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I. Introduction 

Against which of these assets should one extend more credit in 2023: a subur-

ban ofce or a warehouse facility leased to an e-commerce company? With the 

relative uncertainty surrounding work-from-home trends, the answer seems clear— 

but it may have been a tossup twenty years ago. This example illustrates the core 

motivation of our paper. Loan-to-value ratios (LTVs) are often viewed as a primary 

measure of underwriting standards in commercial real estate (CRE) lending.1 

We argue that variation in observed LTVs should be interpreted through the lens 

of the lender’s (originator’s) risk perceptions, which not only vary across collateral 

(property) types but also over time. What might be interpreted as “aggressively” 

high LTV, may, in fact, be optimal or justifable given the property’s riskiness 

and the business cycle. Theoretically, this idea is not new: Jafee and Russell 

(1976) demonstrate that lenders may limit credit (i.e., require more “skin in the 

game”) when it is hard to tell which borrowers are riskier, and Leland and Pyle 

(1977) provide a framework of frm fnancing with greater equity accompanying 

greater risk. Lenders’ willingness to extend more credit should refect perceived 

property risk and not only “loose” or “tight” credit conditions (which may also 

refect lenders’ risk tolerance or cost of capital). 

Despite the clear role of risk perceptions, aggregate changes in LTV are often 

interpreted as changes in underwriting standards when it comes to measuring 

the aggressiveness of real estate lending. For instance, a 2010 Congressional 

Oversight Panel report by Elizabeth Warren et al. (2010) after the Global Financial 

Crisis (GFC) came to the following conclusion: 

“The commercial real estate bubble [. . . ] resulted in the origination of a 

signifcant amount of commercial real estate loans based on dramatically 

weakened underwriting standards. These loans were based on overly 

aggressive rental or cash fow projections [. . . ], had higher levels of 

allowable leverage, and were not soundly underwritten.” 

The culprits identifed in the above quote are unrealistic cash fow forecasts 

and overly high LTVs, consistent with other assessments (e.g., Levitin and Wachter, 

1Although the income-to-debt ratio and the debt service coverage ratios are also common qualifers of 
CRE loan underwriting, we fnd that the empirical relationship between perceived property risk and LTV 
is stronger than the empirical relationship between property risk and these alternative ratios. 
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2013). While there is evidence to suggest that property income measures are, 

at times, infated by commercial mortgage-backed securities (CMBS) originators 

(Grifn and Priest, 2023), the diagnosis of aggressive LTVs is a narrative that is 

more difcult to test, though it may often be conjectured. Jacob and Manzi (2005) 

describe what they believe to be lenders pushing the limit on LTVs in a trend 

toward “weaker lending standards,” and Fabozzi, McBride and Clancy (2015) 

claim that this tendency was especially egregious in 2006 and 2007. Meanwhile, 

Wilcox (2012) and Wilcox (2018) argue that aggregate LTVs may not provide a 

faithful portrayal of underwriting standards. 

We provide empirical evidence that, controlling for implied ex ante perceptions 

of property risk, as proxied by the implied volatility (IV) of individual properties, 

the average LTVs of securitized CRE loans in the period 2000–04 were only about 

1.5 percentage points higher than the average LTVs in the post risk retention rule 

period of 2016–20. Likewise, average LTVs in 2005–07 were similar to those in 

2008–15. Diferences among epochs shrink further when we control for property cap 

rate (cash yield) spreads over the 10-year U.S. Treasury yield. Indeed, we fnd that 

credit rationing “frontiers” (i.e., maximum LTV thresholds) were most permissive 

in 2000–04, and they were most restrictive in 2005–07, coinciding with the peak 

of collateralized debt obligation (CDO) issuances. Importantly, credit rationing 

frontiers explain only a negligible fraction of LTV variation across epochs, while 

perceived property risk explains the lion’s share. 

Our main contribution is demonstrating that LTVs for securitized CRE loans, 

throughout diferent economic epochs from 2000 to 2020, were largely driven by 

perceived property risk and market fundamentals. We calculate implied volatility 

using a two-factor derivative asset pricing model, which allows for standard CRE 

mortgage contract provisions. In the model, IV is the asset’s difusion risk that 

rationalizes the loan’s interest rate given its LTV, maturity, and amortization 

schedule, as well as the property’s cap rate, the term structure of U.S. Treasury 

yields, and the mortgage market liquidity premium.2 Our fndings are consistent 

with tradeof theories of optimal leverage (e.g., Leland, 1994), which imply that 

observed LTVs should decline with IV and cap rates. On its own, IV explains about 

2/3 of the cross-sectional and time-series variation in LTV. Controlling for the cap 

2We estimate liquidity premium on the CRE mortgage market as the efective yield spread between 
short-term AAA-rated tranches of CMBSs and U.S. Treasury securities with equivalent maturities. 
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rate and various (such as, property type and location) fxed efects helps explain an 

additional 10 percent of LTV variation. The residual time-series variation seems 

to be random. Our results are in line with Driessen and Van Hemert (2012) and 

Stanton and Wallace (2018), who fnd no evidence that underwriting practices in 

the CRE mortgage market deteriorated in the way that they did in the residential 

real estate mortgage market before the GFC. Our results are also consistent with 

the position in Wilcox (2012) and Wilcox (2018) that LTVs, on their own, may not 

be informative about aggregate loan underwriting standards. 

From the collapse of the CRE market in the wake of the GFC, it is tempting to 

conclude that CRE loan leverage was overly aggressive before the crisis. However, 

after controlling for implied volatility, we fnd no evidence for abnormally high 

LTVs. What we do fnd is that risk perceptions were lower in 2003–07 than in 

any other epoch from 2000 to 2020. Hence, our fndings suggest systematic shifts 

in perceived property risk as a compelling explanation for the growth in CRE 

lending in 2003–07, which fueled the subsequent CRE market decline. Moreover, 

to the extent that there was a failure in the CRE mortgage market in the run-up 

to the GFC, our fndings may also indicate aggregate risk misperceptions. 3 Indeed, 

systematic misperceptions of risk would have led to more credit extended but also 

to CRE loan underpricing (i.e., low interest rates). 

The paper is organized as follows. Section II provides theoretical background 

for conceptualizing the aggregate LTV as a dynamic variable that captures changes 

in systematic risk perceptions as well as other property and capital market 

attributes—even in the presence of frictions due to taxes and costs of default. 

Section II reviews the related academic literature and provides institutional details 

on the CMBS market. Section III describes our data. Section IV analyzes our 

implied volatility estimates and their relationship to other measures of property risk. 

Section V presents our main results, examining CRE loan LTVs over time with and 

without controls for determinants of optimal leverage, including (and especially) 

implied volatility. Section VI concludes. 

3There is an important distinction between aggressive loan underwriting and loan underpricing. In the 
former case, lenders knowingly undertake more risk than warranted by prudent practices. In the latter 
case, lenders falsely believe that they follow best underwriting practices. 
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II. Conceptual motivation and methodological overview 

Mortgage provision in the primary market depends on the price of liquidity in 

the secondary mortgage market, competition among lenders, and the availability 

of capital in the credit market, all of which are held fxed. Figure 1 shows stylized 

mortgage ofer curves for properties with diferent perceived risk.4 The mortgage 

ofer curves are truncated beyond a certain LTV because of credit rationing due 

to asymmetric information (Jafee and Russell, 1976; Leland and Pyle, 1977) and 

dead-weight costs of default (Leland, 1994). 

Figure 1. Stylized mortgage offer curves for properties with different risk 

This fgure shows stylized fve-year zero-coupon mortgage ofer curves for properties with diferent levels 
of perceived risk. Property risk is proxied by annualized asset volatility (“vol”). The vertical axis shows 
the mortgage spread over a zero-coupon fve-year U.S. Treasury at which lenders would be willing to 
issue the mortgage loan given the loan-to-value ratio and the annualized asset volatility. The curves are 
computed using the Merton (1974) model and incorporate a liquidity spread, which represents the price 
of liquidity in the mortgage-backed securities market. 
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4In this stylized chart, we ignore other mortgage contract terms available to the borrower and 
commensurately priced by the lender, including maturity, interim coupon payments, and prepayment 
options. We do take such loan features into account in our empirical methodology. 
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tax rate, and decreasing in asset volatility. All else being equal, a model with 

rational agents yields equilibrium LTVs that decrease in asset volatility. 

There are several key takeaways from the conceptual considerations above. 

First, time variation in aggregate LTVs may be entirely attributable to changing 

market fundamentals, rather than the tension between regulators and lenders or 

agency frictions within lending institutions. Second, in those instances where 

LTV limits are below the optimal leverage point for a sufciently large number 

of borrowers, there would be clustering at the credit rationing frontier. Third, 

the frontier should decline with perceived property risk. Finally, although lenders 

and borrowers do not directly express or observe asset volatility, their risk 

assessment is implicit in the loan spread at which the contract is originated. 

In Figure 1 above, it is sufcient to know that a loan with a 67% LTV is priced at 

2 percentage points above the fve-year U.S. Treasury yield to conclude that the 

perceived property risk was roughly 17% in implied volatility. 

A. Overview of empirical approach and results 

Our null hypothesis is that the cross section of LTVs results from borrower 

demand in response to rational mortgage ofer curves, akin to those depicted in 

Figure 1. Under the null hypothesis, it is consistent with prudent lending to provide 

an infnitely elastic supply of credit at any point on the curves. Risk misperception 

corresponds to lending using ofer curves that are systematically lower or higher 

than the true asset volatilities, which could be detected ex post. By contrast, 

aggressive lending manifests ex ante as loans that would not normally be made 

(e.g., an 80% LTV loan with asset volatility of 21% in Figure 1). Hence, one could 

test for aggressive lending in a period like 2005–07 by examining whether the 

credit rationing frontier was higher during that period than at other times.5 

In order to test the null hypothesis described above, and look for evidence 

of aggressive lending practices, we frst estimate the implied volatility of each 

property underlying a sample of securitized CRE mortgages. The mortgage pricing 

model that we use to estimate IV captures various ex ante features of the deal, 

including the property’s cap rate, the loan’s term and amortization schedule, 

5Note that changes in the credit rationing frontier could result from the infuence of fundamental 
factors, such as a systematic change in dead-weight costs of default. Therefore, identifying an epoch with 
a higher rationing frontier does not constitute evidence for aggressive lending practices. 
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default and interest rate risk, and mortgage market liquidity.6 Under the null 

hypothesis defned above, IV measures the lender’s perceived property risk. Second, 

we identify the credit rationing frontier, as a function of IV, for four time periods 

in our sample. We confrm that, consistent with the null hypothesis, the frontier 

gradually declines with implied volatility in each of the four periods. 

Next, we examine the rationing frontiers and empirically reject the narrative 

that lenders were more aggressive in the run-up to the GFC. We use ex ante 

fundamentals to explain the variation of LTVs across loans and over time, such 

as implied volatility, cap rate, and other property and market features that can 

infuence mortgage ofer curves and borrower demand for loans. We ft a censored 

(tobit) regression model for LTV, using the rationing frontier as upper bound, 

and conduct a counterfactual analysis. In particular, we fx the frontier over time 

and compare actual and estimated counterfactual LTVs to analyze the efect of 

changing frontiers. We fnd little evidence that shifts in the rationing frontier 

explain LTVs, which indicates that, even if such shifts are driven by changing 

underwriting standards, they have little efect on the distribution of LTVs. 

What we do fnd is that the leading determinant of credit provision is implied 

volatility (perceived property risk). Importantly, this relationship is not mechanical. 

If borrowers randomly selected LTVs from the mortgage ofer curves in Figure 1, 

then the only link between LTVs and risk perceptions would be through credit 

rationing, because the rationing frontier is more likely to be binding at higher IVs. 

This is not consistent with our result that shifts in the rationing frontier explain 

little of the distribution of LTVs. By contrast, if borrowers optimally choose LTVs 

to trade of costly default against the benefts of debt (e.g., lower taxes), then, 

consistent with our empirical fndings, LTVs vary with property risk even if the 

rationing frontier is not a binding constraint. 

B. Literature on commercial real estate risk and mortgage implied volatility 

We contribute to an evolving understanding of CRE asset volatility. Previous 

analyses use aggregate data to study CRE price dynamics. Ciochetti et al. (2002) 

create a property value volatility index at the property type-census district level. 

Plazzi, Torous and Valkanov (2010) use quarterly averages at the metropolitan 

6We also examine the possibility that prepayment options afect our results. We confrm that, because 
of the presence of large prepayment penalties in this market segment, they do not. 
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statistical area level for broad property types and apply the Campbell and Shiller 

(1988) price-dividend decomposition to better understand the characteristics of 

CRE rents, cap rates, and asset returns. They fnd that CRE returns are related 

to the local regulatory environment and population density, and that expected 

returns are related to factors such as local population, employment, and income 

growth as well as construction costs. Using property-level data, we fnd that many 

of these factors are important determinants of asset volatility. 

Studies using property-level data have shed light on the magnitude of id-

iosyncratic asset volatility, that is, how much higher asset volatility is than can 

be inferred from indexes or other area averages. Plazzi, Torous and Valkanov 

(2010) calculate that, aggregated at the metropolitan statistical area-level, the 

standard deviation of CRE excess returns ranges from 3.7% to 6.1%, depending 

on the property type. By contrast, Downing, Stanton and Wallace (2008) estimate 

the asset volatility of CMBS loans using a two-factor Titman and Torous (1989) 

model. They fnd implied volatilities in excess of 20%—higher than our estimates 

for their sample period but similar to our post-GFC calculations. Sagi (2021) 

uses property-level data from the National Council of Real Estate Investment 

Fiduciaries to measure price appreciation volatility. He fnds that the standard 

deviation of annual price appreciation volatility is about 13%.7 

The mortgage pricing model we use to estimate implied volatility builds on 

an extensive body of literature that applies option theoretical methods for pricing 

mortgage debt. Some models stipulate a partial diferential equation for property 

value that is solved using fnite diference methods (Titman and Torous, 1989; 

Kau et al., 1995). Another popular method, and the one we employ, uses a 

binomial model for property valuation (Leung and Sirmans, 1990; Giliberto and 

Ling, 1992; Hilliard, Kau and Slawson, 1998; Ciochetti and Vandell, 1999). Similar 

to our pricing approach, many of these models incorporate default and prepayment 

options. However, while other models assume a single stochastic mean-reverting 

interest rate process similar to Cox, Ingersoll and Ross (1985), we model interest 

rates using multiple competing models. Furthermore, we include contractual 

7Asset pricing models typically assume that the asset price follows a geometric Brownian motion, 
and thus the variance of cumulative price appreciation is linear in the length of the holding period. 
Consequently, as the holding period approaches zero, return volatility also approaches zero. By contrast, 
Sagi (2021) fnds that volatility remains high even for short holding periods. He traces this phenomenon 
to transaction risk, fnding that the return data ft well to predictions from a search model. 
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characteristics, such as interest-only versus amortizing payment schedules, and 

property attributes, such as the cap rate. 

Our analysis is closest to that of Downing, Stanton and Wallace (2008). 

They also use a two-factor pricing model that prices the mortgage at par, albeit 

with the goal to examine the relationship between IVs and CMBS ratings. Similar 

to our approach, mortgage value in their model is a function of short rate dynamics 

and the property value process. By contrast, our model incorporates a richer set 

of loan and property characteristics, including property income and the length 

of the interest-only period. Finally, their analysis ends in 2006, while we also 

examine developments right before and after the GFC. 

C. Evolution of the commercial mortgage-backed securities market 

The CRE loans in our data set are CMBS loans: loans originated to be pooled 

within Real Estate Mortgage Investment Conduit trusts that issue MBSs. CMBSs 

allocate risk among diferent tranches: the tranches least exposed to credit risk 

typically receive investment-grade ratings, while the tranches that absorb credit 

losses frst are often unrated. In the past two decades, various changes in the 

CMBS market afected both the cost of funding and the market for riskier tranches. 

In particular, the investor base of riskier tranches changed because of the rise and 

fall of CDOs as well as regulatory changes. 

Before 2005, unrated tranches were usually held by a set of special (“B-piece”) 

investors, who were involved in security design, performed due diligence, and 

selected the servicer responsible for handling delinquencies. In the time period 

between 2005 and 2008, it became common practice among CMBS issuers to 

repackage such tranches in CRE CDOs. Rating agencies, which made (overly) 

optimistic assumptions about the benefts of diversifcation, assigned favorable 

ratings to many CDO tranches. Another factor afecting CMBS markets before 

the GFC was a reduction in regulatory capital requirements, as both commercial 

bank and investment bank capital requirements for CMBS were reduced in 2004. 

Duca and Ling (2020) calculate that commercial bank capital requirements were 

reduced from 8% to 2%, while investment bank capital requirements were reduced 

from 6% to 3.7%, permitting much higher levels of leverage. As a result, the cost 
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of funding decreased for both commercial and investment banks, making it easier 

for CMBS issuers to sell riskier tranches. 

After the GFC, CMBS issuance stopped for several years and the CRE 

CDO market disappeared. In response to the crisis, regulators increased capital 

requirements for commercial banks at the end of 2010, by which time the 

major investment banks had been merged with commercial banks. Moreover, 

U.S. regulatory agencies proposed Regulation RR, requiring issuers of asset-backed 

securities to retain at least fve percent of the credit risk, with the intention 

of ensuring that issuer incentives are aligned with those of investors.8 Issuers 

may satisfy the risk retention requirement by holding a “vertical” piece of the 

issued security, which includes a portion of all tranches, a “horizontal” piece of 

the riskiest tranche, or a combination of the two approaches. While “qualifed” 

CMBS issuances are exempt from Regulation RR, they are defned in a relatively 

conservative manner.9 Consequently, the risk retention requirement is often 

binding for issuers (Flynn Jr, Ghent and Tchistyi, 2020). 

Motivated by the substantive variation in the CMBS market and regulatory 

environment, we subdivide our sample period into the following four epochs. 

1) 2000–04: “B-piece” investors retain the riskiest tranches of CMBSs. 

2) 2005–07: CMBS issuers repackage portions of riskier tranches as CRE 

CDOs, part of which receive investment-grade ratings. Regulatory capital 

requirements associated with CMBS holdings decrease. 

3) 2008–15: CMBS issuances plummet then gradually recover to pre-2005 levels. 

4) 2016–20: The risk retention rule takes efect in December 2016. 

These epoch boundaries are also consistent with the empirical distribution of 

CRE loan originations over time. Indeed, as Figure 2 shows, the number of loan 

originations exhibits clear cutofs at the epoch boundaries we use. 

8The risk retention rule was fnalized in October 2014 and came into full efect in December 2016. 
See https://www.sec.gov/news/pressrelease/2014-236.html for more information. 

9Regulation RR defnes a qualifying CRE loan as a fxed-rate loan with a minimum maturity of 
10 years and a maximum amortization period of 25 years. Lenders must document property income 
for at least the previous two years. The borrower’s debt service ratio must exceed 1.25 for multifamily 
properties, 1.5 for leased properties, and 1.7 for all other loans. Furthermore, the combined LTVs of all 
loans on the property cannot exceed 70%, and the LTV of the frst lien loan cannot exceed 65%. 
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III. Data construction and summary statistics 

A. Securitized mortgage loan data collection 

Our data consist of 58,127 securitized CRE loans from the year 2000.10 

The data are provided by Morningstar, which gathers information from public 

CMBS disclosures, including a rich set of loan and property characteristics. 

The Morningstar data include loans originated by a variety of institutions and are 

not dominated by a single underwriting approach. Many loans are originated by 

large U.S. banks, such as Bank of America and Citibank. The top ten originators 

also include large foreign banks, such as Deutsche Bank, Credit Suisse, and UBS. 

Non-depository institutions are a substantial part of the market, but no single 

such institution has a large market share. 

The complete data set consists of 111,465 loans. For the purposes of our 

analysis, we drop loans missing key variables needed for our analysis and loans 

with problematic observations (see Appendix A for more details). Specifcally, 

we drop loans that have missing or wrong data for key inputs such as the date of 

origination, the loan interest rate, whether the loan is interest-only or amortizing, 

and the date of maturity. We also drop non-fxed-rate and pari passu loans, which 

our model does not price, as well as agency CMBS loans because the agency 

guarantees would distort our implied volatility estimates. Finally, for analytical 

and expositional simplicity, we restrict our sample to single-property loans, which 

constitute the overwhelming majority of observations. 

The data collection process described above results in a sample of 58,127 

CRE loans. We present summary statistics for these loans in Table 1 and their 

corresponding cross-sectional distributions in Figure F2 of Appendix F. Loans 

vary widely in size, from $2 million to over $2.5 billion. LTVs are generally around 

70%. The debt yield, the ratio of net operating income (NOI) to loan amount at 

origination, varies between 7% and 15%. The debt service coverage ratio (DSCR), 

10Securitized CRE loans are only part of the overall CRE loan market. Black et al. (2017) compare 
CMBS loans in the Morningstar data with portfolio CRE loans reported by large U.S. banks on the 
FR Y-14 form. They fnd that these banks are more likely to hold riskier loans, such as construction 
loans, in their portfolio. Portfolio loans are also more likely to have foating interest rates, shorter terms, 
and lower LTVs than CMBS loans. From their results, it is not clear that securitized and portfolio CRE 
loans difer when one sets aside construction loans, which we exclude from our empirical analysis. 
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the ratio of NOI to debt servicing amount at origination, falls generally between 1.2 

and 2.4. The vast majority (more than 80%) of loans are 10-year loans. 

