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Abstract 

This paper provides a general framework for analyzing the stability of stable-

coins, cryptocurrencies pegged to a traditional currency. We study the problem of 

a monopolist platform that can earn seigniorage revenues from issuing stablecoins. 

We characterize stablecoin issuance-redemption and pegging dynamics under various 

degrees of commitment to policies. Even under full commitment, the stablecoin peg 

is vulnerable to large demand shocks. Backing stablecoins with collateral helps to 

stabilize the platform but is costly for the platform’s equity (token) holders. Combined 

with collateral, decentralization can act as a substitute for commitment. 
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1 Introduction 

A stablecoin is a cryptocurrency designed to maintain a peg with an official currency. 

Stablecoins can allegedly cater to investors’ demand for alternative means of payments by 

combining the benefits of blockchain technology with the stability of traditional currencies. 

These cryptocurrencies have recently gained in popularity as the market value of stable-

coins grew from $3 billion in 2019 to $152 billion in June 2022.1 Confronted with this 

rapid development, along with multiple depegging events and crashes,2 legislators started 

introducing new initiatives to regulate stablecoins.3 

This paper proposes a framework to study the stability of various pegging mechanisms 

and the optimal design of stablecoin platforms. Our analysis speaks to a wide range 

of protocols: algorithmic supply adjustments (e.g., Terra), partial collateralization (e.g., 

Frax), and decentralization of the issuance process (e.g., DAI). Our paper focuses on the 

incentive problems faced by stablecoin issuers and analyzes the contribution of collateral 

and decentralization to the stability of stablecoins. 

In our model, a monopolist platform caters to a time-varying demand for stablecoins. 

Users, who value price stability, enjoy liquidity benefits from owning stablecoins when their 

price is pegged to some unit of account. These liquidity benefits depend on the total stock 

of stablecoins, which can reflect liquidity satiation or network effects. As a monopolistic 

issuer, the platform can extract seigniorage revenues from these liquidity benefits, similarly 

to a (private or central) bank. Like a bank that can overprint money, a stablecoin platform 

has a tendency to overissue stablecoins, which ultimately undermines the peg. In the face 

of this time-inconsistency problem, the main technological proposition of stablecoins is the 

possibility to rely on smart contracts to enforce commitment to specific policies. 

Our dynamic model has two building blocks. First, the monopolistic stablecoin platform 

chooses its issuance-repurchase policy of stablecoins and its interest-rate policy, paid in 

stablecoins to users. The platform may also collateralize stablecoin issuance with a safe 

asset. In this case, the platform must hold as colleral a fraction of the par value of 

outstanding stablecoins. To finance these policies, the platform can freely issue equity 

1https://www.statista.com/statistics/1255835/stablecoin-market-capitalization/ 
2For example, the collapse of the Terra-Luna platform in May 2022. See Appendix A. 
3For instance, the US Congress is working on a STABLE (Stablecoin Tethering and Bank Licensing 

Enforcement) Act; in the UK, the Treasury has launched the “UK regulatory approach to cryptoassets and 
stablecoins: Consultation and call for evidence”. 
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shares, called equity tokens, to external investors. Second, users price the stablecoin 

competitively, given the liquidity benefits they expect to derive from owning stablecoins 

and the interest payments from the platform. We characterize the equilibrium price of 

stablecoins and platform’s equity tokens and provide conditions under which the peg holds. 

First, we study a stablecoin platform that can fully commit to all of its policies through 

immutable smart contracts. We show that there always exists an equilibrium in which 

stablecoins and equity tokens are worth zero. This equilibrium arises because both stable-

coin dividends—liquidity benefits and interest payments—depend themselves on the value 

of stablecoins. Without an external anchor, stablecoins may have no value even with full 

commitment, similarly to fiat money. 

In this full-commitment benchmark, a second equilibrium exists in which the platform 

maintains the peg unless it is hit by a large negative demand shock. In this equilibrium, 

equity tokens have positive value and represent a claim to the platform’s future seigniorage 

revenues. To maintain a stable price, the platform reacts to a negative demand shock by 

repurchasing (issuing) stablecoins to reduce (increase) the supply. In an expansion phase, 

the platform generates revenues by minting new stablecoins. In a contraction phase, the 

platform finances stablecoin buybacks by issuing additional equity shares and diluting 

legacy token holders.4 After a large negative demand shock, however, future cash flows 

from seigniorage revenues may be so low that the platform cannot finance the necessary 

stablecoin repurchase to maintain the peg, even with a complete dilution of equity. The 

price then falls below par to reflect the imbalance between supply and demand and equity 

token are worth zero. This prediction is consistent with the collapse of the fully algorithmic 

platform Terra-Luna in 2022. Following a run on the platform—a large negative demand 

shock in our model—the protocol reacted by minting increasing quantities of Luna equity 

token to burn/buy back Terra stablecoins and the peg broke as Luna’s price fell to zero.5 

Our analysis under full commitment provides two additional insights. First, we obtain 

necessary existence conditions for an uncollateralized platform: Demand for stablecoin 

must grow over time so that new issuance gains cover the costs equity token holders face 

to defend the peg. This result resonates with informal claims that stablecoin protocols 

4This ability of stablecoin platforms to issue equity shares or “tokens” continuously at no substantial 
cost is crucial to allow pure algorithmic stablecoins to perform the equivalent of open market operations 
without holding any tangible asset on their balance sheets. 

5In Appendix A, we provide a descriptive analysis of the May 2022 stress for the five largest stablecoin 
platforms. 
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are Ponzi schemes to the extent that they rely on user demand growth. Second, collateral 

fosters the platform stability: A fully collateralized platform is akin to a a narrow bank and 

can always maintain the peg as it finances stablecoin repurchases entirely with collateral. A 

stablecoin issuer, however, can earn profit only if the liquidity benefits enjoyed by stablecoin 

users exceed the cost of holding collateral. In other words, a stablecoin fully backed by 

Treasuries must command a higher convenience yield than government debt. In general, the 

optimal collateralization ratio trades off stability benefits with the cost of locking collateral. 

We then analyze the stability of a stablecoin scheme under a weaker form of commitment. 

In practice, a stablecoin protocol retains some discretion over key parts of its algorithm 

to preserve adaptability to new market developments and technical issues. We thus relax 

our assumption that all policies can be fully programmed via smart contracts. While the 

platform can still commit to an interest rate policy, it now chooses its issuance-repurchase 

policy sequentially. The platform then faces a durable-good monopolist problem as in 

Coase (1972): When issuing new stablecoins, it does not take into account the negative 

impact of this issuance on existing stablecoin users whose liquidity benefits depend on the 

total stock. This feature generates overissuance relative to the commitment solution. 

Our main result in this case is that a programmable state-contingent interest rule can 

ensure stability even without commitment to issuance and repurchase. If the interest rate 

the platform pays to users is constant, the leverage ratchet effect of Admati, DeMarzo, 

Hellwig, and Pfleiderer (2018) and DeMarzo and He (2021) applies to our setting: The 

platform never finds it optimal to buy back stablecoins. In this case, the platform can 

neither maintain the peg nor capture seigniorage revenues. Such an equilibrium can be 

sustained, however, with an interest rate policy that penalizes overissuance and incentivizes 

the platform to conduct repurchases. This design can achieve local stability even for an 

uncollateralized platform that faces no direct cost from interest payments in stablecoins. 

Lastly, we consider a stablecoin platform that decentralizes issuance and redemption 

of its stablecoin. DAI is a prominent example of decentralized platforms, which anyone 

with access to the Ethereum platform is able to mint freely. These so-called vault owners 

can issue stablecoins by locking the required fraction of collateral. The platform then 

earns an income flow from charging a fee to decentralized issuers (vaults). We find that 

decentralization can substitute for a commitment technology. With decentralization, vault 

owners arbitrage price deviations from the peg. This new arbitrage condition ties the 

platform’s hands when it comes to setting stablecoin interest rates and vault fees. In 
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addition, decentralization transforms the platform’s income from issuance into a flow of 

income. We show that these features solve the platform’s time-inconsistency problem and 

incentivize equity token owners to implement the full-commitment issuance policy, similarly 

to the leasing solution to Coase’s (1972) problem. 

Related literature Our paper contributes to an emerging literature on stablecoins. 

Several works provide a description of stablecoin protocols and pegging mechanisms (Arner, 

Auer, and Frost, 2020; Berentsen and Schär, 2019; Bullmann, Klemm, and Pinna, 2019; 

ECB, 2019; Eichengreen, 2019; G30, 2020). Gorton et al. (2022) estimate the convenience 

yield on stablecoins and argue that technological advances and reputation formation can 

make stablecoins money-like. In contrast, we take the existence of users’ liquidity benefit as 

given and study stability issues of different protocols. Lyons and Viswanath-Natraj (2020) 

argue that arbitrage by vault owners is a key stabilizing force, a finding consistent with 

our analysis of decentralized protocols. In addition, we propose a general model to analyze 

the incentive problems of the equity owners of the stablecoin platform. Kereiakes, Kwon, 

DiMaggio, and Platias (2019) and DiMaggio and Platias (2019) propose partial equilibrium 

models specific to the Terra-Luna stablecoin. While we also find that a stablecoin peg 

should be robust to small shocks, we stress that all stablecoin protocols exhibit fragility 

to large negative demand shocks unless issuance is fully backed by collateral. Uhlig (2022) 

proposes a model to uncover the specific mechanisms of the Luna crash.6 

In closely related contemporaneous work, Li and Mayer (2022) study stablecoin peg dy-

namics by considering a reserve management problem for a centralized stablecoin platform. 

Our result that large negative shocks can lead to depegging echoes their finding. Unlike 

them, we analyze the platform’s time-consistency problem and consider both undercollat-

eralized centralized protocols and decentralized protocols. Thus, our model can speak to 

a wider range of existing stablecoin designs.7 

As it strives to defend a peg, a stablecoin platform faces a problem similar to a central 

6In computer sciences, Klages-Mundt and Minca (2019, 2020) develop models that feature endogenous 
stablecoin price and exogenous collateral and find deleveraging spirals and liquidation in a system with 
imperfectly elastic stablecoin demand. Gudgeon, Perez, Harz, Livshits, and Gervais (2020) simulate a 
stress-test scenario for a DeFi protocol and find that excessive outstanding debt and the drying up of 
liquidity can cause the lending protocol to become undercollateralized. 

7Their framework also differs from ours in important ways: their model includes restrictions to equity 
issuance, shocks to reserves (akin to collateral in our model) rather than to stablecoin demand, and 
stablecoins that mature instantaneously. 
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bank under a fixed exchange rate regime (Obstfeld, 1996). Routledge and Zetlin-Jones 

(2021) build on this analogy to model undercollateralized currencies. They show that 

commitment to a dynamically adjusting exchange rate policy can fend off self-fulfilling runs, 

similar to suspension of deposit convertibility in the model by Diamond and Dybvig (1983). 

While we also highlight the role of programmable rules (smart contracts) in defending the 

peg, our model focuses on the incentives of the platform to overissue stablecoins. In 

addition, our framework allows us to analyze fully algorithmic (unbacked) stablecoins and 

equity holders’ incentives to recapitalize the platform following large negative shocks. 

In studying stabilization mechanisms across stablecoin types and the failure of governance 

incentives to recapitalize undercollateralized systems, our paper is connected to the corpo-

rate finance literature that examines firm shareholders’ attitudes toward leverage. In work 

by Black and Scholes (1973) and Myers (1977), firm shareholders do not have incentives 

to voluntarily reduce leverage, because this always implies a transfer of wealth to existing 

creditors. Admati, DeMarzo, Hellwig, and Pfleiderer (2018) generalize these findings to 

multiple asset classes of debt and with agency frictions and document a leverage ratchet 

effect, whereby shareholders never have any incentive to delever. In a continous-time 

framework, DeMarzo and He (2021) show that a firm cannot capture any tax benefit of 

debt if issuance is unrestricted, due to this ratchet effect. Our framework and techniques 

are related: Their firm corresponds to our stablecoin platform and the tax benefits of 

debt to the liqudity benefits for stablecoin users. Our contribution is to consider various 

commitment technologies (collateral, smart contracts, decentralization) that restore the 

platform’s ability to earn seigniorage revenues. In particular, smart contracts can be related 

to debt convenants, as studied by Smith and Warner (1979); Bolton and Scharfstein (1990); 

Aghion and Bolton (1992); and Donaldson, Piacentino, and Gromb (2020). Relatedly, 

Malenko and Tsoy (2020) show that threat to credibility can discipline equity holders to 

repurchase debt. 

Our work also relates to the financial implications of Coase’s (1972) conjecture that a 

monopolist producing durable goods competes against its future self and does not capture 

any markup. As noted by Calvo (1978), this commitment problem applies to monetary 

authorities that can earn seigniorage revenues, like the stablecoin platform in our model. 

We show that the decentralization stablecoin model transforms upfront seigniorage revenues 

into a flow of payments, and thus preserves a platform’s monopolist market power, similar 
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to the leasing solution to Coase’s (1972) conjecture.8 . Relatedly, Goldstein et al. (2022) 

show that issuing utility tokens dilutes the maket power of a monopolist platform by 

transforming a flow of services into a durable good. 

More broadly, our paper contributes to the literature that applies finance theory to 

model token adoption, and valuations (e.g. Cong, Li, and Wang, 2020a,b; Hinzen, John, 

and Saleh, 2022) and to a fast-growing literature on central bank digital currencies (e.g. 

Ahnert, Hoffmann, and Monnet, 2022; Benigno, Schilling, and Uhlig, 2022; Brunnermeier, 

James, and Landau, 2021; Fernandez-Villaverde, Sanches, Schilling, and Uhlig, 2021).9 

2 General Environment 

In this section, we describe our model of stablecoins. The central premise of our analysis 

is that users enjoy utility benefits from holding stablecoins issued by the platform, as they 

would from money or bank deposits. Our model also embeds users’ preferences for stable 

means of payment. As a result, the stablecoin platform can generate seigniorage revenues 

if (but only if) it can maintain a peg between the stablecoin price and some target unit of 

account. We describe the formal building blocks of the model below. 

2.1 Stablecoin Demand 

Let (Ω, F , P) be a probability space that satisfies the usual conditions. All agents are risk 

neutral with an exogenous discount rate of r > 0.10 Time is continuous with t ∈ [0, ∞). 

We consider a platform that issues stablecoins. Stablecoins are a liability of the platform 

that trade at (endogenous) price pt expressed in the unit of account. The outstanding 

stock of these stablecoins at time t is Ct. Stablecoins have value because users enjoy direct 

utility from holding them: At time t, holding stablecoins generates utility flow U(At, ptCt) 

per unit, with At, an exogenous driver of stablecoin utility value. To fix ideas, one could 

interpret variable At as the value of some unmodeled cryptoassets, which proxies for users’ 

8In a corporate finance setting, Hu, Veras, and Ying (2022) points out that rolling over short-term debt 
is akin to the leasing solution. In our model, however, as in practice, stablecoins are long-lived assets so we 
do not consider instantaneous maturity as a design choice. 

9The literature on cryptocurrencies that are not meant to be used as money is now too long to do it 
justice here. 

10Alternatively, we can interpret the model as written under a fixed risk-neutral measure that is 
independent of the stablecoin platform’s policies. 
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demand for alternative means of payment. The utility derived from holding stablecoins can 

be thought of as a liquidity benefit users enjoy because stablecoins are a form of money.11 

We denote the marginal utility benefit from holding an additional unit of stablecoin, or its 

convenience yield, as `(At, ptCt)pt ≡ ∂U(At, ptCt)/∂Ct. In what follows, we impose some 

restrictions on the properties of `, which is a sufficient statistics for our analysis. 

Assumption 1. The convenience yield on stablecoins `(A, pC) is (i) positive and con-

tinuously differentiable in both arguments; (ii) bounded with 0 ≤ `(A, pC) ≤ r; (iii) 

homogeneous of degree 0; and (iv) equal to 0 if the stablecoin price p is not pegged to 

1. Finally, (v) the product of the convenience yield and the total value of stablecoins 

`(A, pC)pC is single-peaked with limx→∞ `(A, x)x = 0. 

Property (i) rules out negative marginal utility from stablecoin holdings and ensures 

differentiability. Properties (ii) and (iii) are technical assumptions that ensure, respectively, 

that the stablecoin price is well defined and that the problem ultimately economizes on one 

state variable. Property (iv) states that stablecoin owners enjoy a liquidity benefit only if it 

is pegged to the unit of account. This assumption is meant to capture, in a tractable way, 

the fact that users value the stablecoin as a means of payment to the extent that its issuer 

can maintain its parity with the unit of account.12 The peg at 1 is chosen for convenience 

and because it corresponds to market practice, but our results do not depend upon it; only 

the real value of stablecoin holdings pC matters. Finally, Property (v) ensures that the 

optimal amount of stablecoins is interior. A class of functions that satisfy Assumption 1 

is `(A, C) = κ exp((A/C)−α − (A/C)−β ) for β > α > 0 and κ = r/ maxa{`(a, 1)}. In this 

example, when C is low, the convenience yield is increasing in C, as more stablecoins are 

in circulation, but eventually declines as the stock becomes too large.13 

The variable At that drives stablecoins’ demand has the following law of motion: 

dAt = µAtdt + σAtdZt + At-(St − 1)dNt, (1) 

11Our reduced-form specification can be microfounded, assuming that stablecoins are essential in order 
to conduct some transactions. 

12Without this “extreme-peg” assumption, a stablecoin could have value, even though there is no 
active management of the supply of stablecoins to stabilize its price, as a standard cryptocurrency. 
This assumption allows us to precisely characterize the optimal equilibrium policies in Lemma 2 and 
Proposition 3. 

13This reduced-form specification captures both network effects from stablecoin adoption and the fact 
that a large supply of stablecoin satiates users’ liquidity needs. 
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where dZt is the increment of a standard Brownian motion and dNt is a Poisson process 

with constant intensity λ > 0 adapted to F . The size of a downward jump, − ln(S), is 

exponentially distributed with parameter ξ > 0 and the expected jump size is E[S − 1] = 

−1/(ξ +1). The Poisson process generates large negative shocks to stablecoin demand that 

can be thought of as news about the usefulness of the stablecoin or speculative attacks. 

Overall, the expected growth rate of stablecoin demand is given by µ − λ/(ξ + 1), which 

we assume is strictly lower than the discount rate r. 

Finally, there exists a safe asset that the platform can hold as collateral to back the 

issuance of stablecoins. This collateral trades in a competitive market at price pk witht 

k kdpk = µ p dt. (2)t t 

This specification implies that collateral delivers a (safe) return µk with µk < r. The 
kdifference between the discount rate and the return on collateral, r −µ , can be interpreted 

as a convenience yield enjoyed by collateral asset owners. For our analysis, this feature 

generates a cost from holding collateral for the stablecoin platform.14 Examples of this asset 

include cash, government securities, or bank deposits denominated in the target currency. 

In Figure 1, we provide a sketch of a balance sheet for a generic centralized platform. 

2.2 Platform Operation 

We will analyze both a centralized and a decentralized platform. For clarity, we postpone 

the description of a decentralized platform to Section 5. 

Definition 1 (Centralized Platform Policies). A sequence of policies for the platform 

is an issuance-repurchase policy {dGt}t≥0; an interest rate policy {δt}t≥0 paid in stablecoins, 

with δt ≥ 0; a collateral purchase policy {dMt}t≥0; and a stochastic default time τ . 

The main policy of the platform is the issuance(-repurchase) policy {dGt}t≥0. A positive 

(negative) value of dGt corresponds to an issuance (repurchase) of stablecoins at price pt 
at date t. The platform can also pay interest to stablecoin owners. As in practice, this 

14Our assumption of a safe collateral asset comes with some loss of generality because some stablecoin 
platforms are implicitly or explicitly backed by cryptoassets. In this case, the collateral price would likely 
be correlated with demand process At. It is intuitive, however, that such correlation would reduce the 
usefulness of collateral as a hedge against demand fluctuations. From a technical standpoint, introducing 
correlation would significantly complicate the analysis. 
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Platform 
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Stablecoins 

Future 
Seigniorage Equity 

Tokens 

Figure 1: Sketch of a Centralized Platform Balance Sheet. 

interest is paid in stablecoins, not in the unit of account. A platform may hold collateral, 

with dMt denoting the change in collateral value held by the platform at date t. 

There exists a useful analogy between the stablecoin platform and a central bank. When 

it issues stablecoins (dGt > 0), the platform receives a payment ptdGt from users in the unit 

of account. Similarly, when it credits the account of a depository institution with reserves, 

the central bank receives an asset in exchange. The stablecoin’s interest policy, whereby 

every stablecoin user is credited with δt ≥ 0 units of stablecoins per unit owned, is akin to 

an interest payment on reserves. Finally, collateral holdings of the platform correspond to 

a central bank’s holdings of foreign reserves. 

In line with most actual stablecoin designs such as DAI, we assume the platform main-

tains a constant ratio between its collateral holdings and the stock of stablecoins. 

Assumption 2. The platform maintains a fixed collateralization ratio ϕ ∈ [0, 1], that is, 

Kt = ϕCt. (3) 

Assumption 2 simplifies our analysis, in that it eliminates collateral as a state variable. 

It can be shown that the platform would implement such a fixed ratio if it were subject to a 
15minimum collateralization ratio Kt ≥ ϕCt. The uncollateralized case ϕ = 0 corresponds 

15Holding a buffer of collateral above the minimum requirement would be suboptimal in equilibrium 
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to a so-called “pure algorithmic stablecoin” whereas the fully-collateralized one ϕ = 1 is 

typically referred to as a “narrow stablecoin” in reference to narrow banks. Our model 

captures such heterogeneity and can speak to the optimal collateral ratio for a platform. 

