictly decreasing in r2. This implies 

that the bank chooses the lowest r2 consistent with the depositors participating. In other words, 

r2 corresponds to the solution to the binding depositors’participation constraint. 

Consider now the choice of r1. From (21) holding with equality, we can obtain an expression R 1for − θB q (1 − k) r2dθ and substitute it into bank’s profits, thus obtaining: 

Z � � Z Zθ θ 1 2(1 − k) r1 q 
maxΠ = qRθ 1 − dθ + (1 − k) r1dθ + qRθdθ − (1 − k) u − kρ − c , (22) 
r1 L 20 0 θ 

with q being the solution to (10). Differentiating (22) with respect to r1, we obtain: Z θ Z θ � � � � 
(1 − k) θ (1 − k) r1− qRθ dθ + (1 − k) dθ + qRθ 1 − + (1 − k) r1 − qRθ (23)
L r1 L0 �Z θ � 0 � Z Zθ 1dq (1 − k) r1 

+ Rθ 1 − dθ + (1 − k) r1dθ + Rθdθ 
dr1 L0 0 θ� � � 
∂θ (1 − k) r1 ∂θ ∂θ 

+ qRθ 1 − + (1 − k) r1 − qRθ − cq = 0. 
∂q L ∂q ∂q 

Evaluating the (23) at r2 being the solution to the depositors’participation constraint, we obtain: Z �Z θ θ � 
(1 − k) qRθ − qRθ dθ + (1 − k) dθ + θ (1 − k) − + 1 
L L0 0� Z θ � 

dq ∂θ ∂θ u (1 − k) (1 − k) r1 
+ (1 − k) r1 − qRθ + + dθ 
dr1 ∂q ∂q q q0 

⇐⇒ 

1 (1 − k)− qR (θ)2 (1 − k)
+ θ (1 − k) + θ [− (1 − k) r1 + L]

2 L L� � 
dq θ ∂θ u (1 − k) θ (1 − k) r1 

+ − (1 − k) r1 − qRθ + + 
dr1 q ∂q q q� � � � 
θ (1 − k) (1 − k)r1 (1 − k) dq u (1 − k)⇐⇒ − + 1 + θ [− (1 − k) r1 + L] + R (θ)2 + . 

2 L L dr1 q 

It is easy to see that since L > (1 − k) r1, all terms in the expression above are positive besides h i h i 
dq u(1−k) u(1−k)R (θ)2 + , whose sign we are going to characterize below. The bracket R (θ)2 + >dr1 q q 

0, so we only need to establish the sign of dr
dq 
1 
. 
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To compute dq , we start from the expression in (10), which can be simplified it todr1 � � Z 1 � � 
1 (1 − k) r1 (1 − k) r1
R (θ)2 1 − + [Rθ − (1 − k) r2] dθ − cq − R (θ)2 1 − = 0. 
2 L θB L 

Furthermore, using the fact that r2 comes from the participation constraint holding with equality, 

we can rearrange the expression above as follows: � � Z 11 (1 − k) r1 (1 − k) r1 u (1 − k)− R (θ)2 1 − + Rθdθ − cq + θ − = 0. (24)
2 L q qθ 

Denoting the LHS in (24) as F OCq, we use the implicit function theorem to compute 

∂F OCq
dq ∂r1= − .

∂F OCqdr1 
∂q 

The denominator is negative when q is an interior solution. Hence, the sign of dr
dq 
1 
is equal to the 

sign of ∂F OCq , which is given by ∂r1 

� � 
∂θ (1 − k) r1 1 

R (θ)2 (1 − k) ∂θ ∂θ (1 − k) r1 (1 − k)− Rθ 1 − + − Rθ + + θ 
∂r1 L 2 L ∂r1 ∂r1 q q� � 

(θ)2 (1 − k) r1 1 
R (θ)2 (1 − k) (θ)2 (1 − k) (1 − k) 

= −R 1 − + − R + θ + θ 
r1 L 2 L r1 q q 

(θ)2 

+ R (θ)2 (1 − k) 1 
R (θ)2 (1 − k) (θ)2 (1 − k) 

= −R + − R + θ 
r1 L 2 L r1 q 

(θ)2 (1 − k) 3 
R (θ)2 (1 − k) (1 − k) (1 − k) 3 

R (θ)2 (1 − k) 
= −R + θ + = −θ + θ + 

r1 q 2 L q q 2 L 
3 
R (θ)2 (1 − k) 

= > 0. 
2 L 

Hence, it follows that (23) is positive and the bank would like to set r1 as high as possible conditional 

Lwith avoiding panic runs, i.e., r1 = .1−k 

It is easy to see that r1 increases with k, with limr1 = +∞, while r1 = L < 1 when k = 0. This 
k→1 

means that there is a threshold level of k, which we denote as bk, such that r1 = L = u at k = bk,1−k 

i.e., bk = 1 − L . When r1 ≥ u, depositors’participation constraint can only hold with equality if u 

qr2 ≤ u. However, qr2 < u violates qr2 > r1. It follows that for any k ≥ bk, r1 = qr2 = u. The 

Lexpression (12) in the proposition is obtained evaluating (21) at r1 = . �1−k 

Proof of Proposition 4: We consider separately the case in which k < bk so that r1 = 1−k 

and k ≥ bk, which implies that r1 = qr2 = u. We start from the former. Based on the result of 
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Proposition 3, we can rewrite bank’s expected profits as Z L Z 1
Rq 

Π = Ldθ + qRθdθ − (1 − k) u − kρ. (25) 
L0 
Rq 

Differentiating (25) with respect to k, we obtain: !Z ZθB 1 dq (k)
Rθdθ + Rθdθ − cq (k) + u − ρ. (26) 

L θB dk 
Rq(k) 

LUsing the FOC for q, as given in (10), evaluated at r1 = , we have 1−k ZZ 1 1 

Rθdθ − cq = (1 − k) r2dθ. (27) 
θB θB 

Substituting the expression above in (26), we obtain the expression !Z θB 
dq (k)

Rθdθ + u − ρ = 0. 
L dk 

Rq(k) 

bIt is easy to see that the term in the bracket is positive for any k ∈ [0, k). Hence, to show that 

k > 0, we need to show that dq(k) > 0 for all k.dk 

Denote as F OCq the expression in (27), where r2 corresponds to the solution to the depositor’s 

participation constraint and it is, thus, a function of q. Using the implicit function theorem, we 

have that 
∂F OCqdq (k) ∂k = − .
∂F OCqdk 
∂q 

∂F OCqSince the solution for q is an interior and so ∂q < 0, the sign of dk
dq is equal to the sign of dF OCq ,dk 

which corresponds to the following expression � � � � Z 1 � � 
∂θB ∂θB dr2 ∂θB ∂θB dr2 dr2− + RθB + + (1 − k) r2 + r2 + (1 − k) dθ 
∂k ∂r2 dk ∂k ∂r2 dk dk� � Z � θB �1∂θB ∂θB dr2 dr2 

= − + [RθB − (1 − k) r2] + r2 + (1 − k) dθ 
∂k ∂r2 dk θB dk Z 1 � � 

dr2 
= r2 + (1 − k) dθ, 

θB dk 

given that, from the definition of θB , we know that RθB − (1 − k) r2 = 0. To establish the signh i 
of the expression above, we need to establish the sign of the bracket r2 + dr2 (1 − k) . Using thedk 
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0 

implicit function theorem on depositor’s participation constraint, we can computeh i h i R θB∂θ Rθ ∂θB RθB Rθ + q + qdr2 ∂k r1 − q 1−k ∂k 1−k − r2 θ (1−k)2 dθ 
= − h i 

dk ∂θB RθB R 1 
q − r2 + θB qdθ ∂r2 1−k R θB 

Rθ qθ (1−k)2 dθ 
= − R 1 < 0. 