Table 1—Characteristics of sample commercial real estate loans 

This table shows summary statistics for key characteristics of commercial real estate mortgage loans in our 
sample, containing fxed-rate, single-property loans securitized in non-agency commercial mortgage-backed 
securities (CMBSs). From left to right, the columns show the number of observations and the sample 
mean, standard deviation, as well as the 10th and 90th percentiles of variables in the cross section of 
sample loans. At the bottom of the table, the respective spread measures represent the percentage point 
yield spreads of sample loans over the 10-year zero-coupon U.S. Treasury yield and the value-weighted 
efective yield of the securities constituting the ICE BofA 0-to-3-year AAA U.S. Fixed-Rate CMBS Index. 

Count Mean SD P10 P90 
Loan amount ($1,000) 58,127 11,465 16,694 2,010 24,260 

Loan term (months) 58,127 113 24 83 120 
Amortization period (months) 58,127 312 110 0 360 
Interest-only period (months) 58,127 21 35 0 60 

Loan-to-value ratio 58,127 0.68 0.11 0.55 0.79 
Debt yield 58,127 0.11 0.04 0.07 0.15 
Debt service coverage ratio 58,127 1.69 0.71 1.18 2.32 

Spread over 10-yr U.S. Treasury (pp) 58,127 1.85 0.75 0.92 2.78 
Spread over 0-3-yr AAA CMBS (pp) 58,127 1.84 1.17 0.36 3.32 

Figure 2 and Table 2 show the distribution of observations over time and 

across property types. The volume of loan originations steadily increased until the 

GFC, fell to almost zero in 2008, and gradually recovered after 2010. The most 

common property types are retail and multifamily, and also a large number of 

loans belong to the “other” category.11 Hotel and industrial properties have the 

smallest frequency share in the sample. 

We present summary statistics for the properties used as collateral for sample 

CRE loans in Table 3. The median property is nine years old and nearly fully leased. 

Properties vary widely in size, from 16 thousand to 24 million sqft. Some property-

level variables are unevenly populated, mostly due to heterogeneous measurement 

and reporting standards across property types. For instance, information on the 

11The “other” category consists of mini-storage and mixed-use properties representing a combination 
of property types such as a complex with both multifamily and retail property. 
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Figure 2. Annual number of sample commercial real estate loan originations over time 

This fgure shows the annual number of commercial real estate mortgage loan originations in our 
sample, color coded by time period (epoch). The sample contains fxed-rate, single-property loans 
securitized in non-agency commercial mortgage-backed securities. Epoch choice is explained in Section II.C. 
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Table 2—Distribution of sample commercial real estate loans across property types 

This table shows the absolute and relative frequencies of commercial real estate mortgage loans in our 
sample across diferent collateral property types. The sample contains fxed-rate, single-property loans 
securitized in non-agency commercial mortgage-backed securities. 

Property type Count Share 
Hotel 4,808 8.3% 
Industrial 3,052 5.3% 
Multifamily 18,972 32.6% 
Ofce 9,308 16.0% 
Other 5,903 10.2% 
Retail 16,084 27.7% 
Total 58,127 100.0% 

lead tenant is not collected for multifamily properties because they have many 

small units, each leased to a diferent tenant. 

In our data fltering, we drop loans with a debt yield less than 0.07 and DSCR 

less than 1.25. These lower bounds correspond to standard underwriting limits 

(i.e., lenders are reluctant to lend if the debt yield or DSCR is too low) and fall 
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Table 3—Characteristics of sample commercial real estate loan properties 

This table shows summary statistics for key characteristics of the properties used as collateral for 
commercial real estate mortgage loans in our sample at the time of loan origination. The sample contains 
fxed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities. 
From left to right, the columns show the number of observations and the sample mean, standard 
deviation, as well as the 10th and 90th percentiles of variables in the cross section of sample properties. 
The area of the property in square feet, as well as the derived variables occupancy rate and lead tenant 
share, are available only for industrial, ofce, retail, and most “other” property types. By commercial real 
estate market convention, the size of hotel and multifamily properties is measured by the number of units. 

Count Mean SD P10 P90 
Property value ($1,000) 58,127 17,524 28,014 3,070 36,000 
Net operating income ($1,000) 58,127 1,158 1,771 214 2,335 
Area (1,000 sqft) 33,562 112.45 151.08 15.99 240.02 
Age (years) 52,569 14.26 15.77 1.00 35.00 

Occupancy rate 31,929 0.94 0.10 0.83 1.00 
Lead tenant area share 29,333 0.42 0.29 0.12 1.00 
Lead tenant lease length (years) 29,832 15.98 240.45 2.17 16.25 

around the 10th percentile in our full sample of CMBS loans. When the debt 

yield and DSCR are very low, it may suggest that the property is not currently 

stabilized—even if it may be anticipated to be shortly. Since our model uses the 

property’s underwritten cap rate as an input, including non-stabilized properties 

would distort our implied risk estimate. We are left with 48,468 observations, 

which we use throughout our empirical analysis in the paper. 

B. Adjustment for capital market liquidity dynamics 

One limitation of our mortgage valuation model is that it incorporates only 

two dynamic factors: the short interest rate process and the property value process. 

However, in practice, Christopoulos (2017) shows that mortgage pricing is also 

afected by a time-varying liquidity premium. Therefore, without appropriate 

correction, our model would attribute an increase in primary CRE mortgage rates 

due to a higher liquidity premium to increased credit risk, which would cause an 

upward bias in our volatility estimates. 

We take the liquidity premium into account by adjusting loan rates before 

the model-based property valuation step. Specifcally, we create a monthly time 

series of the CMBS liquidity spread by taking the value-weighted efective yield of 
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securities in the ICE BofA 0-to-3-Year AAA U.S. Fixed-Rate CMBS Index minus 

the yield of zero-coupon U.S. Treasury securities with the corresponding efective 

(i.e., option-adjusted) duration. We then adjust the mortgage rate for each loan 

by the prevailing liquidity spread as follows: 

(1) radj = robserved − (CMBS spread − 120bp), 

where 120 basis points is the median value of the CMBS yield spread defned 

above. Figure 3 shows the yield spread and the number and market value of the 

CMBSs with the shortest duration. Although this adjustment leaves a constant 

baseline level of liquidity premium embedded in mortgage rates, the remaining 

upward bias should permit relative comparisons of perceived property risk over 

time based on our model-implied volatilities. 

Figure 3. Statistics for 0-to-3-year AAA fixed-rate commercial mortgage-backed securities 

This fgure shows quarterly aggregates from 1998 to 2022 for the commercial mortgage-backed 
securities (CMBSs) constituting the ICE BofA 0-to-3-Year AAA U.S. Fixed-Rate CMBS Index. UST yield 
spread is defned as the basis point (bp) diference between the value-weighted mean efective yield of the 
index constituents over the yield of the corresponding zero-coupon U.S. Treasury security with maturity 
equal to the value-weighted mean efective duration of the index constituents. 
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IV. Implied volatility estimation and diagnostics 

Appendix B describes the two-factor model (with disaster risk) that we use 

to estimate implied asset volatility, which we then use as a measure for perceived 

property risk. The model ignores correlations between U.S. Treasury yields and 

property values. Although there is no standard way to measure property risk in 

the presence of market frictions and incompleteness, our implied volatility estimate 

is a sensible proxy measure of risk perception.12 

Figure 4 shows diferent implied volatility estimates based on our model. The 

frst IV estimate makes no liquidity adjustments to mortgage rates and does 

not consider the efect of prepayment options. The second IV estimate allows 

for optimal prepayment in the presence of contractual penalties. Save for 2012, 

the presence of prepayment penalties makes little diference in implied volatility. 

This is because prepayment penalties, which are ubiquitous in the CRE mortgage 

market, are usually sufciently punitive to render the value of a prepayment 

option second-order in mortgage valuation. Notably, given missing data problems 

(see Appendix A for further details), ignoring prepayment options in our model 

has the advantage of permitting a larger data set. The third IV estimate applies 

the liquidity adjustment to mortgage rates discussed in Section III.B and ignores 

prepayment options. Adjusting rates for mortgage market liquidity has a profound 

efect on the implied measure of property risk. Therefore, because of concerns 

raised earlier about risk mismeasurement, we use the liquidity-adjusted implied 

volatilities throughout our empirical analysis in the paper. 

Figure 5 depicts the distribution of implied volatilities calculated using liquidity 

adjustments (and no prepayment options). The time series mean (median) is 20% 

(19%) and the standard deviation is 7.5%. The time variation in IVs is pronounced 

and corresponds to shifts in the entire distribution, which suggests that perceived 

property risk changes systematically over time. It is tempting to expect this time 

series variation to coincide with property market cycles, but that need not be the 

case because risk perceptions and liquidity on the credit market also afect the 

12Contingent claims models, such as the one we use, assume that a risk-neutral pricing paradigm can 
be justifed when one is able to replicate contingent claims. Clearly, this assumption does not hold in 
illiquid real estate asset markets. Conceptually, relying on the risk-neutral valuation methodology is 
similar to assuming the normality of unobserved shocks in a linear fltering problem. We can acknowledge 
the limitations of our methodology and attempt to provide validity or robustness tests for the approach, 
but our estimate is ultimately a proxy for, rather than actual, lender-perceived property risk. 
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Figure 4. Sample means of implied volatility estimates over time 

This fgure shows the cross-sectional means of the estimated model-implied volatilities of commercial real 
estate mortgage loans in our sample over time. The sample contains fxed-rate, single-property loans, 
with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial 
mortgage-backed securities. The implied volatilities are estimated using the two-factor model described 
in Appendix B. There are three batches of estimates: a baseline batch without prepayment penalties 
or market liquidity adjustment, a batch with prepayment penalties, and a batch with market liquidity 
adjustment. The market liquidity adjustment process is explained in Section III.B. 
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property market equilibrium. For example, during times of low perceived risk 

and high liquidity in credit markets, more properties meet lenders’ and borrowers’ 

criteria for fnancing. Hence, the efect of credit market cycles is also refected in 

CRE loan terms and, ultimately, in our volatility estimates. 

Indeed, the period with the lowest average IV is 2003–07, which coincides with 

the period of the greatest number of CMBS loan originations (Figure 2) and liquid 

credit markets. Meanwhile, IVs in 2008–10 are likely biased downward because 

lenders extended credit only to the safest properties as credit markets dried up 

(Figure 3). By contrast, the highest IVs come from 2001 and 2017–19, which are 

periods characterized by relative liquidity in credit markets. Such high IVs are a 

function of higher-than-average perceived property risk in the aggregate as well as 

an increased willingness by lenders and borrowers to fnance riskier assets. 
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Figure 5. Sample quartiles of implied volatilities over time 

This fgure shows the cross-sectional quartiles of the estimated model-implied volatilities of the commercial 
real estate mortgage loans in our sample over time. The sample contains fxed-rate, single-property loans, 
with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial 
mortgage-backed securities. The implied volatilities are estimated using the two-factor model described in 
Appendix B, applying the market liquidity adjustment explained in Section III.B. For lack of observations, 
the quartiles cannot be estimated in 2009, when the commercial real estate mortgage market dried up. 
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A. Structural determinants of implied volatility 

One potential critique of our use of implied volatility as a proxy for perceived 

property risk is the claim that lenders were risk insensitive when setting CRE 

loan spreads pre-GFC. In particular, our IVs might capture something other 

than property risk in the run-up to the GFC. For instance, pressure to originate 

for fees during the height of CDO issuances could have spurred competition for 

originating CMBS loans, resulting in exceptionally low mortgage rates, which do 

not accurately refect the true risk of the underlying properties. 

We address this critique, and validate the conjecture that implied volatility 

is related to structural determinants of property risk, by investigating the pre-

and post-GFC drivers of IV and verifying whether relevant macroeconomic and 

property-level risk indicators contributed similarly to risk perceptions over time. 

Table 4 examines the pre- and post-crisis relationship between IV (the dependent 
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variable) and various structural variables, such as state GDP, real estate sector 

GDP, unemployment rate, and income per capita as well as property size and age. 

Property and interacted state and time fxed efects are included. Property age, 

state GDP, and state employment rates are positively correlated with risk, 

consistent with the fndings in Fisher et al. (2022) that urban density is associated 

with higher property market risk. Controlling for these variables, we fnd that 

property size and state income levels are negatively related to risk. Importantly, 

almost every coefcient that is signifcant post-GFC is also signifcant pre-GFC 

and has the same sign. If anything, the marginal efects of these variables on IV 

are stronger before the crisis than after it. 

Table 4—Marginal effects of structural variables on implied volatility (%) 

This table shows the estimated marginal efects of relevant local macroeconomic and property-specifc 
variables on the estimated model-implied volatilities of commercial real estate mortgage loans in our 
sample. The sample consists of fxed-rate, single-property loans, with debt yields over 7% and debt service 
coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The marginal 
efects are estimated on subsamples before and after the Global Financial Crisis (GFC), using a linear 
regression model with the logarithm of implied volatility as dependent variable. The model includes 
loan originator, property state, and property type-quarter of origination fxed efects. Standard errors 
are double clustered by state and quarter. The implied volatilities are estimated using the two-factor 
model described in Appendix B, applying the market liquidity adjustment explained in Section III.B. 
Local macroeconomic variables are measured at a quarterly frequency and obtained from the Bureau of 
Economic Analysis. “GDP in sector” stands for the gross domestic product of the real estate industry. 

Pre-GFC Post-GFC 
100 × Log of state real GDP (USD mm) 0.008∗ 0.009∗∗ 

100 × Log of state real GDP in sector (USD mm) 0.012 −0.002 
100 × Log of state income per capita (USD) −0.045∗∗ −0.027∗∗∗ 

State unemployment rate (%) −0.128 −0.126∗∗∗ 

Property Age (years) 0.022∗∗∗ 0.008∗∗∗ 

100 × Log of property size (sqft) −0.010∗∗∗ −0.004∗∗∗ 

100 × Log of property size (units) −0.110∗∗∗ −0.043∗∗∗ 

Number of observations 25,493 15,869 
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 

Additional analysis, not reported here, suggests no signifcant diference 

across IVs based on whether CRE loans were issued by large U.S. banks, smaller 

U.S. banks, foreign banks, nonbank lenders, or ex-post acquired or failed lenders. 

Overall, we fnd no empirical evidence that IVs were decoupled from property 

fundamentals before the GFC, as compared to the post-GFC period. 
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V. Loan-to-value ratios and risk perceptions 

Figure 6 depicts average LTVs for each integer implied volatility “bucket” for 

loans originated in each of the four epochs described in Section II.C. As might be 

predicted by a tradeof theory of optimal leverage, across all periods, LTVs exhibit 

a strong and negative relationship with implied volatility (IV). Indeed a univariate 

linear regression of IV against LTVs in our sample yields an adjusted R2 that is an 

order of magnitude higher than a regression of IV against the other two common 

CRE mortgage underwriting metrics (debt service coverage ratios and debt yields). 

Fixing the level of risk, as proxied by implied volatility, it appears that LTVs 

were generally highest during the frst epoch (2000–2004). The only exception 

comes from loans that were perceived to be relatively low-risk (below 15% implied 

volatility), for which the most aggressive period was Epoch 2 (2005–2007), when 

CDO issuance became prevalent. Interestingly, that same much-maligned epoch is 

associated with seemingly conservative LTVs for loans perceived as higher risk 

(higher than 20% volatility), and the post risk-retention period (Epoch 4) featured 

slightly higher LTVs than the prior Epoch spanning the period from the GFC to 

2015. 

It is important to emphasize that the strong relationship depicted in Figure 6 

is not tautological. In a frictionless setting (a so-called Modigliani-Miller world), 

LTV would be arbitrary and plotting LTV against perceived property risk would 

yield no (or a random) relationship. By contrast, a theory of credit rationing 

(Jafee and Russell, 1976; Leland and Pyle, 1977) or tax-bankruptcy tradeofs 

(Leland, 1994) predicts a downward sloping relationship, which we observe in 

Figure 6. 

Figure 6 suggests diferences across time in leverage choice even after control-

ling for perceived property risk. The diferences can arise simply from variations in 

the credit rationing frontier. They can also arise from diferences in the property’s 

cap rate or other, unobserved, diferences specifc to the property. Any variable 

that can alter optimal leverage can impact observed LTVs. These may include 

the local credit environment, the marginal tax rate of local investors, capital 

expenditure expectations that are not refected in cap rates and other control 

variables. To further understand the diferences across time in the supply and 
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Figure 6. Mean loan-to-value ratios across implied volatility bins and epochs 

This fgure shows the sample means of the loan-to-value ratios (LTVs) of commercial real estate 
loans that fall into a given integer bin of model-implied volatility and were originated in a given 
time period (epoch). The sample contains fxed-rate, single-property loans, with debt yields over 7% 
and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed 
securities. Epoch choice is explained in Section II.C. The implied volatilities are estimated using the two-
factor model described in Appendix B, applying the market liquidity adjustment explained in Section III.B. 
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demand for credit against risky properties, one ought to attempt to control for 

such variables and examine how much each explains variation in LTV. 

A. Credit rationing frontier estimation and diagnostics 

In this subsection we investigate whether credit rationing limits (i.e., maximum 

LTV limits) set by lenders move in time. Our conjecture is that more aggressive 

lending practices would primarily expressed as increases to such limits. If the 

distribution of borrowers’ demand for optimal leverage is constant, then applying 

a rationing limit would result in a truncated distribution of observed LTVs, and 

the observed LTV mean would move monotonically with the truncation point. 

Thus, once a rationing frontier is identifed, a natural question to ask is how much 

variation in LTV is driven by changes to the frontier. 
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To begin, we frst attempt to identify a lending “frontier” for various IV 

levels. In other words, what is the maximum credit level that lenders are willing to 

undertake for a certain risk perception? Given the scarcity of IVs at both extremes, 

we only do this for implied volatility levels between 5% and 40%. The existence of 

a frontier can be seen through a quick visual inspection of the data. For instance, 

Figure F3 shows clustering at around 80% LTV for implied volatility in the rough 

range of 0.05 to 0.2 across multiple time periods. Using quantile regression, we 

estimate the frontier as the 95th LTV percentile within each 1 percent implied 

volatility interval (“IV bucket”) for each of the four time periods.13 

Figure 7 shows the calculated rationing frontiers by epoch across the implied 

volatility buckets. The 2005–2007 epoch stands out most in being visually diferent 

from, and generally lower than, the other three. Using a quantile regression, a 

pairwise comparison of marginal linear predictions across periods (Table 5) shows 

that the LTV frontier for this period is, on average, 4 percentage points lower 

than 2000–2004, and about 2-3 percentage points lower than both the 2008–2015 

and 2016–2020 epochs. This may be surprising given a common perception that 

lending standards were looser in the period leading up to the GFC. These results 

suggest that, on the tail end of maximum loan extension, lending standards in 

the runup to the GFC were arguably tighter after controlling for risk perceptions. 

The least signifcant diferences in frontiers occur between the two most recent 

epochs. 

Overall, our analysis of rationing frontiers does not support a narrative that 

lenders were relatively more aggressive in 2005–2007. It is possible, however, that 

lenders’ perceptions of property risk was systematically lower than what proved 

realistic, ex post. Such misperceptions would have unwittingly led to excessive 

provision of credit (e.g., extending an 80% LTV loan to a property judged to 

exhibit a property risk of 13% vol when the property was actually characterized 

by a risk of 21% vol). An alternative explanation is that originators in 2005–2007 

did not care about risk when setting mortgage rates because property risk would 

accumulate in tranches that were subsequently placed in CDOs. While plausible 

at face value, this alternative is not supported by our analysis of determinants of 

13The choice of LTV percentile where loans appear to cluster and denoting the frontier is robust to 
more sophisticated approaches, such as density discontinuity tests. 
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Figure 7. Credit rationing frontier estimates by epoch 

This fgure shows our credit rationing frontier estimates across time periods (epochs). The frontiers are 
estimated by ftting a quantile regression model for the 95th percentile of the loan-to-value ratios (LTVs) of 
commercial real estate loans that fall into a given integer bin of model-implied volatility and were originated 
in a given epoch. The estimation sample contains fxed-rate, single-property loans, with debt yields over 
7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed 
securities. Epoch choice is explained in Section II.C. The implied volatilities are estimated using the two-
factor model described in Appendix B, applying the market liquidity adjustment explained in Section III.B. 
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IV in Section IV.A and leaves unanswered why credit rationing during 2005–2007 

was substantially tighter for loans with IV greater than 20%. 