Laws of Motion The platform’s policies imply the following laws of motion for the stock 

of stablecoin outstanding, Ct, and the value of its collateral, denoted Kt: 

dCt = δtCtdt + dGt, (4) 

dKt = µ kKtdt + dMt. (5) 

Equation (4) is the law of motion for stablecoins. The first term on the right-hand side 

captures the contribution of interest payment policy δt to stablecoin issuance. It must 

be treated separately from the active issuance component dGt, because the interest policy 

increases the stablecoin stock without compensation for the platform. Equation (5) is the 

law of motion for the collateral value. The first term on the right-hand side corresponds to 

passive changes in collateral value. The second term corresponds instead to active changes 

in value due to purchases or sales. Collateral policy dMt is fully determined by issuance 
16policy dGt and interest policy δt at date t, because dKt = ϕdCt under Assumption 2. 

Jump Notation As demand is subject to both Brownian shocks to and jumps in the 

value of cryptoassets in our model, we allow the platform’s policies to also feature jumps. 

A jump represents a discrete, instantaneous change in a variable. We denote the value of 

a variable X just before and after the jump by Xt- and Xt, respectively.17 

2.3 Stablecoin Pricing and the Platform’s Objective 

Stablecoin Pricing Users price the stablecoin competitively, taking as given the plat-

form’s policies. They enjoy two income streams from holding stablecoins: the direct utility 

benefits when the price is pegged and interest payments, with respective value ` tpt and δtpt 
per unit of stablecoin. Should the platform default, an instantaneous liquidation procedure 

because collateral is costly (µ k < r). For the same reason, the restriction to a collateralization ratio 
between 0 and 1 comes without loss generality. 

16Law of motion (5) can alternatively be written dKt = St
kdpkt +pt

kdSt
k , with St

k the quantity of collateral 
held by the platform. The term dMt in (5) corresponds to p kt dSt

k . 
17Xt - denotes the left limit Xt - = limh→0 Xt−h. 

11 



applies in which stablecoin owners are treated as pari-passu creditors. They receive any 

platform’s collateral up to the parity value of stablecoins. At date t, the competitive 

stablecoin price, given the platform’s continuation policies, is thus " #Z τ 
−r(τ−t)ϕpt = Et e −r(s−t) (` s + δs) psds + e . (6) 

t 

Users compute expected future cash flows by forming rational expectations over the plat-

form’s policies from date t onward. Upon liquidation of the platform, users receive ϕ per 

stablecoin, as the collateralization ratio is lower than the par value of stablecoins (ϕ ≤ 1). 

Platform’s Objective The platform starts with no stablecoin outstanding at date 0; 

that is, C0- = 0, and maximizes its value E0, which is the sum of the issuance benefits net 

of collateral purchases. � Z �τ � �−rt E0 = max E0 e ptdGt − dMt , (7) 
ϕ,τ,{δt,dGt}t≥0 0 

where price pt is given by equation (6). When the platform is liquidated, as ϕ ≤ 1, all 

its collateral is used to partially repay stablecoin users. Hence, the platform receives zero 

payoff upon liquidation. As a monopolistic issuer, the platform has price impact. For 

instance, if it issues a large amount of stablecoins, the price may drop and the platform 

would then earn the post-repurchase price on the total issuance. 

As we will see, a platform’s ability to implement at future dates a policy chosen at date 

0 depends on its commitment power. A central technological proposition of stablecoins is 

that rules and procedures can be programmed in advance through algorithms—so-called 

smart contracts. In many cases, however, platforms retain some flexibility over parts of the 

algorithm for technical maintenance, future adaptability, or to decrease vulnerability to 

hacking. To capture these concerns and to reflect heterogeneity in smart contracts’ credi-

bility and transparency, we analyze optimal policies under varying degrees of commitment. 

Our last assumption rules out Ponzi schemes by the stablecoin platform. 

Assumption 3. The equilibrium policies must satisfy the no-Ponzi-game condition: 

−rT lim Et[e pT CT ] = 0 ∀t ≥ 0. 
T →∞ 
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Assumption 3 states that the platform cannot sustain the value of stablecoins by simply 

issuing new stablecoins. In other words, the value of a platform must rely on the creation of 

liquidity benefits for the owners of stablecoins, and not on the overaccumulation of debt.18 

2.4 Discussion of the Environment 

Platform Fees We assume that the platform interest rate is never negative, that is, 

δt ≥ 0. Doing so simplifies the analysis, as only (costly) buy-backs can be used to reduce 

stablecoin supply.19 This assumption also corresponds to the practice of the main stablecoin 

platforms: Terra notoriously subsidized platform usage by paying an annual interest rate 

of 20%; DAI’s interest rate typically fluctuates between 1% and 7%; and Tether does not 

pay any interest or levy fees. 

Peg vs. Redemption Rights In our model, the platform does not provide redemption 

rights to investors. Instead, investors must trade in a competitive market to exchange their 

stablecoins for the unit of account, and the platform must administer the peg through 

supply adjustments. To the extent the platform maintains the peg, however, investors are 

effectively guaranteed a fixed exchange rate between stablecoins and the unit of account. 

Not defending the peg is observationally equivalent to ceasing to redeem stablecoins at par. 

Platform Competition We focus on the analysis of an economy that features a single 

stablecoin platform. In practice, several stablecoin platforms compete to cater to users’ 

demand for alternative means of payment. Although we refrain from modeling competition 

and the entry of platforms for parsimony, we can interpret the platform’s convenience yield 

as investors’ residual demand for a platform’s stablecoins after accounting for supply from 

other platforms. The only requirement is that the platform enjoys some market power, 

which would arise naturally with payment network effects as in Cong, Li, and Wang (2020a). 

18Although our analysis excludes Ponzi games in a technical sense, the stablecoin equilibria studied in 
the following sections have features that are casually associated with Ponzi schemes such as requiring a 
positive growth rate of demand for stablecoins. 

19In theory, negative interest rates would provide the platform with an additional tool to reduce the 
supply of stablecoin by effectively taxing or diluting legacy stablecoin holders. Doing so would allow the 
platform to maintain a nominal peg, but stablecoin users would face a similar loss as in a depegging event. 
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Equity Tokens As in most traditional corporate finance settings, it is only the total 

value of equity (or market capitalization) that matters for equilibrium, and thus we do not 

need to separately keep track of the nominal quantity of equity tokens outstanding and 

their price per unit. Consequently, we also abstract from the exact mechanism that the 

platform uses to buy back stablecoins by diluting governance token holders. 

3 Full Commitment 

In this section, we analyze the problem of a stablecoin platform that can commit to all 

future policies. This theoretical full-commitment benchmark corresponds to a platform 

with immutable smart contracts that govern all policies in all contingencies, including 

the issuance and repurchase of stablecoins.20 This benchmark provides minimal necessary 

conditions for a stablecoin platform to have positive value and be able to maintain parity. 

For this analysis, the only constraint on the platform’s policy choices at date 0 is that its 

equity cannot become negative at some future date t—that is, limited liability applies. To 

clearly highlight the role of this constraint, we first consider a benchmark with unlimited 

liability in Section 3.1 and then introduce limited liability in Section 3.2. 

3.1 Unlimited Liability Benchmark 

In this unlimited liability benchmark, the platform’s equity value may become negative. 

In this setting, there is no default so we set τ = ∞. The platform chooses a stablecoin 

issuance-redemption policy {dGt}t≥0, an interest policy {δt}t≥0, and a collateralization rate 

ϕ to maximize the value of the platform at date 0 given by "Z # 
∞ 

E0 = max E e −rt (ptdGt − dMt) A0, C0- = 0 , (8) 
ϕ,{δt,dGt}t≥0 0 

subject to (6), (4), and, (3). The platform’s value is the net present value of issuance 

proceeds net of collateral purchase costs. The program is solved given: the law of motion 

for stablecoins (4) implied by the issuance policy and the initial condition C0- = 0; the 

collateralization rule (3); and the competitive pricing function for stablecoins (6) at any 

20Routledge and Zetlin-Jones (2021) demonstrates how smart contracts can implement and provide 
commitment to the platform’s policies. 
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date t, given policies chosen by the platform for dates s ≥ t. 

Our first result is that even under full commitment, there exists an equilibrium with zero 

stablecoin price, no stablecoin issuance and zero platform value. 

Proposition 1. There always exists a zero-price equilibrium in which pt = 0, for all t ≥ 0. 

The zero-price equilibrium arises because there is no anchor between the stablecoin and 

the unit of account as the interest is paid in stablecoins. To see why a zero-price equilibrium 

exists, suppose users enjoy no liquidity benefit, which arises when p > 1. The sole dividend 

from the stablecoin is then the interest rate, δp. Hence, the only solution to the pricing 

equation, rp = δp, is p = 0 under the no-Ponzi condition (Assumption 3). In this case, 

the platform has no value and zero issuance is optimal if stablecoins are collateralized 

(ϕ > 0).21 

Proposition 1 shows that stablecoins, like any fiat money, are fragile: Stablecoins may be 

worth zero even when issuance and repurchase are fully programmable and implementable. 

Having shown this result, we now consider equilibria with positive stablecoin value, if any. 

Under full commitment and with unlimited liability, there exists an equilibrium in which 

the stablecoin has value and the platform enjoys seigniorage revenues. 

Proposition 2. With full commitment and unlimited liability, the equilibrium with positive 
?stablecoin price features a target demand ratio At/Ct = At/C

? (At) = a for all t withul ul � 
Cul

? (A) = arg max `(A, C)C . (9) 
C 

∗ ?The interest rate policy at demand ratio a is δ? = r − `(a ) to peg the stablecoin price ul ul ul 

to 1 and is not determined otherwise. The platform sets collateralization ratio ϕ? = 0.ul 

As we show formally in the Appendix, the platform value is the present value of liquidity 

benefits enjoyed by investors net of the collateral holding costs, "Z # 
∞ � � 

−rt E0 = E e `(At, Ct)Ct + (µ k − r)ϕCt dt A0, C0- = 0 , (10) 
0 

21To be complete, there exists another equilibrium in which the platform does not capture liquidity 
benefits but with p = ϕ. In this equilibrium, the platform issues stablecoins and immediately defaults, 
which links the stablecoin price to the collateral backing it. The platform value, however, is still zero. 
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with `(A, C)C the instantaneous total seigniorage revenues. This equivalence is intuitive, 

because the platform captures all gains from trade. Maximizing the platform value E0 

with unlimited liability thus becomes a static optimization problem to the extent the 

platform can maintain the peg. In this case, the optimal collateralization rate is ϕ? = 0ul 

because holding collateral is costly. Given current demand A, an interior optimum C? (A)ul 

for stablecoin supply exists under Assumption 1. Homogeneity of the liquidity benefit, 
?`(A, C), further implies that C? (A) is linear in A, and we call a the target demand ratio.ul ul 

The need to maintain the peg, pt = 1, in order to capture liquidity benefits determines 

the platform’s interest policy. In equilibrium, the demand ratio at is constant, so we only 
?need to specify δ? ≡ δ(a ). It is easy to verify that the peg holds when δ? is given, as inul ul ul 

Proposition 2, because for all t we then have 

? ) + δ?`(aul ulpt = = 1. (11) 
r 

Proposition 2 implies that the platform issues (buys back) stablecoins when demand At 

increases (decreases) in order to implement its target demand ratio. This policy reflects the 

supply adjustments practice of algorithmic stablecoin platforms. With unlimited liability, 

the platform is always able to perform these adjustments and, as a result, always maintains 

the peg. However, as we show next, the mere introduction of limited liability jeopardizes 

the platform’s ability to always maintain the peg, even under full commitment. 

3.2 Limited Liability 

The full-commitment policy with unlimited liability requires that the platform conduct 

large stablecoin repurchases when the underlying cryptoasset value drops in order to restore 

an optimal demand ratio. For a large drop, however, the repurchase cost might exceed the 

post-repurchase platform value. In practice, the platform would then be unable to finance 

the entirety of repurchase necessary to maintain the peg by issuing new equity tokens, even 

if it is committed to full dilution of legacy equity token owners. 

From this point, we assume that policies must satisfy limited liability. That is, the 

platform’s equity value must be positive at all times.22 In other words, no smart contract 

22The term “limited liability” typically refers to the legal protection provided to shareholders, whereby 
the company’s liability does not extend beyond the company’s assets. In this work, we use this term to refer 
to the fact that, in the anonymity of the blockchain, it is impossible to credibly commit to recapitalizing a 
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may impose actions such that the platform’s continuation value is negative. The value of 

the platform under limited liability constraint at date t, Et ≥ 0, can be derived at each 

point in time through the same steps as in Proposition 2: "Z # 
τ � � 
−r(s−t)Et = E e `(As, Cs)Cs + (µ k − r)ϕCs ds At, Ct- = 0 − (pt − ϕ)Ct- ≥ 0. (12) 

t 

The first term in (12) is the total platform value from date t onward, as in (10) at date 

0. The second term, (pt − ϕ)Ct- , captures the net value of outstanding debt. Note that 

this term is zero at date 0, as C0- = 0, so that it does not appear in (10). The equity 

value of the platform at time t is thus equal to the value of a new platform that starts 

with zero stablecoins, net of the cost of repurchasing all outstanding stablecoins. The 

effective repurchase cost per unit is given by pt − ϕ, because buying back one stablecoin 

frees up collateral value ϕ. Equation (12) therefore suggests that collateral can help relax 

the limited liability constraint—an intuition we formalize below.23 

First, we argue that for a large enough negative demand shock, the optimal policy with 

unlimited liability in Proposition 2 violates constraint (12). After a negative demand shock, 

the platform should repurchase a large stock of stablecoins to implement target a? . If the 

shock is large enough, however, this cost can exceed the present value of future convenience 

yields. In this case, the platform’s equity value would then become negative if the platform 

were to implement the policy in Proposition 2. At that point, the platform is unable to 

finance the stablecoin buy-backs necessary to maintain the peg. 

To analyze the platform’s problem under full commitment and limited liability—i.e., 

problem (8) with additional constraint (12)—we focus on a set of policies defined below. 

To characterize these policies, it is useful to define the demand ratio at ≡ At/Ct- . 

Definition 2. A target Markov policy (TMP) is given by demand ratio thresholds {a, a, a?} 

platform beyond what is effectively pledged in a smart contract (including forced dilution of equity). 
23The equity value decomposition in (12) does not imply that the platform must repurchase all stablecoins 

before issuing new ones. It simply breaks down any policy into two steps that occur simultaneously at the 
same price: (i) repurchase all outstanding stablecoins Ct− and (ii) issue new stablecoins to the new level, 
Ct. 
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?with a ≤ a ≤ a ; an interest rate policy δt = δ(At, Ct-) = δ(at); and an issuance policy 

dGt = 

⎧⎨ ⎩ G(At, Ct-)dt if a ≤ at < a, 

At 
? − Ct- if at ≥ a,a 

(13) 

where the issuance policy over [a, a] is said to be smooth (of order dt). The platform enters 

liquidation when the demand ratio is below a. 

We call the policies considered in Definition 2 Markov because they depend on the history 

of shocks and actions only via state variables At and Ct- . This memoryless property 

considerably simplifies our analysis in the presence of constraint (12).24 The optimal policy 

in the unlimited liability benchmark is a TMP with a = a = 0. Definition 2 generalizes 

this policy in two ways. First, a TMP may feature a smooth region [a, a] in which the 

platform abandons the target and switches to an issuance policy of order dt—that is, 

it makes smooth adjustments to the stablecoin stock.25 Second, there may also be a 

liquidation region below demand ratio threshold a. As discussed above, relaxing the strict 

commitment to the target demand ratio may prove necessary to satisfy limited liability 

constraint (12). Target Markov policies may come with some loss of generality under full 

commitment and limited liability, however. Yet, when we relax commitment to stablecoin 

issuance in Section 4, we show that the optimal policy belongs to this class. 

The platform’s equity value and the stablecoin price inherit the Markov property of the 

platform’s policies, denoted now by E(A, C) and p(A, C), and thereafter omitting the time 

index. Due to the homogeneity of the problem, the ultimate state variable for our problem 

is the demand ratio a = A/C, so we also define e(a) ≡ E(A, C)/C and p(a) ≡ p(A, C), 

where e(a) is the platform’s equity value per stablecoin outstanding. Using this notation, 

the platform’s objective (8) can be rewritten as 

e(a?) + p(a?) − ϕ 
E0 = E(A, C?(A0)) + (p(a ?) − ϕ)C?(A0) = A0 , (14)

?a 

24The general problem is not standard because limited-liability constraints (12) are forward-looking, 
which means equity value Et is not the solution to a standard Hamilton-Jacobi-Bellman (HJB) equation. 
Techniques developed by Marcet and Marimon (2019) do not apply to our problem; the additional 
complexity comes from the term (pt − ϕ)Ct - on the right-hand side of (12) as a state variable Ct - multiplies 
forward-looking variable pt, which depends on all future policy choices. Our focus on Markov policies 
ensures that the equity value and the stablecoin price solve HJB equations. 

25See the definition provided by DeMarzo and He (2021, p. 1205). 
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with C?(A) = A/a? . The platform’s objective is comprised of the sum of date-0 issuance 

gains, (p(a?) − ϕ)C?(A0), and the post-issuance equity value, E(A, C?(A0)). 

To solve for the optimal policy, equation (14) shows that we need to characterize the 

equilibrium equity value and the price at the target ratio a? . In our model, this ultimately 

requires solving for these functions over the whole state space. To do so, we guess and 

verify that the equilibrium price satisfies p(a) = 1 for a ≥ a and p(a) < 1 for a ∈ [a, a), 

which implies that investors enjoy liquidity benefits only in the target region. We first 

show that the platform designs the policy in the smooth region [a, a] so that the limited 

liability constraint binds when the peg is lost. 

Lemma 1. In the smooth region [a, a], an optimal TMP under full commitment and limited 

liability satisfies δ(a) = 0 and 

G(a, C-) µkϕ 
g(a) ≡ = − , (15)

C- p(a) − ϕ 

that is, the platform does not pay interest when the peg is lost and uses all collateral proceeds 

to repurchase stablecoins. Under repurchase policy (15), e(a) = 0 for all a ∈ [0, a] and the 

price solves the following equation when a ∈ [a, a] 

σ2 
2(r + λ)p(a) = (µ − g(a))ap 0(a) + a p 00(a) + λE[p(Sa)], (16)

2 

subject to the two boundary conditions p(a) = ϕ and p(a) = 1. 

The intuition for this result is as follows. As shown by (10), the platform has value 

to the extent it captures investors’ liquidity benefits. As a result, the platform seeks to 

minimize the time it spends in the smooth region [a, a], where the peg is lost (p(a) < 1) and 

investors enjoy no such benefit. To do so and increase the growth rate of at = At/Ct- when 

at ∈ [a, a], stablecoin issuance is minimized in this region. This policy involves paying no 

interest to investors and using all the returns on collateral to buy back stablecoins. This 

condition yields equation (15), because each stablecoin is backed by collateral value ϕ that 
kgrows at rate µ . The net repurchase cost of a stablecoin is p − ϕ because buying back a 

stablecoin frees up collateral value ϕ. Hence, equation (15) defines the maximum rate at 

which the platform can repurchase stablecoins while satisfying limited liability constraint 

e(a) ≥ 0. 

The second part of the Lemma confirms that the platform’s equity value is zero when the 

19 



peg is lost. Intuitively, the platform would otherwise still have slack in the limited liability 

constraint to buy back stablecoins and defend the peg. Finally, Lemma 1 characterizes 

stablecoin price dynamics in the smooth region [a, a] when the peg is lost. Its evolution 

is governed by HJB equation (16). Optimal repurchase policy (15) enters this equation 

because it governs the rate at which the demand ratio at increases in region [0, a]. 

Thanks to Lemma 1, we can characterize the equilibrium equity value under a TMP up 

to the level of the interest rate δ(a?) paid at the target ratio. 

Lemma 2. Under a TMP that satisfies Lemma 1, the platform’s equity value under full 

commitment and limited liability is characterized by ⎧ ⎨0 if a ≤ a, 
e(a) = (17)� �⎩ a e(a?) + (p(a?) − ϕ) − (p(a?) − ϕ) if a ≥ a,a? 

(r + λ − µ)e(a ?) = µ kϕ + µ(p(a ?) − ϕ) − δ(a ?)p(a ?) + λE[e(Sa?)], (18) 

where δ(a?) is the interest rate that maintains the peg at parity p(a?) = 1, defined by 

δ(a ?) = r − `(a ?) + λ (1 − E[p(Sa?)]) . (19) 

Characterization of the equity value when a ≤ a follows directly from Lemma 1 and the 

fact that e(a) = 0 when the platform is in default (a ≤ a). Consider now the target region 

[a, ∞), in which the platform issues or repurchases stablecoins to maintain a constant 

demand ratio a? . By definition, the equity value is then given by 

E(A, C) = E(A, C?(A)) + (p(a ?) − ϕ)(C?(A) − C). (20) 

That is, the equity value in the target region is equal to the equity value at the target 

plus the net issuance proceeds (repurchase costs) when issuing (buying back) stablecoins 

to reach the target. Dividing both sides of (20) by the stablecoin stock C, we obtain (17). 

Equation (18) characterizes the equity value at the target ratio a? . When at the target, 

equity holders receive interest on collateral µkϕ, issue new stablecoins at (expected) rate 

µ for a gain p(a?) − ϕ, and pay interest δ(a?). The term −δ(a?)p(a?) corresponds to 
the cost of buying back these stablecoins paid as interest in order to maintain the target 
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demand ratio a? . Finally, the last term on the right-hand-side of (18) corresponds to the 

expectation of a large (Poisson) negative shock to demand A. 

Finally, equation (19) gives the interest rate paid by the platform at the target. For a 

given target ratio a? , the rate with limited liability exceeds that with unlimited liability, 

given by r − ̀ (a?), in the presence of Poisson shocks (λ > 0). Under limited liability, large 

negative demand shocks may force the platform to abandon the peg. To compensate for 

this expected devaluation, the platform must pay a higher interest rate relative to the case 

with unlimited liability. This feature suggests that platforms with high observed interest 

rates are less stable.26 

Our last preliminary result is that default is not optimal under full commitment. 

Lemma 3. Under full commitment and limited liability, the platform never defaults: a = 0. 

