Do Banks Care About ESG? Firm Capital Structure in the Green Era

Overview

- Bank CEOs emphasize their commitment to 'stakeholders'
- For instance, JP Morgan claimed to provide \$280 bln toward sustainable businesses in 2021
- Question: Relative to bond markets, are bank loans sensitive to ESG? If policymakers forced banks to internalize ESG preferences, how would lending outcomes change?
- **Finding:** Higher ESG firms increasingly use bonds relative to bank loans

1 Bond yields are more sensitive than loan rates to ESG scores

• **Importance:** I provide a benchmark externality adjustment and trace out the counterfactual effects on bank lending volumes

Literature Backdrop

- ESG and the 'greenium' ([Hong and Kacperczyk, 2009 [Bolton and Kacperczyk, 2021])
- Isolate a bank-bond greenium
- Capital Structure ([Petersen and Rajan, 1994])
- Study capital structure trade-offs once financiers care about E **3** ESG-based capital requirements ([Oehmke and Opp,
- Provide an estimate of loan flows under ESG capital requirem

Data

- Refinitiv ESG scores (2011 2021)
- Compustat financial statements
- Mergent FISD bond / Dealscan syndicated loan issuance
- Key variables for firms:

 $Loans_{it}$ Loan Share_{it} = Loan-Bond Spread_{it} = $Y_{loan,i,t} - Y_{bond,i,t}$

Facts about ESG and Debt Capital Structure

High ESG and Low Loans

Stefan Walz

Finance Department, Columbia Business School, stefan.walz@columbia.edu

Higher	FSC	 Togg	Ioon	Т
11151101			LUan	

• I test the ESG-debt relationship using controls, including credit risk

	(1)	(2)	(3)	(4)
	Loans/Debt	Loans/Debt	$\log(L)$	$\log(B)$
ESG Bucket	-1.524**	-2.605***	-0.127*	0.086**
	(0.601)	(0.926)	(0.069)	(0.042)
Controls	\checkmark	\checkmark	\checkmark	\checkmark
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Credit Rating FE		\checkmark	\checkmark	\checkmark
Observations	7243	2336	2053	2326
R^2	0.740	0.748	0.721	0.926

• Simple OLS likely underestimates: **error-in-variables bias** • Along lines of [Berg et al., 2022], I construct an IV that consists of firms' competitors to de-noise firm-level estimates

		(1)	(0)	(9)
		ESG Bucket	(2) Loans/Debt	(3) Loans/Debt
	ESG Bucket		-1.524**	-13.220**
			(0.601)	(6.512)
	Comp. ESG	0.081^{***}		
G		(0.017)		
22])	Controls	\checkmark	\checkmark	\checkmark
J /	Firm FE	\checkmark	\checkmark	\checkmark
lents	Year FE	\checkmark	\checkmark	\checkmark
	Observations	6555	7243	6555
	Method	First Stage	OLS	IV

• Magnitude: A one $\sigma \uparrow$ in ESG \implies 18 % \uparrow bond share

Higher ESG \implies Relatively Cheaper Bonds

- Match syndicated loan yields to secondary market bond yields
- Controlling for credit risk, how does ESG score relate to
 - Loan-Bond spreads?

	(1)	(2)	(3)
	L-B Spread	L-B Spread	L-B Spread
ESG Score	1.952**	1.046**	1.244**
	(0.867)	(0.508)	(0.603)
Maturity Diff.		72.964***	27.552**
		(5.542)	(13.590)
Controls	\checkmark	\checkmark	\checkmark
Firm FE	\checkmark	\checkmark	\checkmark
Credit Rating FE		\checkmark	\checkmark
Year FE			\checkmark
Year-Month FE	\checkmark	\checkmark	
Observations	2572	2563	282
R^2	0.432	0.650	0.859
Sample	All	All	Closest Mat

• Magnitude: A one $\sigma \uparrow$ in ESG \implies

Usage

18-20	bps	↑ L-	-B	spread

Mechanism Discussion

What drives the higher elasticity for bond markets? • Bank deposits are information insensitive \implies banks are ESG

- 'arbitrageurs'

Approximating Counterfactual Loan Volumes

- Assuming policymakers had the perfect tool to force banks to internalize the greenium, how would credit flows change?
- Assume regulators optimally set capital requirements κ_{ESG} to offer $r_{ft}^*(ESG_{ft}) = r_{ft} + \text{Greenium}_{ft}(ESG_{ft})$
- 2 Assume for simplicity banks respond inelastically
- ³ I calibrate firm price elasticity of demand externally using [Diamond et al., 2020]: $\epsilon_l = -519$
- Use greenium estimates at firm level (median firm gets 0) % Change_s = $\epsilon_l \times \text{Greenium}_{s,2021}(\overline{ESG_{s,2021}}) \times \overline{\text{Loan Share}_{s,2021}}$ (2)

Conclusion

- their projects

2 Bond markets better price ESG growth options at firms • High ESG firms have lower willingness to pay for financing continuity, but effect remains after controlling for credit risk

• Loan volumes would decline by 22% for construction firms (lower ESG) and increase by 16% for manufaturing firms (high ESG)

• Higher ESG firms utilize bond markets more than banks to finance

• One SD increase in ESG scores leads to around 18-20 bps cheaper bonds relative to loans, controlling for credit ratings • The Loan-Bond Greenium provides a benchmark for regulators when considering the design of enhanced capital requirements • The greenium regulatory cost could introduce potentially distortionary effects and are sensitive to ESG rating stability