θB qdθ 

Hence, R θB 
Rθ Z Z θB q dθ 1dr2 θ (1−k) Rθ 

r2 + (1 − k) = r2 − R 1 = qr2dθ − q dθ 
dk 

θB qdθ θB θ (1 − k)"Z Z θB 
# 

1 

= q (1 − k) r2dθ − Rθdθ > 0, 
θB θ 

which implies that dq(k) > 0 for all k including k = 0 and, as a result, k > 0 follows. dk 

Consider now the interval k ∈ [bk, 1]. In this range, r1 = u = qr2. We follows the same steps as 

above. Bank’s expected profits are then equal to: Z (1−k)u � � Z Z1 1
qR (1 − k) u cq (k)2 

Π = qRθ 1 − dθ + qRθdθ − (1 − k) udθ − − ρk, 
(1−k)u (1−k)uL 20 
qR qR 

since when r1 = qr2 = u, θB = θ. 

Differentiating the expression above with respect to k, we obtain: Z (1−k)u Z � � � �1
qR u u (1 − k)u (1 − k) u (1 − k)u 

qRθ dθ + udθ − qR 1 − − qR + (1 − k) u 
L (1−k)u qR qR L qR 

qR 

(28)"Z (1−k)u � � Z 1
qR (1 − k) u 

+ Rθ 1 − dθ + Rθdθ − cq (k)
L (1−k)u

0 � � qR � 
(1 − k)u (1 − k)u (1 − k) u (1 − k)u dq (k)− qR 1 − − qR + (1 − k) u − ρ. 
q2R qR L qR dk 

If we evaluate it at k = 1, the expression above simplify to ��Z 1 dq (k)
Rθdθ − cq (k) = −ρ + u, (29)

dk0 

with dq(k) being equal todk � � R θ R 1− ∂θ 1 u 
dq (k) (1 − k) u − 1 + Rθ u dθ + dθ∂k L 0 L θ q

= − � � 
dk ∂θ (1−k)u ∂θRθ + (1 − k) u − c∂q L ∂q 

2 � � R θ R 1u 1 u(1 − k) − 1 + Rθ u dθ + dθqR L 0 L θ q
= � � > 0 

c − ∂θ (1−k)u(1 − k) u − ∂θ Rθ∂q ∂q L 
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for any c suffi ciently large to insure that q is an interior solution. 

Evaluating the expression for FOC for q in (10) at k = 1, we obtain Z 1 

Rθdθ = cq, 
0 

which implies that (29) simplifies to 

−ρ + u < 0. 

Hence, for any ρ > u, k = 1 is not a solution and the optimal level of capital k chosen by the bank 

falls in the range (0, 1). n o 
LFrom the result in Proposition 3, we know that r1 = min u, . Hence, it follows that for1−k 

k ∈ (0, 1), there exists a value of the liquidation value Lb = (1 − k) < 1, such that for any L ≥ Lb, 
r1 ≥ 1 and the proposition follows. � 

Proof of Lemma 2: When r1 < 1 
L 
− 
L 
k , the bank has enough resources to fully repay depositors 

at date 1 so that panic runs do not occur and θR = θ. As shown in Proposition 3, in this case the n o 
LL LL LLbank would find it optimal to set r1 = min , u . Hence, given that u > , r1 < is not1−k 1−k 1−k 

LH LLoptimal. Consider now the case when r1 > . In this case, r1 > also holds, which implies1−k 1−k 

that the bank faces panic runs irrespective of the realization of Le. A minor extension of the result 

in Proposition 1 can be used to establish that a contract with r1 > LH would be dominated by 1−k 

LH LHoffering r1 = instead. Hence, r1 > cannot hold and the lemma follows. �1−k 1−k 

Proof of Proposition 5: The proof hinges on the result of Proposition 1 and Proposition 3 

that establish that, for a given L, the bank always finds it optimal not to be exposed to panic runs 

and sets r1 = L 
1−k . 

Given Lemma 2, the bank’s maximization problem can be written as )(Z Z max{θ∗(LL),θB } 1 

maxp 0dθ + q [Rθ − (1 − k) r2] dθ (30) 
r1,r2 0 max{θ∗(LL),θB }� Z � � Z �θ 1 2r1 (1 − k) cq
+ (1 − p) q Rθ 1 − dθ + q [Rθ − (1 − k) r2] dθ − − ρk 

0 LH θB 2 

subject to ) )(Z Z Z (Z Z Zθ∗(LL) θB 1 θ θB 1LL Rθ Rθ 
p dθ + q dθ + qr2dθ + (1 − p) r1dθ + q dθ + qr2dθ 

0 1 − k θ∗(LL) (1 − k) θB 0 θ (1 − k) θB 

−u ≥ 0 (31) 
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����

����
��� ���

when θ∗ (LL) < θB or (Z ) (Z )
θ∗(LL) 

Z 1 θ Z θB Z 1LL Rθ 
p dθ + qr2dθ + (1 − p) r1dθ + q dθ + qr2dθ − u ≥ 0 

1 − k (1 − k)0 θ∗(LL) 0 θ θB 

(32) 

when θ∗ (LL) > θB . n o 
When p = 0, Le = LH with certainty and the bank chooses r1 = min LH , u . When p = 1,1−kn o 

Le = LL with certainty and so the bank chooses r1 = min LL , u . Since bank profits in (30) are1−k 

continuous in p, it is straightforward to see that for p suffi ciently close to but strictly greater than 
LH LL0, choosing r1 = dominates choosing r1 = for the bank, even if there may be some other 1−k 1−k 

intermediate value of r1 strictly less than LH that does even better. As a result, for p low enough,1−k 

the bank chooses r1 > LL and is subject to panic runs with probability p. Hence, the proposition 1−k 

follows. � 

Proof of Proposition 6: Using (14) and (15), we can compute: 

(1 − k) r2
θB = ,

R R θB R θB∂U dθ dθdr2 ∂r1 0 0 = − = −R 1 = −R 1∂U ∂θB ∂θBdr1 U θB qdθ + (r1 − qr2) θB qdθ + (r1 − qr2)∂r2 ∂r2 ∂r2 

and 

∂Π R θB (1−k)
dr2 ∂r1 

− 0 qRθ dθ 
= − = − � � L . 

dr1 Π 
∂Π ∂θB (1−k)r1 − ∂θ

B R 1 
∂r2 ∂r2 

qRθB 1 − q (RθB − (1 − k) r2) − θB q (1 − k) dθL ∂r2 

(1−k)r2Since θB = , the second term in the denominator is zero, and this expression reduces toR R θB (1−k)
dr2 0 Rθ dθ 

= − L � � . 
dr1 Π 

R 
θ 
1 
B (1 − k) dθ − ∂θ

B (1−k)r1RθB 1 −∂r2 L 

We can compare dr2 to dr2 , which gives: dr1 dr1U Π � �2
θB R θB R 

< 
2L (1 − θB) − 2LθB + 2θB (1 − k) r1 qR (1 − θB) − qRθB + (1 − k)r1 

⇐⇒ � � � �2 � � 
qRθB 1 − θB − qR θB + θB (1 − k)r1 < 2L 1 − θB − 2LθB + 2θB (1 − k) r1 

⇐⇒ � � � � 
qRθB − L 1 − 2θB − θB (1 − k) r1 < 0, 
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dr2 dr2As k → 1, θB → 0, thus giving −L < 0. Therefore, for large enough k, < < 0, which dr1 dr1U Π 

establishes the result: The bank finds it optimal to increase r1 as much as possible, while reducing 

r2, but without crossing into the region where panic runs are possible. This maximum value is r1 = 