B. Quantifcation of loan-to-value ratio determinants 

Although there is no support for a looser credit rationing frontier during 

2005–2007, it is still useful to understand whether movements in the frontier, 

which could be driven by imprudent extension of credit, have signifcant impact 

on the observed distribution of LTV. After all, based on the frontier analysis, one 

could argue that the frst epoch, 2000–2004, was characterized by lending that was 

too permissive. Did that matter? In this section, we test this and, more broadly, 

seek to ask how much of the variation in LTV can be explained using economic 

fundamentals. 
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Table 5—Testing mean differences between rationing frontier estimates across epochs 

This table shows the the results of statistically testing the mean diferences between rationing frontier 
estimates across diferent time periods (epochs). The frontiers are estimated by ftting a quantile 
regression model for the 95th percentile of the loan-to-value ratios of commercial real estate loans that 
fall into a given integer model-implied volatility bin and were originated in a given epoch. The estimation 
sample contains fxed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios 
over 1.25, securitized in non-agency commercial mortgage-backed securities. Epoch choice is explained in 
Section II.C. The implied volatilites are estimated using the two-factor model described in Appendix B, 
applying the market liquidity adjustment explained in Section III.B. From left to right, the columns 
show the mean diferences (Dif.), their standard errors (Std. err.), t-statistics, and corresponding p-values. 

Frontier pair Dif. Std. err. t-stat p-value 
2005–2007 vs. 2000–2004 −0.0410 0.0022 −18.64 0.0000 
2008–2015 vs. 2000–2004 −0.0124 0.0016 −7.86 0.0000 
2016–2020 vs. 2000–2004 −0.0245 0.0016 −15.22 0.0000 
2008–2015 vs. 2005–2007 0.0286 0.0023 12.36 0.0000 
2016–2020 vs. 2005–2007 0.0165 0.0023 7.09 0.0000 
2016–2020 vs. 2008–2015 −0.0121 0.0018 −6.86 0.0000 

Denote the demand for credit by the borrower for a given observed loan 

as LT Vi. The amount of credit that is observed to be extended is cLT Vi = 

min{R(ci, b(IV i)), LT Vi}, where R(c, k) is the rationing frontier in epoch c and 

implied volatility bin k, as identifed in the previous section. We ft a censored 

linear regression (tobit) model to cLT V of the form: 

� � 
cLT Vi = max 0, min R(ci, b(IV i)), �

2(2) µtype + µs,q + oi + α(ci)IVi + β1CRSi + β2CRSi + mqγ + εi = � � � 
= max 0, min R(ci, b(IV i)), xiβ + εi 

where µtype are property type fxed efects, µs,q are quarterly time fxed efects and 

state/county fxed efects, oi are originator fxed efects, IV is implied volatility 

(with epoch-specifc coefcients), CRS is the cap rate spread over the 10-year 

U.S. Treasury yield, and ε ∼ N (0, σε 
2) is the model noise term.14 Additionally, 

14The cap rate spread over the 10-year yield is a measure of the cap rate net of the risk-free rate. 
Leland (1994) shows that optimal LTV should decline with cap rate. The intuition is that, under the 
risk-neutral measure, all assets grow at the same rate (the risk-free rate) so an asset that reinvests income 
will grow more than an asset that distributes income. Correspondingly, a slower-growing asset is more 
likely to default at loan maturity. We use net cap rate because interest rates experienced a secular decline 
between 2000 and 2020, accompanied by a commensurately declining property cap rate. 
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mq is a vector of quarterly macro-level variables that we include in model 

specifcations without time fxed efects. 

Table 6 shows the results of the tobit regression and the strong negative 

relationship between LTV and IV. Strictly on its own, and with a fxed slope 

coefcient, IV explains two thirds of the variation in LTV across time. Controlling 

for quarterly time fxed efects and property type fxed efects, 2005–2007 emerges 

as the epoch with the greatest sensitivity to IV. This relationship holds even as loan 

originator fxed efects for the 111 originators in our sample are taken into account, 

suggesting that individual originators, including those that systematically overstate 

property fnancials as documented in Grifn and Priest (2023), are not (on average) 

driving much of the variation in the LTV-IV relationship. The property’s cap rate 

is highly signifcant and appears with the predicted negative sign (Leland, 1994), 

but only once we control for time, property, and state fxed efects. The CMBS 

yield spread of short-term AAA CMBS bonds over treasuries of equivalent maturity 

proxies for illiquidity in the mortgage market and explains a substantial portion 

of the time-series variation in the data. Viewed as a proportional cost of fnancing, 

the presence of illiquidity should negatively impact the choice of optimal leverage 

and this is consistent with the sign of its coefcient in Table 6. 

Using the censored linear model coefcient estimates, we conduct a counter-

factual analysis, investigating the efect of changing LTV determinants over time. 

In particular, we examine the efect of shifts in the rationing frontier across epochs 

on LTVs. To this end, we estimate counterfactual LTVs, denoted as cLT V ∗ , 

setting certain independent variables in the model constant over time. Formally, 

for each loan i, we estimate counterfactual outcomes n o� � �∗ ˆ σ2 ∗ (3) cLT V ∗ = E max 0, min R(ci , b(IV i 
∗ )), LT V ∗ | cLT Vi, β, ˆε , x ,i i 

where cLT V is the observable, cLT V ∗ is the censored counterfactual, and LT V ∗ 

is the latent counterfactual LTV of the loan, β̂ and σ̂2 are the coefcient estimatesε 
∗and the noise variance estimate from the 8th model specifcation in Table 6, and x 

is the vector of independent variable values we use for the calculation of a certain 

counterfactual scenario. Depending on the observed relation of cLT V and the 
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Table 6—Estimation results of censored linear regression for the loan-to-value ratio 

This table shows the estimation results of the censored linear regression model defned in Equation (2). 
The estimation sample contains fxed-rate, single-property loans, with debt yields over 7% and debt service 
coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The dependent 
variable is the loan-to-value ratio, and IV stands for the model-implied volatility estimate for sample loans. 
The implied volatilites are estimated using the two-factor model described in Appendix B, applying the 
market liquidity adjustment explained in Section III.B. The columns show diferent model specifcations 
with an expanding set of explanatory variables and fxed efects included. Standard errors are clustered 
by the quarter of loan origination and reported under the corresponding coefcient estimates in parentheses. 

(1) (2) (3) (4) (5) (6) (7) (8) 
IV -1.28 

(0.05) 
2000–2004 # IV -1.23 -1.21 -1.46 -1.40 -1.39 -1.38 -1.16 

(0.05) (0.05) (0.07) (0.06) (0.06) (0.06) (0.04) 
2005–2007 # IV -1.37 -1.32 -1.68 -1.64 -1.61 -1.64 -1.42 

(0.05) (0.07) (0.03) (0.03) (0.03) (0.03) (0.06) 
2008–2015 # IV -1.37 -1.34 -1.16 -1.29 -1.27 -1.26 -1.17 

(0.05) (0.06) (0.03) (0.03) (0.03) (0.03) (0.04) 
2016–2020 # IV -1.27 -1.25 -1.23 -1.31 -1.29 -1.28 -1.25 

(0.04) (0.05) (0.03) (0.03) (0.03) (0.03) (0.04) 
Caprate spread 0.15 -0.07 -0.20 -0.40 -0.43 -0.14 

(0.19) (0.13) (0.12) (0.12) (0.12) (0.16) 
CMBS yield spread -4.62 

(0.73) 
UST 10yr yield 0.31 

(0.37) 
Time (quarterly) x x x 
Property type x x x x x 
Loan originator x x x x 

Property state x 
Property state × Time x 
Property county x 

Generalized R2 0.61 0.62 0.63 0.71 0.73 0.74 0.76 0.71 
Number of observations 45,917 45,917 45,917 45,917 45,917 45,878 45,878 45,779 

rationing frontier R, the expression in Equation (3) becomes  � � � ∗ ̂ ˆmax 0, min R∗, cLT Vi + (x β − xiβ) if cLT V i < Ri,i i
(4) cLT Vi 

∗ = n � � �o R∗E max 0, min i , LT V ∗ if cLT Vi >= Ri,i 

∗where Ri = R(ci, b(IVi)) is the original rationing frontier, R∗ = R(ci , b(IVi 
∗))i 

is the rationing frontier in the counterfactual scenario, and LT V ∗ is the latenti 

counterfactual LTV of the loan, which follows the truncated normal distribution 
∗ ̂  σ2 ∗ ̂ ˆβ, ˆε ) with lower bound LB = R + (x β − xiβ).NTR(xi i 
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In Figure 8, we plot the mean LTV in each year of the original data set 

(Panel A) and for various counterfactual data sets (Panels B to F). The original 

data clearly exhibits a secular decline of LTVs over the sample period. However, 

this trend disappears in Panel B, which uses a counterfactual data set where IV for 

each loan is fxed at its sample mean (20%). Further setting the cap rate spread 

to its sample mean of 3.7% (Panel C) does not make much diference (consistent 

with the estimate in Figure 8, column 8). Fixing the CMBS yield spread does 

appear to reduce the time-series variation (Panel D) while fxing the US treasury 

10-year treasury yield makes little impact (Panel E). Perhaps most importantly, 

fxing the rationing frontier to correspond to the frst epoch (2000–2004) appears 

to have little impact on distribution of LTV time series means (Panel F). Recalling 

that the frst epoch features the most permissive rationing frontier and the second 

the least, one would expect to see a large diference in the 2005–2007 data when 

moving from Panels E to F. This result suggests that shifts in the rationing frontier 

have little efect on the distribution of LTVs. 

Table 7 compares the annual counterfactual means throughout the four epochs 

and shows that they are statistically distinct. This means there is still statistically 

signifcant remaining variation between the epochs after controlling for IV, cap 

rate, CMBS spread, U.S. Treasury yield, and changes in the credit rationing 

frontier. That said, the remaining time variation does not clearly fall into a 

pattern coinciding with macro events and may correspond to unobserved demand 

factors in the market for CRE loans. Moreover, after controlling for these infuences, 

the diferences in mean LTV are economically small: Less than 3% across all three 

epochs in Regression 6 of Table 7. Even more interesting is that the unexplained 

average diference between Epochs 1 and 4 as well as the diference between Epochs 

2 and 3 are approximately 1% or less. 

It is clear from the adjusted R2 in Table 6 as well as the counterfactual LTVs 

in Figure 8 that the frst order determinant of LTV in the sample is the perceived 

property risk. To provide a sense of the marginal contribution that the explanatory 

variables provide each sample year, we sequentially decompose the variance of 
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Table 7—Actual and counterfactual means of loan-to-value ratios across epochs 

This table shows the means of the actual (Column 1) and counterfactual (rest of the columns) loan-to-value 
ratios of commercial lean estate loans in the sample across time periods (epochs). The sample contains 
fxed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, 
securitized in non-agency commercial mortgage-backed securities. The counterfactual loan-to-value ratios 
are estimated by applying Equation (3) and using the 8th censored linear model specifcation in Table 6. 
Each regression, (2)-(6) incrementally fxes the values of various explanatory variables. US10 stands 
for the 10-year zero-coupon U.S. Treasury yield, while IV and CRS stand for model-implied volatility 
and capitalization rate spread over the US10, respectively. CMBS stands for the market liquidity 
spread defned in Section III.B. Robust standard errors are reported in parentheses. At the bottom, 
F-statistics are reported for the joint mean equality tests across epochs 1 to 4 and epochs 2 to 4, respectively. 

Epoch (1) (2) (3) (4) (5) (6) 
2000–2004 68.8 69.4 69.8 69.7 69.1 69.1 

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 
2005–2007 68.7 67.1 68.1 67.1 66.5 66.8 

(0.1) (0.0) (0.0) (0.0) (0.0) (0.0) 
2008–2015 66.8 66.2 66.6 67.3 67.6 67.8 

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 
2016–2020 62.8 67.6 68.2 67.8 68.1 68.4 

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 
IV = 20% x x x x x 
CRS = 370bp x x x x 
CMBS = 120bp x x x 
US10 = 3.2% x x 

Frontier set to epoch 1 level x 

Wald F Stat. of 1–4 equality 587.7 430.4 438.9 403.2 368.1 300.1 
Wald F Stat. of 2–4 equality 711.4 109.1 224.1 20.9 175.9 160.9 

Number of observations 47,616 45,779 45,779 45,779 45,779 45,779 

LTV in the sample into components of the form � 
(5) compn,t = Cov cLT Vt, cLT Vt 

∗ |(x1,...,xn−1)=(x̄1,...,x̄ n−1)�. � � 
−cLT Vt 

∗ |(x1,...,xn)=(x̄1,...,x̄ n) V ar cLT Vt , 

where cLT Vt 
∗|(x1,...,xn)=(x̄1,...,x̄ n) is the subsample of counterfactual LTVs in year 

t, generated by fxing variables x1 to xn at their sample means.15 The frst 

component is simply � �. � � 
comp1,t = Cov cLT Vt, cLT Vt − cLT Vt 

∗ |x1=x̄1 V ar cLT Vt , 

15The variable xi can be viewed as a vector, or “block”, of explanatory variables whose contribution to 
the variance is sought. This is roughly similar to an ANOVA decomposition, although components can be 
negative because the covariance is restricted to a subsample. 
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and is essentially the R-squared of regressing cLT Vt against x1 (because variation 

in the second term of the covariance only arises from variation in x1). The last 

component, compn,t, is the proportion of variance that cannot be explained with 

x1, . . . , xn. 

Panel A of Figure 9 depicts the decomposition when x1 is IV and x2 corre-

sponds to all remaining explanatory variables. Implied volatility explains between 

40% and 70% of LTV variance in any given year. The incremental contribution of 

all other independent variables to explaining variance is no more than 20% (in 

2000) and averages 10%. Of the non-IV independent variables, cap rate spread, 

originator fxed efects, and geographic fxed efects are the most important sources 

of variation. Their contributions are depicted in Panel B of Figure 9 and appear 

to be most pronounced pre-GFC and especially during the frst epoch (2000–2004). 

One might be troubled by the fact that originator fxed efects capture variation 

in LTVs in the early part of the sample. A mitigating observation is originator 

efects substantially decline in 2005–2007 relative to 2000–2004. As suggested by 

earlier analysis, variation in the rationing frontier over time plays little role. 

VI. Conclusions 

Theory (e.g., Leland, 1994) suggests that optimal leverage choice depends 

on asset and market-specifc factors. One of the most important of these is the 

risk of the underlying asset. We demonstrate that the single most important 

determinant of observed loan-to-value ratios (LTVs) in securitized commercial real 

estate loans is perceived property risk, as measured by implied volatility. On its 

own, perceived risk explains roughly two thirds of cross-sectional and time-series 

variation in LTVs. We fnd that other theoretically-motivated market-level and 

asset-specifc fundamentals also drive observed choices of LTVs, albeit explaining 

no more than an additional (roughly) 10% in variation. 

While LTVs have declined throughout our sample period (from 2000 until 

2020), this secular decline disappears once one controls for the fundamental 

factors mentioned above. Remaining time variation does not appear to refect any 

market trends. This is signifcant because LTV is commonly seen as an important 

metric of lending standards and often referenced in regulations (e.g., DiSalvo and 

Johnston, 2018). We fnd some evidence that aggregate LTVs contains information 
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about lending standards through shifting maximum LTV criteria. However, the 

shifts we identify do not support the narrative that lending standards were least 

restrictive during the run-up to the GFC. Moreover, there is little evidence changes 

in maximum LTV criteria materially impacted the distribution of LTVs in our 

sample. We do, however, fnd that the key driver of LTV choice in our data set, 

average perceived property risk, was signifcantly lower in the fve years leading 

to the GFC than at any other fve year period in the past 20 years. This raises 

the possibility that lenders and borrowers systematically underestimated property 

risk between 2003–2007, leading to more-than-warranted credit being extended 

against commercial real estate and exacerbating the subsequent market downturn. 

To the extent that ex post poor lending outcomes can be traced to systematic 

risk misperception, our work can be used to motivate the use of aggregate measures 

of market-specifc risk perceptions, like loan-implied volatility, by regulators and 

policymakers. 
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Figure 8. Means of actual and counterfactual loan-to-value ratios over time 

This fgure shows the means of the actual (Panel A) and counterfactual (rest of the panels) loan-to-value 
ratios of commercial lean estate loans in the sample over time, with 99% confdence intervals. The sample 
contains fxed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 
1.25, securitized in non-agency commercial mortgage-backed securities. The counterfactual loan-to-value 
ratios are estimated by applying Equation (3) and using the 8th censored linear model specifcation in 
Table 6. Panels B to F incrementally fx the values of various explanatory variables. UST stands for 
the 10-year zero-coupon U.S. Treasury yield, while IV and CRS stand for model-implied volatility and 
capitalization rate spread over the UST, respectively. 

(a) Actual sample means (b) Setting IVs to 20% 
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Figure 9. Model-based variance decomposition of loan-to-value ratios over time 

This fgure shows the model-based variance decomposition of the loan-to-value ratios (LTVs) of 
commercial lean estate loans in the sample over time. The sample contains fxed-rate, single-property 
loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency 
commercial mortgage-backed securities. The variance decomposition applies the methodology described 
in the text (see Equation (5)), measuring the contribution of each variable to the variance of LTV in the 
context of the censored linear model defned in Equation (2). More specifcally, LTV is modeled using the 
8th censored linear model specifcation presented in Table 6. Panel A decomposes the variance of LTV 
into the contribution from implied volatility, other model variables, and residual variation. Panel B 
presents the variance contribution of the three most relevant model variables other than implied volatility. 
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Appendix A: Data construction process 

The initial data set consists of 171,421 loans. 

• We eliminate loans in deals originated by Freddie Mac or Fannie Mae. Both 

institutions are heavily involved in afordable housing, senior housing, and 

other subsidized projects. The pricing of such loans may not fully refect the 

market perception of risk. Not all of their loans are for subsidized projects, 

but to our knowledge there is no efcient way to distinguish them from 

others. 

• We eliminate loans with missing key variables such as origination date, 

maturity date, coupon rate, original loan amount, underwritten NOI, and 

origination LTV. We also drop loans with unrealistic values for these 

variables.16 

• We remove a small number of loans with both defeasance and yield mainte-

nance penalties (our model is not set up to take more than one prepayment 

penalty), more than three call protection options, and loans with an ambigu-

ous call protection designation, such as “prepayment penalty.” 

• We have a number of loans for which the call protection lengths plus seasoning 

do not add up to the loan term. We have 326 such loans which undershoot the 

loan term and 6,908 which overshoot the loan term. When they undershoot, 

we simply extend the last call protection period. When they overshoot, we 

start subtracting from the last call protection type, then the second to last, 

then the frst. We end up with 3,506 loans for which the last call protection 

type ends up getting completely removed. We only calculate IV for these 

loans in the batches excluding prepayment. 

• Our model assumes that dividends, relative to property value, are constant 

for the life of the loan. In reality, some loans are for renovation purposes 

or fund other projects that would result in NOI increases. Such loans may 

include projected cash shortfalls during the beginning of loan life, relative to 

16We require annual interest rates to be between 1% and 25%, loan amounts to be at least $10,000, 
LTVs to be less than 100% and greater than 10%, and frst year projected NOI at origination to be less 
than the property value. 
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the required debt service. We keep only loans whose debt service coverage 

ratio is greater than 1.25, and whose debt yield is greater than 7%. 

• Our model also assumes that the property is collateral for a single loan only. 

Multiple forms of debt create potentially complicated dynamics between 

diferent creditors. We drop 1,850 multi-property loans as well as a number 

of loans in pari passu deals. 

• We drop a small number of loans with maturities longer than 12 years as 

well as those originated before 2000 and are missing zip code data. 

• NCF isn’t as well populated as NOI, so we multiply NOI by a factor of 

0.94 to match the average NCF (this is only done for our implied volatility 

calculations). 
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Appendix B: Implied volatility model 

B1. Interest rate process 

Gupta and Subrahmanyam (2005) run a horse-race among several prevalent 

pricing models and fnd that the pricing accuracy of one-factor models is compa-

rable to that of other, more complicated, models. We use two of the models they 

examine: the Hull and White (1990) (HW) and Black and Karasinski (1991) (BK) 

models. These are some of the most commonly employed term-structure models 

for pricing interest rate derivatives in practice. We modify both the HW and BK 
17models so that no more than one tree branch can be above 10% or below zero. 

This is done to ensure that risk neutral probabilities for the property price model 

are positive at property difusion volatilities as low as 3%. We note that, during 

our sample period, forward rates for a one-year zero coupon U.S. Treasury bond 

never exceed 7.5% or fall below 0%. Our bounds therefore likely refect market 

perceptions for the possible range of interest rates during the life of originated 

mortgages in our data set. 

