### Summary

Bank regulators' disclosure and use of peer information through the Uniform Bank Performance Report (UBPR) affect banks' decisions regarding regulatory capital.

- Banks' regulatory capital ratios become more sensitive to the peer group average in the UBPR regime.
- Banks use either loan loss provisions (LLPs) or risk-weighted assets (RWAs) to manage their regulatory capital ratios depending on their capital levels relative to the peer group average.
- Bank lending decisions become sensitive to their regulatory capital ratio rankings in the peer group.
- The recognition of expected losses is delayed.

## **Uniform Bank Performance** Report (UBPR)

- To facilitate the evaluation of bank conditions, the Federal Financial Institutions Examination Council (FFIEC) introduced the UBPR in 2004
- The FFIEC defined bank peer groups and made the peer information publicly available
- Bank examiners should compare a bank's capital ratio with the UBPR peer group averages
- Peer group averages are not considered supervisory targets, but intended to provide insight into performance of similar banks
- ▷ However, it may affect banks' decisions regarding regulatory capital ratios
- ▶ Banks may consider the UBPR peer group average a form of stricter capital requirements, since most banks hold capital well above the regulatory minimum.

# Mimicking Regulatory Peers

Minjae Kim

University of Minnesota

# Why do banks mimic peers?

I predict and find that banks mimic the UBPR peer group average regulatory capital ratio to shape market participants' (e.g., bank regulators, depositors) perceptions of their stability

- Tier 1 capital ratio rankings in the UBPR peer group have predictive power for the likelihood that a bank will receive severe regulatory enforcement actions
- Tier 1 capital ratio rankings become more important determinants of deposit flows in the UBPR regime

## Banks' responses to UBPR

Well-capitalized banks (Maintain their rankings)

Being sensitive to the peer group avg. by mimicking peers' LLPs

Peer Group Avg.

Increasing *Tier1* targeting the peer group avg. by reducing RWAs and LLPs

Under-capitalized banks (Move closer to the Avg.)

# Main Results

• Tier 1 capital ratios of *DeNovo* banks become more sensitive to their cohorts' average tier 1 capital ratio in the post-UBPR period relative to control banks.

| Dependent:                                   | $Tier1_{i,t}$ |          |          |
|----------------------------------------------|---------------|----------|----------|
|                                              | (1)           | (2)      | (3)      |
| Tier1 $peer_{i,t} \times DeNovo \times Post$ | 0.166***      | 0.231*** | 0.188*** |
|                                              | (3.74)        | (5.71)   | (4.73)   |
| Tier1 $peer_{i,t} \times DeNovo$             | 0.839***      | 0.320*** | 0.396*** |
|                                              | (13.33)       | (8.03)   | (10.16)  |
| Observations                                 | 245,748       | 243,129  | 243,129  |
| Adjusted $R^2$                               | 0.871         | 0.880    | 0.880    |
| Peer Avg Characteristics                     | Ν             | Ν        | Y        |
| Controls                                     | Ν             | Y        | Y        |
| Time FE, Bank FE                             | Y             | Y        | Y        |

# Identification

• Estimating peer effects is challenging because of the reflection problem – if a bank's capital ratio is a function of the capital ratios of peer banks, then vice versa is also true

• The UBPR setting mitigates the reflection problem by permitting a difference-in-differences (DID) methodology

• Control: Existing banks – grouped based on size • Treatment: *De novo* banks – grouped with cohorts for the first 5 years, then moved to sized based groups

|      | Enter     | U      | BPR b | became   | public | ly     |                 |
|------|-----------|--------|-------|----------|--------|--------|-----------------|
| (    | $(Bank_i$ | )      | avai  | lable or | nline  |        |                 |
|      | Ļ         |        |       |          |        |        |                 |
| 2000 | 2001      | 2002   | 2003  | 2004     | 2005   | 2006   | $2007$ $Bank_i$ |
|      |           |        | DeNo  | vo=1     |        | D      | eNovo=0         |
|      | ]         | Post=0 |       |          |        | Post=1 |                 |

$$y_{i,t} = \alpha + \beta_1 \ \bar{y}_{-i,t} \times DeNovo \times Post + \beta_2 \ \bar{y}_{-i,t} \times DeNovo + \dots + \gamma' X_{i,t-1} + \psi' \bar{X}_{-i,t-1} + \delta_i + \theta_t + \epsilon_{i,t}$$

•  $\beta_1$  captures the changes in sensitivities to cohorts' decisions before and after the UBPR for *de novo* banks relative to control banks

• Parallel trends for Tier 1 Capital Ratios (*Tier 1 peer<sub>i.t</sub>*  $\times$  *DeNovo*  $\times$  *Year dummies*)



 $Tier \ 1 \ Capital \ Ratio \uparrow = \frac{Tier \ 1 \ Capital}{RWAs} \downarrow$ 

• *DeNovo* banks' lending decisions become more sensitive to their tier 1 capital ratio rankings in the UBPR regime compared to control banks

Depe

-----Tier.

Tier.

\_\_\_\_\_ Obset Adju Cont

Depe

 $\frac{\text{Tier1}}{\Delta NH}$ 

\_\_\_\_\_ Obse Adjus Cont

### Mechanism

• Well-capitalized banks mimic their cohorts' average LLPs to maintain their tier 1 capital ratio rankings

• Under-capitalized banks reduce RWAs to increase tier 1 capital ratios

• Under-capitalized banks adjust their loan composition by decreasing the proportion of commercial and industrial (C&I) loans and increasing the proportion of real estate loans.

#### Consequences

| endent:                                      | $\Delta ln(Le$ | $(pans)_{i,t}$ |
|----------------------------------------------|----------------|----------------|
|                                              | (1)            | (2)            |
| $1 Bottom_{i,t-1} \times DeNovo \times Post$ | -0.013***      |                |
|                                              | (-3.05)        |                |
| $1 Top_{i,t-1} \times DeNovo \times Post$    |                | 0.018***       |
|                                              |                | (3.36)         |
| ervations                                    | 183,994        | 183,994        |
| isted $R^2$                                  | 0.279          | 0.279          |
| rols, Time FE, Bank FE                       | Y              | Y              |

• The recognition of expected losses is delayed

| endent:                                |           | $LLP_{i,t}$ |          |
|----------------------------------------|-----------|-------------|----------|
|                                        | (1)       | (2)         | (3)      |
| l Level                                | All       | Bottom      | Top      |
| $PL_{i,t+1} \times DeNovo \times Post$ | -0.034*** | -0.010      | -0.046** |
|                                        | (-2.59)   | (-0.51)     | (-2.14)  |
| ervations                              | 239,374   | 84,356      | 76,863   |
| sted $R^2$                             | 0.453     | 0.492       | 0.499    |
| rols, Time FE, Bank FE                 | Y         | Y           | Y        |
|                                        |           |             |          |

#### **Contact Information**

Minjae Kim (kim00492@umn.edu)