The platform never defaults because doing so cannot increase the platform’s value at date 

0. The result is most intuitive for an uncollateralized platform (ϕ = 0). If the platform 

defaults below some threshold a > 0, the stablecoin price then falls permanently to 0. Since 

the demand ratio can fall below a following a large enough negative shock, default below a 

reduces investors’ willingness to pay for the stablecoin at date 0. To maintain the peg, the 

platform would need to pay high interest δ(a?) at the target, as suggested by (19). This 

feature in turn depresses the platform’s equity value, as can be seen from (18). If, instead, 

the platform keeps on operating when a ≤ a, it can wait for positive shocks to recover and 

regain the peg. This lowers the required interest rate δ(a?) relative to the case in which 

the platform defaults below a, which increases equity value at the target a? . 

The argument for Lemma 3 is more complex when the platform holds collateral (ϕ > 0), 

since default allows the platform to transfer collateral to users. Thanks to Lemma 1, 

however, we can show that the equilibrium price without default satisfies p(a) ≥ ϕ for all 

a > 0, which implies that such transfer does not increase the platform’s ex ante value.27 

Overall, although the platform may lose the peg, it never defaults under full commitment. 

26Before it crashed, the Terra-Luna platform was offering interest rates above 20%. 
27If p(a) ≤ ϕ, it would be optimal for the platform to repurchase a stock of stablecoins at no additional 

cost than selling the corresponding collateral. Thus, there is a reflecting boundary at ã such that p(ã) = ϕ 
(i.e., g(ã) = −∞). 
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3.3 Optimal Platform Design 

We now use our preliminary results to characterize the optimal policy as the solution to an 

optimization problem over the target ratio a? and the lower bound a. The last necessary 

step to rewrite objective function (14) as a function of these parameters only is to derive 

the interest rate at the target ratio δ(a?) as a function of (a, a?). This requires solving for 

the equilibrium price for a ∈ (0, a). Unfortunately, we cannot provide a general analytical 

solution for the general case because of the feedback loop in equation (16) for the price via 

the issuance rate g(a) given by (15). 

Nonetheless, two special cases of interest allow for an explicit characterization of the 

platform’s optimal policy: the uncollateralized case (ϕ = 0) and the fully collateralized 

case (ϕ = 1). We use these two extreme cases to study the effect of collateralization on 

platform stability and provide a numerical analysis for the general case. We first present 

results assuming an equilibrium exists and then state conditions for existence. 

Purely Algorithmic Platforms Consider first an uncollateralized platform with ϕ = 0. 

In this case, we obtain an analytic solution for the price thanks to equation (16), because 

Lemma 1 shows that g(a) = 0 for a ∈ (0, a] when ϕ = 0. We then obtain the following 

characterization of the optimal policy. 

Proposition 3 (Purely Algorithmic Platform Equilibrium). If an equilibrium with 

positive stablecoin value exists for an uncollateralized platform (ϕ = 0), then: 

1. The region [0, a] in which the peg is lost is non-empty and the equilibrium stablecoin � �−γaprice is given by p(a) = , for a ≤ a where γ < −1 is the unique negative root of a 

σ2 λξ 
r + λ = −µγ + (1 + γ)γ + . (21)

2 ξ − γ 
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2. The optimal policy is characterized by Lemmas 1, 2, and 3 and (a, a?) that solve ⎧⎨ ⎩ �−(ξ+1)

⎫⎬ ⎭ e(a?) + p(a?) ?)/a?`(a 
λξ λξ 

� � � (22)= max
? ? ? 

r + λ 
ξ+1 

a a,a a− µ + −ξ+1 ξ−γ a 

� � a?) + p(a ?) − 1 = 0.subject to e(a) = e(a (23)
?a 

An uncollateralized platform loses the peg after a large enough negative demand shock, 

even if it can commit to an issuance policy. When demand drops, the platform would like 

to repurchase a sufficient amount of stablecoins to maintain the peg. For a large enough 

drop, however, this repurchase cost exceeds the net present value of liquidity benefits. 

In that case, repurchases cannot be financed through equity dilution and the peg is lost. 

This result is analogous to Del Negro and Sims (2015) and Reis (2015) who show that an 

insolvent central bank without fiscal support is unable to control inflation. 

In the region [0, a] in which the peg is lost, the stablecoin price remains strictly positive— 

although investors enjoy no liquidity benefit, since p(a) < 1. The stablecoin value is then 

driven entirely by the probability that the demand ratio at exogenously reaches the peg 

threshold a due to a series of positive demand shocks. The speed of this process depends 

on the value of the root γ. 

The second part of Proposition 3 characterizes the optimal policy choice of an uncol-

lateralized platform under limited liability. Given that e(a) = 0 for all a ≤ a and e(a) is 

linear and increasing for a ∈ [a, ∞), limited liability holds for all a if e(a) = 0, which is 

constraint (23). As in the case with unlimited liability, the platform maximizes the present 

value of liquidity benefits. With limited liability, however, the platform’s effective discount 

rate increases and depends on its policy choices, as shown by (22), because the platform 

may lose the peg. Given threshold a > 0, a lower value of a? increases the probability of 

losing the peg, which raises the platform’s discount rate. Setting a = 0 to kill this effect is 

not possible, because this would violate limited liability constraint (23)—that is, e(a) > 0. 

This discount rate effect implies that the optimal target demand ratio a? is higher than 
?its counterpart with unlimited liability, a : Reducing stablecoin issuance from C? (A) toul ul 

C?(A) < C? (A) protects the platform against large negative demand shocks. ul 

We provide an illustration of our results in Figure 2 that contrasts the solutions under 

23 



0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

unlimited liability
limited liability

Figure 2: Full-commitment solution with limited liability without collateral (blue) and unlimited 
liability without collateral (black). The set of parameters is given by r = 0.06, µ = 0.05, σ = 0.1, 
`(A, C) = r exp(−C/A), ξ = 6, λ = 0.10. Asterisks represent the target demand ratio a? and circles 
indicate ā, the point at which e(a) reaches zero. 

limited and unlimited liability. The left panel shows that limited liability protects equity 

holders, since their equity value is always positive after large negative shocks. From an 

ex ante perspective, however, the inability to conduct large repurchases lowers the total 

platform value, as can be observed in the right-most panel. The center panel shows that 

the stablecoin price loses the peg at a under the limited liability case. These dynamics can 

be observed in the crash of the two algorithmic stablecoins, Terra and NuBits, for which 

the market capitalization of their governance tokens fell to zero at the time of losing the 

peg (see Appendix A). 

Fully Collateralized Platforms We now turn to the analysis of fully collateralized 

stablecoin platforms. The feature that simplifies the analysis in this case is that limited 

liability constraint (12) never binds because stablecoin repurchases are financed entirely 

from collateral holdings. 

Proposition 4 (Fully Collateralized Platform Equilibrium). If an equilibrium with 

positive stablecoin value exists for a fully collateralized platform, the following results apply: 

1. The peg is always maintained; that is, a = 0. 

? ?2. The optimal policy is given by Lemmas 1, 2, and 3, a = 0 and a > aul that solves 

e(a?) `(a?) + µk − r 1 
max = . (24)

? ? ?a a r − µ + λ/(ξ + 1) a 
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The key difference between a fully collateralized platform (Proposition 4) and an uncol-

lateralized one (Proposition 3) is that the peg is never lost in the former; that is, a = 0. 

This result follows directly from the observation that limited liability constraint (12) may 

never bind when p(a?) = ϕ = 1, because the net value of outstanding stablecoins is zero. 

With a fully collateralized platform any stablecoin repurchase is fully financed by collateral 

holdings, which means that no equity dilution is ever required to pay for a repurchase. 

Hence, the limited liability constraint does not affect the ability of the platform to perform 

these operations and maintain the peg under full collateralization.28 

This observation implies that the optimization problem (24) is identical to that of a 

fully collateralized platform under unlimited liability. An important difference, however, is 

that with unlimited liability, the platform would choose not to hold collateral because it is 

costly (µk < r) and large stablecoin repurchases would be financed by allowing equity to 

become negative. With limited liability, the platform must hold collateral to maintain the 
?peg at all times. The comparison between target ratios a? and a reflects this additionalul 

collateral cost. Under limited liability, the platform issues fewer stablecoins because the 

net liquidity benefit per stablecoin that accounts for the collateral cost is lower than under 

unlimited liability, since ` + µk − r ≤ ` given our assumption that µk ≤ r. 

3.4 Existence Conditions 

Propositions 3 and 4 characterize a platform’s optimal policy, given that an equilibrium 

with positive stablecoin value exists. Now we provide existence conditions for both cases. 

Proposition 5 (Existence Condition). Given collateralization ratio ϕ ∈ {0, 1}, a 

stablecoin platform with positive value exists under full commitment only if 

max 
a 

`(a) ≥ 

⎧⎨ ⎩ λr − µ + if ϕ = 0,ξ+1 (25) 
r − µk if ϕ = 1. 

We derive the existence conditions in Proposition 5 from imposing e(a?) ≥ 0. The 
?condition implied by e(a) ≥ 0 and a ≥ a is necessary and sufficient for an equilibrium 

28The result holds in part because the collateral asset is uncorrelated with the demand process At. If 
it were (positively) correlated, the value of collateral holdings would decrease when demand drops. In this 
case, the collateral available to finance a repurchase may fall short of the repurchase cost. Unless collateral 
is fully correlated with the demand process, however, the qualitative effect whereby collateral relaxes limited 
liability constraint (12) remains. 
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Figure 3: Full-commitment solution with limited liability fully collateralized (blue) and unlimited 
kliability without collateral (black). The set of parameters is given by r = 0.06, µ = 0.05, µ = 0.055, 

?σ = 0.1, `(A, C) = r exp(−C/A), ξ = 6, λ = 0.10. Asterisks represent the target demand ratio a 
while and circles indicate ā, the point at which e(a) reaches zero. 

with positive stablecoin value to exist under limited liability. We report this condition 

directly in the fully collateralized case (ϕ = 1), but only provide a necessary condition in 

the uncollateralized case (ϕ = 0) for simplicity. The proof contains a sufficient condition. 

In the fully collateralized case (ϕ = 1), the existence condition states that the liquidity 

benefit captured by the platform `(a?) must exceed the collateral holding cost µk − r. As 

discussed above, the collateral holding cost can be interpreted as a liquidity benefit from 

holding the underlying asset, which the platform forgoes when using the asset as collateral. 

Condition (25) states that issuing stablecoins that are fully backed by another asset can 

only be profitable if the former commands larger liquidity benefits. 

In the uncollateralized case (ϕ = 0), condition (25) follows from the requirement that 

the growth rate of stablecoin demand, µ − λ/(ξ + 1) must exceed the interest paid by 

the platform, which satisfies δ? ≥ r − l(a?) by equation (19). Paying interest to users 

entails buying back stablecoins to maintain the demand ratio at the target.29 Hence, the 

difference between the growth rate of demand and the interest rate is the net issuance rate 

of stablecoins. It must be positive for equity tokens to have any value. In other words, an 

uncollateralized platform can emerge only if stablecoin demand keeps growing over time. 

Corollary 1. An uncollateralized platform value can exist only if stablecoin demand grows; 
λthat is, if µ − ≥ 0.ξ+1 

29This component is absent for a fully collateralized platform because the net cost of buying back 
stablecoins is then 0. 
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Corollary 1 follows from Proposition 5 and Assumption 1 stating that the marginal 

liquidity benefit is no larger than the discount rate (` < r). Stablecoin demand must 

grow over time for an uncollateralized stablecoin platform to have any value. Without 

this growth component, platform owners’ only dividend would be the cost of buying back 

stablecoins paid as interest to maintain the peg. As it emphasizes the importance of demand 

growth, this result relates to the existing argument on algorithmic stablecoins, which are 

portrayed as “Ponzi schemes”. If the growth rate of the demand for the stablecoin were to 

unexpectedly and permanently fall to zero, the equity value of the platform would also fall 

to zero and the peg would be permanently lost. 

3.5 Undercollateralized Platforms: Numerical Solution 

Partially collateralized platform, ϕ ∈ (0, 1), do not have analytical solutions. In Figure 4, 

we solve numerically for the optimal collateralization rule ϕ?(λ) for different demand 

shock intensities λ. As λ goes up, the likelihood that limited liability constraint (12) 

binds increases together with the probability of a large negative shock. Collateral thus 

becomes more useful because a higher collateralization ratio ϕ relaxes constraint (12): 

The platform can finance purchases from collateral holdings to a greater extent when ϕ 

is high. In line with Proposition 5, the right panel of Figure 4 shows that collateral is 

necessary for a stablecoin platform to exist when negative shocks are likely enough (high 

λ). With full collateralization (ϕ = 1), a platform always exists for all values of λ, as shown 

above. In practice, there exists a large heterogeneity of platform designs, ranging from 

uncollateralized ones such as Terra-Luna to partially collateralized ones such as FRAX to 

fully collateralized ones such as DAI. Our model suggests that an optimal collateralization 

ratio trades off stability with platform profits. 

4 Non-programmable Issuance 

In this section, we analyze the centralized platform’s problem under a weaker form of 

commitment. Unlike in Section 3, stablecoin issuance and repurchase cannot be fully 

programmed via smart contracts at date 0. We maintain, however, commitment with 

respect to the interest rate policy {δt}t≥0 and the minimum collateralization rule ϕ chosen 

27 



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

Figure 4: Full-commitment solution with limited liability. The function ϕ?(λ) represents the 
optimal collateralization rate ϕ? for different levels of large demand shock intensity λ. The function 
f?(λ) represents the total platform value (e(a?) + p(a?) − ϕ?)/a?) at the optimal target demand 
ratio a? and either optimal collateralization rate ϕ = ϕ? (blue) or without collateral ϕ = 0 (black) 
for different levels of large demand shock intensity λ. The set of parameters is given by r = 0.06, 

kµ = 0.05, µ = 0.055, σ = 0.1, `(A, C) = r exp(−C/A), ξ = 6. The numerical solution algorithm is 
described in the Internet Appendix. 

at date 0.30 Our analysis under limited commitment is motivated by the fact that many 

stablecoin protocols retain discretion over the repurchase and issuance of stablecoins in 

practice.31 

In what follows, we first refine our equilibrium concept under partial commitment and 

highlight the new implementation constraints that arise in this case. Then, we characterize 

the optimal design of a centralized platform that cannot commit to its issuance policy. 

4.1 Equilibrium Concept under Partial Commitment 

We refine our equilibrium concept under partial commitment by considering Markov perfect 

equilibria (MPE), defined with respect to the state variables of our economy (At, Ct-). In 

a MPE, the platform’s issuance policy and the stablecoin pricing function depend only on 

(At, Ct-), as opposed to the entire history of shocks. In line with our previous analysis, the 

coupon policy δ chosen at date 0 can only depend on the demand ratio at = At/Ct- . 

Definition 3. Given a coupon policy δ(A, C) homogeneous of degree 0 and a collateraliza-

30Limited liability still applies. If equity token holders find the interest policy or collateralization 
requirements too costly ex post, they can liquidate the platform. 

31As described below, some degree of commitment is necessary for an equilibrium with positive stablecoin 
value to exist. See Appendix C.1 for a proof of this claim. 
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tion ratio ϕ ∈ [0, 1], a MPE is given by equity token value function E(A, C); a stablecoin 

pricing function p(A, C); an issuance policy dG(A, C); and an optimal default policy τ such 

that the issuance policy dG and default policy τ maximize the platform’s equity value in any 

state (A, C). That is, 

� Z �τ � �−r(s−t)E(A, C) = max E e psdGs + µ kϕCs − ϕdCs At = A, Ct- = C , (26) 
τ,dG t 

given the law of motion for stablecoins (4) and stablecoin pricing function � Z τ � 
p(A, C) = E e −r(s−t)(` s + δs)psds + e −r(τ −t)ϕ At = A, Ct- = C , (27) 

t 

where the expectation in (27) is taken over future platform policies. 

Optimality criterion (26) states that the issuance policy must be sequentially optimal 

under limited commitment. In a Markov equilibrium, this means the policy must be optimal 

in any state (A, C). In writing equation (26) for the equity value above, we simplified 

equation (6) by substituting for the collateral repurchase policy dMt = ϕdCt − µkϕCt 

implied by collateralization rule (3). 

In a Markov equilibrium, the stablecoin price (27) may only depend on past actions of 

the platform via state variables (A, C). This means stablecoin users may not collectively 

punish the platform for deviating from an issuance policy they would agree upon at date 0. 

If instead investors could use “grim-trigger” strategies to punish the platform, additional 

outcomes could be supported. Our focus on Markov equilibria disciplines the analysis in 

that the stablecoin price may only depend on fundamentals and users’ expectations about 

the platform’s future policies. We note that enforcing collective punishments may prove 

challenging with disperse investors, as in our model.32 

The first step of the analysis is to characterize an equilibrium stablecoin issuance policy 

dG and default policy τ under partial commitment. Remember that under full commit-

ment, we posited that dG belongs to the class of targeted Markov policies (TMP). Under 

limited commitment, however, sequential optimality imposes stronger requirements on the 

equilibrium policy, which allow us to prove that it must belong to the TMP class. 

32See Malenko and Tsoy (2020), who consider punishments in a related dynamic leverage choice problem 
for firms. In their model, following a deviation from the equilibrium policy, the firm and investors play the 
MPE of DeMarzo and He (2021), which gives the lowest possible equilibrium payoff to the firm. 
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Proposition 6 (Equilibrium Policy). For an optimal interest rate policy δ chosen at 

date 0, if an equilibrium exists, the equilibrium issuance policy dG under limited commit-

ment belongs to the class of TMP introduced in Definition 2. 

The proof of Proposition 6 has several technical steps we briefly outline below. We first 

establish that the equilibrium equity function is weakly convex and the stablecoin price is 

weakly increasing as a function of the demand ratio a. Following arguments by DeMarzo 

and He (2021), we then show that the equilibrium issuance policy is smooth (features 

jumps) on intervals for which the equity value is strictly convex (linear). The existence of 

a default threshold a follows from the fact that the equity value is increasing in a. Next, 

we show that if the coupon policy δ(a) is chosen optimally at date 0, the issuance policy 

is smooth over the first part of the no-default region, [a, a] for some a ≥ a. For values of 
?a ∈ [a, ∞), it features a jump to some target demand ratio a . By definition, these results 

imply that the equilibrium policy belongs to the class of TMP. 

4.2 Commitment Constraints 

Similar to the full-commitment case, the platform chooses the policy parameters of the 

TMP at date 0. With limited commitment, however, the platform faces additional con-

straints because the issuance and default decisions must now be sequentially optimal. The 

following proposition characterizes these constraints generated by lack of commitment. 

Proposition 7. Under limited commitment, a feasible TMP and the equity value function 

of the induced nonzero MPE must satisfy the following properties: 

1. The platform’s issuance rate in the smooth region [a, a] is given by 

aδ0(a)p(a) + (µk − r)ϕ 
g(a) = (28) 

ap0(a) 

and the platform’s equity value is the same as if it issued no debt. 

2. The value of equity tokens must satisfy the following smooth-pasting conditions at the 

lower bound of the target region a and at the default threshold a if a > 0, respectively: 

e? + 1 − ϕ 
e 0(a) = 

? , (29) 
a 

e 0(a) = 0. (30) 
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3. In the target region, for all a ≥ a, the interest rate must satisfy h i� � h i a a a 
δ(a) − δ(a ?) ≥ (r + λ)(1 − ϕ) + µ kϕ 1 − + λ E[e(Sa)] − E[e(Sa?)] .

? ? ?a a a 
(31) 

Condition 1 of Proposition 7 characterizes the optimal issuance policy in the region [a, a] 

with smooth stablecoin issuance. Smooth issuance is optimal only if the returns from 

issuance are equal to 0. We show in the proof that this condition is given by 

p(a) − ϕ = e 0(a)a − e(a). (32) 

Equation (32) states that the net marginal benefit of issuing stablecoin, p(a) − ϕ, is equal 

to the marginal loss of equity value from such issuance. The corollary whereby returns to 

issuance are zero in the smooth region is similar to the leverage ratchet effect of DeMarzo 

and He (2021) for a firm issuing debt. In their work, the leverage ratchet effect implies 

that the firm can never capture the tax advantage of debt, which is akin to the liquidity 

benefit in our model. While their result holds in the smooth region [a, a], our equilibrium 

may also feature a target region [a, ∞), as we explain below. In the smooth region, the 

equity value is solved as if the platform issued no debt because issuance returns are zero . 

Equilibrium issuance is determined in equilibrium, however, to satisfy condition (32). 

The equilibrium issuance policy in the smooth region has two components captured by 

the two terms at the numerator on the right-hand side of (28). First, the platform tends 

to repurchase stablecoin to reduce the amount of costly collateral it must hold, because 
kµ < r by assumption. Second, the platform issues (repurchases) stablecoins if δ0(a) > 0 

(δ0(a) < 0). In particular, if the interest rate decreases with a, δ0(a) < 0, the interest rate 

policy induces the platform to repurchase stablecoins so as to increase its demand ratio. 

Condition 2 gathers the standard smooth-pasting conditions the equity value must satisfy 

in equilibrium. Equation (29) ensures that the platform optimally switches from discrete 

repurchases in the target region to a smooth issuance policy at threshold a. This condition 

requires that the derivative of the equity value is continuous at threshold a. Equation (30) 

ensures that the liquidation threshold is optimally chosen by the platform. 

Finally, Condition 3 ensures that implementing demand ratio a? is ex post optimal 

without commitment when the platform is in the target region a ∈ [a, ∞). This condition 
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is thereby crucial to support an equilibrium with a target region. We obtain this condition 
?by considering a “one-step” deviation whereby, starting from some demand ratio a =6 a , 

the platform would remain idle during an interval of period dt and then revert back to the 

conjectured equilibrium policy.33 To understand constraint (31), rewrite it as: 

δ(a)C − δ(a ?)C?(A) + λ(E[E (SA, C?(A))] − E[E(SA, C)])| {z } 
protection against large shocks 

≥ (r + λ)(1 − ϕ)(C − C?(A)) + µ kϕ(C − C?(A)) . (33)| {z } | {z } 
gains from postponing repurchase collateral dividends 

To fix ideas, suppose that the current stablecoin stock C is higher than the target C?(A) 

so that the equilibrium policy is to repurchase C − C?(A). The terms on the left-hand 

side of equation (33) represent the net advantages of adhering to the equilibrium policy 

relative to maintaining stablecoin stock C during a period dt before reverting back to the 

equilibrium policy. The first term, δ(a)C − δ(a?)C?(A), represents the net interest savings 

from increasing the demand ratio from a to a? . The second term measures the relative 

protection against negative (Poisson) demand shocks at target ratio a? relative to ratio 

a < a? . On the right-hand side, the two terms capture the relative benefits of a deviation, 

respectively, from delaying the repurchase of stablecoins and earning dividends on a larger 

stock of collateral, ϕC > ϕC?(A), in the meantime. 

