
Regulating Bank Portfolio Choice Under Asymmetric 

Information 

Chris Anderson∗ 

September 1, 2023 

Abstract 

Regulating bank risk-taking is challenging since banks know more than regu-

lators about the risks of their portfolios and can adjust their portfolios to game 

regulations. To address this problem, I build a tractable model that incorporates 

this information asymmetry. I derive the optimal calibration of linear risk-sensitive 

taxes, which should not generally be set more conservatively to address asymmetric 

information. I further show the efficacy of three novel regulatory tools: Not dis-

closing taxes to banks until after portfolio selection, non-linear taxes that respond 

to information contained in banks’ portfolio choice, and state-dependent taxes on 

banks’ realized profits. 
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1 Introduction 

Modern banking regulation generally aims to be risk sensitive. For example, under the 

current Basel III framework, the primary determinants of capital requirements are risk-

based measures that aim to assign higher requirements to riskier portfolios. Risk weights 

are a major input into these measures, which reflect regulators’ best guess of the risks of 

different exposures within banks’ portfolios. 

However, regulators typically know less about risk than banks, which can expose 

these frameworks to potential gaming. When regulators underestimate an asset’s risk, 

banks can take advantage by overweighting it in their portfolios. Therefore, a common 

heuristic among regulators is to be conservative on average, under the theory that such 

conservatism will counterbalance this gaming.1 However, it is unclear under which cir-

cumstances this heuristic should work or whether there are better ways of addressing this 

problem. Furthermore, there has been surprisingly little theoretical work on this topic, 

in spite of its practical importance. In this paper, I build a tractable model to address 

the question of how to regulate banks’ portfolio choice in the presence of asymmetric 

information, which takes into account that banks will game the regulations ex-post. 

In this model, a bank selects its portfolio among a wide range of assets, which I 

interpret as reflecting investments in different granular sub-sectors (e.g., an asset might 

represent all loans to small biotechnology companies), subject to regulatory constraints. 

While these constraints can take many forms, for tractability, I focus on a regulator 

setting risk-sensitive taxes. These taxes could be interpreted as literal taxes or as shadow 

costs from quantity-based regulation, such as capital requirements. Each asset has a 

different level of risk, measured as its beta with respect to a single systematic risk factor, 

and profitability. Information asymmetry exists because the bank perfectly observes each 

asset’s risk and profitability, while the regulator only receives noisy signals of each. The 

bank and regulator share the objective of increasing profitability and decreasing risk, 

but bank risk-taking imposes a social externality that the bank does not internalize. 

Therefore, the regulator wants to reduce the riskiness of the bank’s portfolio, but also 

recognizes the social costs of the bank forgoing profitable investments. 

The major contribution of this paper is to analyze how three novel regulatory tools 

can address this problem of asymmetric information: Not disclosing taxes to banks until 

after portfolio selection, non-linear taxes that respond to information contained in banks’ 

portfolio choice, and state-dependent taxes on banks’ realized profits. Each or all of these 

tools could be incorporated into the regulatory framework. 

Before analyzing the novel tools, I begin by considering a more familiar tool: An 

1This observation comes from my personal experiences working in banking supervision. 
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asset-specific linear tax, which is similar to the linear risk weights used in most current 

capital regulation. Assuming a linear social cost to risk exposure, the regulator’s optimal 

policy is to set the tax exactly equal to the expected risk given their signals. Contrary to 

common intuition, the bank’s ex-post gaming of regulations does not mean the regulator 

should set taxes conservatively (i.e., higher than expected risk). The reason is that, in this 

environment, the costs from setting overly high taxes (i.e., dissuading socially optimal 

investments) are similar to the costs from setting overly low taxes (i.e., allowing banks to 

take more than the socially-optimal level of risk). Therefore, bank strategic behavior is 

not a rationale for conservatism by itself: Non-linearity of social costs or underweighting 

the benefits of profitable investments are necessary.2 I then proceed to consider how the 

three novel regulatory tools can address this asymmetric information problem. 

The first tool is strategic non-disclosure. Specifically, I consider a case in which the 

regulator sets a linear tax on exposure to each asset, but does not reveal the magnitude 

of this tax to the bank until after it has selected its portfolio. Thus, the bank must then 

select its portfolio based on its best guess of these taxes. However, if the bank has no 

information about the regulator’s signals, the bank’s best guess is that the taxes will 

be correctly calibrated and therefore the regulator can achieve the first-best outcome. 

However, even if the bank has imperfect information about the likely size of the tax, non-

disclosure can still reduce the bank’s ability to game regulation. This type of approach is 

in the spirit of stress tests, in which banks do not fully know the regulator’s model, but 

which could be applied more broadly to other parts of the regulatory framework. 

The second tool is a non-linear tax on risk exposures. The bank’s decision to invest 

more in an asset reveals information about the asset’s likely riskiness, which the regulator 

can incorporate by using a non-linear tax. Specifically, the regulator’s optimal policy is 

to set the marginal tax so that it equals the regulator’s estimate of risk, conditioned on 

level of the bank’s investment in that asset (along with the regulator’s other information). 

However, counterintuitively, the marginal tax may not necessarily be increasing in the 

bank’s investment. For example, the bank might be investing more in an asset because 

it has lower risk, which would encourage the regulator to set decreasing marginal taxes. 

In general, whether the optimal marginal tax is increasing or decreasing depends on the 

correlation between each asset’s profitability and riskiness, which determines whether the 

bank increases or decreases investment in riskier assets on average. 

The third tool is a state-dependent tax on ex-post profits. The regulator sets a tax 

on profits that has a higher rate during “good times” (i.e., when the stochastic discount 

factor (SDF) of banks’ investors is lower). This type of tax on profits reduces the expected 

2While this paper takes a Bayesian perspective, accounting for model uncertainty does not necessarily 
justify conservatism. Worst-case scenarios could include a regulator overestimating risk, setting an overly 
high tax, and preventing socially-efficient investments. 
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return that banks receive for taking a given amount of risk, which worsens the bank’s 

after-tax risk-return trade-off and effectively makes the bank more risk averse. If perfectly 

calibrated, this type of tax can perfectly align the bank’s incentives with the regulator’s. 

Since banks’ profits are typically higher during booms (which reflect “good times”), a 

progressive tax on profits could approximate the outcome of a perfectly-calibrated tax. 

A flat tax on profits is not sufficient: Even though a flat tax reduces banks’ after-tax 

profits, it also reduces their after-tax portfolio risk in a similar way and thus does not 

change the risk-return trade-off. 

While this paper is not the first to consider asymmetric information in the context 

of banking regulation (for example, see Giammarino et al. (1993), Chan et al. (1992), 

Wu and Zhao (2016), and Perotti and Suarez (2018)), it differs in that it (1) proposes a 

different set of regulatory tools, (2) focuses specifically on the problem of portfolio choice 

given a wide set of assets, and (3) allows for the regulator to have some information, even 

if imperfect. 

This paper is structured as follows: Section 2 lays out the model. Section 3 covers 

regulation based on taxing expected risk exposure. Section 4 covers regulation based 

on non-disclosed taxes, which are not revealed to the bank until after it has selected 

its portfolio. Section 5 covers regulation based on taxing banks’ profits to reduce their 

effective risk aversion. Section 6 describes the policy applications. Section 7 concludes. 

1.1 Related literature 

The most closely related papers explicitly model information asymmetries between banks 

and regulators. However, they generally do not consider regulators with partial informa-

tion, implications for banks’ portfolio choice, or the performance of certain regulatory 

tools, such as non-linear risk-sensitive taxes or taxes on ex-post profits. 

Perotti and Suarez (2018) is of the most closely related papers. The paper consid-

ers optimal regulation when bank illiquidity imposes an externality, similar to how bank 

risk-taking imposes an externality in this current paper. They consider the use of both 

Pigovian taxes as well as quantity-based regulation, taking into account regulators’ un-

certainty with respect to banks’ investment opportunities and gambling incentives, in 

the spirit of Weitzman (1974). They abstract away from considering the liquidity of 

individual assets or liabilities. There is a clear similarity in that both papers consider 

Pigovian taxation under some form of uncertainty. However, there are major differences 

between their paper and the current one. The most obvious is their focus on liquidity 

risk, whereas this paper more naturally focuses on risks arising from losses in asset value. 

The current paper focuses on bank’s portfolios, which speaks to questions of optimal 

asset-specific regulations that their paper abstracts away from. The current paper also 
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considers different regulatory instruments, such as information nondisclosure and taxes 

on ex-post profits. 

Giammarino et al. (1993) address bank regulation under asymmetric information, 

but with a different focus than this paper. In their model, the regulator has perfect 

knowledge of banks’ loan quality, but does not know how much is due to investment 

opportunities versus the banker’s effort. A key issue in their model is ensuring that the 

regulator properly incentivizes the banker to exert effort to improve the quality of the 

bank’s loan portfolio. Their focus is not on portfolio choice. In contrast, in the current 

paper, regulators do not have perfect knowledge about loan quality or assets’ riskiness. 

The focus is on using regulation to ensure the bank selects a less risky portfolio. 

Chan et al. (1992) is another paper addressing asymmetry of information between 

banks and a regulator that provides deposit insurance. In their environment, the regulator 

has no direct measure of the riskiness of banks’ portfolios. They address the problem of 

how a regulator without direct knowledge of the riskiness of banks’ portfolios can offer 

incentive-compatible choices of deposit insurance premiums and capital requirements so 

that banks reveal the riskiness of their loans. As in the case of the previous paper, 

their focus is not on banks’ portfolio choice and does not address the question of how a 

regulator with limited, but not perfect, information should act. 

Wu and Zhao (2016) consider the benefits of adding a leverage ratio requirement on 

top of risk-based capital requirements in the presence of asymmetric information between 

banks and regulators. They show that including a leverage ratio reduces banks’ incentives 

to misreport their level of risk. As with the other papers, their focus is not on portfolio 

choice. 

Other papers consider information asymmetries in the context of banking, but with 

a different focus. For example, Goldstein and Leitner (2018) relates to the optimal 

disclosure of stress test results, but is more concerned with how regulators can affect the 

asymmetry of information between banks and the market. 