To calibrate each month’s term structure model, yield data are obtained for 

nominal zero coupon bonds with maturities ranging from one to twelve years.18 

Data for swaptions with exercise maturity of one year, the most liquid contracts, 

are obtained from Eikon for tenors (underlying swap maturities) of one, fve, and 

ten years. Each month, we ft a HW and a BK model to the data and select the 

one that best fts the swaptions data.19 Table B1 summarizes percentage price 

accuracy across the monthly term structure models that we estimate. 

Our term structure models are generally accurate. Periods where the pricing 

error exceeds 5% are concentrated between 12/2008 to 03/2009, 09/2011 to 

12/2012, 02/2016 to 11/2016, and after 03/2020. The BK model seems to be the 

17This is achieved as follows. If the conventional HW or BK tree is consistent with the bounds, we 
employ it. Otherwise, we truncate all branches beyond the frst that cross the bound by setting their 
transition probabilities to zero. At any node for which a branch probabilities is set to zero, we solve for 
the remaining branch probabilities by enforcing the node’s expected interest rate to equal the quantity 
implied by the underlying mean-reverting process. The resulting rate volatility at edge nodes is generally 
distinct from the constant volatility elsewhere in the tree. 
18The data are taken from the Federal Reserve: https://www.federalreserve.gov/data/ 

nominal-yield-curve.htm. For the short end of the term structure, we use the 3-month U.S. Treasury 
constant maturity yield obtained from the St. Louis Fed. 
19Both HW and BK models can be made to ft any arbitrary term structure of zero coupon bonds. 
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Table B1—Term Structure Model Precision 

This table shows the accuracy of 277 “best-ftting” term structure models, which are estimated each 
month from 06/1997 to 06/2020 using zero coupon bonds and one-year swaption prices. The two models 
used for estimation are Hull and White (1990) and Black and Karasinski (1991) models. Each data point 
corresponds to the root of the weighted mean of squared pricing errors (i.e., percentage accuracy) from a 
single month’s term structure model. 

Statistic TS Model precision 
Mean 0.0202 
SD 0.0439 
P1 0.0001 
P5 0.0003 
P10 0.0007 
P25 0.0015 
P50 0.0042 
P75 0.0149 
P90 0.0534 
P95 0.1146 
P99 0.2322 

better performer in roughly 2/3 of cases, and nearly exclusively so between 2007 

and 2015. 

B2. Property value process 

Property value follows a binomial process similar to Cox, Ross and Rubinstein 

(1979), but modifed to incorporate time-varying short-term interest rates and 

a possible catastrophic fall in value that triggers immediate default. The latter 

modifcation is motivated by the actual distribution of creditor losses. Without 

the possibility of a sudden (discontinuous) drop in property value, optimal exercise 

of the default option tends to predict relatively small loan losses relative to what is 

observed in practice. The “catastrophic” property-level event is Poisson distributed 

and assumed to arrive with annualized intensity of λ. The event is assumed to 

permanently reduce the property’s value to zero, and the rate λ is calibrated to 

our loan pool to match historical CRE loss given default (LGD) rates of 30-35%.20 

20This range is based on estimates by Esaki, L’Heureux and Snyderman (1999), Ciochetti (1997), and 
Curry, Blalock and Cole (1991). One could potentially model a distribution of catastrophic losses, but it 
is unclear to what extent this would make our results more refective of lender perceptions versus a fxed 
LGD value. See Appendix D for further methodology. 
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Let σ be the annual volatility of the value of the property. To modify the 

binomial model of Cox et al. to accommodate the hazard, we divide the usual 

“up” and “down” states by (1 − λ∆t) for each increment of time, ∆t: 

√ √ 
σ ∆t −σ ∆te e 

u = d = . 
1 − λ∆t 1 − λ∆t 

The property value changes by a factor of u or d. This keeps the expected 

price appreciation of the property, under the risk-neutral measure, independent of 

the value of λ and thus independent of the idiosyncratic event. It also has the 

virtue of setting the Arrow-Debreu prices of “up” and “down” non-disaster states 

equal to (1 − λ∆t) times their usual values in the Cox model: 

(u) erk,t∆t − d(1 − λ∆t) (d) u(1 − λ∆t) − erk,t∆t 

π = π = ,j,t,k j,t,k u − d u − d 

where we denote property state j, time t, and continuously compounded short 

interest rate state k obtained from the term-structure model. We assume that 

a one-period binomial “up” or “down” move in the property price process is 

uncorrelated with the one-period short-term interest rate process. 

Commercial properties generate income for their owners, which we incorpo-

rate by assuming that the property pays a constant annual “dividend” rate δt 
corresponding to the property’s ratio of net cash fow (NCF) to total appraised 

property value at the time of mortgage origination.21 We include the dividend in 

our property value formulation, with the exception of origination, where property 

value is equal to appraised value.22 We defne “up” and “down” “cum-dividend” 

property value Vj,t+1 for all non-origination periods t ∈ {1, ..., T − 1} recursively 

as follows: 

Vju,t+1 = uVj,t(1 − δt∆t) Vjd,t+1 = dVj,t(1 − δt∆t). 

21We use NCF instead of net operating income (NOI), as NCF subtracts CapEx and CapEx reserves 
and may be a better measure of actual cash fow. 
22We assume that the property value at mortgage origination is calculated after cash fow from 

operations is distributed. 
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B3. Valuation of commercial real estate mortgages 

Mortgage terms comprise the LTV (or, equivalently, the amount borrowed), 

time to maturity, and the amortization schedule. Together with a complete 

specifcation of the property and interest rate model parameters, the mortgage 

terms imply a fair-market mortgage rate that can be calculated by setting the 

present value of the mortgage obligation to the amount borrowed. In practice, 

contract mortgage rates are observed but the underlying property volatility, σ, is 

unobserved. We therefore solve for the implied asset volatility that sets the present 

value of the mortgage obligation to the amount borrowed given the observed 

mortgage rate. 

We denote property value Vj,t,k (Vj,t = Vj,t,k since property value is indepen-

dent of interest rate movement), and corresponding equity and debt values Ej,t,k 

and Dj,t,k. We allow for interest-only or amortizing mortgage payment schedules 

(or a combination of these). We denote the remaining mortgage balance Bt, and 

fxed mortgage payment or coupon ct (Bt remains constant during an interest-only 

period). As in Cox et al., it is easiest to defne our model by working backwards 

from maturity. Similar to Merton (1974), we defne borrower equity and debt at 

maturity T : 
Ej,T,k = max(0, Vj,T − (BT + cT )) 

Dj,T,k = min(Vj,T , BT + cT ). 

These follow from the assumption of “ruthless” default: the borrower will 

default if the property value falls below the debt value. It is worth emphasizing 
23that the Modigliani-Miller value additivity holds: Dj,t,k + Ej,t,k = Vj,t,k. In 

other words, we assume no dead-weight cost of default.24 Note that there is 

no prepayment or dividend payment at maturity. For each non-maturity and 

non-origination period t ∈ {1, ..., T − 1}, the following equations determine the 

23See Appendix C for proof that M&M holds at all periods t. 
24We opt to ignore dead-weight cost of default because we do not correspondingly model tax benefts 

of debt or investors with heterogeneous private values; if mortgage debt only came with costs and no 
benefts, no rational investor would fnance a property with mortgage debt. 
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borrower’s value of equity and debt: � �h i� �−rk,t∆t ˜Ej,t,k = max 0, δt∆tVj,t,k − ct + e E Et+1 , Vj,t,k − ct − Bt − Pj,t,k 
j,t,k � �h i� � 

Dj,t,k = min Vj,t,k, ct + e −rk,t∆t E D̃ 
t+1 , ct + Bt + Pj,t,k , 

j,t,k 

where Ej,t,k[Ẽ 
t+1] and Ej,t,k[D̃ 

t+1] represent risk-neutral expected values for equity 

and debt and Pj,t,k is the prepayment penalty. The terms in each equation 

represent values for default, continuation, and prepayment options, respectively. 

For further clarity, risk neutral expected values for X ∈ {E, D} are defned as 

follows: h i h i 
(u) (u) (m) (d)E X̃ 

t+1 = πj,t,k ik,t Xju,t+1,ku + ik,t Xju,t+1,k + ik,t Xju,t+1,kd + 
j,t,k h i 

(d) (u) (m) (d)
πj,t,k ik,t Xjd,t+1,ku + ik,t Xjd,t+1,k + ik,t Xjd,t+1,kd , 

(u) (m) (d)
with i , and i being interest rate up, middle, and down state proba-k,t , ik,t k,t 

bilities. In the initial origination period t = 0, we take the values of equity 

and debt to be their continuation values: E0 = (e
−r0∆t) E0,0,0[Ẽ 

t+1] and D0 = 

(e−r0∆t) E0,0,0[D̃ 
t+1] (we assume no mortgage coupon payment at origination and 

no dividend as noted above). After inputting all given mortgage values, we 

calculate an annual implied volatility fgure σ such that D0 matches the given 

contract loan amount. 

Prepayment rules are specifed in the mortgage covenant, and usually vary 

by time period in the mortgage. For instance, a common feature is a prepayment 

lockout of several months when prepayment is not allowed, followed by a lengthy 

period where prepayment is allowed but with penalties (usually defeasance or yield 

maintenance), followed by another shorter period where prepayment is allowed 

without penalties (the “open” prepayment period). These periods sum to the 

length of the mortgage. We model this as follows: we remove the prepayment 

option during the lockout period, explicitly model defeasance or yield maintenance 

during penalty periods,25 and set Pj,t,k equal to zero during open periods. 

25See Appendix E for exact methodology. 
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Appendix C: Proof of Modigliani & Miller additivity 

We would like to show that the Modigliani–Miller additivity Ej,t,k + Dj,t,k = 

Vj,t,k holds for all t ∈ {0, ..., T }. 

Part 1 of Proof 

We begin by demonstrating that Vj,t,k = δt∆tVj,t,k + (e−rk,t∆t) Ej,t,k[Ṽ 
t+1] for 

t ∈ {1, ..., T − 1}. We redefne the following (note that Vj,t = Vj,t,k since property 

value is independent of interest rate movement): 

Vju,t+1,k = uVj,t,k(1 − δt∆t) 

Vjd,t+1,k = dVj,t,k(1 − δt∆t) 

  for t ∈ {1, ..., T − 1}. 

ih�
Ṽt+1 

−rk,t∆tNow we use these to show that Vj,t,k = δt∆tVj,t,k + e Ej,t,k : 

ih�−rk,t∆t ˜E Vt+1δt∆tVj,t,k + e 
j,t,k � h (u) (d)−rk,t∆t π + π 

i 
= δt∆tVj,t,k 

 
= δt∆tVj,t,k 

Vju,t+1,k Vjd,t+1,k+ e j,t,k j,t,k � h i 
  

dVj,t,k (1 − δt∆t)
(u) (d)−rk,t∆t uVj,t,k (1 − δt∆t)π π+ +e j,t,k j,t,k 

� � (u) (d)−rk,t∆t πj,t,ku + π 
� 

+ (1 − δt∆t)= Vj,t,k δt∆t de j,t,k | {z 
rk,t ∆t 

} 
(No Arbitrage) = e � 

= Vj,t,k δt∆t + (1 − δt∆t) e 
��−rk,t∆t)(e rk,t∆t 

= Vj,t,k [δt∆t + 1 − δt∆t] = Vj,t,k. 

Part 2 of Proof 

At maturity, T , M&M clearly holds (Ej,T,k + Dj,t,k = Vj,T,k): 

Ej,T,k = max(0, Vj,T − (BT + cT )) 

Dj,T,k = min(Vj,T , BT + cT ). 
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Now we show that M&M holds at any arbitrary time t ∈ {1, ..., T − 1}. 
Assuming Ej,t+1,k + Dj,t+1,k = Vj,t+1,k (true for t + 1 = T ) and using induction: � �h i� �−rk,t∆t ˜Ej,t,k = max 0, δt∆tVj,t,k − ct + e E Et+1 , Vj,t,k − ct − Bt − Pj,t,k 

j,t,k � �h i� �−rk,t∆t ˜Dj,t,k = min Vj,t,k, ct + e E Dt+1 , ct + Bt + Pj,t,k . 
j,t,k 

By hypothesis, Ej,t+1,k + Dj,t+1,k = Vj,t+1,k. So the continuation state value 

of date t equity = h i� � 
e −rk,t∆t ˜δt∆tVj,t,k − ct + E Et+1 

j,t,k � i�h h i� � � �−rk,t∆t ˜ −rk,t∆t ˜= δt∆tVj,t,k + e E Vt+1 −ct − e E Dt+1 
j,t,k j,t,k | {z } 

=Vj,t,k by Result 1 h i� �−rk,t∆t ˜= Vj,t,k − ct − e E Dt+1 . 
j,t,k 

So, � �h i� �−rk,t∆t ˜Ej,t,k = max 0, Vj,t,k − ct − e E Dt+1 , Vj,t,k − ct − Bt − Pj,t,k 
j,t,k    h i � � −rk,t∆t ˜= Vj,t,k + max −| V{zj,t,k}, −ct − e E Dt+1 , −ct − Bt − Pj,t,k . j,t,k | {z }| {z }−xj,t,k −zj,t,k 

−yj,t,k 

Therefore: 

Ej,t,k + Dj,t,k = Vj,t,k + max(−xj,t,k, −yj,t,k, −zj,t,k)+ 

+ min(xj,t,k, yj,t,k, zj,t,k) = Vj,t,k. 
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We can easily show M&M holds at t = 0 as well. Taking the appraised 

property value at origination S0, we divide by (1 − δt∆t) to get V0. 

−r0∆t) [ ˜E0 = (e E Et+1] 
0,0,0 

−r0∆t) [ ˜D0 = (e E Dt+1] 
0,0,0 

S0
V0 = ⇔ S0 = V0 − δt∆tV0. 

(1 − δt∆t) 

Using the continuation values of equity and debt for t ∈ {1, ..., T −1} referenced 

above and removing the dividend δt∆tV0 and coupon ct, we get: 

−r0∆t) [ ˜E0 = S0 − (e E Dt+1] 
0,0,0 

−r0∆t) [ ˜ −r0∆t) [ ˜E0 + D0 = S0 − (e E Dt+1] + (e E Dt+1] = S0. 
0,0,0 0,0,0 
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Appendix D: Loss given default 

We defne LGD at each default node j, t, k as follows: 

Vj,t,k 
LGDj,t,k = 1 − . 

ct + Bt 

For each loan in our sample, we obtain an expected LGD fgure based on a 

Monte Carlo simulation run 10,000 times. To do this, we randomly determine 

property and interest rate movements by weighting these choices by their respective 

risk neutral probabilities. Upon reaching a default node, the simulation stops 

and records LGD for simulation number i as LGDi = LGDj,t,k. If no default 

occurs, LGDi = 0. With probability λ∆t, a catastrophic property loss happens 

(the risk neutral “up” and “down” property probabilities sum to 1 − λ∆t) and 

default occurs with LGDi = 1. So expected LGD for each loan l is: 

� � 
Σ10000eLGDl = i=1 LGDi /10000. 

Appendix: Prepayment penalties 

We use standard defnitions for yield maintenance and defeasance, but modifed 

to ft our term structure models. 

The basic principle of defeasance is that the lender is losing a spread when 

the borrower refnances and requires the risk-free present value of that spread as a 

penalty. To mimic this spread, we use our term structure calculations to create a 

portfolio of risk-free assets (in our case, zero coupon bonds) with the same cash 

fows. The calculation for any interest rate state k, t is as follows: ! 
T −tX 

Defk,t = mt+i ZCBk,t,t+i − Bt, 
i=1 

where mt+i is the mortgage payment at date t + i, ZCBk,t,t+i is the value at date t 

of a zero coupon bond with maturity at date t+i, and Bt is the remaining mortgage 

balance.26 ZCBk,t,t+i is calculated by creating a sub-tree M of all continuation 

26Note that, for simplicity, we calculate defeasance and yield maintenance up to maturity T . In practice, 
there is some heterogeneity, with some lenders calculating the penalty up to the beginning of the open 
prepayment period instead. We do not observe the exact lender method in our data, though, and the 
diferences between the beginning of the open prepayment period and maturity are usually very minor. 
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states starting at node k, t of the trinomial interest rate tree. The fnal column of 

the tree, which represents time t + i, has payofs of 1 (Mk,t+i+1 = 1 ∀k). We then 

determine the ZCB price by iterating backwards to the original node k, t so that 

the following recursive formula holds: i� � h (u) (m) (d)−rk,t∆tMk,t = e ik,t Mku,t+1 + ik,t Mkm,t+1 + ik,t Mkd,t+1 . 

Yield maintenance is slightly diferent in that it involves replacing the missing 

spread with a U.S. Treasury security or other risk-free asset of the same remaining 

term as the mortgage. This is done using the calculated zero coupon bond rates as 

follows. First we calculate a “risk-free” par bond prevailing rate for the appropriate 

maturity: ! 
T −tX 

rfk,t = (1 − ZCBk,t,T ) / ZCBk,t,t+i . 
i=1 

Then we calculate an annual “present value factor” f : � � 
fk,t = (1 − (1 + rfk,t))

−(T −t)/∆t / rfk,t. 

Finally, the yield maintenance penalty is calculated: 

YMk,t = (rm − rfk,t) fk,t Bt, 

where rm is the mortgage rate. 
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Appendix F: Additional figures and tables 

Table F1—Distribution of CRE Loans by Property Type 

This table shows the absolute frequencies of commercial real estate mortgage loans in the Morningstar 
dataset across diferent collateral property types, with an emphasis on the distinctions between single 
and multi-property loan frequencies. The sample contains fxed-rate loans, with debt yields over 7% 
and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. 

Single-Property Loans Multi-Property Loans Total 
Hotel 

Industrial 
Mixed 

Multi-family 
Ofce 
Other 
Retail 

4,808 
3,052 
0 

18,972 
9,308 
5,903 
16,084 

194 
133 
174 
491 
215 
331 
292 

5,002 
3,185 
174 
19,463 
9,523 
6,234 
16,376 

Total 58,127 1,830 59,957 

Table F2—Extreme Percentiles of Implied Volatility Estimates by Epoch 

This table shows the lowest and highest three percentiles of implied volatility by time period (epoch). 
Epoch choice is explained in Section II.C. The implied volatilities are estimated using the two-factor 
model described in Appendix B, applying the market liquidity adjustment explained in Section III.B. The 
sample contains fxed-rate, single-property loans, with debt yields over 7% and debt service coverage 
ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. 

P1 P2 P3 P97 P98 P99 
2000–2004 0.06 0.08 0.09 0.36 0.39 0.44 
2005–2007 0.08 0.09 0.10 0.32 0.34 0.39 
2008–2015 0.06 0.08 0.09 0.32 0.34 0.37 
2016–2020 0.10 0.12 0.13 0.36 0.38 0.40 

Entire sample 0.07 0.08 0.09 0.34 0.36 0.40 
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Figure F1. Distribution of Implied Volatility by Epoch 

This fgure shows the distribution of calculated implied volatility by time period (epoch). Epoch choice is 
explained in Section II.C. The implied volatilities are estimated using the two-factor model described in 
Appendix B, applying the market liquidity adjustment explained in Section III.B. The sample contains 
fxed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, 
securitized in non-agency commercial mortgage-backed securities. 
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Figure F2. Distribution of Selected CRE Loan Characteristics 

This fgure shows the distribution of debt service coverage ratios, debt yield, loan-to-value ratios, and 
loan term lengths (months) in the Morningstar dataset of fxed-rate, single-property loans securitized 
in non-agency commercial mortgage-backed securities. The sample is later cut for further analysis by 
removing debt yields under 7% and debt service coverage ratios under 1.25 for reasons explained in 
section III.A. 
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Figure F3. Association Between the LTVs and IVs of CMBS Loans Over Different Epochs 

This fgure shows the relationship between loan-level loan-to-value ratios and calculated implied volatility 
by time period (epoch). Epoch choice is explained in Section II.C. The implied volatilities are estimated 
using the two-factor model described in Appendix B, applying the market liquidity adjustment explained 
in Section III.B. The overlaid frontiers are estimated by ftting a quantile regression model for the 95th 

percentile of the loan-to-value ratios (LTVs) of commercial real estate loans that fall into a given integer 
bin of model-implied volatility and were originated in a given epoch. The samples contain fxed-rate, 
single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in 
non-agency commercial mortgage-backed securities. 
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Table F5—Marginal Effects of Explanatory Variables on IV (%) 

This table shows the marginal efects of these explanatory variables on percentage implied volatility. The 
implied volatilities are estimated using the two-factor model described in Appendix B, applying the 
market liquidity adjustment explained in Section III.B. This sample contain fxed-rate, single-property 
loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency 
commercial mortgage-backed securities. This sample excludes hotel and multi-family properties. 