?Constraint (33) shows that promising a high interest rate in the target region for a 6= a 

can discipline the platform. Intuitively, the platform has more incentives to implement the 

target ratio a? if it must deliver a large interest rate to users should it deviate. The notion 

that off-equilibrium punishments can sustain the implementation of the peg is intuitive but 

the punishment cost is endogenous here. Consider for instance an uncollateralized platform. 

While it faces no collateral cost from issuance, paying a high interest rate in stablecoins 

is costly because the platform’s equity value is decreasing with the outstanding stock of 

stablecoins in equilibrium.3435 In fact, a state-contingent interest policy is necessary to 

33We show that this condition also rules out deviations such that the platform repurchases or issues debt 
smoothly during an interval dt. 

34Our analysis of the deviation leading to condition (33) in the proof of Proposition 7 shows that the 
argument is similar for a collateralized platform. Although paying interest comes with a direct collateral 
cost, this cost is recouped by the platform when it reverts to the equilibrium policy. 

35In DeMarzo and He (2021), the tax payment π(Y − cF ) decrease with more debt F . Thus, the 
requirement from condition (33) that the interest payment increases with more debt to deter from the gains 
from postponing repurchase cannot be satisfied. 
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sustain an equilibrium with a target ratio and a price peg. 

Corollary 2. With a noncontingent interest policy, δ(a) = δ? for all a, there exists no 

nonzero MPE under limited commitment. 

This result is more striking for a fully collateralized platform which finances stablecoin 

repurchases entirely with collateral. To see why a state-contingent interest policy is still 

necessary, set ϕ = 1 and δ(a) = δ(a?) for all a so that no-deviation condition (31) becomes � � a k∀a, (δ(a ?) − µ k) 1 − ≥ 0 ⇒ δ(a ?) = µ , (34)
?a 

where the term proportional to λ disappears because E(A, C?(A)) = E(A, C) for all C 

with a fully collateralized platform (Lemma 2). Together with equation (19) to maintain 

the peg (δ(a?) = r − `(a?) when ϕ = 1), condition (34) implies that the platform’s value 
kis zero by Proposition 4 because the collateral cost r − µ then fully offsets the liquidity 

benefit `(a?) captured by the platform. The platform finds the deviation profitable not 

because it wants to delay repurchase costs, which are zero with full collateralization, but 

because it can earn the interest spread µk − δ(a?) on a larger stablecoin stock relative to 

the target level C?(A). 

4.3 Optimal Protocol under Limited Commitment 

We now characterize the policy design problem of the platform under limited commitment. 

The objective of the platform is again to maximize its date-0 value, which is given by 

e(a?) + 1 − ϕ `(a?) + (µk − r)ϕ + λE[e(Sa?) + p(Sa?) − ϕ] 1 
? = 

? , (35) 
a r + λ − µ a 

with e and p the equilibrium equity value and pricing functions. To obtain (35), we used 

equations (18) and (19). The platform thus chooses the TMP that maximizes (35) subject 

to limited liability, e(a) ≥ 0, and to the implementation constraints derived in Proposition 

7. To express (35) and the constraints as a function of policy parameters, we need to solve 

for the equilibrium value functions and the stablecoin price over the entire state space. In 

the target region a ∈ [a, ∞), we have p(a) = 1 by construction and e(a) given by equation 

(17), as in the full-commitment case. In the smooth region, we show in the proof that the 
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dynamic equations for the equity value and the price are, respectively, 

σ2 
2(r + λ)e(a) = (µ k − δ(a))ϕ + δ(e(a) − ae 0(a)) + µae 0(a) + a e 00(a) + λE[e(Sa)], (36)

2 
σ2 

2(r + λ)p(a) = δ(a)p(a) + (r − µ k)ϕ + (µ − δ(a))ap 0(a) + a p 00(a) + λE[p(Sa)]. (37)
2 

Analytical solutions for (36) and (37) cannot be obtained in the general case, which 

motivates us to impose some structure on the feasible set of TMPs. 

Assumption 4. The interest rate policy in the smooth region [a, a] is given by δ(a) = δ. 

Assumption 4 allows us to provide an analytical solution for the MPE equity value and 

price in the smooth region. Our analysis below suggests that this assumption is innocuous, 

because we find that the platform always chooses to set δ as high as possible. This indicates 

that state contingency in δ in the smooth region would not increase the platform’s value. 

Thanks to Assumption 4, we thus guess and verify that the equity value and the stablecoin 

price have the following functional forms: 

e(a) = 

p(a) = 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩ 

0 if 0 ≤ a < a,P3 −γke + if a ≤ a < a, , (38)k=1 cka 

(e? + 1 − ϕ)a/a? − (1 − ϕ) if a ≥ a, 

ϕ if 0 ≤ a < a,P3 −γkbka if a ≤ a < a, . (39)p + k=1 

1 if a ≥ a, 

where {p, e} and {bk, ck}k=1,2,3 are parameters and {γk}k=1,2,3s are the roots of equation 

σ2 λξ 
r + λ − δ = −(µ − δ)γ + (1 + γ)γ + . (40)

2 ξ − γ 

As in the full-commitment case, and even under Assumption 4, an analytic characteri-

zation of the solution is difficult. We thus focus again on two extreme cases of interest: 

a purely algorithmic protocol (ϕ = 0) and a fully collateralized protocol (ϕ = 1), and we 

provide numerical results for partially-collateralized protocols. 

Purely Algorithmic Protocol 

We first consider a purely algorithmic platform without collateral; that is, with ϕ = 0. 
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In this case, the optimization problem of the platform can be characterized as follows. 

Proposition 8. Under limited commitment, a non-collateralized platform never defaults, 

that is, a = 0. It chooses δ, a, a? to maximize 

e(a?) + 1 `(a?)/a? 

= � � � (41) 
a? λ λξ λξ a? �−(ξ+1) 

r + − µ + −ξ+1 ξ+1 ξ−γ a 

� � a 1 
subject to e(a) ≡ e(a ?) + 1 − 1 = − > 0, (42)

?a 1 + γ 

where γ < −1 is the lowest negative root of (40) 

The first result from Proposition 8 is that an uncollateralized platform never goes into 

liquidation. Under limited commitment, the platform controls its issuance and repurchase 

and it does not have to buy collateral to back interest payments if ϕ = 0. Hence, the 

option value from default is zero; that is, a = 0. As a result, the sole difference relative to 

the full-commitment case is smooth-pasting constraint (42), which replaces non-negativity 

constraint (23). Comparing (23) and (42) shows that the latter is more stringent, because 

γ < −1. Thus, limited commitment reduces the platform’s value. 

We now characterize the optimal policy that solves the optimization problem presented 

in Proposition 8. The reduced-form variable γ depends only on the interest rate δ and it is 

decreasing. Hence, choosing δ is similar to choosing directly γ. This latter variable plays 

two opposite roles. First, as shown in the proof of Proposition 8, the total platform value 

in the region where the peg is lost increases with γ, because this variable governs the speed 

at which the platform exits the smooth region. On the other hand, decreasing γ allows 

the platform to extend the target region [a, ∞) over which the price is pegged, as can be 

seen from constraint (42). Overall, the second effect dominates because the platform’s 

paramount objective is to maintain the peg to be able to capture liquidity benefits. 

Proposition 9. An optimal uncollateralized platform’s policy under limited commitment 

features δ = ∞, and thus γ = −∞ such that e(a) = p(a) = 0 for a ∈ [0, a]. The optimal 

target ratio a? is strictly higher than under full commitment and the existence conditions 

are tighter. 

The first result that the interest rate δ in the smooth region should be high in contrasts to 

its counterpart under full commitment in Lemma 1. Under full commitment, the platform 
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Figure 5: Purely algorithmic solution with commitment and limited liability (black) and without 
commitment (blue). The set of parameters is given by r = 0.06, µ = 0.05, σ = 0.1, `(A, C) = 
r exp(−C/A), ξ = 6, λ = 0.10. Asterisks represent the target demand ratio a? and circles indicate 
ā, the point at which e(a) reaches zero. 

minimizes the rate in the smooth region, which helps recover the peg. Under limited 

commitment, however, increasing δ helps sustain incentives and increases the size of the 

target region. As stated above, the second effect dominates, which explain why δ = ∞ 

is now optimal. With δ = ∞, the stock of stablecoins jumps to C = ∞ whenever the 

platform enters the smooth region, which implies e(a) = p(a) = 0 for a ∈ [0, a]. Hence, the 

platform designs the TMP such that it effectively liquidates once the peg is lost. 

Proposition 9 also states that the target ratio is higher under limited commitment than 

under full commitment. A large negative shock to demand has worse consequences under 

limited commitment because it (optimally) triggers liquidation of the platform. Instead, 

under full commitment, the platform can recover after a shock that forces the platform to 

abandon the peg. This effect implies that the platform must be more conservative under 

limited commitment than under full commitment and thus issues fewer stablecoins for a 

given level of demand to accommodate large negative shocks. 

We illustrate the results from Proposition 9 in Figure 5 where we compare the equity 

value, the stablecoin price and the total platform value to the case with full commitment. 

For completeness, we also derive numerically the optimal policy when the maximum interest 

rate δ in the smooth region is bounded above. This constraint can capture implementation 

constraints or limits to the platform’s ability to commit to paying an extremely high interest 

rate when it loses the peg. The results of this analysis are illustrated in Figure 6. 

Fully Collateralized Platform We now turn to the analysis of a fully collateralized 
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Figure 6: Fully collateralized solution with commitment and limited liability (black) and without 
commitment (blue) constrained such that δ(a) ≤ µ. The set of parameters is given by r = 0.06, 
µ = 0.05, σ = 0.1, `(A, C) = r exp(−C/A), ξ = 6, λ = 0.10. Asterisks represent the target demand 
ratio a? and circles indicate ā, the point at which e(a) reaches zero. 

protocol. In this case, we show that the full-commitment outcome can be implemented 

thanks to a state-contingent interest policy. 

Proposition 10. Under limited commitment and with full collateralization, interest rate 

rule δ(a) = r − `(a) implements the full-commitment outcome. 

With full collateralization, the TMP has no smooth region. Hence, conditions 1 and 

2 of Proposition 7 are smooth. The commitment outcome can thus be sustained without 

commitment to the issuance policy if there exists an interest rate rule that satisfies condition 

(3). Plugging the rule of Proposition 10 in (34), we obtain the following condition: 

`(a?) + µk − r `(a) + µk − r ∀ a, ≥ , (43)
?a a 

which holds by definition of a? , the optimal demand ratio target chosen at date 0. The 

intuition for the result is that the interest rate rule δ(a) = r − `(a) causes the platform to 

internalize ex post the cost of deviating from the ex ante profit-maximizing demand ratio. 

Hence, lack of commitment to the issuance policy has no impact on platform value. 

To conclude this section, we provide numerical illustrations for total platform value with 

and without commitment as a function of the collateralization ratio ϕ in Figure 6. In both 

examples, the platform value is hump-shaped in ϕ and the optimal ratio is interior for 

the given parameters because collateral is costly. Without commitment, collateral benefits 

are larger, which explains why the optimal ratio is higher than with commitment. In line 
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Figure 7: Undercollateralization solution with commitment and limited liability (black) and 
without commitment (blue). The function f?(ϕ) represents the total platform value (e(a?) + 
p(a?) − ϕ)/a?) at the optimal target demand ratio a? for different collateralization rule ϕ. The set 
of parameters is given by r = 0.06, µ = 0.05, σ = 0.1, `(A, C) = r exp(−C/A), ξ = 6, λ = 0.10. 
Asterisks represent the optimal collateralization rules. The numerical solution algorithm for the 
full-commitment solution is described in the Internet Appendix. 

with Proposition 10, Figure 6 shows that the gap between the commitment and the no-

commitment value narrows as the collateralization ratio increases because commitment can 

then be restored thanks to a state-contingent interest rate rule. 

Decentralized Protocols 

In this section, we extend our baseline framework to study decentralized stablecoin proto-

cols. Such protocols—with DAI being the most prominent example—delegate the issuance 

of stablecoins to any users holding eligible collateral. Individual users who wish to issue 

stablecoins must lock some collateral asset in a smart contract generated by the protocol; 

this is termed a “vault.” Once stablecoins are sold to outside investors, the vault represents 

a leveraged position in the collateral asset for its owner. Vault owners can unlock their 

collateral assets by repurchasing and “burning” enough stablecoins to liquidate the vault. 

In decentralized protocols, all stablecoins are fungible, so the identity of the specific vault 

that issued the coin is irrelevant. The stability of a decentralized protocol therefore hinges 
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on the set of incentives provided by the platform to individual vault owners. In practice, 

equity token owners set the vaults’ collateralization ratio and charge vault owners a fee 

intended to steer issuance and repurchase decisions by vault owners. As in the centralized 

case, equity token owners also set the interest rate paid to stablecoin users. 

5.1 Decentralized Environment 

We start by describing formally the features of a decentralized protocol. Any agent can 

open a vault and issue stablecoins, subject to the protocol rules. We index existing vaults 

by i and call Ci the amount of stablecoins outstanding for vault i at date t. The totalt R 
stablecoin supply at date t is thus Ct = Cidi.i t 

Equity token owners set a collateralization ratio ϕ ∈ [0, 1] for vault owners at date 0. 

At any date t ≥ 0, token owners either shut down the platform or continue its operations, 

in which case they set a fee st charged to vault owners per unit of stablecoins issued and 

an interest rate δt paid to stablecoin users. The vault fee amounts to a tax on vaults: A 

vault owner with Ci stablecoins outstanding at date t must issue stCi extra coins, which t t 

it transfers to equity token owners. Of these stCt stablecoins it collects from vault owners, 

the platform transfers δtCt units as interest payments to stablecoin users and sells the 

difference, (st − δt)Ct, at market price pt. As before, the stablecoin price is determined by 

competitive users: � Z τ � 
pt = E e −r(s−t) (` s + δs) psds + e −r(τ−t)ϕ , (44) 

t 

with τ representing the platform liquidation date. Figure 8 illustrates flows in a decentral-

ized protocol. 

The decentralized protocol differs from our analysis of a centralized protocol in two key 

aspects. First, equity token owners delegate issuance to small vault owners and earn income 

from vault fees rather than from stablecoin issuance proceeds. Second, token owners choose 

the interest rate policy (and the vault fee) sequentially at every date t, rather than once 

and for all at date 0. This feature relaxes our earlier assumption that the platform commits 

to its interest rate policy. As we will show, these two features are connected: The delegated 

model with fee-based revenues provides commitment power to the platform. 

The new building block in a decentralized protocol is the problem solved by individual 
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Figure 8: Stablecoin Flows in a Decentralized Platform. The dashed lines represent interest 
payments, and the solid lines represent market transactions at price pt. st is the vault fee paid in 
stablecoins. δt is the interest payment paid in stablecoins to stablecoin users. dGt is the aggregate 
issuance/redemption of stablecoins by vault owners. 

vault owners. Taking as given the collateralization ratio ϕ, the price sequence {pt}t≥0, and 

the vault fee sequence {st}t≥0, a vault owner i chooses its active supply dGi and its default t 

time τ i . A vault owner with Ci stablecoins outstanding at date t thus solves the following: t- � Z �τ i∧τ � �−r(s−t)Vt
i(Ct

i 
-) = max Et e psdGsi − dMi

s , (45) 
τ i,dGi 

tt 

subject to dCi = stC
idt + dGi , (46)t t s 

dMi = ϕdCi − µ kϕCidt. (47)t t t 

A vault owner enjoys active issuance proceeds psdGi net of collateral purchase dMi until s s 

default or platform liquidation. In these events, vault owners receive nothing because the 

collateral value falls short of the stablecoins’ par value as ϕ ≤ 1. Equation (46) captures 

the law of motion for vault owners’ outstanding stablecoins, and (47) is the law of motion 

for the vault’s collateral value that ensures collateralization ratio Ki = ϕCi is satisfied.t t 

The optimization problem of equity token owners differs from (7) because they delegate 

stablecoin issuance. At every date t, they choose whether to default, and if not, the fee st 
charged to vault owners and the interest rate δt paid to stablecoin users. To do so, they 

solve the following: � Z τ � Z � �� �−r(s−t) CiEt = max Et e ss − δs psCs − s(1 − ϕ)1{τ i = s}di ds , (48) 
τ,δ,s t i 
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R 
subject to Ct = Cidi, where Ci is determined by optimization problem (45) for individual i t t 

vault owner i, and given pricing equation (44). The equity token dividend is proportional 

to the difference between the fee st charged to vault owners and the interest δt paid to 

users. At every date t, equity token owners must also cover the collateral shortfall, equal 

to Ci(1 − ϕ) for all liquidated vaults, if any, or shut down the system.t 

As in the centralized case, we analyze Markov equilibria of the decentralized model with 

state variables at = At . In addition to aggregate state variable at, each vault owner iCt -

considers its own stock of stablecoins Ct
i 
- as an idiosyncratic state variable when solving 

problem (45). In the interest of space, we do not provide a formal definition of a Markov 

equilibrium for the decentralized game because it is similar to that of Section 4. We use 

V (a, Ci) to represent vault owner i’s value function. 

5.2 Vault Arbitrage 

As a first step in our analysis, we derive arbitrage relationships imposed by competitive 

stablecoin issuance from vault owners. Then, in Section 5.3, we use these relationships to 

characterize the platform’s problem in a decentralized environment. 

We begin by showing that the value of a vault is equal to the value of the collateral 

locked in the vault minus the value of the stablecoins issued by that vault. To see this, 

observe that a vault owner with Ci stablecoins can adjust holdings to any C̃i and receive 

net issuance benefits p(A, C)−ϕ per unit of stablecoin. By definition of the value function, 

we thus have, for every (Ci , C̃i), 

V (a, Ci) ≥ V (a, Cei) + (p(a) − ϕ)(Cei − Ci). (49) 

The same relationship must hold, inverting Ci and C̃i , which implies that (49) must hold 

as an equality so that the value function is linear in the amount of stablecoins issued. The 

key element driving this result is that each atomistic vault owner takes the price as given 

when issuing stablecoins. Next, given free entry for vault owners, an empty vault must 

have zero value: V (A, C, 0) = 0. Combined with (49), we get that 

V (A, C, Ci) = ϕCi − p(a)Ci . (50) 

Equation (50) thus establishes that the value of a vault is equal to the value of the collateral 
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held minus the value of stablecoins outstanding. Intuitively, any “franchise value” from 

owning a vault would be competed away by new vaults. Given that the vault value is linear 

in Ci , we derive V (a, Ci) = v(a)Ci , with v(a) representing the vault value per stablecoin. 

The characterization of a vault value in (50) leads to the following preliminary result. 

Lemma 4. In a decentralized environment with active vaults, an equilibrium stablecoin 

price must satisfy p(a) ≤ ϕ. Vault owners prefer emptying their vaults over defaulting. 

The proof is immediate. Equation (50) shows that a vault has positive value only if 

p(A, C) ≤ ϕ. This inequality reflects an arbitrage constraint: The equilibrium price of a 

stablecoin cannot exceed the value of the collateral backing it. If instead p(A, C) > ϕ, 

vault owners could achieve an unbounded profit from issuing stablecoins. The second part 

of Lemma 4 follows. Upon default, a vault owner obtains zero payoff because the par value 

of stablecoins weakly exceeds the collateralization ratio ϕ ≤ 1. Vault owners thus prefer 

buying back stablecoins to unlock collateral because it generates a net payoff ϕ − p(a) ≥ 0 

per stablecoin outstanding. 

Next, we relate the vault value to the fee charged by the platform and the stablecoin 

price dynamics. As we show formally in the proof of Proposition 11, the return on a vault 

is given by 

rv(a) = r(ϕ − p(a)) = ϕµk − µp(a)p(a) − s(a)p(a), (51) 

where µp(a) ≡ E[dp(a)/(p(a)dt)] is the expected growth rate of the stablecoin price. The 

middle equality follows from (50). A vault owner holds a long position in the collateral 

and a short position in stablecoins. Hence, a vault’s return is equal to the return on 

collateral, ϕµk , minus the stablecoin price appreciation, µp(a)p(a), and the fee charged by 

the platform, s(a)p(a). 

Equation (51) formalizes a second arbitrage condition that must hold in an equilibrium 

with active vaults. If the fee s(a) is too high (too low), competitive vault owners would 

close their vaults (issue an infinite amount of stablecoins). To understand the former 

outcome, suppose the left-hand side of (51) is strictly above the right-hand side. Then, the 

opportunity cost of a vault during period dt exceeds the flow payoff from the vault. Vault 

owners would then close their vaults by buying back stablecoins and unlocking collateral. 

Finally, using the same notation as above, we reproduce the usual competitive pricing 
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equation for stablecoins. For any demand ratio a =, 

rp(a) = `(a)p(a) + δ(a)p(a) + µp(a)p(a). (52) 

The return on a stablecoin is the sum of the liquidity benefit, `(a)p(a), the interest paid 

by the platform, δ(a)p(a), and the price appreciation, µp(a)p(a). 

5.3 Platform Policy and Decentralized MPE 

We turn to the platform’s policy choices. At date 0, it sets the collateralization ratio, ϕ, 

for vaults and chooses sequentially the interest rate, δ, and the vault fee, s. In choosing 

these variables, the platform takes into account arbitrage conditions (50), (51), and (52), 

which can be viewed as implementation constraints. 