This paper also relates to the theoretical literature on optimal capital regulation for 

banks, particularly the impacts on portfolio choice. Kim and Santomero (1988) derive 

the optimal risk weights for a regulator with full information on asset riskiness with the 

goal of limiting failure probabilities below a certain level. Rochet (1992) similarly derives 

optimal regulatory policy, both in terms of asset risk weights for capital requirements 

and pricing of deposit insurance, for a regulator with full information. More recently, 

Glasserman and Kang (2014) considers the problem of a regulator choosing optimal risk 

weights, including a case in which the regulator does not know the mean return of each 

asset. The main difference is that this paper focuses on the problem of a regulator with 

limited information about the riskiness of individual assets, whereas the regulator in their 
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paper has full knowledge of each assets’ riskiness. 

This paper also relates to empirical literature on risk in banking. Meiselman et al. 

(2018) empirically demonstrate that banks with high profits were more likely to crash 

during the financial crisis. Morgan and Ashcraft (2003) propose measuring the risk of 

a loan portfolio using interest rates and show that banks with higher loan spreads have 

more non-performing loans over the next year and a higher likelihood of a CAMELS 

rating decline over the next two years. 

The results on taxing banks’ profits relate to a literature on how tax policy affects bank 

behavior. John et al. (1991) is the most relevant, in that they propose setting a progressive 

tax to mitigate banks’ incentives to tax excessive risks. Shackelford et al. (2010) discuss 

various ways in which taxation may be used to address externalities in the financial 

sector. They note that information asymmetries make Pigouvian taxation to address 

these externalities difficult and broadly discuss how financial transactions taxes, taxes 

on bonuses, and levies on banks may partially mitigate those externalities. Empirically, 

Celerier et al. (2019) empirically demonstrates the impact of Belgium’s adoption of an 

equity subsidy, which allowed banks to deduct an estimate of the cost of equity from 

their taxes, on the composition of their portfolio. They show that the equity subsidy led 

banks to shift toward holding more loans rather than government bonds. And while not 

directly related to banks, this paper relates to a longstanding literature on the impact of 

taxation on risk-taking in general, such as in Domar and Musgrave (1944) and Stiglitz 

(1969). 

2 The general framework 

This is a single-period model containing a bank and a regulator. There are many assets 

whose riskiness (which is reflected by each asset’s beta with respect to a common risk 

factor) and expected return are drawn from known prior distributions. Although the 

framework is general, I think of a single asset in the model as mapping to an investment 

in some granular sub-category, such as “loans to small biotechnology companies”. The 

bank has perfect information on the realized betas and expected returns, whereas the 

regulator only receives noisy signals. The regulator can use these signals to establish 

regulatory constraints, which in general can take many forms, and then the bank selects 

its investments subject to those constraints. 

I will typically assume that the bank’s starting equity is exogenous, although Section 

B in the appendix considers the case in which the bank endogenously selects its desired 

level of equity. Without loss of generality, normalize the bank’s starting equity to one 
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unit.3 There is a continuum of risky assets indexed by i ∈ [0, 1]. The bank selects qi, 

its quantity of investment in each asset. The overall expected excess return to investing 

in asset i is aiqi − 
2 
c qi 
2 . I assume that c > 0, so that there are diminishing returns to 

investment. qi may be negative, which can be interpreted as the bank taking a short 

position. 

Each asset is exposed to a single systematic factor F with an asset-specific βi loading.
4 

Without loss of generality, I set E[F ] = 0 and V ar(F ) = 1. Thus, each asset i has a 

payoff Xi of the form5 

c 
Xi = ai − qi + βiF. (1)

2 

The bank’s objective is to maximize its market value, which is given by 

EB [M(Π − T )] (2) 

R 
where Π = 

0

1 
qiXidi is the bank’s pre-tax profit, T represents potential taxes paid to the 

regulator, M is the investors’ SDF, and EB denotes an expectation with respect to the 

bank’s information set. I assume that the investors’ SDF is6 

M = 1 − γF, (3) 

which implies that the bank maximizes 

EB [(Π − T )] − γCovB ((Π − T ), F ) (4)Z 1 c 
= (aqi − qi 

2 − γβiqi)di − EB [T ] − γCovB(T, F ). (5)
20 

Here, risk is measured based on the bank’s portfolio beta rather than the variance. A 

negative beta portfolio is considered less risky than a zero beta portfolio because it 

3By normalizing the bank’s equity to one, all quantities can be interpreted as relative to the bank’s 
total capital. Large quantities of investments in risky assets correspond to high leverage since banks 
must issue debt (whether as deposits or in another form) to fund those positions. 

4The portfolio-invariant risk weights in Basel II and III can be justified by the assumption of a single 
systematic factor, as discussed in Gordy (2003). However, the assumption of a single factor is not as 
important in this paper’s framework. As will be explained in more detail shortly, risk in the context of 
this paper is based on covariance with the investors’ stochastic discount factor (SDF) rather than the 
variance of the bank’s portfolio. Under the SDF-based measure of risk, each asset’s risk contribution 
does not depend on the rest of the portfolio even if there are multiple systematic factors. 

5In this setting, there is no idiosyncratic risk. Since there is a continuum of assets, the idiosyncratic 
risk would be diversified away and would therefore not affect the results of this model. 

6While the SDF can technically become negative for large values of F , this issue is not a concern for 
my application. This SDF results in a price of γ per unit of exposure to the systematic risk factor, which 
leads to a more tractable model. 
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provides the bank’s investors with insurance by paying out during “bad times” when the 

marginal value of wealth is high. This linear price of risk exposure matches the approach 

taken by Froot and Stein (1998). 

The bank’s risk-taking imposes externalities η > 0 per unit of portfolio beta βp = R 1 
qiβidi.0 The regulator’s objective is to maximize social welfare, which is � Z 1 � 

ER MΠ − η qiβidi (6) 
0�Z �1 c 2 =ER (aqi − q − (γ + η)βiqi)dii20 

(7) 

where ER denotes an expectation with respect to the regulator’s information set, which 

will be specified in greater detail shortly.7 The regulator’s objective is identical to the 

bank’s, except with higher effective risk aversion. The regulator wants the bank to be 

profitable, but is willing to accept a lower amount of risk for each unit of profit. 

The timing and information structure of the situation is as follows: First, the βi 

loadings and ai measures of investment profitability are drawn from a prior distribution 

known to both the bank and the regulator. Then, the regulator receives noisy signals 

β̂i and âi for each asset. These signals reflect the regulator’s imperfect information on 

how risky each asset is. Next, the regulator uses this information to determine regulatory 

constraints on the bank. There are several cases of regulatory constraints, but one exam-

ple is the regulator selecting a tax ki that the bank must pay for each unit of exposure 

to asset i. This cost could be interpreted as either a direct cost, such as a premium for 

deposit insurance, or an indirect cost, such as the cost of higher capital requirements 

for a position. These payments represent a private cost to the bank, but do not affect 

social surplus. Finally, the bank optimally selects its portfolio knowing the true βi and ai 
parameters, reflecting superior knowledge of assets’ riskiness, subject to paying any costs 

or following any constraints imposed by the regulator. 

In determining optimal regulation, the regulator faces a trade off. Since the regulator 

has a higher effective risk aversion than the bank, the regulator wants to reduce riskiness. 

But regulations meant to reduce riskiness might lead to investment efficiencies, which 

reduce social welfare. 
7In principle, the bank’s investments might also impose positive externalities that the regulator takes 

into account. For simplicity, I’ll assume that there are no such externalities, which means that the bank 
is capturing all social surplus. 
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The processes for each asset’s true profitability and beta are 

ai = ā+ u ai (8) 

βi = β̄ + ui
b , (9) 

where ua and ub are mean-zero jointly normal random variables with variances σ2 andi i ua 

σ2 a b 
ub. ui and u have a correlation of ρ if i = j and are independent if i 6= j. Therefore,j 

the draws of ai and βi are independent across assets. 

The regulator receives a pair of signals 

âi = ai + ei
a (10) 

β̂i = βi + ei
b , (11) 

where ea and eb are mean-zero jointly normal random variables with variances σ2 andi i ea 

σ2 a b 
eb respectively. ei and ei are independent of each other. 

2.1 No regulation 

To build intuition for the cases involving regulation that follow, I begin by considering 

the bank’s problem when there is no regulation. 

In this case, the bank solves Z 1 c 
max (aqi − qi 

2 − γβiqi)di, (12) 
{qi} 20 

which quickly leads to the solution 

1 
qi = (ai − γβi). (13) 

c 

The bank’s investment in an asset increases in ai and decreases in βi. While seemingly 

straightforward, it is important to remember that, all else equal, banks do not like to 

take risk. They will only take on additional risk if they are sufficiently compensated for 

it. Common intuition is that banks will take advantage of weaknesses in regulation to 

increase their risk, but this intuition is only true if that risk is sufficiently compensated. 

The ai − γβi term will be important for future results. I call this term the “initial 

risk-adjusted return”. In this model, the bank’s marginal return from investing in asset 

i is ai − cqi, so ai represents the initial marginal return, starting from when qi is zero. 

Since the bank dislikes beta exposure with a cost of γ, the −γβi term represents a risk 

adjustment from the bank’s point of view. 
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Whether banks invest more in high-beta assets depends on the relationship between 

each asset’s initial risk-adjusted return and its beta. Specifically, it depends on whether � � 
1 

Cov(qi, βi) = Cov (ai − γβi), βi (14) 
c 

1 
= (Cov(ai, βi) − γV ar(βi)) (15) 

c 

is positive or negative. This relationship will only be positive if the covariance between 

ai and βi is sufficiently positive, so that higher betas are associated with higher initial 

returns on average. 

Since there is typically an equilibrium relationship between risk and return, it may be 

tempting to think that ai should necessarily be strongly positively related to βi. However, 

this relationship is typically between risk and the marginal return. In this model, ai only 

reflects the initial marginal return starting from zero investment in an asset, whereas 

ai − cqi reflects the correct marginal return. In equilibrium, investment in a highly 

profitable asset will drive down that asset’s marginal return until the marginal return 

equals γβi, so that it exactly compensates for the asset’s risk. There is no similar logic 

for why the initial marginal return, ai, should inherently be strongly related to βi. 