L Las long as < u and becomes r1 = u otherwise using the same argument as in the proof of 1−k 1−k 

Proposition 3. Hence, the proposition follows. � 

Proof of Proposition 7: The proof relies on the same arguments as the proof of Proposition 

dr2 dr26 and compares the slope of the iso-profit and iso-utility curves, as given by and . We dr1 dr1Π U 
dr2 dr2compute and to obtain:dr1 dr1Π U R θT R θL (1−k) R θT R θL 

dr2 (1 − k) dθ + q Rθ dθ dθ + q Rθ 1 dθ0 θT L 0 θT L = − R 1 = − R 1 < 0,
dr1 Π q θL (1 − k) dθ q θL dθ 

and R θL 

dr2 dθ − ∂θ
L 
[qr2 − r1]0 ∂r1= −R 1 ,

dr1 U θL qdθ − ∂θ
L 
[qr2 − r1]∂r2 

= − r2 L = − θL 1 L θLwhere ∂θ
L 

2 < 0 and ∂θ
L 
= = > 0.∂r1 R r r1 ∂r2 R r1 r21 

dr2 dr2 dr2We would like to show that < < 0. To do that, note that the denominator of ,dr dr dr1 U 1 Π 1 UR 1 R 1dr2 
θL qdθ − ∂θ

L 
[qr2 − r1], is not larger in absolute value than the denominator of , θL qdθ,∂r2 dr1 Π 

because ∂θ
L 
[qr2 − r1] is non-negative given ∂θ

L 
> 0 and qr2 ≥ r1. Looking at the numerators, for ∂r2 ∂r2 

dr2 
dr we have that 
1 U Z θL 

∂θL θL θL r2 L qr2
dθ − [qr2 − r1] = θL + qr2 − θL = qr2 = . 

∂r1 r1 r1 R r1 r10 

For the bank, the numerator of dr2 can be expressed asdr1 Π Z ZθT θL �1 1 �� 
θL
�2 � 

θT �2 
dθ + q Rθ dθ = θT + Rq − 

L 2L0 θT �2 �2 
!� � 

2 2 2L 1 r2 L L 1 q r2 + r1 = + Rq − = L . 
qR 2L R r1 qR 2 Rqr2 

1 

Comparing these two, we have that 
2 2 2 2 2 2 2r2 L qr2 1 q r2 + r qr 1 q r2 + r1 2 1> L ⇔ > .2 2R r1 r1 2 Rqr2 r 2 qr 1 1 1 

2qr 1 2 1Rewrite the right hand side as 2 + , so that the condition holds as long as2 r1 2q � �22 2qr2 1 qr2 1 qr2 
2 > 2 + ⇔ ≥ 1, 
r1 2 r1 2q r1 
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which is always true since qr2 ≥ r1. Therefore, since the numerator of dr2 is greater or equaldr1 U 

(when qr2 = r1) in absolute value than the numerator of dr2 , and the denominator is smaller ordr1 Π 
dr2 dr2equal (when qr2 = r1) in absolute value, we have that < < 0, as desired. The rest of the dr dr1 U 1 Π 

proof follows from the fact that bank profits are decreasing in r2, so that r2 comes from the solution 

Lof the binding participation constraint and by the fact that when > u, r1 = qr2 = u needs1−k 

to hold for the depositors’participation constraint (16) and the incentives compatibility constraint 

qr2 ≥ r1 to be satisfied. Hence, the proposition follows. � 
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	1 Introduction 
	1 Introduction 
	Demandable debt has been at the center of the literature on ﬁnancial stability since its inception. Starting with the seminal paper by Diamond and Dybvig (1983), a large body of literature has analyzed demandable debt as a way to provide consumption ﬂexibility for risk-averse depositors. Speciﬁcally, since investors are uncertain concerning the timing of their future consumption demand, deposit accounts represent claims that can provide investors with funds at a moment’s notice, usually with few, if any, pe
	-
	-

	Importantly, the results summarized above are derived in settings where depositors are risk averse and the provision of liquidity serves to insure individuals against consumption uncertainty. Moreover, banks are assumed to operate in a perfectly competitive market for deposits and thus to act in the interest of depositors, maximizing their utility through the design of the deposit contracts. But to what extent are these elements — risk aversion, consumption uncertainty, and depositor utility maximization —n
	Speciﬁcally, we develop a simple two-period model with a representative bank and numerous investors, each with one unit of endowment. At the initial date, the bank raises funds to invest in risky, long-term projects whose expected return at the ﬁnal date depends on the fundamentals of the economy as well as on the bank’s costly monitoring eﬀort. The fundamentals of the economy 
	Speciﬁcally, we develop a simple two-period model with a representative bank and numerous investors, each with one unit of endowment. At the initial date, the bank raises funds to invest in risky, long-term projects whose expected return at the ﬁnal date depends on the fundamentals of the economy as well as on the bank’s costly monitoring eﬀort. The fundamentals of the economy 
	are realized at the interim date and each depositor receives a private imperfect signal about their realization. Based on this signal and the terms of the deposit contract, depositors make their withdrawal decisions. Unlike canonical models (e.g., Diamond and Dybvig, 1983, and Goldstein and Pauzner, 2005), all parties are risk neutral and are not subject to any consumption shock. Also, the bank can decide to use internal capital as a funding tool in addition to debt in order to maximize expected proﬁts. 

	We show that the bank always ﬁnds it optimal to oﬀer debtholders a demandable debt contract, i.e., a contract that allows depositors to withdraw early, at the intermediate date, and obtain a strictly positive repayment when doing so. Moreover, any repayment that is made must be done through the early liquidation of the long-term project. As a consequence, depositors may decide to withdraw early after observing a low signal on the economy’s fundamentals, thus triggering a run. The bank therefore exposes itse
	We also show that the size of the early repayment oﬀered to depositors depends on the level of bank capital (or leverage) and on the liquidation value of the bank’s project. In particular, the bank would like to oﬀer as a high an early repayment as possible, as long as it can be honored by liquidating the project prematurely and does not trigger coordination failures among depositors, thus avoiding panic runs. The amount of this early repayment is increasing in the level of capital the bank has as well as i
	We present four main extensions to our model. First, since our results emphasize the role of bank capital in the provision of liquidity to depositors, we show that indeed banks have incentives 
	We present four main extensions to our model. First, since our results emphasize the role of bank capital in the provision of liquidity to depositors, we show that indeed banks have incentives 
	to use capital in addition to deposits to fund their projects as long as the cost of capital is not too high. Moreover, we also show that the amount of capital employed can be suﬃ ciently high, relative to the liquidation value of the bank’s project, that indeed the bank ﬁnds it optimal to oﬀer an early repayment greater than the amount initially deposited. 