Pre-GFC Post-GFC 
Property Age (Years) 0.009∗ 0.012 
100 × Log of Property Size (Sqft) -0.008∗∗∗ -0.004∗∗∗ 

Property Occupancy (%) -0.025∗∗∗ -0.072∗∗∗ 

Lead Tenant Share (%) 0.006∗∗ 0.027∗∗∗ 

Number of Observations 10,573 2,612 
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 

Table F6—Marginal Effects of Explanatory Variables on IV (%) 

This table shows the marginal efects of these explanatory variables on percentage implied volatility. The 
implied volatilities are estimated using the two-factor model described in Appendix B, applying the 
market liquidity adjustment explained in Section III.B. This sample contain fxed-rate, single-property 
loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency 
commercial mortgage-backed securities. This sample excludes the “other” property type. The market 
vacancy rate is obtained from CBRE. 

Pre-GFC Post-GFC 
Property Age (Years) 0.010∗∗∗ 0.009∗ 

100 × Log of Property Size (Sqft) -0.006∗∗∗ -0.006∗∗∗ 

100 × Log of Property Size (Units) -0.062∗∗∗ -0.070∗∗∗ 

100 × Log of Market Size (Sqft) 0.002 0.002 
Market Vacancy Rate (%) 0.051∗ 0.050 
Number of Observations 13,814 7,395 
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 
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	I. Introduction 
	Against which of these assets should one extend more credit in 2023: a suburban office or a warehouse facility leased to an e-commerce company? With the relative uncertainty surrounding work-from-home trends, the answer seems clear— but it may have been a tossup twenty years ago. This example illustrates the core motivation of our paper. Loan-to-value ratios (LTVs) are often viewed as a primary measure of underwriting standards in commercial real estate (CRE) lending.We argue that variation in observed LTVs
	-
	1 
	1 

	Jaffee and Russell 
	(1976) 
	Leland and Pyle 
	(1977) 

	Despite the clear role of risk perceptions, aggregate changes in LTV are often interpreted as changes in underwriting standards when it comes to measuring the aggressiveness of real estate lending. For instance, a 2010 Congressional Oversight Panel report the Global Financial Crisis (GFC) came to the following conclusion: 
	by Elizabeth Warren et 
	al. (2010) after 


	“The commercial real estate bubble [. . . ] resulted in the origination of a significant amount of commercial real estate loans based on dramatically weakened underwriting standards. These loans were based on overly aggressive rental or cash flow projections [. . . ], had higher levels of allowable leverage, and were not soundly underwritten.” 
	The culprits identified in the above quote are unrealistic cash flow forecasts and overly high LTVs, consistent with other assessments 
	(e.g., Levitin and Wachter, 

	Although the income-to-debt ratio and the debt service coverage ratios are also common qualifiers of CRE loan underwriting, we find that the empirical relationship between perceived property risk and LTV is stronger than the empirical relationship between property risk and these alternative ratios. 
	1

	While there is evidence to suggest that property income measures are, at times, inflated by commercial mortgage-backed securities (CMBS) originators the diagnosis of aggressive LTVs is a narrative that is more difficult to test, though it may often be conjectured. describe what they believe to be lenders pushing the limit on LTVs in a trend toward “weaker lending standards,” and claim that this tendency was especially egregious in 2006 and 2007. Meanwhile, and argue that aggregate LTVs may not provide a 
	2013). 
	(Griffin and Priest, 
	2023), 
	Jacob and Manzi 
	(2005) 
	Fabozzi, McBride and 
	Clancy (2015) 

	Wilcox 
	(2012) 
	Wilcox 
	(2018) 

	faithful portrayal of underwriting standards. 
	We provide empirical evidence that, controlling for implied ex ante perceptions of property risk, as proxied by the implied volatility (IV) of individual properties, the average LTVs of securitized CRE loans in the period 2000–04 were only about 
	1.5 percentage points higher than the average LTVs in the post risk retention rule period of 2016–20. Likewise, average LTVs in 2005–07 were similar to those in 2008–15. Differences among epochs shrink further when we control for property cap rate (cash yield) spreads over the 10-year U.S. Treasury yield. Indeed, we find that credit rationing “frontiers” (i.e., maximum LTV thresholds) were most permissive in 2000–04, and they were most restrictive in 2005–07, coinciding with the peak of collateralized debt 
	Our main contribution is demonstrating that LTVs for securitized CRE loans, throughout different economic epochs from 2000 to 2020, were largely driven by perceived property risk and market fundamentals. We calculate implied volatility using a two-factor derivative asset pricing model, which allows for standard CRE mortgage contract provisions. In the model, IV is the asset’s diffusion risk that rationalizes the loan’s interest rate given its LTV, maturity, and amortization schedule, as well as the property
	2 
	2 

	(e.g., Leland, 1994), 

	We estimate liquidity premium on the CRE mortgage market as the effective yield spread between short-term AAA-rated tranches of CMBSs and U.S. Treasury securities with equivalent maturities. 
	2

	rate and various (such as, property type and location) fixed effects helps explain an 
	additional 10 percent of LTV variation. The residual time-series variation seems to be random. Our results are in line with and who find no evidence that underwriting practices in the CRE mortgage market deteriorated in the way that they did in the residential real estate mortgage market before the GFC. Our results are also consistent with on their own, may not be informative about aggregate loan underwriting standards. 
	Driessen and Van Hemert 
	(2012) 
	Stanton and Wallace 
	(2018), 
	the position in Wilcox 
	(2012
	) and Wilcox 

	(2018) that LTVs, 

	From the collapse of the CRE market in the wake of the GFC, it is tempting to conclude that CRE loan leverage was overly aggressive before the crisis. However, after controlling for implied volatility, we find no evidence for abnormally high LTVs. What we do find is that risk perceptions were lower in 2003–07 than in any other epoch from 2000 to 2020. Hence, our findings suggest systematic shifts in perceived property risk as a compelling explanation for the growth in CRE lending in 2003–07, which fueled th
	3 
	3 


	The paper is organized as follows. Section provides theoretical background for conceptualizing the aggregate LTV as a dynamic variable that captures changes in systematic risk perceptions as well as other property and capital market attributes—even in the presence of frictions due to taxes and costs of default. academic literature and provides institutional details on the CMBS market. Section describes our data. Section analyzes our implied volatility estimates and their relationship to other measures of pr
	II 
	Section II reviews the related 
	III 
	IV 
	Section V presents 
	VI 

	There is an important distinction between aggressive loan underwriting and loan underpricing. In the former case, lenders knowingly undertake more risk than warranted by prudent practices. In the latter case, lenders falsely believe that they follow best underwriting practices. 
	3

	II. Conceptual motivation and methodological overview 
	Mortgage provision in the primary market depends on the price of liquidity in the secondary mortgage market, competition among lenders, and the availability of capital in the credit market, all of which are held fixed. Figure shows stylized mortgage offer curves for properties with different perceived risk.The mortgage offer curves are truncated beyond a certain LTV because of credit rationing due to asymmetric information and dead-weight costs of default 
	1 
	4 
	4 

	(Jaffee and Russell
	, 1976; 

	Leland and Pyle
	, 1977) 

	(Leland
	, 1994). 


	Figure 1. Stylized mortgage offer curves for properties with different risk 
	This figure shows stylized five-year zero-coupon mortgage offer curves for properties with different levels of perceived risk. Property risk is proxied by annualized asset volatility (“vol”). The vertical axis shows the mortgage spread over a zero-coupon five-year U.S. Treasury at which lenders would be willing to issue the mortgage loan given the loan-to-value ratio and the annualized asset volatility. The curves are computed using the model and incorporate a liquidity spread, which represents the price of
	Merton 
	(1974) 

	Figure
	Given the mortgage offer curve specific to the property, the borrower’s choice reduces to picking the LTV. In the model, for example, the optimal borrower’s choice is decreasing in the property’s cap rate, increasing in the owner’s 
	Leland 
	2.5

	In this stylized chart, we ignore other mortgage contract terms available to the borrower and commensurately priced by the lender, including maturity, interim coupon payments, and prepayment options. We do take such loan features into account in our empirical methodology. 
	4

	tax rate, and decreasing in asset volatility. All else being equal, a model with 
	rational agents yields equilibrium LTVs that decrease in asset volatility. 
	There are several key takeaways from the conceptual considerations above. First, time variation in aggregate LTVs may be entirely attributable to changing market fundamentals, rather than the tension between regulators and lenders or agency frictions within lending institutions. Second, in those instances where LTV limits are below the optimal leverage point for a sufficiently large number of borrowers, there would be clustering at the credit rationing frontier. Third, the frontier should decline with perce
	1 

	A. Overview of empirical approach and results 
	Our null hypothesis is that the cross section of LTVs results from borrower demand in response to rational mortgage offer curves, akin to those depicted in Under the null hypothesis, it is consistent with prudent lending to provide an infinitely elastic supply of credit at any point on the curves. Risk misperception corresponds to lending using offer curves that are systematically lower or higher than the true asset volatilities, which could be detected ex post. By contrast, aggressive lending manifests ex 
	Figure 1. 
	Figure 1). 
	5 
	5 


	In order to test the null hypothesis described above, and look for evidence of aggressive lending practices, we first estimate the implied volatility of each property underlying a sample of securitized CRE mortgages. The mortgage pricing model that we use to estimate IV captures various ex ante features of the deal, including the property’s cap rate, the loan’s term and amortization schedule, 
	Note that changes in the credit rationing frontier could result from the influence of fundamental factors, such as a systematic change in dead-weight costs of default. Therefore, identifying an epoch with a higher rationing frontier does not constitute evidence for aggressive lending practices. 
	5

	default and interest rate risk, and mortgage market liquidity.Under the null hypothesis defined above, IV measures the lender’s perceived property risk. Second, we identify the credit rationing frontier, as a function of IV, for four time periods in our sample. We confirm that, consistent with the null hypothesis, the frontier gradually declines with implied volatility in each of the four periods. 
	6 
	6 


	Next, we examine the rationing frontiers and empirically reject the narrative that lenders were more aggressive in the run-up to the GFC. We use ex ante fundamentals to explain the variation of LTVs across loans and over time, such as implied volatility, cap rate, and other property and market features that can influence mortgage offer curves and borrower demand for loans. We fit a censored (tobit) regression model for LTV, using the rationing frontier as upper bound, and conduct a counterfactual analysis. 
	What we do find is that the leading determinant of credit provision is implied volatility (perceived property risk). Importantly, this relationship is not mechanical. If borrowers randomly selected LTVs from the mortgage offer curves in then the only link between LTVs and risk perceptions would be through credit rationing, because the rationing frontier is more likely to be binding at higher IVs. This is not consistent with our result that shifts in the rationing frontier explain little of the distribution 
	Figure 1, 

	B. Literature on commercial real estate risk and mortgage implied volatility 
	We contribute to an evolving understanding of CRE asset volatility. Previous analyses use aggregate data to study CRE price dynamics. create a property value volatility index at the property type-census district level. use quarterly averages at the metropolitan 
	Ciochetti et al. 
	(2002) 
	Plazzi, Torous and Valkanov 
	(2010) 

	We also examine the possibility that prepayment options affect our results. We confirm that, because of the presence of large prepayment penalties in this market segment, they do not. 
	6

	statistical area level for broad property types and apply the to better understand the characteristics of CRE rents, cap rates, and asset returns. They find that CRE returns are related to the local regulatory environment and population density, and that expected returns are related to factors such as local population, employment, and income growth as well as construction costs. Using property-level data, we find that many of these factors are important determinants of asset volatility. 
	Campbell and Shiller 
	(1988) price-dividend decomposition 

	Studies using property-level data have shed light on the magnitude of idiosyncratic asset volatility, that is, how much higher asset volatility is than can be inferred from indexes or other area averages. calculate that, aggregated at the metropolitan statistical area-level, the standard deviation of CRE excess returns ranges from 3.7% to 6.1%, depending on the property type. By contrast, estimate the asset volatility of CMBS loans using a two-factor model. They find implied volatilities in excess of 20%—hi
	-
	Plazzi, Torous and Valkanov 
	(2010) 
	Downing, Stanton and Wallace 
	(2008) 
	Titman and Torous 
	(1989) 
	Sagi (2021) 
	7 
	7 


	The mortgage pricing model we use to estimate implied volatility builds on an extensive body of literature that applies option theoretical methods for pricing mortgage debt. Some models stipulate a partial differential equation for property value that is solved using finite difference methods Another popular method, and the one we employ, uses a binomial model for property valuation Similar to our pricing approach, many of these models incorporate default and prepayment options. However, while other models 
	(Titman and Torous, 
	1989; 
	Kau et al., 
	1995). 
	(Leung and Sirmans
	, 1990; 

	Giliberto and 
	Kau and Slawson, 
	Ling
	, 1992; Hilliard, 


	1998; Ciochetti 
	1998; Ciochetti 
	and Vandell, 1999). 

	Cox, Ingersoll and Ross 
	(1985), 

	Asset pricing models typically assume that the asset price follows a geometric Brownian motion, and thus the variance of cumulative price appreciation is linear in the length of the holding period. Consequently, as the holding period approaches zero, return volatility also approaches zero. By contrast, finds that volatility remains high even for short holding periods. He traces this phenomenon to transaction risk, finding that the return data fit well to predictions from a search model. 
	7
	Sagi (2021) 

	characteristics, such as interest-only versus amortizing payment schedules, and 
	property attributes, such as the cap rate. 
	Our analysis is closest to that of They also use a two-factor pricing model that prices the mortgage at par, albeit with the goal to examine the relationship between IVs and CMBS ratings. Similar to our approach, mortgage value in their model is a function of short rate dynamics and the property value process. By contrast, our model incorporates a richer set of loan and property characteristics, including property income and the length of the interest-only period. Finally, their analysis ends in 2006, while
	Downing, Stanton and Wallace 
	(2008). 

	C. Evolution of the commercial mortgage-backed securities market 
	The CRE loans in our data set are CMBS loans: loans originated to be pooled within Real Estate Mortgage Investment Conduit trusts that issue MBSs. CMBSs allocate risk among different tranches: the tranches least exposed to credit risk typically receive investment-grade ratings, while the tranches that absorb credit losses first are often unrated. In the past two decades, various changes in the CMBS market affected both the cost of funding and the market for riskier tranches. In particular, the investor base
	Before 2005, unrated tranches were usually held by a set of special (“B-piece”) investors, who were involved in security design, performed due diligence, and selected the servicer responsible for handling delinquencies. In the time period between 2005 and 2008, it became common practice among CMBS issuers to repackage such tranches in CRE CDOs. Rating agencies, which made (overly) optimistic assumptions about the benefits of diversification, assigned favorable ratings to many CDO tranches. Another factor af
	Duca and 
	Ling (2020) 


	of funding decreased for both commercial and investment banks, making it easier 
	for CMBS issuers to sell riskier tranches. 
	After the GFC, CMBS issuance stopped for several years and the CRE CDO market disappeared. In response to the crisis, regulators increased capital requirements for commercial banks at the end of 2010, by which time the major investment banks had been merged with commercial banks. Moreover, 
	U.S. regulatory agencies proposed Regulation RR, requiring issuers of asset-backed securities to retain at least five percent of the credit risk, with the intention of ensuring that issuer incentives are aligned with those of investors.Issuers may satisfy the risk retention requirement by holding a “vertical” piece of the issued security, which includes a portion of all tranches, a “horizontal” piece of the riskiest tranche, or a combination of the two approaches. While “qualified” CMBS issuances are exempt
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	(Flynn Jr, Ghent and Tchistyi
	, 2020). 


	Motivated by the substantive variation in the CMBS market and regulatory environment, we subdivide our sample period into the following four epochs. 
	1) 2000–04: “B-piece” investors retain the riskiest tranches of CMBSs. 
	2) 2005–07: CMBS issuers repackage portions of riskier tranches as CRE CDOs, part of which receive investment-grade ratings. Regulatory capital requirements associated with CMBS holdings decrease. 
	3) 2008–15: CMBS issuances plummet then gradually recover to pre-2005 levels. 
	4) 2016–20: The risk retention rule takes effect in December 2016. 
	These epoch boundaries are also consistent with the empirical distribution of CRE loan originations over time. Indeed, as Figure shows, the number of loan originations exhibits clear cutoffs at the epoch boundaries we use. 
	2 

	The risk retention rule was finalized in October 2014 and came into full effect in December 2016. See for more information. 
	8
	https://www.sec.gov/news/pressrelease/2014-236.html 

	Regulation RR defines a qualifying CRE loan as a fixed-rate loan with a minimum maturity of 10 years and a maximum amortization period of 25 years. Lenders must document property income for at least the previous two years. The borrower’s debt service ratio must exceed 1.25 for multifamily properties, 1.5 for leased properties, and 1.7 for all other loans. Furthermore, the combined LTVs of all loans on the property cannot exceed 70%, and the LTV of the first lien loan cannot exceed 65%. 
	9

	III. Data construction and summary statistics 
	A. Securitized mortgage loan data collection 
	Our data consist of 58,127 securitized CRE loans from the year 2000.The data are provided by Morningstar, which gathers information from public CMBS disclosures, including a rich set of loan and property characteristics. The Morningstar data include loans originated by a variety of institutions and are not dominated by a single underwriting approach. Many loans are originated by large U.S. banks, such as Bank of America and Citibank. The top ten originators also include large foreign banks, such as Deutsche
	10 
	10 


	The complete data set consists of 111,465 loans. For the purposes of our analysis, we drop loans missing key variables needed for our analysis and loans with problematic observations (see Appendix for more details). Specifically, we drop loans that have missing or wrong data for key inputs such as the date of origination, the loan interest rate, whether the loan is interest-only or amortizing, and the date of maturity. We also drop non-fixed-rate and pari passu loans, which our model does not price, as well
	A 

	The data collection process described above results in a sample of 58,127 CRE loans. We present summary statistics for these loans in Table and their corresponding cross-sectional distributions in Figure of Appendix Loans vary widely in size, from $2 million to over $2.5 billion. LTVs are generally around 70%. The debt yield, the ratio of net operating income (NOI) to loan amount at origination, varies between 7% and 15%. The debt service coverage ratio (DSCR), 
	1 
	F2 
	F. 

	Securitized CRE loans are only part of the overall CRE loan market. compare CMBS loans in the Morningstar data with portfolio CRE loans reported by large U.S. banks on the FR Y-14 form. They find that these banks are more likely to hold riskier loans, such as construction loans, in their portfolio. Portfolio loans are also more likely to have floating interest rates, shorter terms, and lower LTVs than CMBS loans. From their results, it is not clear that securitized and portfolio CRE loans differ when one se
	10
	Black et al. 
	(2017) 

	the ratio of NOI to debt servicing amount at origination, falls generally between 1.2 and 2.4. The vast majority (more than 80%) of loans are 10-year loans. 
	Table 1—Characteristics of sample commercial real estate loans 
	This table shows summary statistics for key characteristics of commercial real estate mortgage loans in our sample, containing fixed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities (CMBSs). From left to right, the columns show the number of observations and the sample mean, standard deviation, as well as the 10and 90percentiles of variables in the cross section of sample loans. At the bottom of the table, the respective spread measures represent the percentage poi
	th 
	th 

	Count 
	Count 
	Count 
	Mean 
	SD 
	P10 
	P90 

	Loan amount ($1,000) 
	Loan amount ($1,000) 
	58,127 
	11,465 
	16,694 
	2,010 
	24,260 

	Loan term (months) 
	Loan term (months) 
	58,127 
	113 
	24 
	83 
	120 

	Amortization period (months) 
	Amortization period (months) 
	58,127 
	312 
	110 
	0 
	360 

	Interest-only period (months) 
	Interest-only period (months) 
	58,127 
	21 
	35 
	0 
	60 

	Loan-to-value ratio 
	Loan-to-value ratio 
	58,127 
	0.68 
	0.11 
	0.55 
	0.79 

	Debt yield 
	Debt yield 
	58,127 
	0.11 
	0.04 
	0.07 
	0.15 

	Debt service coverage ratio 
	Debt service coverage ratio 
	58,127 
	1.69 
	0.71 
	1.18 
	2.32 

	Spread over 10-yr U.S. Treasury (pp) 
	Spread over 10-yr U.S. Treasury (pp) 
	58,127 
	1.85 
	0.75 
	0.92 
	2.78 

	Spread over 0-3-yr AAA CMBS (pp) 
	Spread over 0-3-yr AAA CMBS (pp) 
	58,127 
	1.84 
	1.17 
	0.36 
	3.32 


	Figure and Table show the distribution of observations over time and across property types. The volume of loan originations steadily increased until the GFC, fell to almost zero in 2008, and gradually recovered after 2010. The most common property types are retail and multifamily, and also a large number of loans belong to the “other” category.Hotel and industrial properties have the smallest frequency share in the sample. 
	2 
	2 
	11 
	11 


	We present summary statistics for the properties used as collateral for sample The median property is nine years old and nearly fully leased. Properties vary widely in size, from 16 thousand to 24 million sqft. Some property-level variables are unevenly populated, mostly due to heterogeneous measurement and reporting standards across property types. For instance, information on the 
	CRE loans in Table 3. 

	The “other” category consists of mini-storage and mixed-use properties representing a combination of property types such as a complex with both multifamily and retail property. 
	11

	Figure 2. Annual number of sample commercial real estate loan originations over time 
	This figure shows the annual number of commercial real estate mortgage loan originations in our sample, color coded by time period (epoch). The sample contains fixed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities. Epoch 
	choice is explained in Section II.C. 