First, a decentralized platform must be fully collateralized. Lemma 4 shows that an 

equilibrium stablecoin price must satisfy p(a) ≤ ϕ. Hence, given that ϕ ∈ [0, 1], a 

decentralized platform can maintain the peg at one for some values a in equilibrium only 

if ϕ = 1. 

The platform’s rental income is constrained by arbitrage conditions (51) and (52). Com-

bining these two equations and setting ϕ = 1, we find that the platform’s utility flow 

is 

(s(a) − δ(a))p(a)C = `(a)p(a)C + (µ k − r)C ∀a. (53) 

Equation (53) is intuitive: With competitive users and vault owners, the platform captures 

all gains from trade net of collateral costs. The platform ultimately maximizes its rental 

income, given by (53), which entails maintaining the peg, p(a) = 1, as otherwise users enjoy 

no liquidity benefits. The stablecoin stock that maximizes the right-hand side of (53) is 

the same amount that a fully collateralized centralized platform would choose. While 

the platform directly issues stablecoins in the centralized model, it controls issuance from 

vault owners via the vault fee in the decentralized model. The main result of this section 

characterizes the optimal vault fee and the MPE of the decentralized protocol, given below. 

Proposition 11 (Decentralized Protocol Equilibrium). The nonzero MPE with a 

decentralized protocol implements the full-commitment outcome under full collateralization 
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(ϕ = 1) with a stablecoin stock given by 

� 
C?(A) = arg max `(A, C)C + (µ k − r)C . (54) 

C 

To implement C?(A), the platform sets a vault fee of the form 

s(a) − δ(a) = 

⎧⎪⎨ ⎪⎩ 
`(a) + (µk − r)/p(a) + ε if Ct > C?(At), 

`(a?) + µk − r if Ct = C?(At), (55) 

`(a) + (µk − r)/p(a) − ε if Ct < C?(At), 

where ε is strictly positive. The equilibrium interest rate is δ(a?) = r − `(a?). 

In a decentralized protocol, the platform steers issuance toward its optimal target under 

full collateralization C?(A), with the vault fee s(a). To implement the desired target, the 

platform sets a vault fee contingent on the stock of stablecoins. Suppose, for instance, that 

the stock of stablecoins is too low, that is, Ct < C?(At). The platform then lowers the fee 

so that vault owners issue stablecoins until Ct reaches C?(At). At this point, the vault fee 

is such that vault owners are indifferent about issuance. In equilibrium, these adjustments 

occur instantaneously so that s(a) for a 6= a? is an off-equilibrium fee schedule. 

The main result from Proposition 11 is that a decentralized protocol can implement 

the full-commitment outcome under full collateralization. This result is obtained without 

commitment to the interest rate policy for a decentralized protocol. In contrast, such 

commitment is crucial in centralized protocols as demonstrated in Proposition 9. Due to 

vault owner arbitrage, the type of deviation that would be optimal with centralized issuance 

under a non-state-contingent interest rule, δ(a) = δ(a?), is no longer implementable. 

To see this, consider again a deviation to Ct = Ct- < C?(At) after a negative shock to 

At. We showed in Corollary 2 that equity token holders of a centralized platform would 

benefit from this deviation because their net flow payoff is equal to the return on collateral 

minus the interest paid on stablecoins, µk − δ(a?). As this flow is positive, equity token 

holders earn more income with a larger stock of stablecoins outstanding and thus resist 

reducing this stock to the target level C?(At). This deviation cannot be implemented in 

a decentralized protocol. Stablecoin pricing equation (44) shows that if δ(a) = δ(a?) and 
?at < a , we must have µp(a) > 0 and thus p(a) < 1. This implies that the right-hand 

side of arbitrage equation (51) is strictly negative if s(a) = µk , which means Ct- cannot 

be an equilibrium outcome. Specifically, the threat that vault owners would shut down 
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vaults unless the platform decreases s below µk disciplines equity token holders. Overall, 

vault owners’ arbitrage implies that equity token holders’ net payoff is always equal to 

the total (flow) gains from trade, as shown by (53), which guarantees that the ex ante 

profit-maximizing decisions are also ex post optimal. 

This result can be interpreted as an implementation of Coase (1972)’s leasing solution for 

a durable-good monopolist. Similarly, a centralized platform that sells stablecoins suffers 

from a time-consistency problem. Without commitment, it does not internalize the effect 

of the current issuance of stablecoins on the liquidity benefits of users who previously 

bought stablecoins. As Calvo (1978) already noted, a monetary authority that can earn 

seignoriage revenues tends to “overprint” money. The intuition from Coase (1972), which 

was formalized by Bulow (1982), is that the time-consistency problem is solved if the 

monopolist switches from selling to renting goods because all goods are then repriced 

every period. A decentralized protocol implements this leasing solution as it transforms 

the platform’s gains into a rental income flow equal to the vault fee minus the interest paid 
36to users. 

6 Conclusion 

This paper analyzes the optimal design of stablecoin protocols. We examine the merits 

and vulnerabilities of various tools used to peg the stablecoin price in a model in which we 

take the stablecoin issuers’ incentive problem seriously. Our analysis shows that partially 

collateralized platforms are always vulnerable to large demand shocks, even under full 

commitment. The optimal collateralization level thus trades off resilience against these 

shocks with collateral holding costs. Our model also suggests that partially collateralized 

platforms that pay high interest rates are more fragile. Finally, we analyze stablecoin 

protocols in which stablecoins are issued by independent vault owners, a crucial feature of 

many decentralized stablecoin designs such as DAI. We show that a decentralized design in 

which the platform charges a rental fee to vault owners solves time-consistency problems, 

although only if decentralized issuance is fully collateralized. To focus on our main research 

36A centralized platform directly renting stablecoins to users would be closer to the solution envisioned by 
Coase (1972). In the context of our paper, such a rental market can work only if anonymous stablecoin users 
have incentives to return stablecoins to the platform every period. The platform could ensure compliance by 
requiring users to post collateral. Our model of a decentralized protocol is equivalent to this scheme except 
that it separates vault owners who post collateral and issue stablecoins from investors who use stablecoins. 
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question, we assumed a reduced-form liquidity benefit for stablecoins and considered the 

problem of a single stablecoin issuer. We leave this microfoundation and the analysis of 

stablecoin competition to future research. 
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Appendices 

A Stablecoins in the Midst of the 2022 Crypto Crash 

This appendix provides a short introduction to the variety of stablecoin pegging mecha-

nisms in practice, with an emphasis on their performance during the crypto crunch of May 

2022. We review two custodial (USD Coin and Tether), a purely algorithmic (Terra), an 

overcollateralized (DAI), and an undercollateralized (FRAX) stablecoin platform. At the 

beginning of May 2022, these five stablecoins accounted for more than 80% of the total 

stablecoin market. 

USD Coin 

USD Coin (USDC) is a custodial (fully collateralized) stablecoin managed by the Centre 

consortium on behalf of the peer-to-peer payment technology Circle headquartered in 

Boston, MA. USDC effectively acts as a narrow bank by backing its stablecoins exclusively 

with cash (bank deposits or equivalents) and short-term Treasury securities and providing 

full redemption. During the May 2022 crypto crash, USDC fared particularly well, as 

can be seen in Figure 9: It maintained its peg, and the quantity of USDC outstanding 

increased during that time period. Given its conservative reserves management strategy, 

USDC presumably benefited from a “flight to safety” because investors were fleeing from 

fast depreciating crypto-currencies and other stablecoins. 

Tether 

Tether (USDT) is another custodial stablecoin that is a native of the Ethereum ledger and 

issued by Tether Limited company, which is domiciled in Hong Kong under the umbrella 

of Tether Holdings Limited in the British Virgin Islands. Although Tether claims to be 

“fully backed by US dollar reserves,” its definition of reserves appear to be less restrictive 

than the one applied by USDC, and also includes privately issued commercial paper and 

corporate bonds but also volatile crypto-currencies.37 Griffin and Shams (2020) report 

37Since 2021 and a $41 million fine by the Commodity Futures Trading Commission for misleading claims 
that it was fully backed by the US dollar, Tether Holdings Limited regularly reports a reserves audit from 
Cayman-based auditing companies. 
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suspicious transaction patterns on the blockchain and suggest that the platform has been 

using unbacked Tether creation to purchase large quantities of Bitcoin to support its price. 

Figure 9 displays the time-series price of Tether and quantities outstanding. We can 

observe a sharp reduction in supply around the crypto crash of May 2022, along with a 

temporary depegging. Tether nonetheless reanchored within a couple of days and has so 

far proven to be able to absorb the $5 bn of redemption it has faced. 

Terra 

Terra (UST) is a prime example of a fully algorithmic (uncollateralized) stablecoin. As 

described in the main text, algorithmic stablecoins such as Terra are uncollateralized and 

rely exclusively on quantity adjustments through smart contracts that specify rules for 

stablecoin issuances and buybacks. In the case of Terra, these are ruled through an external 

module that allows any investor to exchange 1 unit of stablecoin (Terra) for 1 dollar’s worth 

of governance token (Luna) and vice versa. Between its introduction in early 2020 and the 

crypto crash of May 2022, Terra was one of the fastest-growing stablecoin platforms. By 

May 2022, the quantity of stablecoin Terra outstanding was close to $20 bn while the 

governance token Luna had a peak market capitalization of $40 bn. 

As can be seen in Figure 10, the platform completely collapsed between May 7 and May 

12, 2022. In the right panel of Figure 10, we see how the platform attempted but failed to 

defend the peg. On May 12, the platform burnt around 8 bn of Terra, partly through the 

issuance of additional Luna at an exponential pace. As can be seen in the left panel, this 

massive issuance of Luna led to the complete freefall of its price to zero. Simultaneously, 

the Terra Foundation liquidated around $3 bn of Bitcoin it had held in reserves. Given the 

size of the shock, these adjustments were not sufficient to reanchor the peg, and the value 

of Terra eventually also fell very close to zero. 

DAI 

DAI is a fully decentralized, overcollateralized stablecoin platform. Because of its de-

centralized nature, DAI is slightly more complex than other stablecoins and requires a 

longer description. With DAI, every user is able to deposit some Ethereum-based crypto-

asset as collateral in a smart contract called a collateralized debt position (CDP). The 

user can then issue and sell DAI stablecoin tokens against this collateral up to a certain 
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overcollateralization threshold while effectively retaining an equity tranche in the CDP. In 

doing so, CDP users acquire a leveraged position in the collateral asset. Initially, it was 

only possible to use Ethereum as a collateral asset, but the platform migrated to a multiple 

collateral system at the end of 2019. Since then, the custodial stablecoin USD Coin (see 

above) has been used extensively as collateral for DAI. To close the CDP and retrieve the 

locked collateral, the owner has to repurchase and burn all previously issued DAI from the 

secondary market. 

The platform also issues its own governance token, Maker (MKR). Holding Maker allows 

the user to vote on key policies of the platform and effectively confers the right to future 

seigniorage revenues. The platform is able to generate revenues for Maker holders by 

collecting “stability” fees from CDP owners. These fees accrue to a “buffer” fund up to a 

certain limit and are then distributed to Maker holders as dividends. 

The pegging mechanism in DAI is tied to its overcollateralization. When the collateral 

in a CDP falls below the required threshold, the position is automatically liquidated and 

collateral assets are sold in an auction to burn corresponding DAI. When auction proceeds 

are insufficient to repurchase all DAI issued by the CDP, new Makers are automatically 

issued to cover the shortfall. As shown in Figure 10, we can see that this mechanism was 

at play during the May 2022 crypto market crash. The platform then liquidated for $3 bn 

worth of collateral in CDPs in order to burn more than $2 bn worth of DAI. This process 

was nonetheless done in an orderly fashion, and parity was maintained throughout. As can 

be seen from the right-most panel, no additional Maker was required to be issued. 

FRAX 

Frax (FRX) is an undercollateralized platform that can be thought of as a hybrid between 

Terra and DAI. As with Terra, users can exchange the stablecoin FRX for the platform’s 

governance token Frax Shares (FRS) and the converse. Because the platform is partly 

collateralized, the swap module requires that users bring both FRS and collateral in a 

given proportion. For instance, if the collateralization ratio is 90% and Frax is trading for 

more than 1 USD, users can exchange 90 USD Coins and $10 worth of FRS in exchange 

for 100 Frax and sell them for a profit. The collateralization ratio in Frax is automatically 

reduced in expansion and increased in contraction, so that with a large surge in issuance, 

Frax would converge to a fully algorithmic platform like Terra. 
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In early May 2022, Frax had a collateralization rate of 86.75%. As can be seen in Figure 

10, the platform managed to burn around a $1 bn without breaking its peg. 
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Figure 9: Custodial Stablecoins Time Series. This figure illustrates the daily time series of 
market capitalization and price for Tether (USDT, first row) and USD Coin (USDC, second row). 
The first portion of each graph spans the period from January 2021 to April 30 2022, while the gray 
shaded area zooms in on May 2022. Pink diamond markers in Panels A illustrate the total USD 
value of reserves backing the stablecoin, as certified through external audits made available on the 
platforms’ respective web pages. Data sources: Market capitalization and prices are all retrieved 
through the CoinGecko API. 
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B Proofs 

B.1 Proof of Proposition 2 

Substituting for dGt = dCt − δtCtdt, the objective function can be written as �Z ∞ � �� 
−rt E0 = max E0 e ptdCt − δtptCtdt + µ kϕCtdt − ϕdCt . (B.56) 

ϕ,{δt,dGt}t≥0 0 

Integrating the terms in dCt by parts, we obtain � Z ��� �∞ ∞ � 
−rt −rtCtE0 = max E0 (pt − ϕ)Cte − e dpt − r(pt − ϕ)dt + δtptdt − µ kϕ

0ϕ,{δt,dGt}t≥0 0 

(B.57)�Z �∞ � � 
−rt = max E0 e `(At, Ct)1{pt=1} + (µ k − r)ϕ Ctdt . (B.58) 

ϕ,{δt,dGt}t≥0 0 

To obtain the second line, we guess and verify that limt→∞ E0[(pt − ϕ)Cte
−rt] = 0. We use 

the pricing equation (6) to substitute for dpt − (r − δ)ptdt within the expectation. 

Equation (B.58) shows that setting ϕ = 0 is optimal. Second, δt is only determined to 

the extent that it maintains the price peg, and we can rewrite equation (B.58) as �Z ∞ � 
E0 = max E0 e −rt`(At, Ct)Ctdt . (B.59) 

{δt,dGt}t≥0 0 

Assuming that such interest rate policy can be chosen, the platform’s problem is static 

and the optimal issuance rule is such that Ct maximizes `(At, Ct)Ct. By Property (iii) 

in Assumption 1, this maximizer exists, is unique, and is given by (9). The fact that 

C? (A) = A/a? is linear in A follows from Assumption 1. Moreover, our conjectureul ul 

limt→∞ E0[(pt − ϕ)Cte
−rt] = 0 and the fact that the objective function is bounded follows 

from the fact that At grows at a rate inferior to r. Finally, the interest rate policy must 
? ?be such that pt = 1 for all t, which holds with δ(a ) = r − `(a ).ul ul 

To conclude, the optimal issuance-repurchase policy {dGt}t≥0 features a jump from 0 to 

C∗ (A0) at date 0 and is such that dGt + δtCtdt = dAt for t > 0.ul 
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B.2 Proof of Lemma 1 

We guess and verify throughout that p(a) = 1 if and only if a ∈ [a, a?] and p(a) < 1 

otherwise. This implies that liquidity benefits are enjoyed by stablecoin users only when 

a ∈ [0, a]. We anticipate the result in Lemma 3 and conjecture an equilibrium with no 

platform default. We thus set a = 0 and later prove in Lemma 3 that this feature is 

optimal. We proceed in three steps. We first show that e(a) = 0 is optimal for all a ≤ a 

(Step 1). We then derive the optimal issuance policy in the smooth region (Step 2). Finally, 

we derive the HJB equation for the price in that region (Step 3). 

Step 1. Total Platform Value 

Consider first the net platform value F . Suppose a = A/C > a. In this, case F only 
¯depends on A—not on the outstanding stock of stablecoins C—and we denote F (A) to 

avoid confusion. Let τS denote the first (stochastic) time when a shock S ≤ a/a? hits. We 

have � Z τS � � 
−rt F̄ (A0) = EτS e `(At, C

?(At))C
?(At) + ϕ(µ k − r)C?(At) dt 

0 h i � 
−rτS E+ e F (SAτS , C ∗ (AτS )) Sa ∗ ≤ a . (B.60) 

¯Given values for (a? , a), maximizing value F (A0) consists in maximizing the second term 

of the above equation. We thus make explicit the dynamic equation for F (A, C) in the 

region where a = A/C ∈ [0, a]. For a given a ∈ [0, a], denote τ(a) the first stochastic time 

when at = a. We have "Z # 
τ (a0) 

−rt(µ −rτ (a0) ¯F (A0, C0) = Eτ (a0) e k − r)ϕCtdt + e F (Aτ (a0)) , (B.61) 
0 

subject to (1), dCt = (δtCt + Gt)dt. (B.62) 

The dividend flow for the total platform is negative in the region [0, a]. Hence, maximizing 
¯F (A, C) in region [0, a] and thus F (A) amounts to minimizing the expected time τ(a) from 

any given point a. Given the policies in [0, a] in (13), we have � � � � 
dat λ

E = µ − dt − (δt + Gt/Ct)dt. (B.63) 
at ξ + 1 
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Hence the platform should seek to minimize δt and Gt subject to the constraint whereby 

equity E(A, C) remains positive for A/C ∈ [0, a]. Below, we determine lower bounds on δt 
and Gt compatible with this constraint. 

Step 2. HJB for Equity Value 

In the next step, we derive the recursive equation for the equity value in order to pin 

down the minimum value of G(A, C) such that limited liability holds in region [0, a]. In 

doing so, we guess and verify that it holds for [a, ∞). Adapting Equation (7), we have 

E(A, C) =(p(A, C) − ϕ)G(A, C)dt 

+ (1 − rdt)(1 − λdt)E[E(A + dA, C + dC) + µ kKdt + ϕG(A, C)dt − ϕdC] 

+ (1 − rdt)λdtE[E(SA, C)], (B.64) 

where the terms within the first expectation operator correspond to the difference between 

the passive and active increases in collateral value (µkKdt + ϕG(A, C)dt) and the change 

in collateral value required to back the issuance of stablecoins (ϕdC). Using Ito’s Lemma 

for the term E(A + dA, C + dC) above and keeping only terms of order dt, we obtain the 

following HJB: 

σ2 

(r + λ)E(A, C) = (p(A, C) − ϕ)G(A, C) + µAEA(A, C) + EAA(A, C)
2 

+ (δ(A, C)C + G(A, C))EC (A, C) + (µ k − δ(A, C))ϕC + λE[E(SA, C)]. 
(B.65) 

We rewrite the equation above as a functional equation for e(a) = E(A, C)/C. With 

EA(A, C) = e0(a), EAA(A, C) = e00(a), EC (A, C) = e(a) − ae0(a), and g(a) ≡ G(A, C)/C, 

we get 

σ2 

(r + λ)e(a) = (p(a) − ϕ)g(a) + µae 0(a) + e 00(a) + (δ(a) + g(a))(e(a) − ae 0(a))
2 

+ (µ k − δ(a))ϕ + λE[e(Sa)]. (B.66) 

It follows from the equation above that the minimum value of g(a) such that e(a) ≥ 0 for 

all a ∈ [0, a] is given by 
µk − δ(a) 

g(a) = − ϕ. 
p(a) − ϕ 
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Given policy g(a) above and e(a) = e0(a) = 0, the impact of δ(a) is offset in the HJB and 

we can set δ(a) to its minimum at 0 for a ≤ a. This concludes the proof. 

Step 3. HJB equation for stablecoin price 

Next, we characterize the price dynamics in region [0, a]. The price equation can be 

written as 

p(A, C) = (1 − rdt)(1 − λdt)E[p(A + dA, C + dC)] + (1 − rdt)λdtE[p(SA, C)]. (B.67) 

When a ∈ [0, a], stablecoin owners enjoy no cash flow because the platform optimally sets 

δ(a) = 0 and liquidity benefits are equal to 0 because the price is not pegged to 1, since 

p(a) < 1. Using dC = g(a)Cdt, the first term on the right-hand side can be expanded 

using Ito’s Lemma: 

σ2 

E[p(A + dA, C + dC)] = p(A, C) + pA(A, C)µAdt + A2 pAA(A, C)dt + pC (A, C)g(a)Cdt 
2 
σ2 

2 = p(a) + (µ − g(a))ap 0(a)dt + a p 00(a)dt. (B.68)
2 

To obtain the second line, we use the homogeneity of degree 0 of the price function, that is, 

p(A/C) ≡ p(A, C), to replace pA(A, C) = p0(a)/C, pAA(A, C) = p00(a)/C2 and pC (A, C) = 

−p0(a)A/C2 . Plugging in (B.68) into (B.67) and keeping only terms of order dt, we obtain 

σ2 
20 = −(r + λ)p(a) + (µ − g)ap 0(a) + a p 00(a) + λE[p(Sa)] (B.69)

2 

which is equivalent to equation (16). 

Finally, the boundary condition p(a) = 1 obtains by construction in our conjectured 

equilibrium with p(a) = 1 for a ≥ a. Issuance policy (15) implies that p = ϕ is a reflecting 

boundary. Hence, we have p(a) > ϕ for all a > a and p(a) = ϕ. This concludes the proof. 

B.3 Proof of Lemma 2 

The fact that equity value is equal to 0 in region [a, a] is shown in Lemma 1. Because 

the collateralization ratio satisfies ϕ ≤ 1, the platform’s value is also equal to 0 in default 

region [0, a]. 

Consider now interval [a, ∞). As argued in the main text, by definition of a policy in 
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(13), equation (20) must hold. We can rewrite this relationship as follows: 

Ce(a) = C?(A)e(a ?) + (p(a ?) − ϕ)(C?(A) − C). (B.70) 

?Dividing both terms by C and using C?(A) = A/a? by definition of a , we obtain equation 

(18). 