Next, I consider what the portfolio beta and expected return look like in this case. 

The portfolio beta is Z 1 

βp = qiβidi. (16) 
0 

The expected portfolio beta is 

E[βp] = E[qiβi] = E[qi]E[βi] + Cov(qi, βi). (17) 

This familiar last term will determine how the portfolio beta compares to what would be 

expected ignoring the link between risk and portfolio choice. If this term is positive, the 

bank will adjust its portfolio to scale up risky investments. If this term is negative, it 

will adjust its portfolio to scale down risky investments. 

The portfolio’s expected return is similarly Z 1 � � c 
µp = aiqi − qi 

2 di. (18)
20 
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It can be written as 

c 
µp = E[aiqi] − E[qi 

2] (19)
2 

c � � 
= E[ai]E[qi] + Cov(ai, qi) − V ar[qi] + E[qi]

2 (20)
2 

2.2 The first-best solution 

Here I consider the first-best outcome, in which the regulator knows the true ai and βi 

parameters and can select investment quantities qi to maximize social welfare. In this 

case, the regulator maximizes Z 1 � � c 
max aiqi − qi 

2 − (γ + η)βiqi di (21) 
{qi} 20 

where there are no expectations due to the regulator’s perfect knowledge of all parameters. 

As will be the case in other sections, I will focus on understanding the behavior of the 

unconditional expectations of the portfolio beta, portfolio return, and social welfare. 

Proposition 1. In the first-best case, equilibrium investment in asset i is 

1 
qi = (ai − (γ + η)βi). (22) 

c 

The equilibrium expected portfolio beta is 

1 � � 
E[βp] = E[aiβi] − (γ + η)E[βi 

2] . (23) 
c 

The equilibrium expected portfolio return is 

1 � � 
2] − (γ + η)2E[β2E[µp] = E[ai i ] . (24)

2c 

The equilibrium social welfare is 

E[µp − (γ + η)βp] = 
1 
E[(ai − (γ + η)βi)

2]. (25)
2c 

Proof. See Section C.1. 

The most interesting result is that social welfare depends on the expectation of ai − 

(γ + η)βi squared. This term can be interpreted as the initial risk-adjusted return from 

the regulator’s point of view. Whenever the initial risk-adjusted return differs from zero, 

the bank can make socially efficient investments. 
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I also introduce a general result that is useful for calculating expected social welfare 

under various cases. 

Proposition 2. For all given random variables qi representing a bank’s investment 

choice, the expected social welfare can be expressed as � � c fb fb E[(qi )
2] − E[(qi − qi )

2] , (26)
2 

where the first-best investment is 

qi
fb = 

1
(ai − (γ + η)βi) . (27) 

c 

Proof. See Section C.2. 

Intuitively, social welfare can be decomposed into one piece that depends on welfare 

under the first-best case and another piece that depends on deviations away from the 

first-best. A particularly useful application of this result is comparing social welfare 

between two cases, for which it only becomes necessary to calculate the expected squared 

deviations from first-best. 

3 Regulation through taxing estimated risk 

Here I consider how a regulator might use taxes on banks’ estimated risk to regulate 

their risk-taking. In interpreting the results, literal taxes are not required, but instead 

something that imposes a direct or indirect cost to the bank. For example, risk-sensitive 

deposit insurance premiums would be a direct cost while higher steady-state capital 

requirements would be an indirect cost. Section A discusses the relationship between 

setting taxes and capital requirements in further detail. Additionally, this section assumes 

that the bank’s starting level of equity is exogenous. Section B discusses an extension in 

which the bank selects its desired level of equity. 

3.1 Linear tax 

Here the regulator picks a tax ki that the bank must pay for each unit of asset i. The 

proceeds of this tax do not have any social benefit, so they don’t enter the regulator’s 

objective function, but the bank optimizes conditional on the tax. The bank optimizes Z 1 c 
max (aiqi − qi 

2 − γβiqi − kiqi)di (28) 
{qi} 20 
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taking ki as given. The regulator optimizes ��Z 1 c 
max ER (aiqi − qi 

2 − (γ + η)βiqi)di (29) 
{ki} 20 

taking into account how the choice of ki affects the bank’s choice of qi as well as infor-

mation contained in the signals âi and β̂  
i. 

Proposition 3. The bank optimally selects 

1 
qi = (ai − γβi − ki) (30) 

c 

The regulator optimally selects 

ki = ηER[βi] (31) 

The equilibrium social welfare relative to the first-best is 

− 
1 
η2V ar(β̃  

i) (32)
2c 

where 

β̃i = βi − ER[βi] (33) 

reflects the regulator’s expectational error. 

Proof. See Section C.3. 

The regulator’s optimal policy is to set the tax equal to the expected risk given signals. 

At first glance this result may seem straightforward, but it does run counter to common 

intuitions. In practice, financial regulation is often calibrated to be conservative. One 

argument for this conservatism is that banks will take advantage of any weaknesses in the 

regulatory framework. If the regulator incorrectly believes that an asset is less risky than 

it actually is, then banks will overinvest in that asset. Calibrating regulation to be more 

conservative than the regulator’s expectations is then argued as necessary to prevent this 

type of gaming. 

This force exists in this model, since banks will overinvest in assets if regulators under-

estimate their risk. The reason why the optimal solution does not call for conservatism 

is that such conservatism carries a cost as well. If regulators overestimate the risk of an 

asset, then banks will underinvest in it and thus not make socially-desirable investments. 

Due to the specification of the risk-taking externality, ηβp, as a linear function, the costs 
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of overinvestment and underinvestment are similar and therefore the regulator targets 

their expectation of optimal investment. 

Extensions that allow for a convex risk-taking externality, so that the extra costs of 

too much risk are substantially more than the benefits of reducing risk, can give rise to 

conservatism. Section 3.2 covers the topic in more detail. 

3.1.1 Is a linear tax better than command? 

Here I consider whether a linear tax outperforms the command case, in which a regulator 

directly selects the banks’ investments. Intuitively, it would seem that the linear tax 

would always outperform since it controls for the expected externality while still allowing 

the bank to make use of its private information. However, it turns out that, for certain 

parameters, it can be a better option for a regulator to select investments directly. 

First, I’ll describe the outcome of the command case. Here, the regulator optimizes ��Z 1 c 
max ER (aiqi − qi 

2 − γβiqi − kiqi)di , (34) 
{qi} 20 

which through straightforward calculus leads to the solution 

1 
qi
com = (ER[ai] − (γ + η)ER[βi]) . (35) 

c 

Proposition 4. Social welfare under the command case relative to the first-best is 

− 
1 
V ar(ãi − (γ + η)β̃  

i). (36)
2c 

Social welfare under the command case is higher than in the linear tax case when 

2(γ + η)Cov(ãi, β̃  
i) > V ar(ãi) + γ(γ + 2η)V ar(β̃  

i), (37) 

where x̃ = x − ER[x] is the expectational error of the regulator. 

Proof. See Section C.4. 

This expression is not deeply intuitive, but it illustrates that there are some circum-

stances under which the command case would be preferred to the linear tax. 

A necessary, but not sufficient, condition for command to be preferred to a linear tax 
˜is for Cov(ãi, βi) > 0. In that case, when the regulator underestimates the beta, the 

regulator also likely underestimates the expected return. The bank would then be more 

likely to invest more in assets for which the regulator has underestimated the risk. 
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3.2 Generalized social cost function with a linear tax 

So far I have considered a known linear social cost function of the form ηβp. However, 

there may be non-linearities in practice. For example, risk may have a small marginal 

social cost at low levels if banks are very unlikely to default. But at higher levels of risk, 

and with higher probabilities of defaulting, the marginal social cost may rise dramatically. 

Additionally, there may be uncertainty as to the magnitude of the social costs, even for 

a known level of risk. 

To address these concerns, I consider a generalized social cost function that allows for 

both non-linearities and uncertainty over costs. 

Proposition 5. Suppose that the social cost to bank risk-taking is a function S(βp, η) 

that is twice-differentiable, increasing in both arguments, and satisfies ∂
∂β 

2S 
2 (βp, η) ≥ 0. R 1 
p 

= qiβidi is the bank’s portfolio beta and η is an exogenous random variable. Thenβp 0 

the regulator’s optimal linear tax is � � 
∂S 

ki = ER (βp, η)βi (38)
∂βp� � � � 
∂S ∂S 

= ER (βp, η) ER [βi] + CovR (βp, η), βi . (39)
∂βp ∂βp 

Proof. See Section C.5. 

One immediate observation is that if the βi are independent across assets, then the 

covariance term will be zero. In that case, the regulator’s solution is the same as in the 

case of the known linear social cost, except replacing the marginal social cost of risk with 

the expected marginal social cost, which is ER[ ∂S (βp, η)].∂βp 

If there is a systematic shock to βi, then the regulator should additionally consider 

the covariance term. Assets whose riskiness is higher when the social cost of risk is high 

should receive a higher tax. 

3.3 Non-linear tax 

Here the problem is similar to before, except that instead of picking a single linear tax 

governed by ki, the regulator sets a non-linear tax schedule ki(qi). These non-linear taxes 

will implicitly makes use of information contained in the bank’s choice of qi. All else 

equal, banks prefer to increase qi when expected returns are high (i.e., ai is high) or risk 

is low (i.e., βi is low), so the bank’s choice of qi is a signal of the combination of these 

two parameters. Using the non-linear tax is essentially a way for the regulator to set a 

tax conditioned not only on the signals âi and β̂  
i, but also on qi. 

15 



More specifically, the bank observes the choice of ki(q) and then selects its portfolio 

taking it as given. The bank therefore optimizes Z 1 c 
max (aiqi − qi 

2 − γβiqi − ki(qi))di (40) 
{qi} 20 

while the regulator maximizes �Z 1 �
c 

max E (aiqi − qi 
2 − (γ + η)βiqi)di . (41) 

{ki(qi)} 20 

Since adding a constant to taxes has no effect on the bank’s choice, I select tax schedules 

that don’t charge banks if they hold nothing (i.e., ki(0) = 0). 