	Figure
	Table 2—Distribution of sample commercial real estate loans across property types 
	This table shows the absolute and relative frequencies of commercial real estate mortgage loans in our sample across different collateral property types. The sample contains fixed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities. 
	Property type 
	Property type 
	Property type 
	Count 
	Share 

	Hotel 
	Hotel 
	4,808 
	8.3% 

	Industrial 
	Industrial 
	3,052 
	5.3% 

	Multifamily 
	Multifamily 
	18,972 
	32.6% 

	Office 
	Office 
	9,308 
	16.0% 

	Other 
	Other 
	5,903 
	10.2% 

	Retail 
	Retail 
	16,084 
	27.7% 

	Total 
	Total 
	58,127 
	100.0% 


	lead tenant is not collected for multifamily properties because they have many small units, each leased to a different tenant. 
	In our data filtering, we drop loans with a debt yield less than 0.07 and DSCR less than 1.25. These lower bounds correspond to standard underwriting limits (i.e., lenders are reluctant to lend if the debt yield or DSCR is too low) and fall 
	Table 3—Characteristics of sample commercial real estate loan properties 
	This table shows summary statistics for key characteristics of the properties used as collateral for commercial real estate mortgage loans in our sample at the time of loan origination. The sample contains fixed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities. From left to right, the columns show the number of observations and the sample mean, standard deviation, as well as the 10and 90percentiles of variables in the cross section of sample properties. The area of
	th 
	th 

	Count 
	Count 
	Count 
	Mean 
	SD 
	P10 
	P90 

	Property value ($1,000) 
	Property value ($1,000) 
	58,127 
	17,524 
	28,014 
	3,070 
	36,000 

	Net operating income ($1,000) 
	Net operating income ($1,000) 
	58,127 
	1,158 
	1,771 
	214 
	2,335 

	Area (1,000 sqft) 
	Area (1,000 sqft) 
	33,562 
	112.45 
	151.08 
	15.99 
	240.02 

	Age (years) 
	Age (years) 
	52,569 
	14.26 
	15.77 
	1.00 
	35.00 

	Occupancy rate 
	Occupancy rate 
	31,929 
	0.94 
	0.10 
	0.83 
	1.00 

	Lead tenant area share 
	Lead tenant area share 
	29,333 
	0.42 
	0.29 
	0.12 
	1.00 

	Lead tenant lease length (years) 
	Lead tenant lease length (years) 
	29,832 
	15.98 
	240.45 
	2.17 
	16.25 


	around the 10percentile in our full sample of CMBS loans. When the debt yield and DSCR are very low, it may suggest that the property is not currently stabilized—even if it may be anticipated to be shortly. Since our model uses the property’s underwritten cap rate as an input, including non-stabilized properties would distort our implied risk estimate. We are left with 48,468 observations, which we use throughout our empirical analysis in the paper. 
	th 

	B. Adjustment for capital market liquidity dynamics 
	One limitation of our mortgage valuation model is that it incorporates only two dynamic factors: the short interest rate process and the property value process. However, in shows that mortgage pricing is also affected by a time-varying liquidity premium. Therefore, without appropriate correction, our model would attribute an increase in primary CRE mortgage rates due to a higher liquidity premium to increased credit risk, which would cause an upward bias in our volatility estimates. 
	practice, Christopoulos 
	(2017) 

	We take the liquidity premium into account by adjusting loan rates before the model-based property valuation step. Specifically, we create a monthly time series of the CMBS liquidity spread by taking the value-weighted effective yield of 
	We take the liquidity premium into account by adjusting loan rates before the model-based property valuation step. Specifically, we create a monthly time series of the CMBS liquidity spread by taking the value-weighted effective yield of 
	securities in the ICE BofA 0-to-3-Year AAA U.S. Fixed-Rate CMBS Index minus the yield of zero-coupon U.S. Treasury securities with the corresponding effective (i.e., option-adjusted) duration. We then adjust the mortgage rate for each loan by the prevailing liquidity spread as follows: 

	(1) radj = robserved − (CMBS spread − 120bp), 
	where 120 basis points is the median value of the CMBS yield spread defined above. Figure shows the yield spread and the number and market value of the CMBSs with the shortest duration. Although this adjustment leaves a constant baseline level of liquidity premium embedded in mortgage rates, the remaining upward bias should permit relative comparisons of perceived property risk over time based on our model-implied volatilities. 
	3 

	Figure 3. Statistics for 0-to-3-year AAA fixed-rate commercial mortgage-backed securities 
	This figure shows quarterly aggregates from 1998 to 2022 for the commercial mortgage-backed securities (CMBSs) constituting the ICE BofA 0-to-3-Year AAA U.S. Fixed-Rate CMBS Index. UST yield spread is defined as the basis point (bp) difference between the value-weighted mean effective yield of the index constituents over the yield of the corresponding zero-coupon U.S. Treasury security with maturity equal to the value-weighted mean effective duration of the index constituents. 
	Figure
	IV. Implied volatility estimation and diagnostics 
	Appendix describes the two-factor model (with disaster risk) that we use to estimate implied asset volatility, which we then use as a measure for perceived property risk. The model ignores correlations between U.S. Treasury yields and property values. Although there is no standard way to measure property risk in the presence of market frictions and incompleteness, our implied volatility estimate is a sensible proxy measure of risk perception.
	B 
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	Figure shows different implied volatility estimates based on our model. The first IV estimate makes no liquidity adjustments to mortgage rates and does not consider the effect of prepayment options. The second IV estimate allows for optimal prepayment in the presence of contractual penalties. Save for 2012, the presence of prepayment penalties makes little difference in implied volatility. This is because prepayment penalties, which are ubiquitous in the CRE mortgage market, are usually sufficiently punitiv
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	volatilities calculated using liquidity adjustments (and no prepayment options). The time series mean (median) is 20% (19%) and the standard deviation is 7.5%. The time variation in IVs is pronounced and corresponds to shifts in the entire distribution, which suggests that perceived property risk changes systematically over time. It is tempting to expect this time series variation to coincide with property market cycles, but that need not be the case because risk perceptions and liquidity on the credit mark
	Figure 5 depicts the distribution of implied 

	Contingent claims models, such as the one we use, assume that a risk-neutral pricing paradigm can be justified when one is able to replicate contingent claims. Clearly, this assumption does not hold in illiquid real estate asset markets. Conceptually, relying on the risk-neutral valuation methodology is similar to assuming the normality of unobserved shocks in a linear filtering problem. We can acknowledge the limitations of our methodology and attempt to provide validity or robustness tests for the approac
	12

	Figure 4. Sample means of implied volatility estimates over time 
	This figure shows the cross-sectional means of the estimated model-implied volatilities of commercial real estate mortgage loans in our sample over time. The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The implied volatilities are estimated using the two-factor model described in Appendix There are three batches of estimates: a baseline batch without prepayment penalti
	B. 
	III.B. 

	Figure
	property market equilibrium. For example, during times of low perceived risk and high liquidity in credit markets, more properties meet lenders’ and borrowers’ criteria for financing. Hence, the effect of credit market cycles is also reflected in CRE loan terms and, ultimately, in our volatility estimates. 
	Indeed, the period with the lowest average IV is 2003–07, which coincides with the period of the greatest number of CMBS loan originations and liquid credit markets. Meanwhile, IVs in 2008–10 are likely biased downward because lenders extended credit only to the safest properties as credit markets dried up By contrast, the highest IVs come from 2001 and 2017–19, which are periods characterized by relative liquidity in credit markets. Such high IVs are a function of higher-than-average perceived property ris
	(Figure 2) 
	(Figure 3). 

	Figure 5. Sample quartiles of implied volatilities over time 
	This figure shows the cross-sectional quartiles of the estimated model-implied volatilities of the commercial real estate mortgage loans in our sample over time. The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The implied volatilities are estimated using the two-factor model described in Appendix the market liquidity adjustment explained in Section For lack of observat
	B, applying 
	III.B. 

	Figure
	A. Structural determinants of implied volatility 
	One potential critique of our use of implied volatility as a proxy for perceived property risk is the claim that lenders were risk insensitive when setting CRE loan spreads pre-GFC. In particular, our IVs might capture something other than property risk in the run-up to the GFC. For instance, pressure to originate for fees during the height of CDO issuances could have spurred competition for originating CMBS loans, resulting in exceptionally low mortgage rates, which do not accurately reflect the true risk 
	We address this critique, and validate the conjecture that implied volatility is related to structural determinants of property risk, by investigating the preand post-GFC drivers of IV and verifying whether relevant macroeconomic and property-level risk indicators contributed similarly to risk perceptions over time. Table examines the pre-and post-crisis relationship between IV (the dependent 
	We address this critique, and validate the conjecture that implied volatility is related to structural determinants of property risk, by investigating the preand post-GFC drivers of IV and verifying whether relevant macroeconomic and property-level risk indicators contributed similarly to risk perceptions over time. Table examines the pre-and post-crisis relationship between IV (the dependent 
	-
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	variable) and various structural variables, such as state GDP, real estate sector GDP, unemployment rate, and income per capita as well as property size and age. Property and interacted state and time fixed effects are included. Property age, state GDP, and state employment rates are positively correlated with risk, consistent with the findings in that urban density is associated with higher property market risk. Controlling for these variables, we find that property size and state income levels are negativ
	Fisher et al. 
	(2022) 


	Table 4—Marginal effects of structural variables on implied volatility (%) 
	This table shows the estimated marginal effects of relevant local macroeconomic and property-specific variables on the estimated model-implied volatilities of commercial real estate mortgage loans in our sample. The sample consists of fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The marginal effects are estimated on subsamples before and after the Global Financial Crisis (GFC), using a
	B, 
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	Pre-GFC 
	Pre-GFC 
	Pre-GFC 
	Post-GFC 

	100 × Log of state real GDP (USD mm) 
	100 × Log of state real GDP (USD mm) 
	0.008∗ 
	0.009∗∗ 

	100 × Log of state real GDP in sector (USD mm) 
	100 × Log of state real GDP in sector (USD mm) 
	0.012 
	−0.002 

	100 × Log of state income per capita (USD) 
	100 × Log of state income per capita (USD) 
	−0.045∗∗ 
	−0.027∗∗∗ 

	State unemployment rate (%) 
	State unemployment rate (%) 
	−0.128 
	−0.126∗∗∗ 

	Property Age (years) 
	Property Age (years) 
	0.022∗∗∗ 
	0.008∗∗∗ 

	100 × Log of property size (sqft) 
	100 × Log of property size (sqft) 
	−0.010∗∗∗ 
	−0.004∗∗∗ 

	100 × Log of property size (units) 
	100 × Log of property size (units) 
	−0.110∗∗∗ 
	−0.043∗∗∗ 

	Number of observations 
	Number of observations 
	25,493 
	15,869 


	∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ 
	p< 0.01 
	Additional analysis, not reported here, suggests no significant difference across IVs based on whether CRE loans were issued by large U.S. banks, smaller 
	U.S. banks, foreign banks, nonbank lenders, or ex-post acquired or failed lenders. Overall, we find no empirical evidence that IVs were decoupled from property fundamentals before the GFC, as compared to the post-GFC period. 
	V. Loan-to-value ratios and risk perceptions 
	Figure depicts average LTVs for each integer implied volatility “bucket” for loans originated in each of the four epochs described in Section As might be predicted by a tradeoff theory of optimal leverage, across all periods, LTVs exhibit a strong and negative relationship with implied volatility (IV). Indeed a univariate linear regression of IV against LTVs in our sample yields an adjusted Rthat is an order of magnitude higher than a regression of IV against the other two common CRE mortgage underwriting m
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	It is important to emphasize that the strong relationship depicted in Figure is not tautological. In a frictionless setting (a so-called Modigliani-Miller world), LTV would be arbitrary and plotting LTV against perceived property risk would yield no (or a random) relationship. By contrast, a theory of credit rationing or tax-bankruptcy tradeoffs predicts a downward sloping relationship, which we observe in Figure 
	6 
	(Jaffee and Russell, 
	1976; 
	Leland and Pyle
	, 1977) 

	(Leland, 
	1994) 
	6. 

	Figure suggests differences across time in leverage choice even after controlling for perceived property risk. The differences can arise simply from variations in the credit rationing frontier. They can also arise from differences in the property’s cap rate or other, unobserved, differences specific to the property. Any variable that can alter optimal leverage can impact observed LTVs. These may include the local credit environment, the marginal tax rate of local investors, capital expenditure expectations 
	6 
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	Figure 6. Mean loan-to-value ratios across implied volatility bins and epochs 
	This figure shows the sample means of the loan-to-value ratios (LTVs) of commercial real estate loans that fall into a given integer bin of model-implied volatility and were originated in a given time period (epoch). The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. Epoch choice is explained in Section The implied volatilities are estimated using the two-factor liquidity
	II.C. 
	model described in Appendix B, applying the market 
	explained in Section III.B. 

	Figure
	demand for credit against risky properties, one ought to attempt to control for such variables and examine how much each explains variation in LTV. 
	A. Credit rationing frontier estimation and diagnostics 
	In this subsection we investigate whether credit rationing limits (i.e., maximum LTV limits) set by lenders move in time. Our conjecture is that more aggressive lending practices would primarily expressed as increases to such limits. If the distribution of borrowers’ demand for optimal leverage is constant, then applying a rationing limit would result in a truncated distribution of observed LTVs, and the observed LTV mean would move monotonically with the truncation point. Thus, once a rationing frontier is
	To begin, we first attempt to identify a lending “frontier” for various IV levels. In other words, what is the maximum credit level that lenders are willing to undertake for a certain risk perception? Given the scarcity of IVs at both extremes, we only do this for implied volatility levels between 5% and 40%. The existence of a frontier can be seen through a quick visual inspection of the data. For instance, Figure shows clustering at around 80% LTV for implied volatility in the rough range of 0.05 to 0.2 a
	F3 
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	Figure shows the calculated rationing frontiers by epoch across the implied volatility buckets. The 2005–2007 epoch stands out most in being visually different from, and generally lower than, the other three. Using a quantile regression, a pairwise comparison of marginal linear predictions across periods (Table shows that the LTV frontier for this period is, on average, 4 percentage points lower than 2000–2004, and about 2-3 percentage points lower than both the 2008–2015 and 2016–2020 epochs. This may be s
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	Overall, our analysis of rationing frontiers does not support a narrative that lenders were relatively more aggressive in 2005–2007. It is possible, however, that lenders’ perceptions of property risk was systematically lower than what proved realistic, ex post. Such misperceptions would have unwittingly led to excessive provision of credit (e.g., extending an 80% LTV loan to a property judged to exhibit a property risk of 13% vol when the property was actually characterized by a risk of 21% vol). An altern
	The choice of LTV percentile where loans appear to cluster and denoting the frontier is robust to more sophisticated approaches, such as density discontinuity tests. 
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	Figure 7. Credit rationing frontier estimates by epoch 
	This figure shows our credit rationing frontier estimates across time periods (epochs). The frontiers are estimated by fitting a quantile regression model for the 95percentile of the loan-to-value ratios (LTVs) of commercial real estate loans that fall into a given integer bin of model-implied volatility and were originated in a given epoch. The estimation sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commerc
	th 
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	model described in Appendix B, applying the market 
	explained in Section III.B. 

	Figure
	IV in Section and leaves unanswered why credit rationing during 2005–2007 was substantially tighter for loans with IV greater than 20%. 
	IV.A 

	B. Quantification of loan-to-value ratio determinants 
	Although there is no support for a looser credit rationing frontier during 2005–2007, it is still useful to understand whether movements in the frontier, which could be driven by imprudent extension of credit, have significant impact on the observed distribution of LTV. After all, based on the frontier analysis, one could argue that the first epoch, 2000–2004, was characterized by lending that was too permissive. Did that matter? In this section, we test this and, more broadly, seek to ask how much of the v
	Table 5—Testing mean differences between rationing frontier estimates across epochs 
	This table shows the the results of statistically testing the mean differences between rationing frontier estimates across different time periods (epochs). The frontiers are estimated by fitting a quantile regression model for the 95percentile of the loan-to-value ratios of commercial real estate loans that fall into a given integer model-implied volatility bin and were originated in a given epoch. The estimation sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service co
	th 
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	Frontier pair 
	Frontier pair 
	Frontier pair 
	Diff. 
	Std. err. 
	t-stat 
	p-value 

	2005–2007 vs. 2000–2004 
	2005–2007 vs. 2000–2004 
	−0.0410 
	0.0022 
	−18.64 
	0.0000 

	2008–2015 vs. 2000–2004 
	2008–2015 vs. 2000–2004 
	−0.0124 
	0.0016 
	−7.86 
	0.0000 

	2016–2020 vs. 2000–2004 
	2016–2020 vs. 2000–2004 
	−0.0245 
	0.0016 
	−15.22 
	0.0000 

	2008–2015 vs. 2005–2007 
	2008–2015 vs. 2005–2007 
	0.0286 
	0.0023 
	12.36 
	0.0000 

	2016–2020 vs. 2005–2007 
	2016–2020 vs. 2005–2007 
	0.0165 
	0.0023 
	7.09 
	0.0000 

	2016–2020 vs. 2008–2015 
	2016–2020 vs. 2008–2015 
	−0.0121 
	0.0018 
	−6.86 
	0.0000 


	Denote the demand for credit by the borrower for a given observed loan as LT Vi. The amount of credit that is observed to be extended is cLT Vi = min{R(ci,b(IV i)), LT Vi}, where R(c, k) is the rationing frontier in epoch c and implied volatility bin k, as identified in the previous section. We fit a censored linear regression (tobit) model to cLT V of the form: 
	P
	cLT Vi = max 0, min R(ci,b(IV i)), 
	P
	2
	(2) µtype + µs,q + oi + α(ci)IVi + βCRSi + βCRSi + mqγ + εi = 
	1
	2

	P
	= max 0, min R(ci,b(IV i)),xiβ + εi 
	where µtype are property type fixed effects, µs,q are quarterly time fixed effects and state/county fixed effects, oi are originator fixed effects, IV is implied volatility (with epoch-specific coefficients), CRS is the cap rate spread over the 10-year 
	U.S. Treasury yield, and ε ∼N (0,σ) is the model noise term.Additionally, 
	ε 
	2
	14 
	14 


	The cap rate spread over the 10-year yield is a measure of the cap rate net of the risk-free rate. shows that optimal LTV should decline with cap rate. The intuition is that, under the risk-neutral measure, all assets grow at the same rate (the risk-free rate) so an asset that reinvests income will grow more than an asset that distributes income. Correspondingly, a slower-growing asset is more likely to default at loan maturity. We use net cap rate because interest rates experienced a secular decline betwee
	14
	Leland 
	(1994) 

	mq is a vector of quarterly macro-level variables that we include in model specifications without time fixed effects. 
	Table shows the results of the tobit regression and the strong negative relationship between LTV and IV. Strictly on its own, and with a fixed slope coefficient, IV explains two thirds of the variation in LTV across time. Controlling for quarterly time fixed effects and property type fixed effects, 2005–2007 emerges as the epoch with the greatest sensitivity to IV. This relationship holds even as loan originator fixed effects for the 111 originators in our sample are taken into account, suggesting that indi
	6 
	Griffin and Priest 
	(2023), 
	(Leland, 
	1994), 
	6. 

	Using the censored linear model coefficient estimates, we conduct a counter-factual analysis, investigating the effect of changing LTV determinants over time. In particular, we examine the effect of shifts in the rationing frontier across epochs on LTVs. To this end, we estimate counterfactual LTVs, denoted as cLT V , setting certain independent variables in the model constant over time. Formally, for each loan i, we estimate counterfactual outcomes 
	∗ 

	P
	P
	∗ ˆ ∗ 
	σ
	2 

	(3) cLT V = E max 0, min R(c,b(IV )), LT V | cLT Vi, β, ˆ,x ,
	∗ 
	i 
	i 
	∗ 
	∗ 
	ε 

	ii 
	where cLT V is the observable, cLT V is the censored counterfactual, and LT V is the latent counterfactual LTV of the loan, βand σˆare the coefficient estimates
	∗ 
	∗ 
	ˆ 
	2 

	ε 
	∗
	and the noise variance estimate from the 8model specification in Table and x is the vector of independent variable values we use for the calculation of a certain counterfactual scenario. Depending on the observed relation of cLT V and the 
	th 
	6, 

	Table 6—Estimation results of censored linear regression for the loan-to-value ratio 
	This table shows the estimation results of the censored linear regression model defined in Equation . The estimation sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The dependent variable is the loan-to-value ratio, and IV stands for the model-implied volatility estimate for sample loans. The implied volatilites are estimated using the two-factor model described in Appendi
	(2)
	B, 
	III.B. 