We are thus left to derive the HJB for the equity value at demand ratio e(a?). The 

recursive equation is the following: h i 
E(a ?C-, C-) =(1 − rdt)(1 − λdt)E E(a ?C- + dA, C- + dC) + µ kKdt − ϕdC dNt = 0 

+ (1 − rdt)λdtE [E(Sa?C-, C-)| dNt = 1] , (B.71) 

where the term on the first line corresponds to the case in which the adjustment in demand 

At is smooth (dNt = 0), while the second term corresponds to the case in which demand 

is hit by a Poisson shock (dNt = 1). The term µkKdt − ϕdC corresponds to the change in 

collateral value. 

We develop the first term corresponding to Brownian shocks. In region [a, ∞), we have 

� �A 
E(A, C) = C?(A)e(a ?) + (p(a ?) − ϕ)(C?(A) − C) = e(a ?) + p − ϕ − (p − ϕ)C. 

?a 
(B.72) 

Hence, given that dC = δ(a?)Cdt, we obtain the following relationship by Ito’s Lemma: 

� � 
E [E(a ?C- + dA, C- + dC)| dNt = 0] = E(a ?C-, C-) + µ e(a ?) + p − ϕ C?(A)dt 

− (p − ϕ)δ(a ?)C?(A)dt. (B.73) 

Keeping only terms of order at least dt and dividing by C?(A), we obtain � �� � 
e(a ?) = e(a ?)+ −(r + λ)e(a ?) + µ e(a ?) + p(a ?) − ϕ − p(a ?)δ(a ?) + µ kϕ + λE[e(Sa?)] dt, 

which simplifies to equation (18). For future reference, we further solve for e(a?) by 
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computing the term E[e(Sa?)]. Using (17), we get Z ln(a?/a) 
−sE[e(Sa?)] = e(e a ?)ξe−ξsds (B.74) 

0 Z ln(a?/a) h i 
= (e(a ?) + p(a ?) − ϕ)e −s − p(a ?) + ϕ ξe−ξsds (B.75) 

0 � 
? �−(ξ+1) 

! � 
? �−ξ 

! 
ξ a ?) − ϕ) − 

a ?) − ϕ).= 1 − (e(a ?) + p(a 1 − (p(a 
ξ + 1 a a 

(B.76) 

Plugging this equation in (18), we get 

� 
? �−(ξ+1) 

! 
λ λξ a 

r + − µ + e(a ?)
ξ + 1 ξ + 1 a � 

? �−ξ � 
? �−(ξ+1) 

! 
λ a λξ a 

= µ k − µ + − λ + ϕ 
ξ + 1 a ξ + 1 a � 

? �−(ξ+1) � 
? �−ξ 

! 
λ λξ a a 

+ µ − δ(a ?) − − + λ p(a ?). (B.77)
ξ + 1 ξ + 1 a a 

Using p(a?) = 1, after some manipulations, we can rewrite the objective function as follows: 

� ? �−ξa e(a?) + 1 − ϕ (µk − r)ϕ + r − δ(a?) + λ(1 − ϕ) a = � . (B.78) 
a? λ λξ a? �−(ξ+1) 

r − µ + +ξ+1 ξ+1 a 

Finally, we derive the value of the interest paid by the platform at the target ratio a? in 

order to maintain the peg. To do so, we derive the dynamic equation for the price at the 

target. We have 

p(A, C?(A)) =(δ(a ?) + `(A, C?(A)))p(A, C?(A))dt 

+ (1 − rdt)(1 − λdt)E[p(A + dA, C?(A) + dC)] + (1 − rdt)λdtE[p(SA, C)]. 
(B.79) 

?Note that from any point in target region [a, a?], the platform jumps discretely to a . 

Hence, the equilibrium price is p(a) = p(a?) when a ∈ [a, a?]. We can thus replace E[p(A + 
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dA, C?(A) + dC)] with p(a?). Keeping only terms of order dt, we obtain 

(r + λ)p(a ?) = (δ(a ?) + `(a ?)) p(a ?) + λE[p(Sa?)]. 

Setting p(a?) = 1 and solving for δ(a?) we get (19). 

B.4 Proof of Lemma 3 

Equation (B.78) shows that for given {a, a?}, the objective function depends on a only 

via the term −δ(a?), which is itself increasing with E[p(Sa?)]. Next, −δ(a?) also enters 
positively the limited liability constraint e(a?) ≥ 0, which implies that increasing E[p(Sa?)] 
also allows us to relax the constraint. Overall, the platform should set the default threshold 

a to maximize E[p(Sa?)]. Below, we show that a = 0 is the optimum. 

Suppose the platform does not default; that is, a = 0. Because the price p(a) must 

be increasing for a ∈ [0, a] and p(0) = ϕ, it follows that p(a) ≥ ϕ for all a ∈ [0, a]. 

Defaulting at some threshold â > 0 implies that the price would satisfy p(a) = ϕ for 

all a ∈ [0, â], which is weakly less than the price when a = 0. Hence, default cannot 

increase the price on the interval [0, a] and thus cannot increase E[p(Sa?)]. Indeed, the� � 
price of a stablecoin in [a, a] is given by pt = Et e

−r(τ −t)(1{aτ ≥ a} + ϕ1{aτ ≤ a}) where 
τ ≡ inf{s ≥ t; as ≤ a ∪ as ≥ a}. This expectation is strictly decreasing in the default 

threshold a. This proves that setting default threshold a = 0 is optimal. 

B.5 Proof of Proposition 3 

Step 1. Our conjecture for the pricing function is ( P3 −γkbka if 0 ≤ a < a, 
p(a) = k=1 (B.80)

1 if a ≥ a. 

The issuance policy in region [0, a] is given by (15); that is, g = 0 when ϕ = 0. We first 

derive conditions on {γk}k=1,2,3 such that HJB equation (16) is satisfied by our guess. We 
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have 

3X 
−(γk+1)p 0(a) = − bkγka , (B.81) 

k=1 

3X 
00(a) = −(γk+2)p bkγk(γk + 1)a , (B.82) 

k=1 Z ∞ Z ∞ 3 3X X bkξa
−γk −s sγk aE[p(Sa)] = p(e a)ξe−ξsds = bke −γk ξe−ξsds = . (B.83) 

0 0 ξ − γk
k=1 k=1 

−γkReplacing into (16) and equalizing terms proportional to a , we obtain that for each 

k ∈ {1, 2, 3}, γk must be a root of characteristic equation (21). The roots of this third-

order polynomial are � � 
1 Δ0

γk = − t2 + ζν R + (B.84)
2t1 ζν R 

where 

2 3 2Δ0 = t2 − 3t1t3, Δ1 = 2t2 − 9t1t2t3 + 27t1t4, s p √ 
3 Δ1 + Δ2 − 4Δ3 −1 + −31 0R = , ζ = , ν = {0, 1, 2},

2 2 

σ2 σ2 σ2 

t1 = − , t2 = µ + (ξ − 1), t3 = −µξ + ξ + r + λ, t4 = −rξ. 
2 2 2 

According to Descartes’ rule of sign, this polynomial has 2 positive roots and 1 negative 

root. Furthermore, using Budan-Fourier theorem, we can show that the negative root is 

strictly lower than -1. As shown in Corollary 1, µ−λ/(ξ+1) ≥ 0 is a necessary condition for 

a non-zero MPE to exists. Because the price must be bounded below by 0, the coefficients 

bk, which correspond to positive roots must be 0. We now call γ the negative root of this 

polynomial. 

The price function is thus given by p(a) = ba−γ for a ∈ [0, a]. To determine b, we use 

the continuity of p at a. Setting p(a) = 1 yields b = aγ . 

Step 2. We now show that the maximization problem of the platform at date 0 is given 
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by (22). Rewriting equation (B.77), we obtain 

� ? �−ξar − δ(a?) + λ a e(a ?) + p(a ?) = � ? 
p(a ?). (B.85)

λ λξ �−(ξ+1)a r + − µ +ξ+1 ξ+1 a 

We are left to substitute for δ(a?) thanks to equation (19). We have 

δ(a ?) = r − `(a ?) + λ (1 − E[p(a ?S)]) ,"Z # 
ln(a?/a) Z ∞ � 

? �−γ a 
= r − `(a ?) + λ − λ ξe−ξsds + e sγ ξe−ξsds , 

0 ln(a?/a) a " #� �−ξ � �−ξ? ? 

= r − `(a ?) + λ − λ 1 − 
a − λ

ξ a 
. (B.86) 

a ξ − γ a 

Substituting for δ(a?) into (B.85) and setting p(a?) = 1, we obtain 

λξ � a? �−ξ 
`(a?) + ξ−γ a 

e(a ?) + p(a ?) = . 
λ λξ � a? �−(ξ+1) 

r + − µ +ξ+1 ξ+1 a 

Simple computations show that this equation is equivalent to (22) if (23) holds, which we 

show below. 

We are left to derive the liability constraint (23). From Lemma 1, we have e(a) = 0 

for all a ∈ [0, a] and from Lemma 2, e(a) strictly increases with a for a ∈ [a, ∞). Hence, 
limited liability holds for all a if e(a) = 0. Using equation (17) with ϕ = 0 and p(a?) = 1, 

this condition writes � � a 
e(a ?) + p(a ?) − 1 = 0, (B.87)

?a 

which is equivalent to (23). This concludes the proof. 

B.6 Proof of Proposition 4 

We first show that a = 0 when ϕ = 1. This result follows from equation (17) in Lemma 2. 

Setting ϕ = 1 and p(a?) = 1, it is clear that e(a) ≥ 0 for all a ≥ a if e(a?) ≥ 0. This latter 

condition is verified later in the existence result of Proposition 5. 
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For the second part of the proof, we rewrite equation (B.77) with a = 0 to obtain 

k − δ(a?) 
e(a ?) = e(a ?) + p(a ?) − 1 = 

µ
. (B.88)

λ r − µ + ξ+1 

Substituting for δ(a?) thanks to equation (B.86), which becomes δ(a?) = r − `(a?) in this 

case, we obtain equation (24). This concludes the proof. 

B.7 Proof of Proposition 5 

Consider first the case ϕ = 0. Proposition 3 shows that an equilibrium with positive 
?stablecoin value exists if there exist (a, a?) with a ≤ a such that condition (23) holds. 

?Using equation (22) to substitute for e(a?) + p(a?), this condition holds if there exists a 

and x ∈ [0, 1] such that 

λ λξ λξξ+1 ≥ 0,`(a ?)x − u − v(γ)x with u ≡ r + − µ, v(γ) ≡ − . (B.89)
ξ + 1 ξ + 1 ξ − γ 

xTo derive implications from this condition, define H : x 7→ and let xmax be the u+v(γ)xξ+1 

argument of the global maximum of H on [0, 1]. We have 

H 0(x) ∝ u − v(γ)ξxξ+1 , 

which is strictly decreasing with x because v(γ) > 0 since γ < −1. Two cases are then� � 1 

upossible. Either H 0(1) = u − ξv(γ) ≥ 0 and xmax = 1 or H 0(1) < 0 and xmax = 
ξ+1 

v(γ)ξ n o 1 

so that overall xmax = min 1, u ξ+1 
and, for a given a? , a necessary condition for the v(γ)ξ 

desired equilibrium to exist is n o 
uξ+1 u + v(γ) min 1,u + v(γ)xmax v(γ)ξ 

`(a ?) ≥ = . (B.90)n o 1 xmax u ξ+1 
min 1, v(γ)ξ 

A necessary condition for (B.90) to hold is `(a?) ≥ u, as stated in Proposition 5. 

Consider now case ϕ = 1. According to Proposition 4, a solution exists if there exists a? 

such that `(a?) + µk − r ≥ 0. Given that maxa `(a) ≥ `(a?) by definition, this condition 

can hold only if (25) holds. This concludes the proof. 
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B.8 Proof of Proposition 6 

We first state a series of Lemmas and prove them at the end of this section. 

Lemma 5. The equity value e(a) is weakly convex and continuously differentiable, and 

stablecoin price function p(a) is continuous and increasing. 

Lemma 6. If the equity value e(a) is linear over some interval [aL, aU ], the equilibrium 

issuance policy features a target demand ratio ajump ∈ [aL, aU ] such that the issuance policy 
jump for any a ∈ [aL, aU ] is to jump at a . 

Lemma 7. If e(a) is strictly convex over some interval [aL, aU ], the equilibrium debt policy 

is smooth in that region. Furthermore, there is no MPE with positive stablecoin price if the 

equilibrium issuance policy is smooth everywhere. 

Proposition 6 is then a corollary of the next result. 

Lemma 8. If the interest rate policy is optimally chosen at date 0, there exists (a, a?) such 

that the equilibrium issuance policy is smooth over [0, a] and features a jump at a? when 

a ∈ [a, ∞). 

We now provide a proof for these lemmas. 

Proof of Lemma 5. These properties follow from Lemma A.1 in DeMarzo and He (2021). 

Proof of Lemma 6. We first show that if the equity value e(a) is linearly increasing in a 

over some segment [aL, aU ] (with strictly positive slope), the equilibrium issuance policy 

cannot be smooth over this interval. We then show that for any such interval [aL, aU ], 

there is a single jump point. 

The proof is by contradiction. Suppose dGt = G(a)dt over [aL, aU ] with g(a) ≡ G(a)/C, 

the stablecoin issuance rate per unit of stablecoins. With a smooth debt policy, use equation 

(B.65) to rewrite the HJB equation that governs stablecoin issuance as follows: ( 
(r + λ)e(a) = max g(a)(p(a) − ϕ) + µae 0(a) + (µ k − δ(a))ϕ 

g(a) ) 
σ2 

2+ (g(a) + δ(a))(e(a) − e 0(a)a) + a e 00(a) + λE[e(Sa)] . (B.91)
2 
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A smooth debt policy is optimal if the first-order condition with respect to g is satisfied; 

that is, if 

p(a) − ϕ = e 0(a)a − e(a). (B.92) 

00(a)aThe assumption that e(a) is linear in a further implies that p0(a) = e = 0 and we 

denote p(a) = p in what follows. Hence, equation (B.91) simplifies to 

(r + λ)e(a) = µ kϕ − δ(a)p + µae 0(a) + λE[e(Sa)]. (B.93) 

We now establish a contradiction between equations (B.92) and (B.93) when e(a) is 

linear. Taking the first-order-derivative with respect to a of the terms in (B.93), we obtain 

(r + λ)e 0(a) = −δ0(a)p + µe 0(a) + λE[e 0(Sa)S]. (B.94) 

The HJB equation for the stablecoin price is given by 

σ2 
2(r + λ)p(a) = `(a)p(a) + δ(a)p(a) − (g(a) + δ(a))ap 0(a) + µap 0(a) + a p 00(a) + λE[p(Sa)],

2 
(B.95) 

which, for a constant p(a) = p, simplifies to 

(r + λ)p = `(a)p + δ(a)p + λE[p(Sa)]. (B.96) 

Combining equations (B.93), (B.94), and (B.96), we obtain 

0 =(r + λ)(p(a) − ϕ + e(a) − e 0(a)a) (B.97) 

=`(a)p + δ(a)p + λE[p(Sa)] − (r + λ)ϕ + µ kϕ − δ(a)p + µae 0(a) 

+ λE[e(Sa)] + δ0(a)ap − µae 0(a) − λE[e 0(Sa)Sa], (B.98) 

=(µ k − r)ϕ + `(a)p + δ0(a)ap(a) + λE[p(Sa) − ϕ + e(Sa) − e 0(Sa)Sa], (B.99) 

=(µ k − r)ϕ + `(a)p + δ0(a)ap(a). (B.100) 

The last equality follows from equation (B.92). We proved this relationship for segments 

in which the equilibrium issuance policy is smooth. For segments over which the issuance 
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policy features jumps, equation (20) shows that for any a, a0 in this segment, we have 

0� �a 
e(a 0) = e(a) + p − ϕ − (p − ϕ). (B.101) 

a 

Taking the first-order derivative with respect to a0 and then setting a0 = a, we obtain 

equation (B.92). 

We now establish a contradiction. Suppose first that aL = 0. Thus p = ϕ and 

E[p0(Sa)S] = 0 for a ∈ [aL, aU ]. Then, if p =6 1 and thus `(a) = 0, it is immediate 

that equations (B.100) and (B.96) are inconsistent. If instead p = 1, these two equations 

imply that 

(µ k − r)ϕ + `(a) − `0(a)a = 0, 

but the functional form of `(a) cannot be pinned down by these equilibrium conditions 

because it is a primitive of the problem. 

Suppose now that aL > 0. Suppose first that p(a) = p =6 1, in which case `(a) = 0 by 

definition. Equations (B.100) and (B.96) then imply that 

kr − µ
δ0(a) = ϕ = −λE[p 0(Sa)S]. (B.102) 

ap 

This equation cannot hold, because r > µk while p0 ≥ 0 by Lemma 5. Finally, suppose 

that p(a) = 1. Equations (B.96) and (B.100) imply together that 

(µk − r)ϕ + `(a) − `0(a)a 
= λE[p 0(Sa)S]. (B.103) 

a 

We have Z ∞ 
−s a)ξe−s(ξ+1)dsE[p 0(Sa)S] = p 0(e (B.104) Z0 

∞ 
−s a)ξe−s(ξ+1)ds = κa−(ξ+1)= p 0(e (B.105) 

ln(a/aL) R∞ξ+1 −swhere κ ≡ aL p0(e aL)ξe
−s(ξ+1)ds is a positive constant. To obtain the second line, 0 

we use the fact that p is constant over [aL, aU ]. Thus, we must have 

`(a) = `0(a)a − (µ k − r)ϕa + λκa−ξ (B.106) 
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for a ∈ [aL, aU ]. A general solution to this equation is of the form 

`(a) = αa + β + fa−ξ−1 , 

with f ≥ 0. Hence, assuming that the issuance policy is smooth imposes a functional 

form for `(a). This leads to a contradiction because `(a) is an exogenous function in this 

problem. 

We now show that there can only be one jump point ajump ∈ [aL, aU ] if e(a) is linear over 

[aL, aU ]. Suppose there are two such jump points (the argument generalizes for more jump 
1 jump points) labeled a . Then, the single-peak property in Assumption 1 ensuresjump and a2 

1that there must be one jump point—say, ajump—for which liquidity benefits `(a)/a ∗ A 

are larger than at a2 Hence, to maximize its date-0 value, the platform would strictlyjump. 
1 2prefer jumping to ajump from any point in [aL, aU ] rather than to ajump. 

1 2We are left to show that jumping to ajump instead of a is compatible with thejump 

equilibrium issuance policy. By Lemmas 7 and 6, the issuance policy features jumps on 

[aL, aU ] only if equity value is linear and price is constant. Hence, from any state a with 

jump point a2 
jump, we have � � a � � a2 2 1 1 e(a) = e(ajump) + p(ajump) − ϕ 2 = e(ajump) + p(ajump) − ϕ 1 . 

ajump ajump 

Hence, jumping to a1 is also an optimal equilibrium issuance policy. This equality jump 

simply reflects the fact that the platform is indifferent ex post between all points in [aL, aU ]. 
1At date-0, however, the platform would choose jump point ajump as the sole jump point. 

Proof of Lemma 7. We first show that if the equity value is strictly convex in C over some 

interval, the issuance policy is smooth in this region. Given any debt level Ĉ, equity holders 

have the option to adjust the stock of stablecoins to C by issuing C − Ĉ at the price of 
ˆp(A, C). Therefore, by optimality of the debt issuance policy, the equity value at C must 

satisfy 

E(A, Ĉ) ≥ E(A, C) + p(A, C)(C − Ĉ). (B.107) 

To show that discrete repurchases are suboptimal, we prove that inequality (B.107) is strict 

if the equity value is strictly convex with respect to its second argument. Suppose, to the 
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contrary, that there exists C 0 6= C such that E(A, C 0) = E(A, C) + p(A, C)(C − C 0). By 

strict convexity of E, we get that for all x ∈]0, 1[ 

E(A, xC + (1 − x)C 0) < xE(A, C) + (1 − x)E(A, C 0) = E(A, C) + (1 − x)p(A, C)(C − C 0). 

(B.108) 

Using then condition (B.107) for Ĉ = xC + (1 − x)C 0 , we obtain 

E(A, xC + (1 − x)C 0) ≥ E(A, C) + (1 − x)p(A, C)(C − C 0), (B.109) 

which is a contradiction with (B.108). Thus, it must be that 

E(A, C 0) > E(A, C) + p(A, C)(C − C 0). (B.110) 

Hence, any discrete issuance with |C − C 0| > 0 would be suboptimal for shareholders; that 

is, the debt policy must be smooth if E is strictly convex in C. 

Second, we show that there cannot be an equilibrium with positive platform value and 

a smooth debt policy for all a. For the equilibrium issuance policy to be smooth, it must 

be that equation (B.92) holds. The platform starts at date 0 if liquidity benefits can be 

captured in equilibrium. Two cases are possible, given that p is weakly increasing with 

a. First, there exists an interval [aL, aU ] over which the price is constant with p(a) = 1. 

Equation (B.92) then implies that e is linear. We can then use Lemma 6 to show that the 

equilibrium debt policy features jump, a contradiction. The second case is that of a single 

point â for which p(â) = 1 and such that the platform spends strictly positive time at â. 

Such a feature requires that the platform perform a control at â. The same arguments 

used in DeMarzo and He (2021), however, show that such a policy cannot be part of an 

equilibrium in a region in which the equity value is strictly convex. 

Proof of Lemma 8. From Lemma 5, we know that since the equity value e(a) is weakly 

convex, there must be a strictly ordered sequence {a(n)}n≥0 such that a0 = a is the default 
(n) (n)threshold and limn→∞ a = ∞ such that on each segment [a , a(n+1)], e is either strictly 

convex or linear, with different convexity on two consecutive segments. 