Proposition 6. The bank optimally selects 

qi = 
1
(ai − γβi − ki 

0(qi)). (42) 
c 

The regulator selects ki(qi) to satisfy 

k0(qi) = ηE[βi|qi, ̂  ˆ (43)i ai, βi], 

which leads to a choice of optimal tax schedule 

ki(qi) = 

⎛ ⎜⎜⎜⎝ } 
ηλ0 ηλa ηλb (η/γ)λz cˆ+ âi + βi − 

2}|1 + (η/γ)λz{z }|1 + (η/γ)λz{z }|1 + (η/γ)λz{z |1 + (η/γ)λz{z qi 

⎞ ⎟⎟⎟⎠ qi, (44) 

ω0 ωa ωb ωq 

where λa, λb, and λz match the coefficients from a multivariable regression of βi on âi, 

β̂  
i, and zi = βi − 

γ 
1 ai and λ0 is the constant from this regression. 

Proof. See Section C.6. 

In the case of a linear tax, the regulator sets the tax equal to their best guess of the 

beta. In the case of a non-linear tax, the regulator sets the marginal tax for quantity 

qi equal to their best guess of the beta taking into account the information contained 

in qi. These results are more general and do not depend strongly on this particular 

environment. 

The specific assumptions in this case lead to a specific expression for ki(qi). Essentially, 
ˆthere is a fixed linear component of the tax that depends on âi and βi, which reflects 

regulators using information gleaned from their signals about the true βi. There is also 

a quadratic term that depends on qi. 
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4 Effects of non-disclosure 

Here I consider the policy of specifying taxes, similar to Section 3, but with the added 

twist that the regulator does not reveal these taxes to the bank until after they have 

made their portfolio choice. 

4.1 Fully undisclosed linear tax 

In this case, the regulator specifies a linear tax, but the bank does not know the value of 

this tax until after it has selected its portfolio. One interpretation is that this scenario 

is similar to a stress test in which the bank does not know the regulator’s model. While 

not implemented in practice, another interpretation is that the bank selects its portfolio 

and the regulator only reveals the associated risk weights after the fact. 

In this situation, the bank solves Z 1 c 
max (aiqi − qi 

2 − γβiqi − EB[ki]qi)di, (45) 
{qi} 20 

where the bank’s information set does not include the regulator’s signals. Meanwhile, the 

regulator solves �Z 1 � 
c 

max ER (aiqi − qi 
2 − (γ + η)βiqi)di , (46) 

{ki} 20 

taking into account the bank’s choice function. I solve for the set of solutions {qi} and 

{ki} that jointly solve each optimization problem. 

Proposition 7. One solution is for the bank to select 

1 
qi = (ai − (γ + η)βi) (47) 

c 

and the regulator to select 

ki = ηβ̂  
i. (48) 

This solution achieves the first-best outcome for the regulator. 

Proof. See Section C.7. 

Recall that β̂  
i =6 ER[βi], so the regulator is explicitly not setting the tax equal to their 

best guess of what the true beta is. The rationale is that the regulator wants the tax to 

respond one-for-one to changes in the true underlying beta. The regulator’s best guess 
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¯of the true beta, ER[βi], includes some regularization toward β that typically results in a 

response that is less than one-for-one. 

For practical application, the lesson here is that when regulators are not sharing 

ex-ante details about taxes, they should respond very strongly to any information they 

receive about an asset’s riskiness. Otherwise, banks will assume that regulators will not 

adjust taxes sufficiently in response to information. 

4.2 Partially-disclosed linear tax 

In practice, banks may have some sense of deficiencies in regulators’ models, even if they 

may not have full knowledge of those models. For example, in the context of stress tests, 

banks may learn about some of the features of regulators’ models. I model this situation 

by giving banks noisy signals of the regulator’s signals, which they can use to guess the 

likely level of tax that regulators will specify. 

The set-up is exactly the same as before, except now banks receive a noisy signal of 

the regulator’s signals. For convenience, I adopt the notation that 

xi = [ai, βi] (49) 

ei = [e ai , e bi ] (50) 

ˆx̂i = [âi, βi] = xi + ei (51) 

and then suppose that the bank receives a signal 

si = x̂i + wi, (52) 

where 

wi ∼ N (0, Σw) (53) 

and the wi are independent across assets. 

Proposition 8. If the bank receives noisy signals of the regulator’s signals, then an 

optimal ki must satisfy 

ER[EB[ki]] = ηER[βi]. (54) 

One solution satisfying this condition is for the regulator to set 

ki = η(β̄ + m 0(x̂i − x̄)), (55) 
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where m is a 2 × 1 vector equal to 

m = (V ar(xi) + V ar(ei)(V ar(ei) + V ar(wi))
−1V ar(ei))

−1Cov(xi, βi) (56) 

= V ar(EB[x̂i])
−1Cov(EB [x̂i], βi), (57) 

which matches the coefficient of a linear regression of βi on EB[x̂i]. 

Proof. See Section C.8. 

Intuitively, the condition for the optimality of ki is that the regulator’s best guess of 

the bank’s best guess of the regulator’s tax equals the regulator’s best guess of the risk 

externality imposed by the portfolio. Put another way, the regulator wants to calibrate 

the tax to give the bank the correct incentives on average. 

Existing results emerge as special cases of this framework. First, if the bank has a 

perfect signal of the regulator’s information, then V ar(wi) = 0. This case is equivalent to 

when the regulator pre-announces the loadings, in which case the result is ki = ηER[βi]. 

Second, if the bank has no idea of the regulator’s information, which is modeled as 

wi approaching infinite variance, then V ar(ei)(V ar(ei) + V ar(wi))
−1V ar(ei) → 0 and 

m = [0, 1] is the solution, which aligns with the earlier result of the regulator setting 

ki = ηβ̂  
i. 

To interpret m, note that the bank’s best guess of the tax in equilibrium is 

EB [ki] = η(β̄ + m 0EB [x̂i − x̄]). (58) 

The bank’s best guess of the tax depends on the bank’s best guess of the regulator’s 

signal, EB[x̂i]. If the regulator calibrates m such that it matches the coefficient from a 

regression of βi on EB [x̂i], it most closely aligns the bank’s estimate of the tax with the 

socially-optimal tax. 

What happens as the bank’s signal becomes noisier (i.e., the variance of wi rises)? 

First, note that EB[x̂i] = xi + EB[ei], so the bank’s expectation of the regulator’s guess 

depends both on their perfect information of the true state along with their imperfect 

information of the regulator’s error. Holding all else constant, raising the noise of the 

bank’s signal makes the bank’s information on ei less useful, so EB [x̂i] will be closer to xi, 

and the bank’s guess will be more responsive to the true state of the world. Intuitively, 

the less the bank knows about the regulator’s errors, the less able the bank is to take 

advantage of those errors, and the more the bank relies on its knowledge of the asset’s 

true riskiness. 
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4.3 Non-disclosure with an aversion to idiosyncratic volatility 

A potential concern with non-disclosure of taxes is that it exposes banks to additional 

uncertainty over their future cash flows. In the baseline framework, banks are only averse 

to systematic risk, so this additional uncertainty does not pose any cost. But, in practice, 

factors such as capital market imperfections may make banks averse even to idiosyncratic 

volatility (Froot and Stein, 1998). Therefore, non-disclosure can pose costs to banks that 

the baseline framework does not capture. 

To incorporate these costs, I add a γI term reflecting banks’ aversion to idiosyncratic 

volatility resulting from the uncertain taxes. One important question is whether the 

regulator considers idiosyncratic risk as imposing a social cost or not. To capture a wide 

range of possibilities, I assume that the regulator recognizes a social cost ηI associated 

with the bank bearing idiosyncratic volatility. Since the regulator already recognizes 

indirect effects of volatility affecting banks’ portfolio choice, the ηI term reflects only 

the direct costs of the bank bearing idiosyncratic volatility, even controlling for portfolio 

choice. 

For tractability reasons, I focus on the simpler case in which there is only one asset. 

In this case, the idiosyncratic risk only comes from the tax on the single asset. In the 

case with multiple assets, idiosyncratic risk will depend on the volatility of taxes across 

many assets, in which case the correlation of the errors becomes important. To avoid 

introducing those complexities for now, I focus on one asset. 

Proposition 9. Suppose that banks are averse to the volatility of tax payments such that 

they maximize 

c 
max(a − γβ)q − q 2 − EB[kq] − γI σB (kq), (59) 

q 2 

where σB(kq) is the standard deviation of the taxes paid with respect to the bank’s infor-

mation set. 

Additionally, suppose that the regulator recognizes a social cost of ηI from the volatility 

of tax payments, so that the regulator’s objective is to select a tax k to maximize 

c 
ER[(a − γβ)q − q 2 − ηβq − ηI σB(kq)]. (60)

2 

The regulator can achieve the first-best outcome by setting 

k = ηβ̂ + (ηI − γI ) ησe sgn(q), (61)|{z} 
σB (k) 
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which results in overall taxes paid of 

kq = ηβqˆ + (ηI − γI )ησe|q|. (62) 

Proof. See Section C.9. 

The first piece of this expression, ηβ̂, is the same as in the baseline case without an 

aversion to idiosyncratic volatility. As before, the bank’s best guess of β̂  is the true β, so 

non-disclosure by regulators forces the bank to use their information based on the true 

state of the world. 

The second piece of this expression relates to the idiosyncratic volatility. If the private 

and social costs of idiosyncratic volatility differ (i.e., to the extent that γI and ηI differ), 

the regulator should adjust the taxes to align the bank’s incentives. For example, if 

γI = ηI , so that the two are already aligned, there is no need to take action. 

But consider the case in which γI > 0 and ηI = 0, so that there is only a private cost 

to volatility. For positive q, the regulator should optimally reduce the size of the tax. 

The reason is that the volatility is already dissuading the bank from investing, so the 

tax does not need to be as high to achieve the optimal level of investment. In this case, 

the regulator can compensate for the costs imposed by higher uncertainty in the tax by 

reducing the average size of the tax. The idea generalizes: The regulator can compensate 

for the costs imposed by higher regulatory uncertainty by reducing the average tightness 

of regulations. 

5 Taxes on profits 

This section explores the potential of using taxes on bank profits to effectively reduce 

their risk aversion and thus influence their portfolio choice. 