	Second, we modify the baseline framework to allow for the possibility that the liquidation value is stochastic. We show that in this case, the bank still ﬁnds it optimal to oﬀer demandable debt with a positive early repayment. However, since it faces the uncertainty on the resources it will have available to repay depositors who withdraw early, the optimal early repayment it chooses will be such that panic runs may arise with some positive probability. 
	Third, we allow for bankruptcy costs to exist whenever the bank defaults on its promised payment to depositors at the ﬁnal date. In practice, it is well documented that banks incur costs when insolvent (e.g., James, 1991), so our extension to introduce such costs can be viewed as adding realism to the framework. We show that having some value be destroyed when the bank defaults does not change the type of contract the bank chooses to oﬀer depositors, and demandable debt will still be used. 
	Fourth, we allow the bank itself to choose whether to liquidate the project at the interim date without having to rely on a run by depositors in order to do so. We show that even in this case the bank wants to oﬀer depositors a strictly positive date 1 repayment. In fact, rather than pushing the promised date 1 repayment to be as low as possible, the bank will instead choose the same promised repayment as in the case where early liquidation is only triggered by depositors’ runs. In other words, allowing the
	Our paper contributes to the vast literature, originated with Diamond and Dybvig (1983), studying the optimality of demandable debt and liquidity provision despite the consequent risk of a bank run. In our framework, these two interrelated aspects arise as a result of the bank’s incentive to maximize its long-term return, while still satisfying depositors’ need to obtain at least some minimum return. In this sense, we provide a rationale for the assumption in Rochet and Vives (2004) and Vives (2014) of a po
	An additional novel aspect of our framework concerns the role of bank capital. As we show, the promised early repayment embedded in the deposit contract increases with the level of bank 
	An additional novel aspect of our framework concerns the role of bank capital. As we show, the promised early repayment embedded in the deposit contract increases with the level of bank 
	capital, and it entails no penalties when banks are suﬃ ciently well capitalized. This role for bank capital in determining banks’ exposure to depositor runs is reminiscent of Diamond and Rajan (2000), athough in our framework the bank avoids to be exposed to panic runs by setting the early repayment appropriately. Importantly, however, the optimality of demandable debt in our model does not depend on either the bank having equity ﬁnancing, or on its monitoring eﬀort being 

	endogenous. In fact, a bank with zero capital and an exogenous success probability would still oﬀer to depositors the possibility to redeem their debt at the intermediate date. 
	The optimality of demandable debt has been justiﬁed in the literature by the presence of asymmetric information problems in credit markets (see, e.g., Flannery, 1986; and Diamond, 1991), conﬂicts between bank managers and shareholders (see e.g., Calomiris and Kahn, 1991; Diamond and Rajan, 2001; and Eisenbach, 2017), idiosyncratic liquidity shocks to banks’depositors (e.g., Diamond and Dybvig, 1983, and Goldstein and Pauzner, 2005) and the need of providing liquidity on demand on the asset side through cred

	2 The model 
	2 The model 
	Consider a three date economy (t =0, 1, 2) with one representative bank and a continuum of atomistic investors, each with a unitary endowment at date 0.All agents are risk neutral. The bank has access to a risky project requiring one unit of investment, and must raise funds at date 0 to ﬁnance this project in the form of (equity) capital, k, and debt/deposits, 1 − k.Investors have an outside option returning u ≥ 1 at date 2, while the outside option of capital is given by ρ>u. The variable u can be interpre
	1 
	2 

	The exact number of banks is immaterial as long as there are relatively more investors than banks supplying funds to the bank inelastically whenever their reservation utility is satisﬁed. This is consistent with the idea of banks having some degree of market power in the deposit market. 
	1

	We will use the terms debt and deposits as well as debtholders and depositors interchangeably throughout the paper. In addition, we will refer to 1 − k as the level of bank leverage. 
	2

	a monopolistic market. The assumption that ρ>u, which is empirically supported (e.g., Schepens, 2016) is standard in the literature on bank capital (see e.g., Hellmann, Murdock and Stiglitz, 2000; Repullo, 2004; Allen, Carletti and Marquez, 2011) and emerges naturally as an equilibrium outcome when investors incur a disutility from participating in ﬁnancial markets (see, e.g., Allen, Carletti, and Marquez, 2015, or Caletti, Marquez, and Petriconi, 2020). 
	The bank’s available project (or also technology) yields a ﬁxed return or liquidation value L< 1 if liquidated at date 1, while it yields a stochastic return Pat date 2 equal to 
	e 

	. 
	Rθ w.p. q
	e
	P = 
	0 w.p. 1 − q. 
	The date 2 return on the project depends on the fundamental of the economy θ, with θ ∼ U[0, 1], and on an “eﬀort” choice q of the bank, with q ∈ [0, 1]. The latter represents the eﬀort exercised by the bank in reducing the riskiness of its investment through, for example, the monitoring of its loans. Choosing a higher probability of success q is costly, and we assume that the bank bears a 
	q
	q

	private non-pecuniary cost of c .
	2 

	2 
	The bank oﬀers the 1 − k investors a debt/deposit contract with promised repayment rat 
	2 

	date 2 and, in addition, a promised repayment rif instead repayment is made at date 1. For 
	1 

	convenience, we write such a contract as {r,r}. We assume that a value of rexists such that RR
	1
	2
	2 
	1 
	1 
	2

	q
	q

	qrdθ ≥ u, for some q that satisﬁes q (Rθ − r) dθ − c> 0. This implies that a contract 
	2
	2

	0 02 
	with r=0 and r> 0 is feasible for the bank. As we will show below, however, such a contract 
	1 
	2 

	will never be optimal. In fact, we will show that the bank will always choose to oﬀer a contract 
	with qr≥ r> 0. We will deﬁne a contract to be demandable if ris strictly positive and to be 
	2 
	1 
	1 

	demandable without penalty if r≥ 1, so that the promise to depositors is redeemable early at least at par. 
	1 

	The promised repayment is made as long as the bank has enough resources. If depositors choose to withdraw at date 1, the bank liquidates as much of its assets as needed to satisfy withdrawals, obtaining L< 1 per unit liquidated, and carrying to time 2 any remaining amount. If the bank has insuﬃ cient resources to meet depositors’demands at date 1, all its assets are liquidated and the 1 − k depositors receive a pro-rata share of the liquidation value L. Similarly, if the bank has insuﬃ cient resources to me
	The variable θ is realized at the beginning of date 1, but is publicly revealed only at date 2. 
	After θ is realized at date 1, each depositor receives a private signal si of the form 
	si = θ + εi, (1) 
	where εi are small error terms that are independently and uniformly distributed over [−ε, +ε]. After the signal is realized, depositors decide whether to withdraw at date 1 or wait until date 2. 
	The timing of the model is as follows. At date 0, the bank, equipped with amount of capital k of internal capital, raises external funds with a deposit contract {r,r}, and then chooses how much eﬀort to exert to reduce the riskiness of their portfolios q. At date 1, after receiving the private signal about the state of the fundamentals θ, depositors decide whether to withdraw early or wait until date 2. At date 2, the bank’s project return is realized and depositors that chose to wait are repaid. 
	1
	2


	3 Equilibrium 
	3 Equilibrium 
	We solve the model by backward induction, focusing ﬁrst on depositors’withdrawal decisions, which occur at date 1. We then study the bank’s choice of contract at date 0, as well as its monitoring decision. We treat bank capital structure as exogenous in this section and endogenize it in Section 
	4.1. 
	3.1 Depositors’withdrawal decision 
	3.1 Depositors’withdrawal decision 
	In this section, we analyze depositors’withdrawal decisions at date 1, taking the deposit contract {r,r} and the riskiness of the portfolio q. The analysis relies on standard arguments in the global games literature (see, e.g., Goldstein and Pauzner, 2005) and allows to characterize the range of fundamentals where the bank faces a run by depositors. Diﬀerently from the literature on liquidity insurance á la Diamond and Dybvig (1983), investors are all patient in our model. This implies that their decision t
	1
	2
	1 
	1 

	Since when receiving a high (low) signal a depositor expects a high (low) return of the bank’s project, as well as that other depositors have also received a high (low) signal, he has low (high) incentives to withdraw at date 1. This suggests that depositors withdraw at date 1 when the signal is low enough, and wait until date 2 when the signal is suﬃ ciently high. To show this 
	Since when receiving a high (low) signal a depositor expects a high (low) return of the bank’s project, as well as that other depositors have also received a high (low) signal, he has low (high) incentives to withdraw at date 1. This suggests that depositors withdraw at date 1 when the signal is low enough, and wait until date 2 when the signal is suﬃ ciently high. To show this 
	formally, we ﬁrst examine two regions of extremely bad and extremely good fundamentals, where each depositor’s action is based on the realization of the fundamentals θ irrespective of his beliefs about other depositors’behavior. We start with the lower region. 