Our second step is to show that there is at least 1 segment with e(a) strictly convex 
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(possibly empty), and one segment with e(a) linear. We first establish that the equity 
(0) (0)value cannot be linear on segment [a , a(1)] unless a = 0 and ϕ = 1. Suppose first that 

(0) (0) (1)],a > 0 so that the platform may default in equilibrium. If e(a) is linear over [a , a 

there is a kink in the equity value at a(0) such that lim (0) e0(a) =6 0, which is incompatible a↓a 

with an optimal default decision and the corresponding smooth-pasting condition. Suppose 
(0)now that a = 0 so that the platform never defaults in equilibrium. If e(a) is linear on 

jump ∈ [0, a jump [0, a(1)], there must be a (1)] such that the issuance policy is to jump at a 
(1)]from any point in [0, a(1)] by Lemma 6. This implies that for any a ∈ [0, a 

� � ajump) + p(ajump) − ϕ jump) − ϕ),e(a) = e(a − (p(a
jumpa 

with p(ajump) constant over [0, a(1)] and p(ajump) > ϕ unless ϕ = 1. Hence, when a → 0 

limited liability is violated, except in the case ϕ = 1. This proves that the equity value is 

strictly convex over [0, a(1)] unless ϕ = 1 and a = 0. In that case, the equilibrium equity 

value may be linear for all a. 

Second, Lemma 7 implies that there must exist a segment over which e(a) is linear. The 

last step of the proof is to show that there exists ā such that the equity value is strictly 

convex over [a, ā] and linear over [ā, ∞). Characterization of the equilibrium issuance 

policy as a targeted Markov policy then follows from Lemmas 5, 6, and 7. Let δ(a) be 

an interest policy that induces a nonzero MPE with issuance policy dG such that there 

exists a segment [a(2), a(3)] over which e is strictly convex; call it the original (interest rate) 

policy for short. We want to show that there exists an alternative interest rate policy δ̂(a) 

that induces a Markov equilibrium with issuance policy dĜ  such that e(a) has the desired 

properties and the date-0 platform value is strictly higher. 

We first construct an alternative policy and its induced equilibrium. Let a? be the 

target value in the first linear region [a(1), a(2)] for equity in the equilibrium induced by the 

original policy. Construct the alternative policy and the induced equilibrium as follows. 
?Set δ̂(a) = δ(a) for all a and dĜ(a, C) = dG(a, C) for a ≤ a and dĜ(a, C) = A/a? − C 

?for a ≥ a . Next, set the same default policy â = a. Finally, conjecture that in the 

equilibrium induced by the alternative policy, the equity value ê(a) is linear and the price 
(1)p̂(a) is constant for all a ∈ [a , ∞). 

Next, we argue that the issuance policy dĜ(a, C) and the default policy â are equilibrium 

policies induced by the alternative interest rate policy δ̂(a). The subspace [0, a?] is absorb-
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ing for the equilibrium induced by the original policy, because there are only downward 
? (1)jumps to A and the platform jumps to a from any a ∈ [a , a(2)]. Hence, the fact that 

dG(a, C) for a ∈ [0, a(2)] is an equilibrium issuance policy induced by the original interest 

rate policy implies that dĜ(a, C) for a ∈ [0, a(2)] is an equilibrium issuance policy induced 

by the alternative interest rate policy. The same argument applies to the default threshold 

â = a. This argument also implies that ê(a) = e(a) and p̂(a) = p(a) for all a ∈ [0, a?]. 

We are thus left to show that dĜ(a, C) is an equilibrium issuance policy on the rest of the 
(2)state space, a ∈ [a , ∞). This result follows from the observation that ê(a) is linear over 

(1) (1)a ∈ [a , ∞) and p̂(a) is constant. This implies that jumping to any point in a ∈ [a , ∞), 
∗including a , can be part of an equilibrium issuance policy, as shown above. 

Third, we show that p(a) = 1 for a ∈ [a(1), a(2)] in the equilibrium induced by the original 
(1) (1)policy, and thus p̂(a) = 1 for all a ∈ [a , ∞). Equity value is linear over [a , a(2)] and the 

? ∈ [a(1) (1)equilibrium issuance policy is to jump at a , a(2)] when a ∈ [a , a(2)]. Hence, the 

price p(a) = p must be constant over [a(1), a(2)]. Since [0, a?] is an absorbing subspace for 

the equilibrium induced by the original policy, it must be that p = 1. If not, investors never 

enjoy any liquidity benefit for a ∈ [0, a?] and thus p(a) = e(a) = 0 for all a ∈ [0, a?], which 

is a contradiction. To see this, suppose first that p < 1. By monotonicity of p, we have 

p(a) < 1 for all a ∈ [0, a(2)], which implies that investors never enjoy the liquidity benefit. 

Conversely, if p > 1 over [a(1), a(2)], we have p(a) = 1 for a unique a ∈ [0, a(1)) because p(a) 

is strictly increasing over [0, a(1)), since e(a) is strictly convex (see the proof of Lemma 

7). With a smooth equilibrium issuance policy on [0, a(1)], this state is not visited with 

positive probability and thus investors enjoy liquidity benefit with zero probability, which 
(1) (2)].again leads to a contradiction. Hence p(a) = 1 for a ∈ [a , a This implies p̂(a) = 1 

(1)for all a ∈ [a , ∞) in the equilibrium induced by the alternative policy. 

Finally, we can show that the platform value at date 0 is higher under the alternative 

policy than under the original policy. The platform’s value at date 0 is given by equation 

(10), which we rewrite here for convenience. "Z # 
τ 

E0 = E e −rt`(At, Ct)Ct1p(At,Ct)=1 + (µ k − r)ϕCdt A0, C0 = 0 . (B.111) 
0 

In any equilibrium, liquidity benefits are only enjoyed when a ∈ [a(1), a(2)] because p(a) = 1 
(1) (2)]. ? (1)for a ∈ [a , a Under the alternative policy, a ∈ [a , a(2)] is reached immediately 

at date 0 by design because the equilibrium issuance policy is to jump to a? when no 
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stablecoins are outstanding (a = ∞). In the equilibrium induced by the original policy, 
??however, the optimal choice at date 0 is some a > a(2) by design of the original policy. 

Denote τf the first (stochastic) time the platform enters the region [a(1), a(2)] under the 

original policy. We have �Z ∞ � 
= E[E−rτf ] ˆ −rt(µE0 E0 + E e k − r)ϕCdt < E0, (B.112) 

0 

because no liquidity benefit is enjoyed before the platform reaches [a(1), a(2)]. The inequality 
kfollows from the fact that E[τf ] > 0 by design of the original policy and µ < r. 

We have shown that the original policy is strictly dominated. Hence, in an equilibrium 

induced by an optimal interest rate policy, the issuance policy must belong to the class of 

targeted Markov policies. 

This concludes the proof of Proposition 6. 

B.9 Proof of Proposition 7 

Point 1. We derive the equilibrium stablecoin issuance rate in the smooth region [a, a]. 

Our analysis in the proof of Proposition 6 shows that a smooth debt issuance policy is 

optimal if and only if equation (B.92) holds. We will solve for the equilibrium value of g 

thanks to this equation. Taking the first-order derivative of e in equation (B.91) at g = 0, 

we obtain 

σ2 

(r + λ)e 0(a) = µ(e 0(a) + ae 00(a)) − δ0(a)p(a) − p 0(a)δ(a) + a(2e 00(a) + ae 000(a)) + λE[Se0(Sa)]
2 

(B.113) 

The HJB for the stablecoin price is given by equation (B.95) with `(a) = 0, because the 

price p is strictly below one by construction in the smooth region. We can then use (B.92) 
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to obtain a condition on g. We have 

0 = (r + λ)(p(a) − ϕ + e(a) − e 0(a)a) (B.114) 

σ2 
2 = δ(a)p(a) − (g(a) + δ(a))p 0(a)a + µap 0(a) + a p 00(a) + λE[p(Sa)] − (r + λ)ϕ 

2 
(B.115) 

σ2 
2+ µ kϕ − δ(a)p(a) + µae 0(a) + a e 00(a) + λE[e(Sa)] (B.116)

2 
σ2 

2 3 000(a) − σ2 2 00(a) − λE[e+ δ(a)p 0(a)a + δ0(a)p(a)a − µa e 00(a) − µae 0(a) − a e a e 0(Sa)Sa]
2 

(B.117) 

σ2 
00(a)) 00(a) − ae 000(a))= (µ k − r)ϕ − g(a)ap 0(a) + δ0(a)ap(a) + µa (p 0(a) − ae + a 2 (p 00(a) + e| {z } 2 | {z } 

=0 =0 

(B.118) 

+ λE[p(Sa) − ϕ + e(Sa) − e 0(Sa)Sa] (B.119)| {z } 
=0 

= (µ k − r)ϕ − g(a)ap 0(a) + δ0(a)ap(a). (B.120) 

To obtain the last equation, we use (B.92) to set the last term to 0. Differentiating equation 

(B.92) further shows 

p 0(a) = e 00(a)a, (B.121) 
00(a) = e 000(a)a + e 00(a),p (B.122) 

which allow us to set other terms to 0. This proves our claim. 

Point 2. Next, we derive the smooth-pasting condition at a and a. First, consider default 

threshold a if a > 0. Equation (7) shows that equity value in default is equal to 0, because 

the collateralization rate ϕ is lower than 1 by assumption. Hence, the default threshold is 

chosen optimally if and only if condition (30) holds. Consider now the lower bound of the 

target region a. For a ≥ a, the equity value is given by (B.128). Hence, we obtain for all 

a = a/C ≥ a 
e(a?) + 1 − ϕ 

e 0(a) = EA(A, C) = . (B.123)
?a 

Hence, continuity of the derivative of e with respect to a at a implies condition (29). 
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Point 3. Finally, we derive conditions to rule out ex post deviations from the conjectured 

equilibrium policy in the target region [a, ∞). The conjectured issuance policy features a 

jump to a? from any point in the target region.To derive conditions for this policy to be ex 

post optimal, we consider “one-step” deviations whereby the platform deviates and then 

follows the equilibrium policy from the value of the demand ratio following the deviation. 

We first show that we only need to consider smooth deviations. Proposition 6 shows that 

in the target region, the equilibrium equity value must be given by 

E(A, C) = E(A, C?(A)) + (p(a ?) − ϕ)(C?(A) − C), (B.124) 

with p(A, C) = p(a?) for any a = A/C ≥ a. The value when jumping to a ratio â ∈ [a, ∞) 
is thus 

Ê(A, C) = E(A, Ĉ(A)) + (p(a ?) − ϕ)(Ĉ(A) − C) = E(A, C?(A)) + (p(a ?) − ϕ)(C?(A) − C), 

(B.125) 
ˆwith C(A) ≡ A/â. Hence, from a ∈ [a, ∞), jumping to â gives the platform the same 

utility as the equilibrium policy. The platform cannot gain from jumping to a different 

point of the target region because it then jumps instantaneously to target demand ratio 
?a . Next, a jump to some ratio â ≤ a can be ruled out because the equity value is strictly 

convex in C for a ∈ [a, a]. The value from such a jump is indeed 

Ê(A, C) = E(A, Ĉ(A)) + (p(â) − ϕ)(Ĉ(A) − C) < E(A, C) (B.126) 

We are thus left to derive conditions such that for any a ∈ [a, ∞), a smooth issuance 

policy deviation is suboptimal under condition (31). Given that the return to issuance is 

zero by construction, it is enough to check that equity owners prefer the equilibrium policy 

over inaction during time interval dt. For state (A, C) with A/C ≥ a, the equilibrium value 

of equity is given by (B.124). If, instead, equity owners stay inactive during time interval 

dt before reverting to the equilibrium policy, they enjoy 

Ê(A, C) = µ kϕCdt − ϕδ(a)Cdt + (1 − rdt)(1 − λdt)E [E(A + dA, C + δ(a)Cdt)] 

+ (1 − rdt)λdtE[E(SA, C)]. (B.127) 
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When a ∈ [a, ∞), rewriting (B.124) the equilibrium equity value is given by 

A e(a?) + p(a?) − ϕ 
E(A, C) = e(a ?)+(p(a ?)−ϕ)(C?(A)−C) = A−(p(a ?)−ϕ)C. (B.128)

? ?a a 

Hence, we get 

e(a?) + p(a?) − ϕ
E [E(A + dA, C + δ(a)Cdt)] = E(A, C) + µ Adt − (p(a ?) − ϕ)δ(a)Cdt. 

?a 
(B.129) 

Plugging (B.129) into (B.127) and keeping only terms of order at least dt, we obtain 

� � 
Ê(A, C) = E(A, C) − (r + λ)E(A, C)dt + µ e(a ?) + p(a ?) − ϕ C?(A)dt 

− p(a ?)δ(a)Cdt + µ kϕCdt + λE[E(SA, C)]dt. (B.130) 

ˆEquity owners do not deviate if and only if E(A, C) < E(A, C); that is, if 

� � 
(r+λ)E(A, C) ≥ µ e(a ?)+p(a ?)−ϕ C?(A)−p(a ?)δ(a)C +µ kϕC +λE[E(SA, C)], (B.131) 

which is equivalent to 

� � 
(r + λ) [e(a ?)C?(A) + (p(a ?) − ϕ)(C ∗ (A) − C)] ≥ µ e(a ?) + p(a ?) − ϕ C?(A) − p(a ?)δ(a)C 

+ µ kϕC + λE[E(SA, C)], (B.132) 

where we used equation (B.128) to substitute for E(A, C). Rearranging terms, (B.132) can 

be written as 

(r + λ − µ)e(a ?)C?(A) ≥ −(r + λ)(p(a ?) − ϕ)(C ∗ (A) − C) + µ(p(a ?) − ϕ)C?(A) 

− p(a ?)δ(a)C + µ kϕC + λE[E(SA, C)]. (B.133) 

Using now equation (18) to substitute for e(a?), we get 

µ kϕC?(A) − p(a ?)δ(a ?)C?(A) + µ(p(a ?) − ϕ)C?(A) + λE[E(SA, C?(A))] − λE[E(SA, C)] ≥ 

− (r + λ)(p(a ?) − ϕ)(C ∗ (A) − C) + µ(p(a ?) − ϕ)C?(A) − p(a ?)δ(a)C + µ kϕC, (B.134) 
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which we can finally rewrite as h i 
(r + λ)(p(a ?) − ϕ) + µ kϕ (C − C?(A)) ≤ λE[E(SA, C?(A))] − λE[E(SA, C)] 

+ p(a ?)(δ(a)C − δ(a ?)C?(A)). (B.135) 

Setting p(a?) = 1 and dividing all terms by C, (B.135) is equivalent to (31). This concludes 

the proof. 

B.10 Equity and Price Characterization with Limited Commitment 

We first verify our guess for the equity value and the price function. Using HJB equation 

(B.91) together with condition (32) and Assumption 4, we obtain the following HJB 

equation for the equity value: 

σ2 
2(r + λ)e(a) = (µ k − δ)ϕ + δ(e(a) − ae 0(a)) + µae 0(a) + a e 00(a) + λE[e(Sa)]. (B.136)

2 

Then, we compute the term E[e(Sa)] using the conjectured e(a). We have " ( )#Z Z∞ n o ln(a/a) 3X 
−s a)ξe−ξs sγk a −γkE[e(Sa)] = e(e ds = e + cke ξe−ξsds 

0 0 ! k=1 !�−ξ 3 �−(ξ−γk )
� 
a X ckξ 

� 
a−γk= e 1 − + a 1 − . (B.137) 

a ξ − γk a 
k=1 

We then plug in guess (38) into the HJB to obtain " # 
3 3X X 

−γk −γk(r + λ − δ) e + cka = (µ k − δ)ϕ − (µ − δ) γkcka 
k=1 k=1 

3
σ2 X 

+ (1 + γk)γkcka −γk + λE[e(Sa)]. (B.138)
2 

k=1 

Several conditions are necessary for this equation to hold. Equating first constant terms 

on each side of (B.138), we can solve for e: 

µk − δ 
e = ϕ. (B.139) 

r − δ 
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−γkNext, since the terms in a must be equal on each side of (B.138), γk must solve equation 

(40) for k ∈ {1, 2, 3}. The roots of that polynomial are given by � � 
1 Δ0

γk = − t2 + ζkR + , (B.140)
2t1 ζkR 

where 

2 3 2Δ0 = t2 − 3t1t3, Δ1 = 2t2 − 9t1t2t3 + 27t1t4, s p √ 
3 Δ1 + Δ2 − 4Δ3 −1 + −31 0R = , ζ = , k = {0, 1, 2},

2 2 

σ2 σ2 σ2 

t1 = − , t2 = µ − δ + (ξ − 1), t3 = −(µ − δ)ξ + ξ + r − δ + λ, t4 = −(r − δ)ξ, 
2 2 2 

where γk is decreasing with k. According to Descartes’ rule of sign, this polynomial has 

2 positive roots and 1 negative root if δ < r, 1 positive root and 1 negative root if δ = r, 

and 1 positive root and 2 negative roots if r < δ. Using Budan-Fourier theorem, we can 

show that exactly one negative root is strictly lower than -1. Using the implicit function 

theorem and the Gauss-Lucas theorem, we can further show that ∂γ3/∂δ < 0. 

To solve for the parameters ck’s, we use the matching conditions imposed by continuity 

of e(·) at a and a and the memoryless property of the exponential distribution of downward 

jumps. Continuity at a and a imply that 

3X 
−γke + cka = 0, (B.141) 

k=1 

3X a 
e + cka −γk = (e(a ?) + p(a ?) − ϕ) − (p(a ?) − ϕ). (B.142)

?a 
k=1 

Next, the terms in a−ξ on each side of (B.136) must cancel out: 

3X ckξ −γke + a = 0, (B.143)
ξ − γk

k=1 

which is equivalent to 

E[e(Sa)] = 0. (B.144) 
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That is, thanks to the memoryless property of the exponential distribution, we only need 

condition (B.143) to solve for the expected value of a downward jump below a. 

Finally, for a and a to be optimal, smooth-pasting conditions (29) and (30) from Propo-

sition 7 must be satisfied: 

X3 
e? + 1 − ϕ−(γk+1)− ckγka = , (B.145)

?a 
k=1 

3X 
−(γk+1)− ckγka = 0. (B.146) 

k=1 

We proceed similarly for the price function. Using δ(a) = δ by Assumption 4 and plugging 

the equilibrium issuance equation (28) into the HJB for the price, equation (B.95), we 

obtain 

σ2 
2(r + λ − δ)p(a) = (r − µ k)ϕ + (µ − δ)ap 0(a) + a p 00(a) + λE[p(Sa)]. (B.147)

2 

Then, we compute the term E[p(Sa)] using the conjectured p(a). We have Z ∞ n o 
−sE[p(Sa)] = p(e a)ξe−ξs ds 

0 " ( )#Z 3 Zln(a/a) X ∞ 
sγk a −γk= p + bke ξe−ξsds + ϕξe−ξsds 

0 ln(a/a)!k=1 !� �−ξ 3 � � �−ξ a X bkξ a 
�−(ξ−γk) a 

= p 1 − + a −γk 1 − + ϕ . (B.148) 
a ξ − γk a a 

k=1 

Equation (B.147) holds if the constant term p in (39) solves 

kr − µ 
p = ϕ, (B.149) 

r − δ 

and if γk is a solution to equation (40) for k ∈ {1, 2, 3}. Next, the matching conditions 
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p(a) = ϕ and p(a) = 1 imply, respectively, 

3X 
−γkp + bka = ϕ (B.150) 

k=1 

3X 
−γkp + bka = 1. (B.151) 

k=1 

Finally, from the memoryless property of the exponential distribution, we get 

3X bk −γkp + a = ϕ. (B.152)
ξ − γk

k=1 

Next, we derive the platform’s objective function as a function of parameters. From 

equations (18) and (19), we obtain 

`(a?) + (µk − r)ϕ + λE[e(Sa?) + p(Sa?) − ϕ] 
e(a ?) + 1 − ϕ = . (B.153) 

r + λ − µ 

Now, we solve for E[e(Sa?)] and E[p(Sa?)] using the functional forms (38) and (39). We 

have Z ln(a?/a) h i 
E[e(Sa?)] = (e(a ?) + 1 − ϕ)e −s − (1 − ϕ) ξe−ξsds 

0 " #Z ln(a?/a) 3X −γk sγk+ e + ck (a ?) e ξe−ξsds 
ln(a?/a) k=1 ! ! #� 

? �−(ξ+1) � 
? �−ξ 

"� 
? �−ξ � 

? �−ξξ a a a a 
= 1 − (e(a ?) + 1 − ϕ) − 1 − (1 − ϕ) + − e 

ξ + 1 a a a a "� # 
3 �X ? �−(ξ−γk) ? �−(ξ−γk )ξck a a?)−γk+ (a − . (B.154)

ξ − γk a a 
k=1 
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Turning now to the price term, we have " #Z Z 3 Zln(a?/a) ln(a?/a) X ∞ 
sγkE[p(Sa?)] = ξe−ξsds + p + bk (a ?)−γk e ξe−ξsds + ϕξe−ξsds 

0 ln(a?/a) k=1 ln(a?/a)! #� �−ξ 
"� �−ξ � �−ξ? ? ?a a a 

= 1 − + − p 
a a a 

3 
"� �−(ξ−γk) � �−(ξ−γk) # � �−ξX a? ? a?ξbk a?)−γk+ (a − + ϕ . (B.155)

ξ − γk a a a 
k=1 

Using equations (B.154) and (B.155), we can thus express the platform’s objective in 

(B.153) as a function of the parameters {a, a, a?, δ} of the TMP and the parameters of 

the functional forms for e(a) and p(a) in (38) and (39), which themselves depend on 

the TMP’s parameters via equations (B.139), (B.141), (B.142), (B.143), (B.145), (B.146), 

(B.149), (B.150), (B.151), and (B.152). 

B.11 Proof of Proposition 8 

We first prove that the platform does not default; that is, a = 0. From (B.139), the 

constant term e in the equity value function (38) is equal to 0 and is thus (weakly) positive 

for any value of δ. This implies that the option value to default has no value, so the default 

threshold is a = 0. 