	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 
	(8) 

	IV 
	IV 
	-1.28 

	TR
	(0.05) 

	2000–2004 # IV 
	2000–2004 # IV 
	-1.23 
	-1.21 
	-1.46 
	-1.40 
	-1.39 
	-1.38 
	-1.16 

	TR
	(0.05) 
	(0.05) 
	(0.07) 
	(0.06) 
	(0.06) 
	(0.06) 
	(0.04) 

	2005–2007 # IV 
	2005–2007 # IV 
	-1.37 
	-1.32 
	-1.68 
	-1.64 
	-1.61 
	-1.64 
	-1.42 

	TR
	(0.05) 
	(0.07) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.06) 

	2008–2015 # IV 
	2008–2015 # IV 
	-1.37 
	-1.34 
	-1.16 
	-1.29 
	-1.27 
	-1.26 
	-1.17 

	TR
	(0.05) 
	(0.06) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.04) 

	2016–2020 # IV 
	2016–2020 # IV 
	-1.27 
	-1.25 
	-1.23 
	-1.31 
	-1.29 
	-1.28 
	-1.25 

	TR
	(0.04) 
	(0.05) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.03) 
	(0.04) 

	Caprate spread 
	Caprate spread 
	0.15 
	-0.07 
	-0.20 
	-0.40 
	-0.43 
	-0.14 

	TR
	(0.19) 
	(0.13) 
	(0.12) 
	(0.12) 
	(0.12) 
	(0.16) 

	CMBS yield spread 
	CMBS yield spread 
	-4.62 

	TR
	(0.73) 

	UST 10yr yield 
	UST 10yr yield 
	0.31 

	TR
	(0.37) 

	Time (quarterly) 
	Time (quarterly) 
	x 
	x 
	x 

	Property type 
	Property type 
	x 
	x 
	x 
	x 
	x 

	Loan originator 
	Loan originator 
	x 
	x 
	x 
	x 

	Property state 
	Property state 
	x 

	Property state × Time 
	Property state × Time 
	x 

	Property county 
	Property county 
	x 

	Generalized R2 
	Generalized R2 
	0.61 
	0.62 
	0.63 
	0.71 
	0.73 
	0.74 
	0.76 
	0.71 

	Number of observations 
	Number of observations 
	45,917 
	45,917 
	45,917 
	45,917 
	45,917 
	45,878 
	45,878 
	45,779 


	rationing frontier R, the expression in Equation becomes 
	(3) 

	
	P
	∗ ˆˆ
	max 0, min R, cLT Vi +(xβ − xiβ) if cLT V i <Ri,
	∗

	ii
	(4) cLT V= 
	i 
	∗ 

	∗
	R

	E max 0, min , LT V if cLT Vi >= Ri,
	i 
	∗ 

	i 
	∗
	where Ri = R(ci,b(IVi)) is the original rationing frontier, R= R(c,b(IV))
	∗ 
	i 
	i 
	∗

	i 
	is the rationing frontier in the counterfactual scenario, and LT V is the latent
	∗ 

	i 
	counterfactual LTV of the loan, which follows the truncated normal distribution 
	∗ ˆ ∗ ˆˆ
	σ
	2 

	β, ˆ) with lower bound LB = R +(xβ − xiβ).
	ε 

	TRii 
	N
	(x

	In Figure we plot the mean LTV in each year of the original data set 
	8, 

	(Panel A) and for various counterfactual data sets (Panels B to F). The original data clearly exhibits a secular decline of LTVs over the sample period. However, this trend disappears in Panel B, which uses a counterfactual data set where IV for each loan is fixed at its sample mean (20%). Further setting the cap rate spread to its sample mean of 3.7% (Panel C) does not make much difference (consistent with the estimate in column 8). Fixing the CMBS yield spread does appear to reduce the time-series variati
	Figure 8, 

	have little effect on the distribution of LTVs. 
	annual counterfactual means throughout the four epochs and shows that they are statistically distinct. This means there is still statistically significant remaining variation between the epochs after controlling for IV, cap rate, CMBS spread, U.S. Treasury yield, and changes in the credit rationing frontier. That said, the remaining time variation does not clearly fall into a pattern coinciding with macro events and may correspond to unobserved demand factors in the market for CRE loans. Moreover, after con
	Table 7 compares the 
	7. 

	It is clear from the adjusted Rin Table as well as the counterfactual LTVs in Figure that the first order determinant of LTV in the sample is the perceived property risk. To provide a sense of the marginal contribution that the explanatory variables provide each sample year, we sequentially decompose the variance of 
	2 
	6 
	8 

	Table 7—Actual and counterfactual means of loan-to-value ratios across epochs 
	This table shows the means of the actual (Column 1) and counterfactual (rest of the columns) loan-to-value ratios of commercial lean estate loans in the sample across time periods (epochs). The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The counterfactual loan-to-value ratios are estimated by applying Equation and using the 8censored linear model specification in Tabl
	(3) 
	th 
	6. 
	III.B. 

	Epoch 
	Epoch 
	Epoch 
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 

	2000–2004 
	2000–2004 
	68.8 
	69.4 
	69.8 
	69.7 
	69.1 
	69.1 

	TR
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 

	2005–2007 
	2005–2007 
	68.7 
	67.1 
	68.1 
	67.1 
	66.5 
	66.8 

	TR
	(0.1) 
	(0.0) 
	(0.0) 
	(0.0) 
	(0.0) 
	(0.0) 

	2008–2015 
	2008–2015 
	66.8 
	66.2 
	66.6 
	67.3 
	67.6 
	67.8 

	TR
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 

	2016–2020 
	2016–2020 
	62.8 
	67.6 
	68.2 
	67.8 
	68.1 
	68.4 

	TR
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 
	(0.1) 

	IV = 20% 
	IV = 20% 
	x 
	x 
	x 
	x 
	x 

	CRS = 370bp 
	CRS = 370bp 
	x 
	x 
	x 
	x 

	CMBS = 120bp 
	CMBS = 120bp 
	x 
	x 
	x 

	US10 = 3.2% 
	US10 = 3.2% 
	x 
	x 

	Frontier set to epoch 1 level 
	Frontier set to epoch 1 level 
	x 

	Wald F Stat. of 1–4 equality 
	Wald F Stat. of 1–4 equality 
	587.7 
	430.4 
	438.9 
	403.2 
	368.1 
	300.1 

	Wald F Stat. of 2–4 equality 
	Wald F Stat. of 2–4 equality 
	711.4 
	109.1 
	224.1 
	20.9 
	175.9 
	160.9 

	Number of observations 
	Number of observations 
	47,616 
	45,779 
	45,779 
	45,779 
	45,779 
	45,779 


	LTV in the sample into components of the form 
	P
	(5) n,t tt (x,...,xn−1)=(¯x,...,x¯ n−1)
	comp
	= Cov cLT V
	, cLT V
	∗ 
	|
	1
	1

	P
	P
	t (x,...,xn)=(¯x,...,x¯ n) t 
	−cLT V
	∗ 
	|
	1
	1
	V ar cLT V
	, 

	where cLT V|is the subsample of counterfactual LTVs in year 
	t 
	∗
	(x
	1
	,...,x
	n
	)=(¯x
	1
	,...,x¯ 
	n
	) 

	t, generated by fixing variables xto xn at their sample means.The first 
	1 
	15 
	15 


	component is simply 
	P
	P
	comp= Cov cLT Vt, cLT Vt − cLT V|x=¯xV ar cLT Vt , 
	1
	,t 
	t 
	∗ 
	1
	1 

	The variable xi can be viewed as a vector, or “block”, of explanatory variables whose contribution to the variance is sought. This is roughly similar to an ANOVA decomposition, although components can be negative because the covariance is restricted to a subsample. 
	15

	and is essentially the R-squared of regressing cLT Vt against x(because variation in the second term of the covariance only arises from variation in x). The last component, comp, is the proportion of variance that cannot be explained with x,...,xn. 
	1 
	1
	n,t
	1

	Panel A of Figure depicts the decomposition when xis IV and xcorresponds to all remaining explanatory variables. Implied volatility explains between 40% and 70% of LTV variance in any given year. The incremental contribution of all other independent variables to explaining variance is no more than 20% (in 2000) and averages 10%. Of the non-IV independent variables, cap rate spread, originator fixed effects, and geographic fixed effects are the most important sources of variation. Their contributions are dep
	9 
	1 
	2 
	-
	9 

	VI. Conclusions 
	Theory (e.g., suggests that optimal leverage choice depends on asset and market-specific factors. One of the most important of these is the risk of the underlying asset. We demonstrate that the single most important determinant of observed loan-to-value ratios (LTVs) in securitized commercial real estate loans is perceived property risk, as measured by implied volatility. On its own, perceived risk explains roughly two thirds of cross-sectional and time-series variation in LTVs. We find that other theoretic
	Leland, 
	1994) 

	While LTVs have declined throughout our sample period (from 2000 until 2020), this secular decline disappears once one controls for the fundamental factors mentioned above. Remaining time variation does not appear to reflect any market trends. This is significant because LTV is commonly seen as an important metric of lending standards and often referenced in regulations (e.g., We find some evidence that aggregate LTVs contains information 
	DiSalvo and 
	Johnston
	, 2018). 


	about lending standards through shifting maximum LTV criteria. However, the 
	shifts we identify do not support the narrative that lending standards were least restrictive during the run-up to the GFC. Moreover, there is little evidence changes in maximum LTV criteria materially impacted the distribution of LTVs in our sample. We do, however, find that the key driver of LTV choice in our data set, average perceived property risk, was significantly lower in the five years leading to the GFC than at any other five year period in the past 20 years. This raises the possibility that lende
	To the extent that ex post poor lending outcomes can be traced to systematic risk misperception, our work can be used to motivate the use of aggregate measures of market-specific risk perceptions, like loan-implied volatility, by regulators and policymakers. 
	Figure 8. Means of actual and counterfactual loan-to-value ratios over time 
	This figure shows the means of the actual (Panel A) and counterfactual (rest of the panels) loan-to-value ratios of commercial lean estate loans in the sample over time, with 99% confidence intervals. The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The counterfactual loan-to-value ratios are estimated by applying Equation and using the 8censored linear model specificat
	(3) 
	th 
	6. 

	(a) Actual sample means (b) Setting IVs to 20% 
	Figure
	(c) Setting IVs to 20% and CRSs to 370bp (d) Setting IVs to 20%, CRSs to 370bp, and CMBS spread to 120bp 
	Figure
	(e) Setting IVs to 20%, CRSs to 370bp, CMBS spread to 120bp, and UST to 3.2% 
	(e) Setting IVs to 20%, CRSs to 370bp, CMBS spread to 120bp, and UST to 3.2% 


	Figure
	Figure
	(f) Setting IVs to 20%, CRSs to 370bp, CMBS spread to 120bp, UST to 3.2%, and fixing rationing frontier at Epoch 1 level 
	(f) Setting IVs to 20%, CRSs to 370bp, CMBS spread to 120bp, UST to 3.2%, and fixing rationing frontier at Epoch 1 level 


	Figure 9. Model-based variance decomposition of loan-to-value ratios over time 
	This figure shows the model-based variance decomposition of the loan-to-value ratios (LTVs) of commercial lean estate loans in the sample over time. The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. The variance decomposition applies the methodology described in the text (see Equation ), measuring the contribution of each variable to the variance of LTV in the context of
	(5)
	(2)

	th 
	8

	censored linear model specification presented in Table Panel A decomposes the variance of LTV into the contribution from implied volatility, other model variables, and residual variation. Panel B presents the variance contribution of the three most relevant model variables other than implied volatility. 
	6. 

	(a) Variance attributable to implied volatility and other model variables 
	Figure
	(b) Variance attributable to selected other model variables 
	Figure
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	Appendix Data construction process 
	A: 

	The initial data set consists of 171,421 loans. 
	• 
	• 
	• 
	We eliminate loans in deals originated by Freddie Mac or Fannie Mae. Both institutions are heavily involved in affordable housing, senior housing, and other subsidized projects. The pricing of such loans may not fully reflect the market perception of risk. Not all of their loans are for subsidized projects, but to our knowledge there is no efficient way to distinguish them from others. 

	• 
	• 
	We eliminate loans with missing key variables such as origination date, maturity date, coupon rate, original loan amount, underwritten NOI, and origination LTV. We also drop loans with unrealistic values for these variables.
	16 
	16 



	• 
	• 
	We remove a small number of loans with both defeasance and yield maintenance penalties (our model is not set up to take more than one prepayment penalty), more than three call protection options, and loans with an ambiguous call protection designation, such as “prepayment penalty.” 
	-
	-


	• 
	• 
	We have a number of loans for which the call protection lengths plus seasoning do not add up to the loan term. We have 326 such loans which undershoot the loan term and 6,908 which overshoot the loan term. When they undershoot, we simply extend the last call protection period. When they overshoot, we start subtracting from the last call protection type, then the second to last, then the first. We end up with 3,506 loans for which the last call protection type ends up getting completely removed. We only calc

	• 
	• 
	Our model assumes that dividends, relative to property value, are constant for the life of the loan. In reality, some loans are for renovation purposes or fund other projects that would result in NOI increases. Such loans may include projected cash shortfalls during the beginning of loan life, relative to 


	We require annual interest rates to be between 1% and 25%, loan amounts to be at least $10,000, LTVs to be less than 100% and greater than 10%, and first year projected NOI at origination to be less than the property value. 
	16

	the required debt service. We keep only loans whose debt service coverage 
	ratio is greater than 1.25, and whose debt yield is greater than 7%. 
	• 
	• 
	• 
	Our model also assumes that the property is collateral for a single loan only. Multiple forms of debt create potentially complicated dynamics between different creditors. We drop 1,850 multi-property loans as well as a number of loans in pari passu deals. 

	• 
	• 
	We drop a small number of loans with maturities longer than 12 years as well as those originated before 2000 and are missing zip code data. 

	• 
	• 
	NCF isn’t as well populated as NOI, so we multiply NOI by a factor of 


	0.94 to match the average NCF (this is only done for our implied volatility calculations). 
	Appendix Implied volatility model 
	B: 

	B1. Interest rate process 
	run a horse-race among several prevalent pricing models and find that the pricing accuracy of one-factor models is comparable to that of other, more complicated, models. We use two of the models they examine: the and models. These are some of the most commonly employed term-structure models for pricing interest rate derivatives in practice. We modify both the HW and BK 
	Gupta and Subrahmanyam 
	(2005) 
	-
	Hull and White 
	(1990) (HW) 
	Black and Karasinski 
	(1991) (BK) 

	17
	17

	models so that no more than one tree branch can be above 10% or below zero. This is done to ensure that risk neutral probabilities for the property price model are positive at property diffusion volatilities as low as 3%. We note that, during our sample period, forward rates for a one-year zero coupon U.S. Treasury bond never exceed 7.5% or fall below 0%. Our bounds therefore likely reflect market perceptions for the possible range of interest rates during the life of originated mortgages in our data set. 
	To calibrate each month’s term structure model, yield data are obtained for nominal zero coupon bonds with maturities ranging from one to twelve years.Data for swaptions with exercise maturity of one year, the most liquid contracts, are obtained from Eikon for tenors (underlying swap maturities) of one, five, and ten years. Each month, we fit a HW and a BK model to the data and select the one that best fits the swaptions data.Table summarizes percentage price accuracy across the monthly term structure model
	18 
	18 

	19 
	19 

	B1 

	Our term structure models are generally accurate. Periods where the pricing error exceeds 5% are concentrated between 12/2008 to 03/2009, 09/2011 to 12/2012, 02/2016 to 11/2016, and after 03/2020. The BK model seems to be the 
	This is achieved as follows. If the conventional HW or BK tree is consistent with the bounds, we employ it. Otherwise, we truncate all branches beyond the first that cross the bound by setting their transition probabilities to zero. At any node for which a branch probabilities is set to zero, we solve for the remaining branch probabilities by enforcing the node’s expected interest rate to equal the quantity implied by the underlying mean-reverting process. The resulting rate volatility at edge nodes is gene
	17

	The data are taken from the Federal Reserve: For the short end of the term structure, we use the 3-month U.S. Treasury constant maturity yield obtained from the St. Louis Fed. 
	18
	https://www.federalreserve.gov/data/ 
	nominal-yield-curve.htm. 

	Both HW and BK models can be made to fit any arbitrary term structure of zero coupon bonds. 
	19

	Table B1—Term Structure Model Precision 
	This table shows the accuracy of 277 “best-fitting” term structure models, which are estimated each month from 06/1997 to 06/2020 using zero coupon bonds and one-year swaption prices. The two models used for estimation are Hull and White (1990) and Black and Karasinski (1991) models. Each data point corresponds to the root of the weighted mean of squared pricing errors (i.e., percentage accuracy) from a single month’s term structure model. 
	Statistic TS Model precision 
	Mean 0.0202 SD 0.0439 P1 0.0001 P5 0.0003 
	P10 0.0007 P25 0.0015 P50 0.0042 P75 0.0149 P90 0.0534 P95 0.1146 P99 0.2322 
	better performer in roughly 2/3 of cases, and nearly exclusively so between 2007 and 2015. 
	B2. Property value process 
	Property value follows a binomial process similar to but modified to incorporate time-varying short-term interest rates and a possible catastrophic fall in value that triggers immediate default. The latter modification is motivated by the actual distribution of creditor losses. Without the possibility of a sudden (discontinuous) drop in property value, optimal exercise of the default option tends to predict relatively small loan losses relative to what is observed in practice. The “catastrophic” property-le
	Cox, Ross and Rubinstein 
	(1979), 
	20 
	20 


	This range is based on estimates by and One could potentially model a distribution of catastrophic losses, but it is unclear to what extent this would make our results more reflective of lender perceptions versus a fixed LGD value. See Appendix for further methodology. 
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	Esaki, L’Heureux and 
	Snyderman (1999), 

	Ciochetti 
	(1997), 
	Curry, Blalock and Cole 
	(1991). 
	D 

	Let σ be the annual volatility of the value of the property. To modify the binomial model of Cox et al. to accommodate the hazard, we divide the usual “up” and “down” states by (1 − λ∆t) for each increment of time, ∆t: 
	√√ σ −σ 
	∆t 
	∆t

	ee 
	u = d = . 
	1 − λ∆t 1 − λ∆t 
	The property value changes by a factor of u or d. This keeps the expected price appreciation of the property, under the risk-neutral measure, independent of the value of λ and thus independent of the idiosyncratic event. It also has the virtue of setting the Arrow-Debreu prices of “up” and “down” non-disaster states equal to (1 − λ∆t) times their usual values in the Cox model: 
	(u) rk,t∆t rk,t∆t 
	e
	− d(1 − λ∆t) 
	(d) 
	u(1 − λ∆t) − e

	π = π = ,
	j,t,k j,t,k 
	u − du − d 
	where we denote property state j, time t, and continuously compounded short 
	interest rate state k obtained from the term-structure model. We assume that 
	a one-period binomial “up” or “down” move in the property price process is 
	uncorrelated with the one-period short-term interest rate process. 
	Commercial properties generate income for their owners, which we incorpo
	-

	rate by assuming that the property pays a constant annual “dividend” rate δt 
	corresponding to the property’s ratio of net cash flow (NCF) to total appraised 
	property value at the time of mortgage origination.We include the dividend in 
	21 
	21 


	our property value formulation, with the exception of origination, where property 
	value is equal to appraised value.We define “up” and “down” “cum-dividend” 
	22 
	22 


	property value Vj,t+1 for all non-origination periods t ∈{1, ..., T − 1} recursively 
	as follows: 
	Vju,t+1 = uVj,t(1 − δt∆t) Vjd,t+1 = dVj,t(1 − δt∆t). 
	We use NCF instead of net operating income (NOI), as NCF subtracts CapEx and CapEx reserves 
	21

	and may be a better measure of actual cash flow. 
	We assume that the property value at mortgage origination is calculated after cash flow from 
	22

	operations is distributed. 
	B3. Valuation of commercial real estate mortgages 
	Mortgage terms comprise the LTV (or, equivalently, the amount borrowed), time to maturity, and the amortization schedule. Together with a complete specification of the property and interest rate model parameters, the mortgage terms imply a fair-market mortgage rate that can be calculated by setting the present value of the mortgage obligation to the amount borrowed. In practice, contract mortgage rates are observed but the underlying property volatility, σ, is unobserved. We therefore solve for the implied 
	We denote property value Vj,t,k (Vj,t = Vj,t,k since property value is independent of interest rate movement), and corresponding equity and debt values Ej,t,k and Dj,t,k. We allow for interest-only or amortizing mortgage payment schedules (or a combination of these). We denote the remaining mortgage balance Bt, and fixed mortgage payment or coupon ct (Bt remains constant during an interest-only period). As in Cox et al., it is easiest to define our model by working backwards from maturity. Similar to we def
	-
	Merton 
	(1974), 

	Ej,T,k = max(0,Vj,T − (BT + cT )) 
	Dj,T,k = min(Vj,T ,BT + cT ). 
	These follow from the assumption of “ruthless” default: the borrower will default if the property value falls below the debt value. It is worth emphasizing 
	23
	23

	that the Modigliani-Miller value additivity holds: Dj,t,k + Ej,t,k = Vj,t,k. In other words, we assume no dead-weight cost of default.Note that there is no prepayment or dividend payment at maturity. For each non-maturity and non-origination period t ∈{1, ..., T − 1}, the following equations determine the 
	24 
	24 