	Lower Dominance Region. The lower dominance region of θ corresponds to the range [0,) in which running is a dominant strategy. Upon receiving a signal in this region, a depositor is 
	θ

	no 
	Rθ
	Rθ

	certain that the date 2 expected repayment q max r, is lower than the payment rfrom
	2
	1 

	1−k withdrawing at date 1, even if no other depositor were to withdraw. Given that qr≥ rmust 
	2 
	1 

	hold in order for intermediation to be feasible,we denote as the cutoﬀ value of fundamentals at 
	3 
	θ 

	Rθ
	which the minimum expected date 2 repayment, , equals r; that is, solves: 
	1
	−k 
	1
	θ 

	Rθ 
	r= q,
	1 

	1 − k 
	and is equal to 
	(1 − k) r
	1

	= . (2) 
	θ 

	qR 
	Upper Dominance Region. The upper dominance region of θ corresponds to the range [, 1] in which 
	θ

	fundamentals are so good that waiting to withdraw at date 2 is a dominant strategy. We make the same technological assumption as in Goldstein and Pauzner (2005) and construct this region by modifying the investment technology available to the bank. In particular, we assume that, for [, 1], there is no ineﬃ ciency in liquidation, so that L = R, and the date 2 project fully pays oﬀ, so that P= R. Given these assumptions, a bank needs to liquidate no more than 1 unit of its investment at date 1 for each withdr
	θ
	e

	qr≥ rfor sure. As in Goldstein and Pauzner (2005), we consider the limit case where → 1. 
	2 
	1 
	θ 

	The Intermediate Region. When the signal indicates that θ is in the intermediate range, [, ), a depositor’s decision to withdraw early depends on the realization of θ as well as on his beliefs regarding other depositors’actions. To see how, we ﬁrst calculate a depositor’s utility diﬀerential between withdrawing at date 2 and at date 1. Using n to represent the fraction of depositors who choose to withdraw early, this diﬀerential is given by 
	θ
	θ

	⎧ 
	qr− rif 0 ≤ n ≤ nb(θ)
	2 
	1 

	⎪ ..
	⎨ n(1−k)r1
	Rθ 1− 
	q − rif nb(θ) ≤ n ≤ 
	v (θ, n)= 
	L 
	1 
	n
	,

	(1−k)(1−n)
	L
	⎪ 

	⎩ 
	0 − if ≤ n ≤ 1
	n 

	(1−k)n 
	If qr<r, depositors would strictly prefer to withdraw early rather than waiting until date 2. This means that runs would occur for any θ, thus making unproﬁtable for the bank to operate. 
	3
	2 
	1

	where nb(θ) solves 
	.. 
	nb(1 − k) r
	1

	Table
	TR
	Rθ 
	1 − 
	L 
	− (1 − bn) (1 − k) r2 = 0, 
	(3) 

	while n solves 
	while n solves 


	L = (1 − k) r. 
	n 
	1

	The threshold nb(θ) represents the proportion of depositors running at which the bank is no longer able to repay rto those waiting until date 2, while captures the proportion of withdrawing 
	2 
	n 

	depositors at which a bank liquidates the entire portfolio at date 1. 
	Throughout, as is common in the literature on bank runs (e.g., Goldstein and Pauzner, 2005; Eisenbach, 2017; Allen et al., 2018), we focus our results on the limiting case where ε → 0, so that the noise in depositors’ information becomes vanishingly small. This implies that all depositors behave alike: they all either withdraw at date 1, thus originating a run, or wait until date 2. The following proposition characterizes depositors’withdrawal decisions and the threshold value of fundamentals θ below which 
	Proposition 1 The run risk depends on the level of bank capital as follows: 
	a) When (1 − k) r≤ L, runs are triggered only by low realizations of θ and they occur when 
	1 

	θ<(r,q) as given in (2). 
	θ
	1

	b) When (1 − k) r>L, runs are driven also by panics and they occur when θ<θ(r,r,q), 
	1 
	∗
	1
	2

	which corresponds to the solution to 
	.. 
	ZZ n(1−k)r
	1 − 
	1 

	nb(θ) Rθ qrdn + q dn = π, (4)
	n 
	L 
	2
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	(1 − k) (1 − n)
	(1 − k) (1 − n)

	0 nb(θ) RR
	1

	L
	n

	where π= rdn + dn. Both thresholds and θincrease with rand decrease with q.
	1 
	1
	θ 
	∗ 
	1 

	0 (1−k)n Also, the threshold θdecreases with r. 
	n 
	∗ 
	2

	The proposition shows that the terms of the deposit contract, interacting with the level of bank capital, determine whether runs are driven only by poor fundamentals or also by depositors’panics. For a given level of r> 0, highly capitalized banks, those for which (1 − k) r≤ L, always have enough resources to repay rby liquidating the project at date 1, even if all depositors were to withdraw. This implies that depositors do not have to worry about other depositors withdrawing early and so their decision to
	The proposition shows that the terms of the deposit contract, interacting with the level of bank capital, determine whether runs are driven only by poor fundamentals or also by depositors’panics. For a given level of r> 0, highly capitalized banks, those for which (1 − k) r≤ L, always have enough resources to repay rby liquidating the project at date 1, even if all depositors were to withdraw. This implies that depositors do not have to worry about other depositors withdrawing early and so their decision to
	1 
	1 
	1 
	1 

	cannot satisfy depositors’promised repayment even if they liquidate the entire loan prematurely in the event of large withdrawals. As a result, these banks are exposed to runs driven by depositors’ fear of others running. In other words, poorly capitalized banks are subject to coordination failures among depositors for fundamentals in the range [, θ] and can therefore be subject to panics. 
	θ
	∗


	Note that, diﬀerently from the classic bank run models in Diamond and Dybvig (1983) and Goldstein and Pauzner (2005) where banks are ﬁnanced exclusively through deposits and panics occur when r>L =1, here the condition for panics to potentially occur is (1 − k) r>L. As we will see below in the next section, the interest rate rand the amount of capital k jointly determine, together with the size of L, the bank run risk. 
	1 
	1 
	1 

	As a ﬁnal point, it is worth noting that the terms of the deposit contract aﬀect the type of runs in addition to their probability. For a given level of bank capital, the bank can adjust its exposure to fundamental-and panic-driven runs by changing the promised repayments to depositors. In particular, both and θstrictly increase with the date 1 promised repayment r, while θdecreases also with r. Finally, the bank’s eﬀort decision q aﬀects run risk by reducing the probability of a run, whether based on funda
	θ 
	∗ 
	1
	∗ 
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	3.2 Bank’s date 0 decisions 
	3.2 Bank’s date 0 decisions 
	Having characterized depositors’withdrawal decisions, we now solve for the bank’s eﬀort q and the deposit contract {r,r}. The bank makes its date 0 decisions in order to maximize its expected proﬁts, anticipating depositors’withdrawal decisions at date 1. 
	1
	2

	To solve the bank’s maximization problem, we start by characterizing the bank’s payoﬀ. If no run occurs, the bank obtains positive proﬁts only if it is able to repay the date 2 promised repayment rto all (1 − k) investors. Thus, the bank is solvent if θ is above the cutoﬀ θ, which is the solution to 
	2 
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	Rθ − (1 − k) r=0, 
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	and is equal to 
	(1 − k) r
	2