5.1 Achieving first-best through a tax on expected profits 

In the generally-infeasible case in which the regulator has perfect knowledge of the bank’s 

expected profits, then it’s possible for the regulator to achieve a first-best outcome 

through an appropriately-calibrated tax on them. The intuition is that reducing ex-

pected profits also reduces the profit per unit of risk the bank takes, which incentivizes 

the bank to reduce its risk and has an identical effect as reducing the bank’s risk aversion. 

Proposition 10. The regulator can achieve the first-best outcome by taxing a fraction 
η of the bank’s expected profits. 

γ+η 
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Proof. In this case, the regulator imposes a tax of Z 1η η c 
T = EB[Π] = (aiqi − qi 

2)di. (63)
γ + η γ + η 20 

The bank’s objective is now to maximize Z � �1 � � 
max EB[M(Π − T )] = max 

γ
aiqi − 

c
qi 
2 − γβiqi di. (64) 

{qi} {qi} η + γ 20 

Multiplying by (γ+η)/γ does not change the optimal solution and yields the maximization 

problem Z 1 c 
max (aiqi − qi 

2 − (γ + η)βiqi)di, (65) 
{qi} 20 

which exactly matches the regulator’s objective function and therefore leads to a first-best 

outcome. 

I again emphasize that this outcome is generally not feasible since it relies on the 

regulator having perfect knowledge of ai. However, it suggests that feasible strategies 

that aim to closely approximate a tax on expected returns might be a fruitful course of 

action. The following sections examine different feasible approaches in the same spirit. 

5.2 The failure of a flat tax on ex-post profits 

If a tax on expected profits can achieve the first-best, then could a tax on realized profits 

do the same? Since the expected value of a tax on realized profits equals a tax on expected 

profits, then it would at first appear like this approach should work. But it ultimately 

does not. 

To see why, suppose the regulator adds a tax on profits with the rate set to τ . Note 

that this tax applies to both positive and negative profits, so that the regulator effectively 

subsidizes the bank’s losses. While explicit subsidies for losses are uncommon in practice, 

carrying forward losses to reduce future taxes or using losses to reduce taxable income 

for profitable parts of the business have the same effect. In this case, the bank would 

maximize 

EB[M(1 − τ)Π] = EB[(1 − τ)Π] − γCovB ((1 − τ)Π, F ). (66) 

Since the tax only scales the bank’s objective by a constant, it does not affect the bank’s 

optimization problem and thus has no effect on the bank’s portfolio choice. 
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The intuition for this result is that while the tax reduces profits, it also reduces risk by 

the same amount. The bank makes smaller profits on the upside, but also smaller losses 

on the downside. Therefore, the risk-return trade-off remains unchanged along with the 

bank’s portfolio choice. 

5.3 Achieving the first-best through a tax on ex-post profits 

While a flat tax on ex-post profits does not work, it is possible to achieve the first-best 

through an appropriately-calibrated tax on ex-post profits. 

Proposition 11. If the regulator sets an ex-post tax of 

1 η 
T = Π, (67)

M η + γ 

then portfolio choice will match the first-best case. 

Proof. From Proposition 10, a tax that is set to be a fraction η/(η + γ) of the bank’s 

expectation of profits achieves the first best. The regulator can set an ex-post tax T with 

a present value equal to this tax by selecting T to satisfy 

η 
EB [MT ] = EB[Π]. (68)

η + γ 

Setting T as proposed leads to 

EB 

⎡ ⎢⎢⎣M 
η Π 

η + γ M| {z } 
⎤ ⎥⎥⎦ η 
= EB[Π], (69)

η + γ 

T 

so that the present value of the tax to the bank equals a tax on expected profits. 

From before, the regulator would ideally want to tax the bank’s expected returns. 

Unfortunately, a direct tax is infeasible because the regulator does not know asset-specific 

expected returns. However, the regulator can set a stochastic tax whose present value, 

from the bank’s perspective, equals some fraction of the portfolio’s expected return. 

State-dependent tax rates are required to achieve this result. Since M is high in “bad” 

times and low in “good” times, the taxes should be higher in “bad” times than in “good.” 

In practice, the taxes may not necessarily have to explicitly be state-dependent. For 

example, since bank profits are likely higher during good times than bad, setting a pro-

gressive tax rate on profits might achieve a similar outcome. Even a binary approach, 

such as imposing an extra tax on profits above a particular threshold, may achieve an 

approximately similar outcome. 
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6 Policy applications 

While the model is stylized, it yields several general insights for specifying financial 

regulation in a way that addresses the information asymmetry between the regulator and 

the regulated, particularly for capital regulation. 

First, regulators can benefit by not disclosing information to banks. Intuitively, if a 

bank does not know the regulator’s model ahead of time, they will need to use their best 

guess. If the bank thinks that the regulator’s model will be correct on average, then the 

bank will act as though the regulator had used correct estimates of risk. Even if the bank 

has some information on the regulator’s model, there is still benefit in disclosing as little 

information as possible to reduce possibilities to game the model. 

A potential concern from this approach is that hiding information may cause regu-

latory uncertainty that would dissuade socially-valuable investment. However, if uncer-

tainty over an asset’s risk weight is dissuading banks from investing in it, reducing the 

average level of that risk weight could counteract the effect of the uncertainty. 

This broad approach of not disclosing information to banks is reflected in the spirit 

of current stress tests, in which banks provide information on their portfolios and do not 

have full knowledge of regulators’ model. One of the touted benefits is that it is harder for 

banks to game the model. While non-disclosure is most strongly associated with stress 

tests, it could apply to other parts of the regulatory framework. For example, in the Basel 

III capital framework, risk weights are currently pre-specified by regulators. A possibility 

is for regulators to update the risk weights and only reveal either the individual risk 

weights or overall capital requirements to banks after they have specified their portfolios. 

Second, regulators can apply non-linear formulas that take into account information 

contained in the bank’s portfolio choice. The most direct application would be risk weights 

that automatically change as banks concentrate investment in particular sectors. While 

the model is too stylized for the formulas to directly apply to policy settings, regulators 

can ask the question: If a bank is investing more in a particular type of asset, what 

information does it reveal? In some cases, concentration in an asset may indicate that 

the regulator has underestimated risk, and using a tool similar to a non-linear risk weight 

may be a way of leaning back against that underestimation.8 But higher concentration 

might not indicate risk, but instead indicate an abundance of investment opportunities. 

Distinguishing these cases is important. 

Practical application of such non-linear formulas should also account for bank spe-

cialization. Some banks may specialize in particular lines of business and would therefore 

8Sector-specific countercyclical capital buffers can provide a similar outcome if adjusted appropriately. 
But if there are any difficulties in activating such buffers, an automatic non-linear rule may be able to 
adjust more quickly. 
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naturally have higher concentrations. Penalizing specialized banks is likely socially unde-

sirable. For practical implementation, it may be better to use measures of concentration 

for the aggregate banking system rather than individual banks. 

Third, regulators could implement taxes on ex-post profits. The intuition is that 

banks take risk to generate higher returns. Reducing expected returns through a tax 

thus reduces the bank’s incentives to take risk, which can effectively make them more 

risk averse while still using their private information. However, it is important to take 

into account that taxes on ex-post profits affect both the after-tax risk and expected 

return. 

In theory, one optimal solution is a state-dependent tax that is higher during “good 

times” (i.e., when investors’ SDF is lower). The level of this tax would rise with the 

magnitude of the externality that the bank’s risk-taking imposes. An explicitly state-

dependent tax could be calibrated based on measures of economic performance, such as 

unemployment or GDP growth. However, since bank profitability is likely to be highly 

correlated with economic performance, a progressive tax might also approximate the ideal 

outcome. For example, a higher rate on profits above some predetermined threshold might 

discourage banks from excessive risk-taking by reducing the after-tax payoff of doing so. 

Empirically, Meiselman et al. (2018) show that high profitability for banks predicts 

higher tail risk for both the 2007-2008 financial crisis as well as the 1980s savings and 

loan crisis. Given the empirical link between profits and risk, a well-calibrated tax on 

profits can effectively be viewed as a tax on risk, without requiring any knowledge on the 

regulator’s part of the riskiness of the bank’s portfolio. 

Finally, regulators could supplement their calibrations of risk weights or similar reg-

ulatory tools with information on assets’ profitability as well. The model frequently 

indicates that regulators should set taxes proportionally to the regulator’s estimate of 

the asset’s risk. Implicit in the model is that the regulator’s estimate uses all available 

signals, including signals of profitability. Since risk and profitability are likely closely 

related in practice, information on profitability can help to improve estimates of risk, 

particularly if such information is easier to observe. For example, it’s easier to observe 

a loan’s credit spread than its probability of defaulting. In that case, a regulator might 

adjust risk weights (or other tools) based on observed credit spreads. 

7 Conclusion 

In this paper, I address the problem of how to regulate bank portfolio choice taking 

into account the asymmetry of information between banks and regulators. I construct 

a tractable model that explicitly accounts for this asymmetry. The model is flexible 
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enough to allow for the consideration of a wide range of regulatory tools. I then consider 

the efficacy of several common regulatory tools along with proposing three less-common 

tools: Not disclosing taxes to banks until after portfolio selection, non-linear taxes that 

respond to information contained in banks’ portfolio choice, and state-dependent taxes 

on banks’ realized profits. 

While the model is intentionally stylized to aid in communicating intuitions, the broad 

takeaways could be applied in practice (whether separately or concurrently). Regulators 

could consciously not disclose information from banks to prevent them from gaming 

regulation, similar to how they already do so for stress tests. Non-linear taxes (or risk 

weights) could be used to automatically respond to banks concentrating their investments 

in a particular sector. And taxes on ex-post profits can be used to incentivize banks to 

act in a more risk averse manner, even if regulators know almost nothing about banks’ 

risks. 

Future work can extend the model along several dimensions. One extension is to focus 

on dynamic interactions, particularly in the case of information non-disclosure. Since 

banks can learn information about regulators’ models over time by observing outcomes, 

regulators may need to adjust their models or intentionally introduce noise to keep banks 

from learning too much. Another extension is to ease the single-factor assumption. While 

a single factor is an implicit assumption underlying much regulation (for example, Gordy 

(2003) discusses the importance of a single-factor assumption within capital regulation 

of the banking book), market risk must account for many correlated factors and hedges. 