	See Appendix for proof that M&M holds at all periods t. 
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	C 

	We opt to ignore dead-weight cost of default because we do not correspondingly model tax benefits of debt or investors with heterogeneous private values; if mortgage debt only came with costs and no benefits, no rational investor would finance a property with mortgage debt. 
	24

	borrower’s value of equity and debt: 
	P
	P
	P
	−rk,t∆t ˜
	Ej,t,k = max 0,δt∆tVj,t,k − ct + e E Et+1 ,Vj,t,k − ct − Bt − Pj,t,k j,t,k 
	P
	P
	P
	Dj,t,k = min Vj,t,k,ct + e E Dt+1 ,ct + Bt + Pj,t,k , j,t,k 
	−r
	k,t
	∆t 
	˜ 

	where Ej,t,k[Et+1] and Ej,t,k[Dt+1] represent risk-neutral expected values for equity and debt and Pj,t,k is the prepayment penalty. The terms in each equation represent values for default, continuation, and prepayment options, respectively. For further clarity, risk neutral expected values for X ∈{E, D} are defined as follows: 
	˜ 
	˜ 

	P
	(u)(u)(m)(d)E Xt+1 = πj,t,k ik,t Xju,t+1,ku + ik,t Xju,t+1,k + ik,t Xju,t+1,kd + 
	˜ 

	j,t,k 
	P
	(d)(u)(m)(d)πj,t,k ik,t Xjd,t+1,ku + ik,t Xjd,t+1,k + ik,t Xjd,t+1,kd , 
	(u)(m)(d)
	with i , and i being interest rate up, middle, and down state proba
	-

	k,t k,t k,t bilities. In the initial origination period t = 0, we take the values of equity and debt to be their continuation values: E=(e) E,0,0[Et+1] and D= (e) E,0,0[Dt+1] (we assume no mortgage coupon payment at origination and no dividend as noted above). After inputting all given mortgage values, we calculate an annual implied volatility figure σ such that Dmatches the given contract loan amount. Prepayment rules are specified in the mortgage covenant, and usually vary by time period in the mortgage. 
	, i
	0 
	−r
	0
	∆t
	0
	˜ 
	0 
	−r
	0
	∆t
	0
	˜ 
	0 
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	See Appendix for exact methodology. 
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	Appendix Proof of Modigliani & Miller additivity 
	C: 

	We would like to show that the Modigliani–Miller additivity Ej,t,k + Dj,t,k = Vj,t,k holds for all t ∈{0, ..., T }. 
	Part 1 of Proof 
	We begin by demonstrating that Vj,t,k = δt∆tVj,t,k +(e) Ej,t,k[Vt+1] for t ∈{1, ..., T − 1}. We redefine the following (note that Vj,t = Vj,t,k since property value is independent of interest rate movement): 
	−r
	k,t
	∆t
	˜ 

	Vju,t+1,k = uVj,t,k(1 − δt∆t) 
	Vjd,t+1,k = dVj,t,k(1 − δt∆t) 
	
	for t ∈{1, ..., T − 1}. 
	P
	P
	˜
	Vt+1 
	−rk,t∆t
	Now we use these to show that Vj,t,k = δt∆tVj,t,k + e Ej,t,k 
	: 
	P
	P
	−rk,t∆t 
	˜
	E Vt+1
	δt∆tVj,t,k 
	+ e 
	j,t,k 
	P
	(u)(d)
	−rk,t∆t 
	π + π 
	P
	= δt∆tVj,t,k 
	
	= δt∆tVj,t,k 
	= δt∆tVj,t,k 
	Vju,t+1,k 
	Vjd,t+1,k

	+ 
	e 
	j,t,k 
	j,t,k 
	j,t,k 

	P
	P
	
	dVj,t,k (1 − δt∆t)
	(u)(d)
	−rk,t∆t 
	uVj,t,k (1 − δt∆t)
	π 
	π
	+ 
	+
	e 
	j,t,k 
	j,t,k 
	j,t,k 

	P
	(u)(d)
	−rk,t∆t 
	πu + π 
	j,t,k

	P
	+ (1 − δt∆t)
	= Vj,t,k 
	δt∆t 
	d
	e 
	j,t,k 
	P
	P
	rk,t ∆t 
	P
	(No Arbitrage) 
	(No Arbitrage) 
	= e 

	P
	= Vj,t,k δt∆t + (1 − δt∆t) e 
	P
	−rk,t∆trk,t∆t 
	)(e 

	= Vj,t,k [δt∆t +1 − δt∆t]= Vj,t,k. 
	Part 2 of Proof 
	At maturity, T , M&M clearly holds (Ej,T,k + Dj,t,k = Vj,T,k): 
	Ej,T,k = max(0,Vj,T − (BT + cT )) Dj,T,k = min(Vj,T ,BT + cT ). 
	Now we show that M&M holds at any arbitrary time t ∈{1, ..., T − 1}. 
	Assuming Ej,t+1,k + Dj,t+1,k = Vj,t+1,k (true for t +1 = T ) and using induction: 
	P
	P
	P
	−rk,t∆t ˜
	Ej,t,k = max 0,δt∆tVj,t,k − ct + e E Et+1 ,Vj,t,k − ct − Bt − Pj,t,k j,t,k 
	P
	P
	P
	−rk,t∆t ˜
	Dj,t,k = min Vj,t,k,ct + e E Dt+1 ,ct + Bt + Pj,t,k . j,t,k 
	By hypothesis, Ej,t+1,k + Dj,t+1,k = Vj,t+1,k. So the continuation state value 
	of date t equity = 
	P
	P
	−rk,t∆t ˜
	e 

	δt∆tVj,t,k − ct + E Et+1 
	j,t,k 
	P
	ParagraphSpan
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	ParagraphSpan

	P
	−rk,t∆t ˜ −rk,t∆t ˜
	= δt∆tVj,t,k + e E Vt+1 −ct − e E Dt+1 j,t,k j,t,k 
	P
	=Vj,t,k by Result 1 
	P
	P
	−rk,t∆t ˜
	= Vj,t,k − ct − e E Dt+1 . j,t,k 
	So, 
	P
	P
	P
	−rk,t∆t ˜
	Ej,t,k = max 0,Vj,t,k − ct − e E Dt+1 ,Vj,t,k − ct − Bt − Pj,t,k j,t,k 
	
	
	P
	
	−rk,t∆t ˜
	= Vj,t,k + max −Vj,t,k, −ct − e E Dt+1 , −ct − Bt − Pj,t,k.
	StyleSpan
	StyleSpan
	StyleSpan

	j,t,k 
	P
	−xj,t,k −zj,t,k −yj,t,k 
	Therefore: 
	Ej,t,k + Dj,t,k = Vj,t,k + max(−xj,t,k, −yj,t,k, −zj,t,k)+ 
	+ min(xj,t,k,yj,t,k,zj,t,k)= Vj,t,k. 
	We can easily show M&M holds at t = 0 as well. Taking the appraised 
	property value at origination S, we divide by (1 − δt∆t) to get V. 
	0
	0

	−r∆t˜
	0
	) [

	E=(e E Et+1] 0,0,0 
	0 

	−r∆t˜
	0
	) [

	D=(e E Dt+1] 0,0,0 
	0 

	S
	0

	V= ⇔ S= V− δt∆tV. 
	0 
	0 
	0 
	0

	(1 − δt∆t) 
	Using the continuation values of equity and debt for t ∈{1, ..., T −1} referenced above and removing the dividend δt∆tVand coupon ct, we get: 
	0 

	−r∆t˜
	0
	) [

	E= S− (e E Dt+1] 
	0 
	0 

	0,0,0 −r∆t˜ −r∆t˜
	0
	) [
	0
	) [

	E+ D= S− (e E Dt+1]+(e E Dt+1]= S. 0,0,00,0,0 
	0 
	0 
	0 
	0

	Appendix Loss given default 
	D: 

	We define LGD at each default node j, t, k as follows: 
	Vj,t,k 
	Vj,t,k 

	LGDj,t,k =1 − . 
	ct + Bt 
	For each loan in our sample, we obtain an expected LGD figure based on a Monte Carlo simulation run 10,000 times. To do this, we randomly determine property and interest rate movements by weighting these choices by their respective risk neutral probabilities. Upon reaching a default node, the simulation stops and records LGD for simulation number i as LGDi = LGDj,t,k. If no default occurs, LGDi = 0. With probability λ∆t, a catastrophic property loss happens (the risk neutral “up” and “down” property probabi
	P
	Σ
	Σ
	10000

	eLGDl = LGDi /10000. 
	i=1 

	Appendix: Prepayment penalties 
	We use standard definitions for yield maintenance and defeasance, but modified to fit our term structure models. 
	The basic principle of defeasance is that the lender is losing a spread when the borrower refinances and requires the risk-free present value of that spread as a penalty. To mimic this spread, we use our term structure calculations to create a portfolio of risk-free assets (in our case, zero coupon bonds) with the same cash flows. The calculation for any interest rate state k, t is as follows: 
	P
	T −t
	P
	Def= mt+i ZCBk,t,t+i − Bt, i=1 
	k,t 

	where mt+i is the mortgage payment at date t + i, ZCBk,t,t+i is the value at date t of a zero coupon bond with maturity at date t+i, and Bt is the remaining mortgage balance.ZCBk,t,t+i is calculated by creating a sub-tree M of all continuation 
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	Note that, for simplicity, we calculate defeasance and yield maintenance up to maturity T . In practice, there is some heterogeneity, with some lenders calculating the penalty up to the beginning of the open prepayment period instead. We do not observe the exact lender method in our data, though, and the differences between the beginning of the open prepayment period and maturity are usually very minor. 
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	states starting at node k, t of the trinomial interest rate tree. The final column of 
	the tree, which represents time t + i, has payoffs of 1 (Mk,t+i+1 =1 ∀k). We then determine the ZCB price by iterating backwards to the original node k, t so that the following recursive formula holds: 
	P
	P
	StyleSpan

	(u)(m)(d)
	−rk,t∆t
	Mk,t = eik,t Mku,t+1 + ik,t Mkm,t+1 + ik,t Mkd,t+1 . 
	Yield maintenance is slightly different in that it involves replacing the missing spread with a U.S. Treasury security or other risk-free asset of the same remaining term as the mortgage. This is done using the calculated zero coupon bond rates as follows. First we calculate a “risk-free” par bond prevailing rate for the appropriate maturity: 
	P
	T −t
	P
	rf= (1 − ZCBk,t,T ) / ZCBk,t,t+i . i=1 
	k,t 

	Then we calculate an annual “present value factor” f: 
	P
	fk,t = (1 − (1 + rf))/ rf. 
	k,t
	−(T −t)/∆t 
	k,t

	Finally, the yield maintenance penalty is calculated: 
	YMk,t =(rm − rfk,t) fk,t Bt, 
	where rm is the mortgage rate. 
	Appendix Additional figures and tables 
	F: 

	Table F1—Distribution of CRE Loans by Property Type 
	This table shows the absolute frequencies of commercial real estate mortgage loans in the Morningstar dataset across different collateral property types, with an emphasis on the distinctions between single and multi-property loan frequencies. The sample contains fixed-rate loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. 
	Table
	TR
	Single-Property Loans 
	Multi-Property Loans 
	Total 

	Hotel Industrial Mixed Multi-family Office Other Retail 
	Hotel Industrial Mixed Multi-family Office Other Retail 
	4,808 3,052 0 18,972 9,308 5,903 16,084 
	194 133 174 491 215 331 292 
	5,002 3,185 174 19,463 9,523 6,234 16,376 

	Total 
	Total 
	58,127 
	1,830 
	59,957 


	Table F2—Extreme Percentiles of Implied Volatility Estimates by Epoch 
	This table shows the lowest and highest three percentiles of implied volatility by time period (epoch). Epoch choice is explained in Section The implied volatilities are estimated using the two-factor model described in Appendix the market liquidity adjustment explained in Section The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. 
	II.C. 
	B, applying 
	III.B. 

	P1 
	P1 
	P1 
	P2 
	P3 
	P97 
	P98 
	P99 

	2000–2004 
	2000–2004 
	0.06 
	0.08 
	0.09 
	0.36 
	0.39 
	0.44 

	2005–2007 
	2005–2007 
	0.08 
	0.09 
	0.10 
	0.32 
	0.34 
	0.39 

	2008–2015 
	2008–2015 
	0.06 
	0.08 
	0.09 
	0.32 
	0.34 
	0.37 

	2016–2020 
	2016–2020 
	0.10 
	0.12 
	0.13 
	0.36 
	0.38 
	0.40 

	Entire sample 
	Entire sample 
	0.07 
	0.08 
	0.09 
	0.34 
	0.36 
	0.40 


	Figure F1. Distribution of Implied Volatility by Epoch 
	This figure shows the distribution of calculated implied volatility by time period (epoch). Epoch choice is explained in Section The implied volatilities are estimated using the two-factor model described in Appendix the market liquidity adjustment explained in Section The sample contains fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. 
	II.C. 
	B, applying 
	III.B. 

	(a) 2000–2004 (b) 2005–2007 
	Figure
	(c) 2008–2015 (d) 2016–2020 
	(c) 2008–2015 (d) 2016–2020 
	Figure F2. Distribution of Selected CRE Loan Characteristics 

	Figure
	This figure shows the distribution of debt service coverage ratios, debt yield, loan-to-value ratios, and loan term lengths (months) in the Morningstar dataset of fixed-rate, single-property loans securitized in non-agency commercial mortgage-backed securities. The sample is later cut for further analysis by removing debt yields under 7% and debt service coverage ratios under 1.25 for reasons explained in section 
	III.A. 

	(a) DSCR (b) Debt Yield 
	Figure
	(c) Loan-to-Value Ratio (d) Loan Term (Month) 
	(c) Loan-to-Value Ratio (d) Loan Term (Month) 
	Figure F3. Association Between the LTVs and IVs of CMBS Loans Over Different Epochs 

	Figure
	This figure shows the relationship between loan-level loan-to-value ratios and calculated implied volatility by time period (epoch). Epoch choice is explained in Section The implied volatilities are estimated using the two-factor model described in Appendix the market liquidity adjustment explained in Section The overlaid frontiers are estimated by fitting a quantile regression model for the 95percentile of the loan-to-value ratios (LTVs) of commercial real estate loans that fall into a given integer bin of
	II.C. 
	B, applying 
	III.B. 
	th 

	(a) 2000–2004 (b) 2005–2007 
	Figure
	(c) 2008–2015 (d) 2016–2020 
	Figure
	Table F3—Marginal Effects of Explanatory Variables on 100 × Log of Implied Volatility 
	This table shows the marginal effects of these explanatory variables on 100 × log of implied volatility. The implied volatilities are estimated using the two-factor model described in Appendix applying the market liquidity adjustment explained in Section The samples containfixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. Property size is measured alternatively in square feet and “units” by
	B, 
	III.B. 

	refers to the “real estate industry” as defined by the BEA. The market size and vacancy rate variables are obtained from CBRE. 
	(1) (2) (3) (4) (5) 
	52 
	100 × Log of State Real GDP (USD mm) 0.02 0.07 100 × Log of State Real GDP in Sector (USD mm) 0.05 -0.03 100 × Log of State Income per Capita (USD) -0.20-0.11 State Unemployment Rate (%) -1.36-1.19Property Age (Years) 0.080.08100 × Log of Property Size (Sqft) -0.04-0.04100 × Log of Property Size (Units) -0.42Property Occupancy (%) -0.10Lead Tenant Share (%) 0.05100 × Log of Market Size (Sqft) Market Vacancy Rate (%) 
	∗ 
	∗∗ 
	∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	-0.00-0.01-0.06
	-1.200.080.050.05-0.04-0.04-0.03-0.42-0.39
	∗∗ 
	∗∗∗ 
	∗ 
	∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	-0.160.050.030.01 -0.03 0.27
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	Hotel Included x x x Multi-Family Included x x x Other Included x x x 
	Loan Originator x x x x x Property State x x x Property Type × Time (Quarterly) x x x x x Property County × Time (Quarterly) 
	xx 
	R0.37 0.31 0.38 0.51 0.54 Number of Observations 41,362 19,626 26,433 13,185 21,209 
	2 

	Standard errors are double clustered by the property state and the quarter of origination.
	∗ 
	p< 0.1, p< 0.05, p< 0.01 
	∗∗ 
	∗∗∗ 

	Table F4—Marginal Effects of Explanatory Variables on Implied Volatility (%) 
	This table shows the marginal effects of these explanatory variables on percentage implied volatility. The implied volatilities are estimated using the two-factor model described in Appendix applying the market liquidity adjustment explained in Section The samples containfixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. Property size is measured alternatively in square feet and “units” by M
	B, 
	III.B. 

	refers to the “real estate industry” as defined by the BEA. The market size and vacancy rate variables are obtained from CBRE. 
	(1) (2) (3) (4) (5) 
	53 
	100 × Log of State Real GDP (USD mm) 0.004 0.013 100 × Log of State Real GDP in Sector (USD mm) 0.009 -0.006 100 × Log of State Income per Capita (USD) -0.037-0.020 State Unemployment Rate (%) -0.253-0.223Property Age (Years) 0.0140.015100 × Log of Property Size (Sqft) -0.007-0.007100 × Log of Property Size (Units) -0.077Property Occupancy (%) -0.019Lead Tenant Share (%) 0.010100 × Log of Market Size (Sqft) Market Vacancy Rate (%) 
	∗ 
	∗∗ 
	∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	-0.001-0.002-0.011
	-0.2210.0140.0100.010-0.007-0.007-0.006-0.077-0.071
	∗∗ 
	∗∗∗ 
	∗ 
	∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	-0.0290.0090.0050.002 -0.005 0.050
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 
	∗∗∗ 

	Hotel Included x x x Multi-Family Included x x x Other Included x x x 
	Loan Originator x x x x x Property State x x x Property Type × Time (Quarterly) x x x x x Property County × Time (Quarterly) 
	xx 
	Number of Observations 41,362 19,626 26,433 13,185 21,209 
	Standard errors are double clustered by the property state and the quarter of origination.
	∗ 
	p< 0.1, p< 0.05, p< 0.01 
	∗∗ 
	∗∗∗ 

	Table F5—Marginal Effects of Explanatory Variables on IV (%) 
	This table shows the marginal effects of these explanatory variables on percentage implied volatility. The implied volatilities are estimated using the two-factor model described in Appendix applying the market liquidity adjustment explained in Section This sample contain fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. This sample excludes hotel and multi-family properties. 
	B, 
	III.B. 

	Pre-GFC 
	Pre-GFC 
	Pre-GFC 
	Post-GFC 

	Property Age (Years) 
	Property Age (Years) 
	0.009∗ 
	0.012 

	100 × Log of Property Size (Sqft) 
	100 × Log of Property Size (Sqft) 
	-0.008∗∗∗ 
	-0.004∗∗∗ 

	Property Occupancy (%) 
	Property Occupancy (%) 
	-0.025∗∗∗ 
	-0.072∗∗∗ 

	Lead Tenant Share (%) 
	Lead Tenant Share (%) 
	0.006∗∗ 
	0.027∗∗∗ 

	Number of Observations 
	Number of Observations 
	10,573 
	2,612 


	∗ 
	p< 0.1, p< 0.05, p< 0.01 
	∗∗ 
	∗∗∗ 

	Table F6—Marginal Effects of Explanatory Variables on IV (%) 
	This table shows the marginal effects of these explanatory variables on percentage implied volatility. The implied volatilities are estimated using the two-factor model described in Appendix applying the market liquidity adjustment explained in Section This sample contain fixed-rate, single-property loans, with debt yields over 7% and debt service coverage ratios over 1.25, securitized in non-agency commercial mortgage-backed securities. This sample excludes the “other” property type. The market vacancy rat
	B, 
	III.B. 

	Pre-GFC 
	Pre-GFC 
	Pre-GFC 
	Post-GFC 

	Property Age (Years) 
	Property Age (Years) 
	0.010∗∗∗ 
	0.009∗ 

	100 × Log of Property Size (Sqft) 
	100 × Log of Property Size (Sqft) 
	-0.006∗∗∗ 
	-0.006∗∗∗ 

	100 × Log of Property Size (Units) 
	100 × Log of Property Size (Units) 
	-0.062∗∗∗ 
	-0.070∗∗∗ 

	100 × Log of Market Size (Sqft) 
	100 × Log of Market Size (Sqft) 
	0.002 
	0.002 

	Market Vacancy Rate (%) 
	Market Vacancy Rate (%) 
	0.051∗ 
	0.050 

	Number of Observations 
	Number of Observations 
	13,814 
	7,395 


	∗ 
	p< 0.1, p< 0.05, p< 0.01 
	∗∗ 
	∗∗∗ 