	θ= . (5)
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	R Since, as discussed above, qr≥ rmust hold for intermediation to be feasible, it follows that θ≥ for any k, where is the fundamental run threshold given in (2). The bank’s payoﬀs thus depend crucially on the amount of capital. When (1 − k) r<L, if there is no run and the bank’s monitoring is successful, the bank makes positive proﬁts at date 2 only if θ>θ. If instead a run 
	R Since, as discussed above, qr≥ rmust hold for intermediation to be feasible, it follows that θ≥ for any k, where is the fundamental run threshold given in (2). The bank’s payoﬀs thus depend crucially on the amount of capital. When (1 − k) r<L, if there is no run and the bank’s monitoring is successful, the bank makes positive proﬁts at date 2 only if θ>θ. If instead a run 
	2 
	1 
	B 
	θ 
	θ 
	1 
	B 

	occurs, the bank makes expected proﬁts at date 2 on any remainder after liquidating only what is needed to repay depositors at date 1. By contrast, when (1 − k) r≥ L, the bank’s entire project is liquidated at date 1 when a run occurs. Thus, the bank can only obtain positive proﬁts at date 
	1 
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	2 when no run occurs, i.e., for θ> max θ,θ, and when its eﬀort q has proven successful. 
	∗
	B 

	Denote now θas the relevant run threshold, i.e., θ= when (1 − k) r≤ L and θ= θ
	R 
	R 
	θ 
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	when (1 − k) r>L. Given this, the maximization problem for the bank can be written as follows: 
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	max{θ,θ} 
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	r≤ qr, (8) 
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	and 
	Π ≥ ρk. (9) 
	The ﬁrst two terms in (6) capture the instances when the bank expects to accrue positive proﬁts at date 2 if monitoring turns out to be successful, i.e., with probability q. The ﬁrst term represents the case in which a run occurs for θ ≤ θand the bank can still obtain positive proﬁts at date 2
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	on the residual after repaying depositors, 1 − . This is possible only when (1 − k) r<L
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	L so that θ= . The second term captures the situation when there is both no run (for θ>θ) 
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	and the fundamentals are such that the bank remains proﬁtable at date 2 (for θ ≥ θ). Moving to 
	B
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	The condition in (7) represents depositors’participation constraint requiring that the expected repayments from depositing in a bank cannot be lower than investors’outside option u ≥ 1. By 
	L
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	depositing in a bank, depositors expect to receive the minimum between the pro-rata share 
	1−k 
	and the promised repayment rif there is a run at date 1 (i.e., when θ ≤ θ), as represented in the ﬁrst term of (7). If, instead, there is no run, then with probability q they receive the pro-rata share 
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	of the bank’s available resources at date 2 if the bank turns out to be insolvent (i.e., when 
	1−k 

	.. 
	θ ∈ (θ, max θ,θ]), and the full repayment rotherwise (i.e., when θ ∈ (max θ,θ, 1]). 
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	Note that the second term in (7) is positive only if θ<θas otherwise the bank would always 
	R 
	B 

	be solvent at date 2 in case of no runs and thus depositors would always obtain the full promised 
	repayment r. 
	2

	Finally, the constraint (8) is an incentive compatibility constraint on the deposit contract, so that depositors expect to receive a higher repayment if they wait until the ﬁnal date, and as a result don’t have an incentive to always withdraw early. Similarly, the inequality in (9) is simply a non-negativity constraint on expected proﬁts that requires that the bank can meet shareholders’ required return in expectation. 
	costs, the last term in (6) represents the monitoring cost the bank bears for the eﬀort it exerts.
	costs, the last term in (6) represents the monitoring cost the bank bears for the eﬀort it exerts.
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	3.2.1 Bank monitoring eﬀort 
	3.2.1 Bank monitoring eﬀort 
	Having characterized the bank’s maximization problem, we now move on to solve it using backward induction. Hence, we start by computing the optimal monitoring level chosen by the bank for given repayments {r,r} and bank capital k. We have the following result. 
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	Proposition 2 For any k> 0 and r>r> 0, the bank chooses q ∈ (0, 1] as the solution to 
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	if (1 − k) r>L. 
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	As illustrated in the proposition, the bank chooses the monitoring eﬀort q by trading oﬀ the marginal eﬀort cost with its marginal beneﬁts. Irrespective of the type of runs the bank is exposed to, a higher monitoring eﬀort is associated with higher costs, as captured by the term −cq, and with higher proﬁts as captured by the ﬁrst two terms in (10) for the case where (1 − k) r≤ L, and the ﬁrst one in (11) when (1 − k) r>L. In addition, an increase in the level of monitoring also reduces the bank’s exposure t
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	the case when (1 − k) r>L, as captured by the term − qR max θ,θ− (1 − k) r, while it shrinks the region where the bank remains solvent in the event of a run when (1 − k) r≤ L,
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	3.2.2 Deposit contract 
	3.2.2 Deposit contract 
	Having characterized the bank’s eﬀort, we now move on to the choice of the deposit contract {r,r}. In doing so, we proceed in steps. First, we show that the bank always chooses the terms of the deposit contract in a way that panic runs never occur. Then, we characterize the choice of rand r. 
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	Lemma 1 For any k> 0, the bank never ﬁnds it optimal to set r> In equilibrium, therefore, 
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	there are no panic runs. 
	The lemma establishes that, when all parties are risk neutral, the bank never oﬀers a date 1 promised repayment rso high that it would risk exposing itself to panic runs. Since panics arise only in the region (1 − k) r>L, the bank will never choose rto be above the ratio between the 
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	liquidation value L and the amount of leverage 1 − k. In other words, rmust satisfy r≤ 
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	This result is consistent with the literature studying bank runs and the provision of liquidity (e.g., Diamond and Dybvig, 1983, Jacklin and Bhattacharya, 1988, Allen and Gale, 2007, and Goldstein and Pauzner, 2005), where panic runs arise only when intermediaries insure risk-averse depositors against the possibilty of early consumption needs, but they do not occur when investors are either risk neutral or have no need for early consumption. In these latter cases, the bank sets requal to the liquidation val
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	Proposition 3 The bank chooses the deposit contract {r,r} as follows: r= min ,u ,
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	and q is given by the solution to (10). 
	The proposition shows that the bank ﬁnds it optimal to oﬀer a demandable deposit contract, that is r> 0, for any level of capital k ∈ [0, 1], even if investors are not subject to any consumption shock as in the traditional literature on bank runs, and despite the fact that the bank maximizes its own expected proﬁts. The reason behind this result is that by choosing r> 0, the bank can reduce the repayment to be made at date 2, r, and thus increase its proﬁts when no run occurs. In fact, lowering rbeneﬁts the
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	In other words, the slope of depositors’iso-utility curve, , is greater (in absolute magnitude) 
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	U than the slope of the isoproﬁt curve for the bank, , and the bank exploits this diﬀerence by 
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	setting the date 1 deposit rate as high as possible in order to maximize its date 2 proﬁts. 
	To understand the bank’s choice of deposit contract in more detail, it is worth noting that the bank would like to set rto be as high as possible without risking being exposed to panic runs, but is also subject to the incentive compatibility constraint r≤ qr, as otherwise depositors would always strictly prefer to withdraw at date 1. The highest rconsistent with the bank not being 
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	exposed to panic runs is r= , which is increasing in k. Hence, we can denote as k =1 − 
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	the level of capital for which r= u. For any k ≥ k, were the bank to choose r= >u, then 
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	depositors’participation constraint could be rewritten as 
	L ZZ 
	Z 