Addressing this problem would further aid in regulating bank portfolio choice in the 

important, but more complicated, setting of banks’ trading books. 

References 

Celerier, C., Kick, T. K., and Ongena, S. (2019). Taxing Bank Leverage: The Effects on 

Bank Portfolio Allocation. SSRN Scholarly Paper ID 2829326, Social Science Research 

Network, Rochester, NY. 

Chan, Y.-S., Greenbaum, S. I., and Thakor, A. V. (1992). Is Fairly Priced Deposit 

Insurance Possible? The Journal of Finance, 47(1):227–245. 

Domar, E. D. and Musgrave, R. A. (1944). Proportional Income Taxation and Risk-

Taking. The Quarterly Journal of Economics, 58(3):388–422. 

Froot, K. A. and Stein, J. C. (1998). Risk management, capital budgeting, and capital 

structure policy for financial institutions: An integrated approach. Journal of Financial 

Economics, 47(1):55–82. 

26 



Giammarino, R. M., Lewis, T. R., and Sappington, D. E. M. (1993). An Incentive 

Approach to Banking Regulation. The Journal of Finance, 48(4):1523–1542. 

Glasserman, P. and Kang, W. (2014). Design of Risk Weights. Operations Research, 

62(6):1204–1220. 

Goldstein, I. and Leitner, Y. (2018). Stress tests and information disclosure. Journal of 

Economic Theory, 177:34–69. 

Gordy, M. B. (2003). A risk-factor model foundation for ratings-based bank capital rules. 

Journal of Financial Intermediation, 12(3):199–232. 

John, K., John, T. A., and Senbet, L. W. (1991). Risk-shifting incentives of depository 

institutions: A new perspective on federal deposit insurance reform. Journal of Banking 

& Finance, 15(4):895–915. 

Kim, D. and Santomero, A. M. (1988). Risk in Banking and Capital Regulation. The 

Journal of Finance, 43(5):1219–1233. 

Meiselman, B. S., Nagel, S., and Purnanandam, A. (2018). Judging Banks’ Risk by 

the Profits They Report. SSRN Scholarly Paper ID 3169730, Social Science Research 

Network, Rochester, NY. 

Morgan, D. P. and Ashcraft, A. B. (2003). Using Loan Rates to Measure and Regu-

late Bank Risk: Findings and an Immodest Proposal. Journal of Financial Services 

Research, 24(2):181–200. 

Perotti, E. and Suarez, J. (2018). A Pigovian Approach to Liquidity Regulation. 27th 

issue (November 2011) of the International Journal of Central Banking. 

Rochet, J.-C. (1992). Capital requirements and the behaviour of commercial banks. 

European Economic Review, 36(5):1137–1170. 

Shackelford, D. A., Shaviro, D. N., and Slemrod, J. (2010). Taxation and the financial 

sector. National Tax Journal, 63(4.1):781–806. 

Stiglitz, J. E. (1969). The Effects of Income, Wealth, and Capital Gains Taxation on 

Risk-Taking. The Quarterly Journal of Economics, 83(2):263–283. 

Weitzman, M. L. (1974). Prices vs. Quantities. The Review of Economic Studies, 

41(4):477. 

Wu, H.-M. and Zhao, Y. (2016). Optimal Leverage Ratio and Capital Requirements with 

Limited Regulatory Power. Review of Finance, 20(6):2125–2150. 

27 



A Relationship between taxes and capital require-

ments 

The aim of this section is to demonstrate how approaches based on taxes and capital re-

quirements compare with each other. The exact relationship depends on the assumptions 

about capital. 

In several cases, there is an exact equivalence. In the most straightforward case, the 

supply of capital is elastic with constant cost relative to other funding sources of rc. In 

that case, a capital requirement of mi per quantity held of asset i has the same effect on 

the bank’s portfolio choice as an asset-specific tax of ki = mi · rc. 
There is also an exact equivalence between the two approaches when the quantity of 

capital is exogenous and shocks to ai and βi are idiosyncratic (i.e., independent across 

assets). In that case, setting a capital requirement on a specific asset has the same effect 

on the bank’s portfolio choice as setting a tax equal to the shadow cost of the capital 

requirement. 

Proposition 12. Suppose that capital is exogenously set to 1 and the regulator sets a 

capital requirement of the form Z 1 

miqidi ≤ 1, (70) 
0 

where mi indicates the capital requirement for asset i. If there are no aggregate shocks 

to ai and βi (i.e., ai and βi are drawn independently across assets), then the Lagrange 

multiplier on the capital requirement λ is deterministic. The regulator can induce identical 

portfolio choice by the bank through setting a linear tax ki according to 

ki = λmi. (71) 

Proof. See Section C.10. 

However, the two approaches are not equivalent with systematic shocks. In that case, 

the Lagrange multiplier λ will be stochastic. The difference between capital requirements 

and taxes will essentially be a choice of price-based versus quantity-based regulation, 

the considerations of which are discussed most notably by Weitzman (1974). In the 

baseline case in which there is a known linear social cost to bank risk-taking, a tax is 

likely the better solution. But for particular forms of non-linear social cost functions, 

quantity-based regulation may be preferable. 
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B Linear taxes with endogenous capital structure 

I now consider the effects endogenous capital structure choice into the model for the 

case of linear taxes. The bank now selects the amount of equity with which it will fund 

itself. More equity reduces the social cost of bank risk taking for a given level of risk 

exposure. However, equity may potentially have both social and private costs relative to 

other sources of funding. Without delving into exactly why these costs exists, I suppose 

that the social cost of equity is rs > 0 and the private cost of equity is rp ≥ rs > 0.9 

These reflect the change in the overall cost of capital from funding with an additional 

unit of equity, not the per-unit cost of equity. 

For example, if the Modigliani-Miller capital structure irrelevance theorem were to 

hold, then rs = rp = 0. I focus on the cases in which both rs and rp are positive since 

these reflect the interesting cases; if equity were socially costless, then the solution would 

be to hold sufficient equity such that there is no longer any social cost. 

The social cost of risk exposure is R 1 
0 βiqidi 

η . (72) 
e 

This social cost is exactly the same as before, except now the portfolio risk is scaled by 

the amount of equity e. 

I consider a case in which the regulator uses two tools. First, the regulator sets a tax 

that takes the form R 1 
0 kiqidi , (73) 

e 

where ki sets the magnitude of the asset-specific tax on asset i, but now it is also scaled 

by the level of equity e since the social cost of risk also depends on the bank’s leverage. 

For this piece, the regulator solves for the optimal ki. 

Second, the regulator could also potentially subsidize equity at a linear rate of s. So 

the regulator solves for the optimal s as well. 

Proposition 13. If the bank solves Z 1 � � 
c 2 kiqi 

max (ai − γβi)qi − qi − di − (rp − s)e (74) 
{qi},e 2 e0 

9If rs = 0, so that there is no social cost of equity, then the solution is for the bank to fund itself 
with as much equity as possible. For reasons of tractability, this model allows for potentially unlimited 
losses on the portfolio, including losses that are larger than the initial investment. Therefore to cover 
any potential loss would require equity levels approaching infinity. In a model that incorporated limited 
liability on investments, costless equity would imply that the bank should fund itself with 100% equity. 
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and the regulator solves �Z 1 � � � 
c 2 βiqi 

max (ai − γβi)qi − q − η di − rse , (75)ER i {ki},s 2 e0 

taking into account the bank’s optimal choices of qi and e, then the regulator optimally 

sets 

ki = ηER[βi] (76) 

and 

s = rp − rs. (77) 

Proof. See Section C.11. 

The first part of this result, that the regulator sets the asset-specific tax ki based on 

the asset’s expected risk, is intuitively the same as the case with exogenous equity. The 

second part, that the regulator should set an equity subsidy, is new. Setting the subsidy 

like this reduces the bank’s marginal cost of equity from rp to rs, which aligns it with the 

social cost. 

The key difference when introducing endogenous capital structure is that tax policy 

also affects the bank’s incentives to fund itself with equity. When the regulator can 

align the private and social costs of equity, then the regulator only needs to worry about 

aligning asset-specific taxes with expected risks. 

However, the situation becomes more complicated when the regulator cannot intro-

duce an equity subsidy and there are differences in the social and private costs of equity. 

In that case, asset-specific taxes can be used to influence the bank’s overall selected level 

of equity. For example, in typical specifications, setting ki uniformly higher than ηER[βi] 

can serve as a crude tax on leverage that encourages banks to fund themselves with more 

equity. 
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C Additional Details on Proofs 

C.1 The first-best solution 

The first-order condition for equilibrium qi is 

ai − cqi − (γ + η)βi = 0 
(78)1 

=⇒ qi = (ai − (γ + η)βi) 
c 

as desired. The second derivative, −c, is negative, indicating that this solution is a 

maximum. 

The expected portfolio beta is ��Z 1 

E[βp] = E qiβidi 
0 

(79)= E[qiβi] 

1 � � 
= E[aiβi] − (γ + η)E[βi 

2] . 
c 

The expected portfolio return is �Z 1 � 
c 

E[µp] =E (aiqi − qi 
2)di 

20 
c 

=E[aiqi] − E[qi 
2]

2 (80)
1 c 1 

= (E[a 2] − (γ + η)E[aiβi]) − 
2 
(E[a 2] − 2(γ + η)E[aiβi] + (γ + η)2E[β2])i i i c 2 c 

1 � � 
= E[a 2 

i ] − (γ + η)2E[βi 
2] . 

2c 

Social welfare, represented by the regulator’s objective function, is 

1 � 2 
� 1 � � 

E[µp − (γ + η)βp] = E[ai ] − (γ + η)2E[βi 
2] − (γ + η) E[aiβi] − (γ + η)E[βi 

2]
2c c� � 
1 1 1 

= E[ai 
2] + (γ + η)2E[βi 

2] − (γ + η)E[aiβi] 
c 2 2 

=
1 
E[(ai − (γ + η)βi)

2]. 
2c 

(81) 
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C.2 Expression of social welfare 

By definition, the regulator’s expected social welfare conditional on their information set 

is 

c 
ER[aiqi − qi 

2 − (γ + η)βiqi]
2 (82)c 

=ER[(ai − (γ + η)β)qi] − ER[qi 
2]. 

