

Summary

- We show that distortion in the size distribution of banks around regulatory thresholds can be used to identify costs of bank regulation.
- We build a structural model in which banks can strategically bunch their assets below regulatory thresholds to avoid regulations.
- Using U.S. bank data, we estimate the regulatory costs imposed by the Dodd–Frank Act.
- We find that our estimated costs are significantly lower than those self-reported by banks.

1. Motivation

- Lack of academic research quantifying regulatory costs, necessary to perform cost-benefit analysis (CBA). CBA is mandated by law and crucial for regulators' rule-making.
- Current methods to quantify regulatory costs rely on self-reported estimates from financial institutions, which presents problems of distorted incentives and data availability.
- Our approach: watch what they do, not what they say!

2. The Dodd–Frank Act

- A centerpiece of the post-crisis financial reform with tiered regulatory approach.
- Banks whose assets exceed the \$10 billion threshold must conduct annual stress tests, comply with the Durbin Amendment, report to the Consumer Financial Protection Bureau (CFBP), create risk committees with independent directors.
- Banks whose assets exceed the \$50 billion threshold have additional risk-based capital and liquidity requirements, more stringent stress tests, and annual resolution plans.

Watch what they do, not what they say: **Estimating regulatory costs from revealed preferences**

Adrien Alvero (Columbia Business School), Sakai Ando (IMF) and Kairong Xiao (Columbia Business School)

Figure: Size distribution around non-regulatory threshold

4. Model of bank size choice

• Banks maximize profit:

$$\max_{q} \pi(q|z) = \max_{q} (R - r(q|z)) \exp(q) \cdot \prod_{i=1}^{I} (1 - \tau_i \mathbb{1}_{q \ge \underline{q_i}}).$$

where R is lending rate, r is deposit rate, z is productivity, τ_i is regulatory cost, q is log assets, q_i is the *i*'s regulatory threshold

• Funding supply $r(q|z) = \frac{1}{\theta}(q-z)$: a more productive bank raises more funding for given r • Profit indifference condition of the marginal bank provides sufficient statistic formula for regulatory cost τ_i :

 $\tau_i = 1 - \left[\left(\overline{q_i} - \underline{q_i} + 1 \right) \right] \exp \left(\underline{q_i} - \overline{q_i} \right)$

• Assets are observed with a structural error $u \sim N(0, \sigma^2)$, such that a = q + u. We estimate τ via MLE over bank assets a.

6. Results: direct costs for banks

Panel A: \$10 billion threshold		
	Est.	S.E.
Exponent of the power law distribution	1.112	[0.001]
Measurement error volatility (in $\%$)	4.258	[0.386]
Assets of marginal bank (\$ Billion)	10.973	[0.086]
Cost of regulation ($\%$ of profit)	0.405	[0.066]
Panel B: \$50 billion threshold		
	Est.	S.E.
Exponent of the power law distribution	1.083	[0.002]
Measurement error volatility (in $\%$)	2.290	[0.498]
Assets of marginal bank (\$ Billion)	52.393	[0.517]
Cost of regulation ($\%$ of profit)	0.106	[0.046]

• \$10B threshold: 0.41% of annual profits • \$50B threshold: 0.11% of annual profits • For a \$50B bank, total cost of 0.52% of annual profits represents \$4.16 million per year, equivalent to the annual expense of hiring additional 52 compliance officers

7. Additional restuls: indirect costs for firms that borrow from banks

• Embed banks' optimal choice in a general equilibrium model, where bank-dependent firms can be affected by banks' size choices and entry/exit.

• Using calibration and moment matching, we estimate the following indirect effects of Dodd–Frank regulations:

• Total mass of banks decreases by 0.18%.

• Lending rate increases by 0.046%.

• Total output of bank-dependent firms decreases by 0.02%.

Contact Information

Adrien Alvero (aalvero20@gsb.columbia.edu)