	(1−k)r2 1
	L Rθ 
	qR 

	dθ + q dθ + qr= u,
	L
	R 
	2 

	1 k 1 − k (1−k)r2
	− 
	qR 

	0 
	R 
	thus showing that qr<rwould be required for the constraint to hold with equality. As this is a violation of (8) and the bank always ﬁnds it optimal to have depositors’participation constraint 
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	bind, qr= r= u follows. These considerations imply that {r,r} = ,rewhen the bank is highly leveraged and/or the deposit market is very competitive, i.e., for k< k. Conversely, when the bank’s leverage is relatively low and/or competition in the deposit market is not intense (i.e.,
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	u is small, so that k ≥ k), we have {r,r} = u, . 
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	Importantly, the maximization of the bank’s expected proﬁt does not imply eliminating runs. In fact, even though by assumption choosing r=0 and having no runs at all is feasible, the bank 
	Importantly, the maximization of the bank’s expected proﬁt does not imply eliminating runs. In fact, even though by assumption choosing r=0 and having no runs at all is feasible, the bank 
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	chooses to be exposed to fundamental-driven runs. The presence of capital allows the bank to oﬀer r≥ L and yet not trigger coordination problems among investors. 
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	So far we have shown that the bank ﬁnds it optimal to oﬀer depositors a demandable deposit contract, that is, a contract whereby they can withdraw at date 1, even though depositors don’t anticipate having any early consumption needs. Going further, it is straightforward to see, from Proposition 3, that the bank may even ﬁnd it optimal to oﬀer a return r> 1 to early withdrawing 
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	depositors. Since r= min ,u , oﬀering a demandable debt contract with no penalties, i.e.,
	1 

	1−k 
	r> 1, is optimal whenever 1−k<L. This shows that whether ris greater or less than 1 depends on value of the bank’s project under liquidation, L, relative to the bank’s leverage, 1 − k, with a higher payment being promised the more capital the bank has and/or the higher is the liquidation value L. In other words, the bank provides “liquidity”to depositors even though there is no demand for liquidity from the investors and thus liquidity plays no insurance role. The intuition is that both a high level of capi
	1 
	1 
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	Our analysis highlights a novel mechanism for why a bank may ﬁnd it optimal to oﬀer demandable debt without penalties, and highlights that neither risk-aversion for investors subject to consumption shocks, nor a competitive banking sector, are necessary ingredients for demandable debt to be optimal. In this respect, the result of Proposition 3 illustrates that the optimality of demandable debt (i.e., r> 0) is more general than what is commonly discussed in the existing banking literature, and arises even in
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	4 Extensions 
	4 Extensions 
	In this section, we present four extensions to the model that address issues of robustness and realism. First, we endogenize the bank’s capital structure and characterize the bank’s choice of k. Second, we consider the case of a stochastic liquidation value and ask whether the bank nevertheless ﬁnds it optimal to issue demandable debt despite the potential occurence of panic runs. Third, we analyze the situation where the bank incurs bankruptcy costs in the event of default at date 2. Such costs have been w
	4.1 Bank capital structure 
	4.1 Bank capital structure 
	In our analysis in Section 3, we treated k as a parameter for the bank, and showed that rcan be strictly greater than 1 if the bank is suﬃ ciently capitalized. In this section, we prove that it is indeed optimal for the bank to ﬁnance itself with capital even if it is a more expensive source of funds than deposits. In other words, we endogenize the level of bank capital k, assuming that the bank takes such choice at date 0 before setting the terms of the deposit contract {r,r} and its monitoring eﬀort q. He
	1 
	1
	2
	1
	2

	As shown before, the bank chooses not to be exposed to panic runs, so the relevant thresholds are and θ, as characterized in (2) and (5), respectively, with θ≥ . We have the following result. 
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	Proposition 4 The bank chooses an amount of capital as follows: 
	(1) When ρ − u> 0 is suﬃ ciently small, the bank chooses k> 0; 
	(2) Fix the diﬀerence ρ − u such that the result in (1) holds, i.e., that k> 0. Then, there is a value L< 1 such that, for L>L, r(k) > 1. 
	b
	b
	1 

	The proposition shows that it is optimal for the bank to be ﬁnanced by a mix of debt and equity, despite equity being more costly to raise for the bank, when ρ − u is not too large. The reason is that capital allows the bank to support its eﬀort in reducing the riskiness of its investment project and also it reduces the run risk by lowering the run threshold (2). The positive level of bank capital pushes the interest rate on deposit rabove the liquidation value L and also implies that, for suﬃ ciently large
	1 
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	The result in Proposition 4 shows again the importance of bank capital in our model. In particular, the bank has an incentive to raise a positive amount of capital because of the endogeneity of the bank’s monitoring eﬀort. In other words, as in other standard frameworks (e.g., Holmstrom and Tirole, 1997, and numerous subsequent papers such as Repullo, 2004, Allen, Carletti, and Marquez, 2011, Mehran and Thakor, 2011, Dell’Ariccia, Laeven and Marquez, 2014), here capital not only provides depositors with a b
	If instead q were to be exogenous, the bank would prefer to be entirely deposit ﬁnanced given 
	If instead q were to be exogenous, the bank would prefer to be entirely deposit ﬁnanced given 
	ρ − u> 0 since there would be no commitment value associated with bank capital. This suggests that the demandability of the deposit contract in our framework does not hinge on its discipline role for the bank’s incentives as in Calomiris and Kahn (1991), but rather exclusively on its role as a cost-minimizing tool. Indeed, even with no capital and a ﬁxed q, in our framework the bank would still ﬁnd it optimal to oﬀer a deposit contract with r> 0 as a way to reduce its funding costs. 
	1 