2 

fb 1 fb Using the fact that q = (ai − (γ + η)βi) and expanding qi = q + (qi − f fb) leads toi c i i 

cfb fb fb cER[q qi] − ER[(q + (qi − q ))2]i i i2 
cfb fb fb fb fb)2]=cER[qi qi] − ER[(qi )

2 + 2qi (qi − qi ) + (qi − qi2 (83)c cfb fb fb fb fb =cER[q qi] − ER[(q )
2] − cER[q qi] + cER[(q )

2] − ER[(qi − q )2]i i i i i2 2 
c fb fb = (ER[(qi )

2] − ER[(qi − qi )
2]). 

2 

Taking unconditional expectations leads to the desired result. 

C.3 Linear tax 

The first-order condition for the bank with respect to qi is 

ai − cqi − γβi − ki = 0 (84) 

1 
=⇒ qi = (ai − γβi − ki) (85) 

c 

and this qi is a maximum since the second derivative, −c, is negative. 
The first-order condition for the regulator with respect to ki, taking as given the 

bank’s choice of qi, is � � 
∂qi

ER (ai − cqi − (γ + η])βi) = 0 (86)
∂ki� � 
1 

ER (ki − ηβi)(− ) = 0 (87) 
c 

ki = ηER[βi]. (88) 

Using the result from Proposition 2, the difference in social welfare compared to the 
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first-best is 

c fb)2]E[(qi − qi (89)
2 � �2 

= 
c η 

E[(−ER[βi] + βi)
2]. (90)

2 c 

I define β̃  
i = βi − ER[βi], which reflects the regulator’s expectational error. I can then 

rewrite the expression as 

=
1 
η2V ar(β̃  

i). (91)
2c 

C.4 Command vs. linear tax 

Using the result from Proposition 2, the social welfare relative to the first-best is 

c com fb − E[(qi − qi )
2] (92)

2 

= − 
c 1 

E[(ãi − (γ + η)β̃  
i)
2] (93)

2 c2 

= − 
1 
V ar(ãi − (γ + η)β̃  

i) (94)
2c 

Using results on the social welfare in the linear tax case from Proposition 3, the 

difference in social welfare between the command and the linear tax case is 

− 
1 � 

V ar(ãi − (γ + η)β̃  
i) − η2V ar(β̃  

i) 
� 
. (95)

2c 

This quantity is positive (indicating that the command solution provides higher social 

welfare) when 

η2V ar(β̃  
i) > V ar(ãi − (γ + η)β̃  

i) (96) 

=⇒ η2V ar(β̃  
i) > V ar(ãi) + (γ + η)2V ar(β̃  

i) − 2(γ + η)Cov(ãi, β̃  
i) (97) 

=⇒ 2(γ + η)Cov(ãi, β̃  
i) > V ar(ãi) + γ(γ + 2η)V ar(β̃  

i) (98) 

C.5 Generalized social cost function and a linear tax 

The regulator’s goal is to maximize social welfare, which is given by �Z �1 � � c 
ER aqi − qi 

2 − γβiqi di − S(βp, η) , (99)
20 
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R 1
where βp = 

0 qiβidi is the portfolio beta. The regulator sets constraints subject to the 

bank’s choice of qi. 

First, consider the case in which a regulator sets an asset-specific linear tax ki. Given 

a linear tax, the bank maximizes 

c 
max aqi − qi 

2 − γβiqi − kiqi, (100) 
{qi} 2 

which leads to the familiar optimal solution 

1 
qi = (ai − γβi − ki). (101) 

c 

Next, turn to the regulator’s problem of selecting optimal ki taking the bank’s behavior 

as given. The regulator solves �Z �1 � � c 
max aqi − q 2 − γβiqi di − S(βp, η) , (102)ER i {ki} 20 

taking into account the effect on the bank’s choice of qi. The regulator’s first-order 

condition for ki is �� � � 
∂S ∂qi

ER ai − γβi − cqi − βi = 0, (103)
∂βp ∂ki 

which leads to an optimal choice of � � 
∂S 

ki = ER βi . (104)
∂βp 

The tax should be set to the expected product of the asset beta multiplied by the marginal 

social cost. This term can be expanded to include a covariance as � � � � 
∂S ∂S 

ki = ER ER [βi] + Cov , βi . (105)
∂βp ∂βp 

I then verify that the second-order condition holds with respect to ki. The first derivative 

with respect to ki can be written as �� �� �� 
∂S 1 

ER ki − (βp, η)βi − , (106)
∂βp c 
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which leads to an expression for the second derivative as �� �� �� 
1 ∂2S 1 

ER 1 + (βp, η)βi 
2 − (107) 

c ∂βp 
2 c 

which is negative since ∂
2S (βp, η) ≥ 0.

∂βp 
2 

C.6 Non-linear tax 

I begin by assuming that the regulator has selected equilibrium ki(qi) functions that 

are twice-differentiable, then solve for the bank’s optimal portfolio choice. I then show 

that given the bank’s choice, the regulator will optimally select twice-differentiable ki(qi) 

functions. 

Taking a twice-differentiable ki(qi) as given, the bank’s first-order condition for qi is 

qi = 
1
(ai − γβi − ki 

0(qi)). (108) 
c 

The second-order condition requires that −c − ki 
00(qi) < 0, which is not necessarily guar-

anteed since the ki(q) functions can be arbitrary. However, I will later verify that the 

equilibrium ki(qi) functions for the regulator lead to the second-order conditions being 

satisfied. 

Taking a first-order condition with respect to ki 
0(qi) leads to 

ˆE[(ai − cqi − (γ + η)βi) 
∂qi |qi, âi, βi] = 0 (109)

∂ki 
0(qi)| {z } 
=− 1 

c� � � � 
=⇒ E ai − b 

1
(ai − γβi − ki 

0(qi)) − (γ + η)βi qi, âi, β̂  
i (110) 

c 
ˆ=⇒ k0(qi) = ηE[βi|qi, ̂  (111)i ai, βi]. 

Next, I focus on constructing an explicit expression for the expectation of beta. Note 

that rewriting the bank’s optimal quantity reveals a noisy signal of βi and ai as 

zi = − 
1
(cqi + ki 

0(qi)) = βi − 
1 
ai. (112)

γ γ 

Based on the assumption of joint normality and the linearity of the signals, the regulator’s 
ˆoptimal estimate of βi will be some linear combination of âi, βi, and zi. The coefficients 

ˆon the linear combination will match the coefficients of a regression of βi on âi, βi, and 
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zi, which leads to 

ˆ ˆE[βi|qi, âi, βi] = λ0 + λaâi + λbβi + λzzi. (113) 

The λ coefficients other than the constant come from V ar(x̂)−1Cov(βi, x̂), where x̂ = 

[âi, β̂  
i, zi] and λ0 = β̄  − λaā − λbβ̄  − λz(β̄  − 

γ 
1 ā). Next, apply the relationship 

ˆki 
0(qi) = ηE[βi|qi, âi, βi] (114) 

= η(λ0 + λaâi + λbβ̂  
i + λz(− 

1
(cqi + ki 

0(qi)))). (115)
γ 

Solving for ki 
0(qi) yields 

ηλ0 ηλa ηλb (η/γ)λz
k0 ˆ 
i(qi) = + âi + βi − cqi (116)

1 + (η/γ)λz 1 + (η/γ)λz 1 + (η/γ)λz 1 + (η/γ)λz 

Integrating and setting ki(0) = 0 yields � � 
ηλ0 ηλa ηλb (η/γ)λz c 2ˆki(qi) = + âi + βi qi − qi (117)

1 + (η/γ)λz 1 + (η/γ)λz 1 + (η/γ)λz 1 + (η/γ)λz 2 

Returning to the second-order condition from earlier, I plug in the result 

(η/γ)λz
k00(qi) = −c (118)i 1 + (η/γ)λz 

to obtain that the second derivative of the bank’s objective with respect to qi is � � 
(η/γ)λz− c 1 − (119)

1 + (η/γ)λz� � 
1 

= − c (120)
1 + (η/γ)λz 

which is negative if and only if 

γ 
λz > − . (121)

η 

[TO DO: Investigate whether this condition holds. I have not found any numerical 

counterexamples so far, but I have seen that λz is negative when γ = 2, η = 2, σub = 4, 

σua = 7, σea = 3, σeb = 1, and ρ = −0.5.] 
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C.7 Fully undisclosed linear tax 

To verify that these pair of choices are a solution, I first suppose that the regulator sets 

ki = ηβ̂  
i. The bank’s first-order condition for qi leads to 

qi = 
1
(ai − γβi − ηEB [β̂  

i]) (122) 
c 
1 b b b = (ai − γβi − ηE[β̄ + ui + e |ui ]) (123)i c 

= 
1
(ai − γβi − η (β̄ + u b)) (124) 

c | {z i} 
βi 

which is the desired solution. Since this quantity matches the first-best quantity from 

Proposition 1, it also maximizes the regulator’s objective function. 

Note that this solution is not unique. For all random variables xi satisfying EB[xi] = 
ˆβi, the regulator will achieve first-best by setting ki = ηxi. While βi is an obvious 

ˆcandidate, βi with added noise or the fitted value from regressing βi on âi are other 

possibilities. 

C.8 Partially-disclosed linear tax 

First, I’ll establish the optimality condition for ki. Starting with the bank’s problem, the 

bank maximizes given knowledge over the distribution of ki. The bank solves Z 1 c 
max (aiqi − qi 

2 − γβiqi − EB[ki]qi)di, (125) 
{qi} 20 

which leads to the first-order condition 

1 
qi = (ai − γβi − EB[ki]). (126) 

c 

The second-order condition is satisfied since −c < 0, which ensures that the solution is a 

maximum. 