Second, the fact that a = 0 implies that the only relevant root of characteristic equation 

(40) is the root strictly below −1. Consider instead the conditions on the equity value 

function. Equation (B.142), which imposes continuity at 0, implies that γk must be 

negative. Smooth-pasting condition (B.146) further implies that γk < −1. The same 
conclusion applies to the price function, because (32) holds in the smooth region. For ease 

of notation, we now call γ this root and b and c the corresponding coefficients for the price 

function and the equity value function, respectively. 

We now restate continuity conditions (B.142) and (B.151) as well as smooth-pasting 
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condition (B.145) at a using the simplest functional form we obtained above. We have 

a−γ ca = (e(a ?) + 1) − 1, (B.156)
?a 

e(a?) + 1 −(γ+1)−cγa = , (B.157)
?a 

ba −γ = 1. (B.158) 

Other conditions at a for the equity value and the price are satisfied by construction, as well 

as the memoryless property condition. Note also that because e(a) = ca−γ for a ∈ [0, a] 

and e(a) increases with a for a ∈ [a, ∞), limited liability holds for all a if e(a) ≥ 0, which 

is implied by optimization constraint (42) in the statement of the proposition. 

To obtain objective function (41) from (35), we derive E[e(Sa?) + p(Sa?)] using (B.154) 

and (B.155). Setting ϕ = 0 and using a = 0 and e = 0, we obtain 

� 
? �−(ξ+1) 

! � 
? �−ξ 

! 
−γ � ? �−ξξ a a ξca a

E[e(Sa?) + p(Sa?)] = 1 − (e(a ?) + 1) − 1 − + 
ξ + 1 a a ξ − γ a !� �−ξ � �−ξ? −γ ?a ξba a 
+ 1 − + 

a ξ − γ a " ! #� 
? �−(ξ+1) � 

? �−(ξ+1)ξ a ξ a 
= 1 − + (e(a ?) + 1),

ξ + 1 a ξ − γ a 

(B.159) 

where to obtain the second line, we used conditions (B.156) and (B.158). Substituting 

(B.159) into (35), we obtain expression (41) for the platform’s objective function. This 

expression shows that (e(a?) + 1)/(a?) is a function only of variables {a, a?, γ}. Hence, 
equations (B.156) to (B.158) define b and c as a function of these parameters and leave one 

constraint for the optimization problem. Combining (B.156) and (B.157), we obtain (42). 

This concludes the proof. 
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B.12 Proof of Proposition 9 

The problem of an uncollateralized platform under limited commitment is to maximize 

e(a?) + 1 `(a?)/a? 

= � � � (B.160) 
a? λ λξ λξ a? �−(ξ+1)

r + − µ + −ξ+1 ξ+1 ξ−γ a � � a 1 
subject to e(a) ≡ e(a ?) + 1 − 1 = − > 0, (B.161)

?a 1 + γ 

a ? ≥ a. (B.162) 

Step 1: δ = ∞. We first show that limδ→∞ γ = −∞. We showed that the parameter γ 

depends only on policy parameter δ and that ∂γ/∂δ < 0 for all δ in Section B.10. Remember 

also that γ is defined as the unique root strictly lower than -1 from the characteristic 

polynomial (40). This polynomial can be rewritten as � � � � 
σ2 σ2 σ2 σ2 

3 2f(x) = − x + ξ − + µ − δ x + ξ − (µ − δ)ξ + r + λ − δ x − rξ + δξ 
2 2 2 2 

(B.163) 

σ2 

= − (x − γ1)(x − γ2)(x − γ3), (B.164)
2 

where we differentiate between the 3 roots such that γ1 ≥ γ2 ≥ γ3 = γ. Matching (B.163) 

with (B.164), the coefficient of the second-order term is 

σ2 σ2 σ2 

ξ − + µ − δ = (γ1 + γ2 + γ3). (B.165)
2 2 2 

Since γ1 ≥ γ2 > −1 and γ3 < −1, it must be that limδ→∞ γ = −∞. Hence, to show that 

δ = ∞, it is enough to show that γ = −∞ is optimal. 

Suppose by contradiction that there exists a solution with γ > −∞. We define below 
?an alternative set of parameters (ã , ea, γ̃) that satisfy constraints (B.161) and (B.162) and 

? ?dominate the candidate solution. For the alternative policy, set ã = a , γ̃ = −∞, and 

define ea implicitly such that 

`(a?) ea � = 1. (B.166)�−(ξ+1) ?
? aλ λξ ar + − µ +ξ+1 ξ+1 ea 
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?That is, we choose ea such that (B.161) holds as an equality for the same value of a but 

with γ̃ = −∞. 

We show now that there exists ea defined by (B.166) that satisfies (B.162) and such that 

the platform’s value (B.160) is strictly higher for the alternative parameter constellation 

than for the candidate solution. First, we derive that inequality condition: (ẽ(a?)+1)/a? ≥ 

(e(a?) + 1)/a? if and only if !ξ+1 eξ + 1 a 
0 ≤ 1 − − . (B.167)

?ξ − γ a 

Thus, we just need to prove (B.167) and that ea ≤ a? exists. To do so, below we show that ea ≤ a(1 + γ)/γ and that � �ξ+1ξ + 1 1 + γ 
0 ≤ 1 − − . (B.168)

ξ − γ γ 

? ?Then, ea ≤ a follows from ea ≤ a(1 + γ)/γ ≤ a as γ < −1 and a ≤ a . Furthermore, 

condition (B.167) follows from inequalities (B.168) and ea/a ≤ (1 + γ)/γ and the fact that 

w 7→ wξ+1 is strictly increasing. 

To prove ea ≤ a(1 + γ)/γ and condition (B.168), denote x̃ = ea/a? and define F (x) as 

`(a?)x 
F (x) = 

λ λξ . 
ξ+1r + − µ + xξ+1 ξ+1 

We can then rewrite equation (B.166) that defines ea as 

?)1+γ a`(a γ a? 
F (x̃) = 1 = � � � , (B.169)

λ λξ λξ a 
�ξ+1 

r + − µ + − ?ξ+1 ξ+1 ξ−γ a 

where the second equality follows from the fact that the candidate solution must satisfy 

(B.161). Note that F (0) = 0 < 1. Thus, following the intermediate value theorem, if� � 
1+γ aF ? > 1, then ea ≤ a(1 + γ)/γ. Given that the middle term of (B.169) must be γ a � � 

1+γ aequal to 1, F γ a? > 1 is equivalent to 

� �� �ξ+1 � �ξ+1λξ λξ a λξ 1 + γ a 
0 < − − , (B.170)

? ?ξ + 1 ξ − γ a ξ + 1 γ a 
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� ? �ξ+1awhich is equivalent to (B.168) after multiplying all terms by ξ+1 .λξ a 

To prove (B.168), we introduce auxiliary variable y ≡ 1 − γ−1 , which lies in (0, 1) when 

γ ∈ (−∞, −1). Substituting for γ = −(1 − y)−1 in (B.168), this condition is equivalent to 

ξ+11 − y > 1 − 
y ⇔ 0 ≤ y −ξ − ξ(1 − y) − 1 ≡ G(y). (B.171)

ξ(1 − y) + 1 

We have G(1) = 0 and 

G0(y) = ξ(1 − y −ξ−1) < 0 (B.172) 

because y < 1 and thus (1/y)ξ+1 > 1. This proves that G(y) > 0 for all 0 < y < 1. Hence, 

we established condition (B.168), which proves that δ = ∞ is optimal. 

?Step 2. Second, we prove the result about a . Given policy choice δ = ∞ such that 

γ = −∞, the maximization problem of the platform given by (41) becomes 

`(a?)/a? 

max � (B.173) 
a,a? λ λξ a? �−(ξ+1) 

r + − µ +ξ+1 ξ+1 a � � a 
subject to e(a) ≡ e(a ?) + 1 − 1 = 0. (B.174)

?a 

This problem is similar to that under full commitment, given by (22), except that the 

term λξ/(ξ + 1) − λξ/(ξ − γ) in the denominator of (22) is replaced by λξ/(ξ + 1) in 

the denominator of (41). This term loads negatively on a? and is larger in the limited 

commitment case, which implies that a? should be higher under limited commitment than 

under full commitment. 

We now prove that the necessary condition for a platform to exist is tighter under limited 

commitment. The optimization problem under full commitment, given by (22) and that 

under no commitment, given by (B.173), can be nested under the following specification: 

`(a?)/a? 

max � (B.175)
? ? �−(ξ+1)a,a u + v(γ) a 

a � � a 
subject to e(a) ≡ e(a ?) + 1 − 1 = 0, (B.176)

?a 

with 
λ λξ λξ 

u = r + − µ, v(γ) = − . 
ξ + 1 ξ + 1 ξ − γ 
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- -

- - -

We have γ = −∞ in the limited-commitment case, as shown above, while γ > −∞ is the 

solution to (21) in the full-commitment case. We can thus use the analysis in the proof of 

Proposition 5, which shows that a necessary condition for existence of an uncollateralized 

platform is (B.90). Observe that v(γ) is increasing with γ < 0. Hence, to show that the 

existence condition is tightest under limited commitment, we are left to show that the 

right-hand side of (B.90) increases with v(γ). We have n o ⎧ 
u u + v(γ) min 1, ⎨u + v(γ) if v(γ) ≤ u 

v(γ)ξ ξ 
= � � 1 . (B.177)n o 1 

ξ+1 ⎩u(ξ+1) v(γ)ξ ξ+1 
u if v(γ) ≥ u 

min 1, ξ u ξ v(γ)ξ 

The desired result follows immediately from inspection of (B.177). 

B.13 Proof of Proposition 11 

We derive arbitrage relationship (51) from the HJB for the vault value, V (A, C, Ci). We 

first show that returns to issuance are zero when condition (50) holds. A vault owner solves � �� � � � � � 
v(a)Ci = max p(a)E dGi − E dMi + (1 − rdt)E v(a + da)(Ci + dCi) . (B.178) 

dGi 

Substituting for dCi , we get � h i� � 
v(a)Ci = max p(a)E dGi − ϕE s(a)Ci dt + dGi − µ kCi dt 

dGi �� � 
+ (1 − rdt)E v(a + da)(Ci + s(a ?)Cidt + dGi) . (B.179)-

The first-order condition for dGi is given by 

p(a) − ϕ + v(a) = 0, (B.180) 

which is equivalent to (50). Hence, a vault owner enjoys the same value irrespectively of 

its issuance dGi . We can thus rewrite the HJB for the vault value as follows 

v(a) = ϕ(µ k − s(a))dt + (1 − rdt)E [v(a + da)(1 + s(a)dt)] , (B.181) 
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where we divided by the current stock Ci of the vault’s stablecoins. Substituting for v(a)-

using (B.180), we get 

(ϕ − p(a)) = ϕ(µ k − s(a))dt + (1 − rdt)E [(ϕ − p(a + da))(1 + s(a)dt)] . (B.182) 

Expanding the expectation term on the right-hand side of (B.182) and keeping only terms 

of order dt, we obtain 

0 = ϕ(µ k − s(a)) + (s(a) − r)(ϕ − p(a)) − µp(a)p(a), (B.183) 

which is equivalent to (51) and where µp(a) ≡ E[dp(a)/(p(a)dt)].38 Similarly, we can write 

the HJB of the price as 

p(a) = `(a)p(a)dt + δ(a)p(a)dt + (1 − rdt)E [p(a + da)] . (B.184) 

Further algebra yields 

rp(a) = `(a)p(a) + δ(a)p(a) + µp(a)p(a). (B.185) 

Using equation (B.183) and (B.185), we get 

(s(a) − δ(a))p(a) = `(a)p(a) + ϕ(µ k − r). (B.186) 

The maximization problem is then given by �Z �τ � � 
−r(s−t)Et = max Et e ` spsCs + (µ k − r)ϕCs ds (B.187) 

τ,s,δ 0 

subject to ϕ − pt ≥ 0. 

We are left to characterize the policy which implements Ct = C?(A) with C?(A) given 

by (54). Vault owners take the stablecoin price as given. From arbitrage condition (51), 

their supply function is a step function given by ( 
+∞ if s(a) < (µk − r)/p(a) + r − µp(a),

dGi = (B.188)
−Ci if s(a) > (µk − r)/p(a) + r − µp(a),t-

38Here, we consider a deviation dp(a) of order dt: limdt↓0 |µp(a)| < ∞. Otherwise, with a discontinuity 
at a, the stablecoin price would have an infinite expected loss or gain rate, violating no-arbitrage. 
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?and it is indeterminate if s(a) = (µk − r)/p(a) + r − µp(a). To implement target a and 
kthe price peg, we must have s(a?) = µ . In this case, however, vault owners are indifferent 

about any supply level. To implement C?(A), the platform use a fee schedule contingent on 

the amount of stablecoins, whereby vault owners are induced to issue (buy back) stablecoins 

if C > C∗(A) (C < C?(A)). Such a schedule is given by (55). In this case, the only 

equilibrium supply is Ct = C?(A). In particular, we have s(a?) − δ(a?) = `(a?) + µk − r. 
kThis last equation combined with s(a?) = µ to maintain the peg p(a?) = 1 implies that 

δ(a?) = r − `(a?). 

C Issuance Policies with a Brownian Component 

In this section, we show that considering a policy function dGt = gtCtdt instead of a more 

general functional form dGt = gtCtdt + κtCtdZt is without loss of generality. We prove the 

case for the centralized uncollateralized protocol in the smooth region but the proof can be 

adapted to any case. The intuition for the results is straightforward: If fighting Brownian 

shocks with κt has any expected impact on the value of equity, it will also be taken into 

account in the smooth issuance decision gt and cancel out. With a stochastic term in dGt 
we can write the value of equity in the smooth region as 

E(At, Ct) =E[p(At + dAt, Ct + dGt)dGt] 

+ (1 − rdt − λdt)E[E(At + dAt, Ct + dGt)] + (1 − rdt)λdtE[E(SAt, Ct)]. 

(C.189) 

Using Ito’s lemma and the fact that terms in dtdt converge to 0 faster than terms in dt, 

we can get 

� � 
E[p(At + dAt, Ct + dGt)dGt] = E p(At, Ct)gtCtdt + σApA(At, Ct)κtCtdt + κ2C2 pC (At, Ct)dtt t 

(C.190) 
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and 

E[E(At + dAt, Ct + dGt)] =E[E(At, Ct) + µAEA(At, Ct)dt + gtCtEC (At, Ct)dt 

σ2 κ2 
t+ A2EAA(At, Ct)dt + C2ECC (At, Ct)dt (C.191)

2 t 2 t 

+ σAtκtCtEAC (At, Ct)dt] (C.192) 

The first-order condition for gt is still given by 

p(A, C) + EC (A, C) = 0 (C.193) 

while the first-order condition for κt is given by 

σApA(A, C) + κCpC (A, C) + κCECC (A, C) + σAEAC (A, C) = 0. (C.194) 

As 

pA(A, C) + EAC (A, C) = 0 (C.195) 

and 

pC (A, C) + ECC (A, C) = 0, (C.196) 

the first-order condition for κt is satisfied if and only if the first-order condition for gt is 

satisfied. The HJB for p(A, C) becomes 

(r + λ − δ(A, C))p(A, C) =µApA(A, C) + (g(A, C) + δ(A, C))CpC (A, C) 

σ2 κ2 

+ A2 pAA(A, C) + C2 pCC (A, C) (C.197)
2 2 

+ σAκCpAC (A, C) + λE[p(SA, C)]. (C.198) 
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Given that p(A/C) = p(A, C), we get 

(r + λ − δ(a))p(a) =`(a) + µap 0(a) − (g(a) + δ(a))ap 0(a) 

+ 
σ2 

2 a p 00(a) + 
2 

κ(a)2 
00(a)a(p 2 + 2p 0(a)a)

2 
(C.199) 

2− σκ(a)(p 0(a)a + p 0(a)a) + λE[p(Sa)]. (C.200) 

Similarly, 

e(a) = −δ(a)p(a) + µae 0(a) + 
σ2 

2 a e 00(a) + λE[e(Sa)]
2 

(C.201) 

and 

σ2 
2 e 0(a) = −δ0(a)p(a) − δ(a)p 0(a) + µae 00(a) + µe 0(a) + a e 000(a) + σ2 ae 00(a) + λE[e 0(Sa)]. 

2 
(C.202) 

Using the first-order condition for g(a) and its derivatives, 

p(a) = −e(a) + e 0(a)a, (C.203) 

p 0(a) = e 00(a)a, (C.204) 
00(a) = e 000(a)a + e 00(a),p (C.205) 
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we get 

0 =(r + λ)(p(a) + e(a) − e 0(a)a), (C.206) 

σ2 
2 00(a)=`(a) + δ(a)p(a) − (g(a) + δ(a))ap 0(a) + µap 0(a) + a p

2 
κ(a)2 

00(a)a 2+ (p 2 + 2p 0(a)a) − σκ(p 0(a)a + p 0(a)a) + λE[p(Sa)]
2 

σ2 
2− δ(a)p(a) + µae 0(a) + a e 00(a) + λE[e(Sa)]

2 
σ2 

2 3 000(a) − σ2 2 00(a)+ δ0(a)ap(a) + δ(a)p 0(a)a − µa e 00(a) − µae 0(a) − a e a e 
2 

− λE[e 0(Sa)a] (C.207) 
00(a)a=`(a) + δ0(a)ap(a) − g(a)ap 0(a) + κ(a)2/2(p 2 + 2p 0(a)a) 

2− σκ(a)(p 0(a)a + p 0(a)a). (C.208) 

Thus, in the smooth part of the equilibrium, it must be that 

00(a)a 2`(a) + δ0(a)ap(a) + κ(a)2/2(p 2 + 2p0(a)a) − σκ(a)(p0(a)a + p0(a)a) 
g(a) = . 

ap0(a) 

(C.209) 

Therefore, the HJB for p(a) is given by 

σ2 
2(r + λ)p(a) = δ(a)p(a) − δ0(a)ap(a) + µap 0(a) + a p 00(a) + λE[p(Sa)] (C.210)

2 

and none of the equilibrium price functions are affectec by κ(a). 

C.1 No Commitment 

In the main text, we assume that a centralized platform has some commitment power with 

respect to the interest rate policy and the collateralization rule. As argued in Section 4, 

we show that the platform has no value if it cannot commit at all. 

Lemma 9. Without commitment, there is no MPE with striclty positive equity value 

E(A, C, K) > 0 and stablecoin price p(A, C, K) > 0. 

The problem of a platform without any commitment to policies is similar to that of a 

91 



firm that can choose whether or not to make coupon payments on perpetuity debt without 

defaulting. Once stablecoins/debt are issued, the firm strictly prefers not to make coupon 

payments because it has already captured any benefits from issuance. As a result, the 

platform would always set the interest payment to 0 ex post, which means that stablecoins 

have no value ex ante because the peg is not guaranteed. Lemma 9 thus shows that some 

commitment to a coupon policy is necessary; otherwise, the platform and the stablecoin it 

issues have no value. 

Proof of Lemma 9. Note that we have 

dCt = δtCtdt + Gtdt + (Gt − Gt-) (C.211) 

and 

dKt = µKtdt + σKtdZt + Mtdt + Kt− (St − 1)dNt + (Mt −Mt-). (C.212) 

39If Gt = Gt- and Mt = Mt- , using Ito’s lemma we get 

(r + λ)E(At, Ct- ,Kt-) = p(At, Ct,Kt)Gt − Mt + µAtEA(At, Ct,Kt) (C.214) 

+ (Gt + δtCt)EC (At, Ct,Kt) + (Mt + µKt)EK (At, Ct,Kt) (C.215) 

σ2 σ2 

+ A2EAA(At, Ct,Kt) + K2EKK (At, Ct,Kt) + σ2AtKtEAK (At, Ct,Kt)
2 t 2 t 

(C.216) 

+ λE[E(SAt, Ct, SKt)]. (C.217) 

Therefore, if EC (A, C, K) is strictly negative, given a strategy δ(A, C), there is always an 

optimal deviation to a lower interest payment δ(A, C) − Δ where Δ > 0 until δ(A, C) = 0. 

By Proposition I of DeMarzo and He (2021), E(A, C, K) is strictly decreasing in C when 

p(A, C, K) > 0. 

Similarly, without commitment to K(A, C) = ϕC, it is always optimal to put no collateral 

in the platform as µk < r. 

39Otherwise, we get 

E(At, Ct - ,Kt -) = E(At, Ct - + Gt − Gt - ,Kt - + Mt −Mt -) + p(At, Ct - + Gt − Gt - ,Kt - + Mt −Mt -)(Gt − Gt -) − (Mt −Mt -), 
(C.213) 

which is not impacted by δt. 
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Internet Appendix 

In this appendix, we describe the algorithm to solve the full-commitment problem with 
?collateral. We solve for f?(λ, ϕ, a?) ≡ (e + p?)/a? for {λ, ϕ, a?} ∈ [0, 1] × [0, 1] × [1, 4] on a 

40×20×20 grid following the pseudo-algorithm below. Because the ODE is stiff otherwise, 

we constraint g(a) to be greater or equal to -10. We use the Matlab function ode23. 

d u ?Start with a = 0, a = 1, a0 = 1, a = 1.5, E[p(Sa)]0 = 1, i = 0, j = 0, k = 0.0 0 0 

1. Define ai = (a
d
i + au)/2.i 

2. Solve for the second order ODE for p(a) on [ai, ai] given in Lemma 1 with p(ai) = ϕ 

and p0(ai) = 1e − 6. 

u d d u u d3. If p(ai) < 1, set a = ai and a = ai . Otherwise, a = a and a = ai.i+1 i+1 i+1 i i+1 

u d4. If a − ai+1 < 1e − 6, continue to the next step; otherwise, set i = i + 1 and go toi+1 

step 1. 

5. Solve for E[p(Sa)]j+1 given the new solution for p(a). 

6. If ||E[p(Sa)]j+1−E[p(Sa)]j || < 1e−5, continue to the next step; otherwise set j = j+1 

and go to step 1. 

7. Solve for ak+1 such that e?(ai, ak+1, a
?) = 0. 

8. If |e?(ai, ak+1, a
?) − e?(ai, ak, a

?)| < 1e − 4, end; otherwise, set k = k + 1 and go to 

step 1. 
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