	4.2 Stochastic L and panic runs 
	4.2 Stochastic L and panic runs 
	So far we have shown that banks ﬁnd it optimal to oﬀer demandable debt with a date 1 promised repayment that exposes them to fundamental-driven runs but not to panic runs. This result was obtained in a framework with one single source of uncertainty related to the fundamentals of the economy. In this section, we study whether banks still ﬁnd it optimal to oﬀer demandable debt when there are other sources of uncertainty present, so that coordination failures among investors and panic runs may emerge. 
	There are various reasons why panics may arise even if banks take actions to minimize their likelihood. One simple reason may be the presence of uncertainty at date 0 about what the bank’s project may be worth if liquidated at date 1. While in the analysis above we treat the liquidation value L as given and known at date 0, in reality this value may be uncertain at the time the bank is raising ﬁnancing in order to invest. 
	We incorporate this type of uncertainty in the simplest way possible. Speciﬁcally, we modify the baseline model by assuming a binary stochastic liquidation value as given by 
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	with LL <LH . The distribution of Lis common knowledge at date 0, and uncertainty is resolved 
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	at the beginning of date 1. Depositors observe the realization of Lbefore they decide whether to withdraw at date 1. This implies that the run thresholds, as characterized in Proposition 1, continue to hold, with the only diﬀerence that in the expression (4) there will be Li, with i = L, H. The model is again solved backward so that the bank anticipates depositors’withdrawal decisions as a function of the realized liquidation value when choosing the terms of the contract {r,r}. 
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	We assume that the distribution of Lis uncorrelated with that of θ. This reﬂects the case when θ is not observable outside the bank at date 1 so that the liquidation value L can be viewed as independent of future realizations of θ. We make this assumption for tractability, but the analysis would go through in case Land θ were (positvely) correlated. 
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	Since our only goal is to show that the bank will choose a strictly positive r, we simplify the analysis relative to the baseline model and assume that both q and k are exogenously positively given so that intermediation is feasible. In addition, we assume u> so that the optimal date 1
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	payment is a function of the project’s liquidation value. We have the following preliminary result. 
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	Lemma 2 It is never optimal for the bank to choose r< or r>
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	The result in Lemma 2 shows that it is never optimal for the bank to be always exposed to 
	panic runs, as would be the case if the bank were to choose r> . Hence, the optimal rmust 
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	Proposition 5 There is a value ∈ (0, 1) such that, for p ≤ , the bank chooses r> and is
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	subject to panic runs whenever L= LL. 
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	The proposition shows that, diﬀerently from the case of a deterministic value of L, the bank may ﬁnd it optimal now to increase rto a level that exposes itself to panic runs. This occurs when the probability of the low realization of the liquidation value, LL, is suﬃ ciently low (i.e., p ≤ ) as this also implies a relatively low likelihood of panic runs. The equilibrium date 1 payment is again a function of the level of bank capital so that for large enough k, r> 1 emerges in equilibrium. 
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	4.3 The existence of bankruptcy costs 
	4.3 The existence of bankruptcy costs 
	In this section we extend the model to include bankruptcy costs that may be incurred whenever the bank fails to meet its obligations to depositors and, hence, is insolvent. This is consistent with empirical evidence showing the existence of signiﬁcant bankruptcy costs when banks enter into liquidation (e.g., James, 1991). To do so, we modify the model slightly as follows. The promised repayments {r,r} are paid as long as the bank has enough resources, as above. However, if the bank fails to repay depositors
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	Following Goldstein and Pauzner (2005) and related papers, we assume that there are no bankruptcy costs at date 1 beyond the 1 − L units of resources that are lost due to the premature liquidation of banks’loans. Assuming full costs stemming from bankruptcy at date 1 does not qualitatively aﬀect our results. Calculations can be provided to interested readers. 
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	from the illiquidity of the bank’s assets, where some value is lost when selling them to alternative users/lenders. The rest of the model is unchanged. 
	The analysis is similar to that above in that there is a run threshold below which it is optimal to run, and this threshold depends on whether (1 − k) ris greater or less than L. However, when (1 − k) r≤ L, given the presence of bankruptcy costs, each depositor knows that at date 2 he will receive qr≥ ronly if the bank is solvent and thus able to make the promised repayment rto all 1 − k depositors, and 0 otherwise. Thus, his incentives to run depend on whether the bank is solvent or not, which boils down t
	1 
	1 
	2 
	1 
	2 

	Rθ = (1 − k) r, (13) 
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	which is the same as the threshold θdeﬁned above in (5). Hence, for the case where (1 − k) r≤ L, withdrawing early is optimal with bankruptcy costs when θ<θ. 
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	1 
	B 

	Similarly, applying the same arguments as in Proposition 1, one can show that for the case where (1 − k) r>L, a run threshold θ>θexists below which it is optimal for depositors to withdraw early. However, a minor extension of Proposition 1 establishes that, as in the case analyzed above without bankruptcy costs, it is never optimal for the bank to set rsuch that (1 − k) r>L and allow panic runs to arise in equilibrium. To keep the analysis concise we therefore leave out the construction of θand restrict our
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	With this, we can now write the bank’s proﬁt as 
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	Π= qRθ 1 − dθ + q (Rθ − (1 − k) r) dθ − . (14)
	2

	L
	0 θ
	B 
	2 

	The main diﬀerence between bank proﬁts in (14) and those in (6) for the case where there are no bankruptcy costs is in the region of fundamental runs, where now runs occur for a larger parameter space than before (i.e., for θ<θinstead of θ<, with θ>as deﬁned in (5)). In other words, early withdrawals occur more frequently simply because depositors recognize that, if θ is not suﬃ ciently high that the bank will avoid default, waiting until date 2 will lead to losses arising from bankruptcy costs. Given that 
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	and, hence, prefer to run for θ ∈ , θrather than wait until date 2. 
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	For depositors, their participation constraint becomes 
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	θ1 rdθ + qrdθ ≥ u, (15) 0 θ
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	where again the main diﬀerence from before stems from the larger region over which depositor runs occur. We can now state the following result, which is essentially equivalent to the main result presented above. 
	Proposition 6 For large enough k, the bank sets the deposit contract {r,r} as follows: r= 
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	min ,u and r= max {u, re}, where recorresponds to the value of rthat makes depositors’ 
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	participation constraint (15) binding, with monitoring eﬀort q chosen to maximize (14). 
	The proposition shows that even in the case of bankruptcy costs at date 2, the bank still ﬁnds it optimal to oﬀer a demandable deposit contract, even with a premium for large enough levels of capital k. 

	4.4 What if the bank can liquidate early? 
	4.4 What if the bank can liquidate early? 
	So far, we have considered that the early liquidation of the project is only driven by depositors’ decision to run and we have shown that the bank ﬁnds it optimal to oﬀer investors a demandable debt contract. In doing this, we have ignored the possibility that the bank itself may prefer to liquidate the project prematurely rather than keeping it until the ﬁnal date. Yet, when θ is suﬃ ciently low, it may be more proﬁtable for the bank to turn the project into cash at date 1 and repay depositors early. In th
	We start by characterizing the banks’payoﬀs in the various instances. As in the baseline model, if the bank keeps the project until date 2, it accrues 
	Rθ − (1 − k) r, 
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	which is positive only for θ>θas given in (5). By contrast, when liquidating at date 1, the bank can decide to liquidate either the entire project or only a fraction of it, enough to repay rto the 
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	(1 − k) depositors. In the former case, the bank earns proﬁts 
	L − (1 − k) r, 
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	while in the latter case, it earns instead 
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	and is then equal to θ= . For θ>θ, the bank instead would prefer to partially liquidate the project at date 1 rather than carrying it all over to date 2 as long as θ<θ, where θsolves 
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	In sum, there are two regions where early repayment of depositors occurs: (1) for θ ∈ 0,θ, the 
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	bank liquidates fully and gets L − (1 − k) r; (2) for θ ∈ θ,θ, the bank only partially liquidates 
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	and gets qRθ 1 − r. Having characterized the liquidation thresholds θand θ, we can write 
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	bank’s expected proﬁts and depositors’participation constraint, respectively, as follows: 
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	We can now establish the following result. 
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	Proposition 7 The bank chooses to set r= min ,u and r= min re, , where resolves
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	(16) with equality. 
	The proposition shows that the bank ﬁnds it optimal to oﬀer a positive early repayment also when it is free to liquidate the project prematurely. Again, this result arises in a more general framework as a way for the bank to optimze its proﬁts without the need of assuming risk averse depositors and uncertainty about their consumption preferences. 


	5 Conclusion 
	5 Conclusion 
	In this paper, we have shown that demandable debt can arise as the optimal contract arrangement in a model with risk neutral investors and proﬁt maximizing banks. The key intuition is that banks may prefer to allow depositors to obtain an early repayment as this allows the bank to reduce the interest rate in the ﬁnal date, and thus increase its overall return. The promised early repayment is 
	set to be equal to the maximum amount compatible with having only fundamental-based runs, and its level depends on the bank’s capital: when capital is high enough, the bank oﬀers demandable debt with a premium, i.e., depositors are promised to receive more than the amount deposited initially when withdrawing prematurely. In other words, the bank provides liquidity to depositors when it is suﬃ ciently capitalized despite depositors not demanding such liquidity since they have no insurance needs. These result
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	Proof of Proposition 1: The proof follows closely that in Carletti, Leonello, Marquez (2022). Their arguments establish that depositors run if and only if the signal they receive is below a common signal s (r) and, at the limit when ε → 0, this threshold converges to the upper-bound of the lower dominance region (r) for any (1 − k) r≤ L, and to θ(r,r,q) >(r,q) for any (1 − k) r>L. The key diﬀerence relative to their framework is that that there are no bankruptcy 
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