Given this choice of qi for the bank, the regulator solves �Z 1 � 
c 

max q 2 − (γ + η)βiqi)di , (127)ER (aiqi − i {ki} 20 
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which leads to a first-order condition of 

ER 

⎡ ⎢⎢⎢⎣ ∂qi
(ai − cqi − (γ + η)βi) 

∂ki|{z} 
=−(1/c) 

⎤ ⎥⎥⎥⎦ = 0 (128) 

=⇒ ER[EB [ki]] = ηER[βi] (129) 

as desired. 

Next, I show that the proposed solution satisfies this condition. I conjecture that the 

regulator sets a linear tax according to 

ki = η(β̄ + m 0(x̂i − x̄)), (130) 

ˆwhere x̂i = [âi, βi] and m is a 2 × 1 vector. I then solve for the m that satisfies the 

previous first-order condition. 

First, I begin by computing the left-hand side of the first-order condition, ER[EB[ki]]. 

Start by taking the expectation of the tax with respect to the bank’s information set as 

EB [ki] = η(β̄ + m 0EB [x̂i − x̄]) (131) 

= η(β̄ + m 0[xi + EB [ei] − x̄]), (132) 

where ei = [ei
a, ei

b] is the vector of the error in the regulator’s signals. Recall that the 

bank receives a noisy signal si = x̂i + wi. Since the bank perfectly observes xi, then 

si − xi = ei + wi is a noisy signal of ei. EB[ei] emerges from the result of regressing ei on 

si − xi, which is 

EB [ei] = [V ar(si − xi)
−1Cov(si − xi, ei)]

0(si − xi) (133) 

]0(ei + wi). (134)}| = [V ar(ei + wi)
−1Cov(ei + wi, ei){z 
Λ 

Thus, the bank’s expectation of the tax is 

EB [ki] = η(β̄ + m 0[xi + Λ
0(ei + wi) − x̄]). (135) 

Now take the regulator’s expectation of this quantity. The key is ER[xi +Λ
0(ei + wi) − x̄], 

which can be computed based on a linear regression on x̂i given the assumptions of 
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normality. The expectation is then 

ER[xi + Λ
0(ei + wi) − x̄] = [V ar(x̂i)

−1Cov(x̂i, xi + Λ
0(ei + wi))]

0(x̂i − x̄) (136) 

= [V ar(x̂i)
−1(V ar(xi) + V ar(ei)Λ)]

0(x̂i − x̄), (137) 

which leads to an estimated tax of 

ER[EB [ki]] = η(β̄ + m 0[V ar(x̂i)
−1(V ar(xi) + V ar(ei)Λ)]

0(x̂i − x̄). (138) 

The right-hand side of the first-order condition is 

ηER[βi] = η(β̄ + [V ar(x̂i)
−1Cov(x̂i, βi)]

0(x̂i − x̄)) (139) 

= η(β̄ + [V ar(x̂i)
−1Cov(xi, βi)]

0(x̂i − x̄)). (140) 

Substituting in for the left- and right-hand sides of the first-order condition yields 

η(β̄ + m 0[V ar(x̂i)
−1(V ar(xi) + V ar(ei)Λ)]

0(x̂i − x̄) = η(β̄ + [V ar(x̂i)
−1Cov(xi, βi)]

0(x̂i − x̄))| {z } | {z } 
ER[EB [ki]] ηER[βi] 

(141) 

which can be written as 

m 0[V ar(x̂i)
−1(V ar(xi) + V ar(ei)Λ)]

0 = [V ar(x̂i)
−1Cov(xi, βi)]

0 . (142) 

Solving for m yields 

m = (V ar(xi) + V ar(ei)Λ)
−1Cov(xi, βi) (143) 

= (V ar(xi) + V ar(ei)V ar(ei + wi)
−1V ar(ei))

−1Cov(xi, βi) (144) 

Finally, I show that m is the coefficient from regressing βi on EB[x̂i]. To see this, first 

note that 

EB [x̂i] = EB [xi + ei] (145) 

= xi + EB[ei] (146) 

= xi + Λ
0(ei + wi). (147) 
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Since xi is independent of ei and wi, it follows that 

V ar(EB [x̂i]) = V ar(xi + Λ
0(ei + wi)) (148) 

= V ar(xi) + Λ
0V ar(ei + wi)Λ. (149) 

Substituting in 

Λ = V ar(ei + wi)
−1Cov(ei + wi, ei) (150) 

= V ar(ei + wi)
−1V ar(ei) (151) 

and canceling out the resulting V ar(ei + wi)V ar(ei + wi)
−1 term yields 

V ar(EB[x̂i]) = V ar(xi) + V ar(ei)V ar(ei + wi)
−1V ar(ei). (152) 

Based on this result, it follows that m can be expressed as 

m = V ar(EB[x̂i])
−1Cov(xi, βi) (153) 

= V ar(EB[x̂i])
−1Cov(xi + EB [ei], βi) (154) 

= V ar(EB[x̂i])
−1Cov(EB [x̂i], βi), (155) 

which is the coefficient from a linear regression of βi on EB[x̂i]. 

C.9 Non-disclosure with an aversion to idiosyncratic volatility 

If the regulator sets the tax in this manner, then the bank’s objective function transforms 

into the regulator’s, which immediately leads to the first best. Setting the two objectives 

equal, the bank and regulator have perfectly-aligned incentives when 

EB [k]q + γI σB (k)|q| = ηβq + ηI σB(k)|q| (156) 

⇐⇒ EB [k] + γI σB (k)sgn(q) = ηβ + ηI σB (k)sgn(q). (157) 

ˆRecall that β = β + e and that the bank knows β, but has no information about e. 

Therefore EB [β̂] = β and σB(β̂) = σe. Using this fact yields 

EB[k] = (ηI − γI )ησesgn(q) + ηβ (158) 

σB(k) = ησe. (159) 
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Therefore it follows that the equation 

EB [k] + γI σB (k)sgn(q) = ηβ + ηI σB (k)sgn(q) (160) 

(ηI − γI )ησesgn(q) + ηβ + γI ησesgn(q) = ηβ + ηI ησesgn(q) (161) 

ηI ησesgn(q) + ηβ = ηI ησesgn(q) + ηβ (162) 

is satisfied and thus the regulator’s and bank’s incentives are aligned. 

C.10 Equivalence between taxes and capital requirements with 

exogenous capital and idiosyncratic shocks 

If the regulator has set a capital requirement, then the bank solves Z 1 c 
max q 2 − γβiqi)di (163)(aiqi − i {qi} 20 

subject to the constraint that Z 1 

miqidi ≤ 1. (164) 
0 

Setting up the Lagrangian, the problem becomes Z 1 �Z 1 � 
c 

max (aiqi − qi 
2 − γβiqi)di − λ miqidi − 1 , (165) 

{qi} 20 0 

which leads to the first-order condition for qi of 

ai − cqi − γβi − λmi = 0 (166) 

1 
=⇒ qi = (ai − γβi − λmi). (167) 

c 

Compare this first-order condition to the case in which the regulator sets an asset-specific 

tax ki, in which case the bank selects 

1 
qi = (ai − γβi − ki). (168) 

c 

The regulator can replicate the outcome from the capital requirement by setting a tax 

ki = λmi. However, this replication is possible in this case because λ is deterministic, 

which I will show next. 

If the capital requirement is not binding, then λ = 0. Otherwise, multiplying the 
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first-order condition for qi by mi and then integrating over i yields Z 1 1 
Z 1 

miqidi = (mi(ai − γβi) − λmi 
2)di = 1 (169) 

c0 0 

In the case in which there is only idiosyncratic uncertainty in ai and βi, the integral 

almost certainly equals the expectation, so that 

1
(E[mi(ai − γβi)] − λE[mi 

2]) = 1 (170) 
c 

E[mi(ai − γβi)] − c 
=⇒ λ = 

2 , (171)
E[mi ] 

which is deterministic. Intuitively, the idiosyncratic shocks to ai and βi diversify away 

in the aggregate so that the regulator understands how tightly the capital requirements 

will bind overall. 

C.11 Linear taxes with endogenous capital structure 

I will show that the proposed solution of s = rp − rs and ki = ηER[βi] satisfies the 

conditions for optimal s and ki. 

I start with the bank’s problem, taking s and ki as given. The bank solves Z 1 � � 
c kiqi 

max (ai − γβi)qi − qi 
2 − di − (rp − s)e. (172) 

{qi},e 2 e0 

The first-order conditions yield � � 
1 ki 

qi = ai − γβi − (173) 
c e s 

kp
e = . (174) 

rp − s 

The second derivatives are 

Second of qi : −c (175) 

kp
Second of e : −2 

3 
. (176) 

e q 
At e = 

rp 

k 
− 
p 

s and s = rp − rs, the second derivative with respect to e is 

kp 1 rs 
e = −2 

2 
= −2 , (177) 

e e e 
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which is negative since both rs > 0 and e > 0. Thus the second-order conditions for a 

maximum are satisfied. 

Next, switch to the regulator’s problem. The regulator solves �Z 1 � � � 
c βiqi 

max ER (ai − γβi)qi − qi 
2 − η di − rse , (178) 

{ki},s 2 e0 

where qi and e follow the bank’s strategy from before. The first-order conditions with 

respect to ki and s yield "Z R ! # 
1 � � 1 

∂qi βiqidi ∂e βi 0ER ai − γβi − cqi − η di + η − rs = 0. (179) 
0 e ∂ki e2 ∂ki 

Substitute the expressions for cqi and for e2 to obtain ! #"Z 1 � � R 1 
ki − ηβi ∂qi 0 βiqidi ∂e 

ER di + η R 1 (rp − s) − rs = 0. (180) 
0 e ∂ki kiqidi ∂ki

0 

To verify that this first-order condition is satisfied for s = rp − rs and ki = ηER[βi], 

substitute in these values and apply the law of iterated expectations to obtain " "Z 1 � � Z 1 
## 

ηER[βi] − ηβi ∂qi rs ∂e 
ER E di + R 1 (ηβi − ηER[βi]) qi di e, {qi}, {β̂  

i}, {âi} = 0, 
0 e ∂ki 

0 kiqidi 0 ∂ki 

(181) 

which follows since ER[βi − ER[β]] = 0. Showing that the first-order condition with 

respect to s is satisfied is identical, except that ∂qi and ∂e are replaced with ∂qi and ∂e .
∂ki ∂ki ∂s ∂s 
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