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Modeling Loss Given Default 
 
 

Abstract: 

We investigate the puzzle in the literature that various parametric loss given default 
(LGD) statistical models perform similarly by comparing their performance in a simulation 
framework. We find that, even using the full set of explanatory variables from the assumed data 
generating process, these models still show similar poor performance in terms of predictive 
accuracy and rank ordering when mean predictions and squared error loss functions are used. 
Therefore, the findings in the literature that predictive accuracy and rank ordering cluster in a 
very narrow range across different parametric models are robust. We argue, however, that 
predicted distributions as well as the models’ ability to accurately capture marginal effects are 
also important performance metrics for capital models and stress testing. We find that the 
sophisticated parametric models that are specifically designed to address the bi-modal 
distributions of LGD outperform the less sophisticated models by a large margin in terms of 
predicted distributions. Also, we find that stress testing poses a challenge to all LGD models 
because of limited data and relevant explanatory variable availability, and that model selection 
criteria based on goodness of fit may not serve the stress testing purpose well. Finally, the 
evidence here suggests that we do not need to use the most sophisticated parametric methods to 
model LGD. 
 

1. Introduction 

Loss given default (LGD) is one of the key determinants of the premium on risky bonds, 

credit default swap spreads, and credit risks of loans and other credit exposures, as well as a key 

parameter in calculating regulatory capital requirements. Despite its importance, statistical 

modeling of LGD has been challenging in the academic literature and in banking practice, 

because LGDs for commercial loans or bonds have unusual distributional characteristics. 

Specifically, LGD values are often bounded to the closed interval [0,1] and tend to have a bi-

modal distribution with modes close to the boundary values, as shown in Asarnow and Edwards 

(1995) and Qi and Zhao (2011).3 These characteristics make standard statistical models, such as 

the linear regression model, theoretically inappropriate for LGD modeling. As a result, many 

                                                 
3 Even in each industry or debt seniority segments, LGDs still have bi-modal distribution patterns. 
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statistical models have been proposed in the literature to accommodate the unusual distribution 

of LGD (see for example, Qi and Zhao (2011), Li, Qi, Zhang, and Zhao (2016), and the 

references therein for surveys). Even with the sophistication of these models, papers such as Qi 

and Zhao (2011) and Li, Qi, Zhang, and Zhao (2016) find that these models do not necessarily 

provide better model fit than the simpler models, such as linear regressions, when applied to real 

LGD data. This finding is quite puzzling, and there may be several explanations for it. 

One explanation could be that the studies in the literature are based on real but noisy 

LGD data. This noise can result from various reasons, such as omitted variables in the LGD 

model specification, or measurement error in LGD or the explanatory variables. As a result, the 

predictable portion of LGD can be overwhelmed by the noise in the unpredictable portion, 

regardless of the sophistication of the statistical model, which leads to the same predictions and 

performance across the models.  

Another possible explanation is that the previous studies only based their findings on a 

specific type of LGD prediction and model performance metric while it may be possible for their 

conclusions to change using different types of predictions and performance metrics. Specifically, 

the previous papers have mostly used estimates of the conditional mean LGD (i.e., estimates of 

E(LGD|X) for the corresponding parametric model of LGD|X, where X is a vector of LGD risk 

drivers) as predictions and assessed model performance with squared-error loss functions, e.g. 

sum of squared errors or mean squared error. Given that E(LGD|X) is the minimum mean 

squared error (MMSE) predictor of LGD|X, it is unsurprising that these studies did not find 

much differentiation in model performance across models. Moreover, since 𝑋𝑋𝑋𝑋 from a linear 

regression is the best linear approximation to E(LGD|X), it is foreseeable that the linear 

regression model from the previous studies performed well relative to the sophisticated models, 
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even though E(LGD|X) could be nonlinear (see Angrist and Pischke (2009) for detailed 

expositions). This argument that alternative performance metrics can also be important in LGD 

modeling has been explored in the literature. For example, see Duan and Hwang (2014), 

Leymarie, Hurlin, and Patin (2018), and Kruger and Rosch (2017). 

This paper uses a simulation framework to shed fresh light into the puzzling finding in 

the literature that various parametric LGD statistical models tend to perform similarly. We first 

generate the explanatory variables and the “true” LGD data from a zero-and-one inflated beta 

regression data generating process (DGP) and then fit a variety of statistical models to this 

dataset.4 Estimates of the conditional means, the predicted distribution functions, and the 

marginal effects implied by each one of the models are then produced. Next, we introduce 

additional “noise” to the exercise by omitting some explanatory variables from the DGP and then 

we recalculate the estimates. Finally, results across different statistical models, noise levels, and 

various performance metrics are compared. Unlike the previous literature, our simulation 

framework is more comprehensive in terms of the number of models, performance metrics, and 

noise scenarios. Most importantly, our findings are based on a controlled simulation framework 

as opposed to real but potentially noisy data. 

This simulation framework allows us to answer a few important questions: 1) Using 

conditional mean predictions and squared error loss functions, do the various parametric models 

perform similarly if they use the full set of explanatory variables from the DGP? 2) Do the 

                                                 
4 Even though our simulated data can mimic the distribution of the true LGD data, one can still criticize our 

simulation exercise because there is no guarantee that we can replicate the true DGP for the real LGDs.  Note that 
nobody knows the true LGD DGP, and there is no way for anybody to prove that any simulated data can replicate 
the true LGD DGP.  We address this concern indirectly by trying many different DGPs to generate bi-modal data 
with substantial mass at the 0 and 1 values. The results from these alternative simulations are discussed in Section 
3.5. 
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various parametric models perform similarly using the full set of explanatory variables from the 

DGP based on other predictor types and performance metrics, e.g. predicted distributions and 

marginal effects? and 3) What is the impact of noise and sample size on the conclusions from 1) 

and 2)? 

The predicted distributions are key quantities to study because they are of practical 

importance. For example, although the Basel Advanced Internal-Rating Based capital formula 

only requires the means as the input for LGDs, conservative adjustments of the parameter inputs 

to the capital formula are usually required by the regulators when there is uncertainty in mean 

estimation due to data limitations.5 In practice, these conservative adjustments are typically 

based on a certain percentile or quantile of the estimated LGD distribution, so the predicted LGD 

distribution is useful in this situation. As another example, the LGD distribution is a major 

component of expected loss distributions, and estimation of loss distributions is the focus of the 

Basel market rules, such as the incremental risk capital and comprehensive risk measures, as well 

as Comprehensive Capital Analysis and Review and Dodd-Frank Act Stress Testing (DFAST). 

Therefore, accurately predicting the LGD distribution is of critical importance in multiple 

aspects of bank risk management practice. 

In addition, marginal effects are crucial in the context of stress testing, because the 

success of stress testing depends on a model’s ability to accurately estimate the impact of a large 

macroeconomic shock on the risk parameters, including LGD. In other words, a model that 

cannot measure the impact of a macroeconomic shock well but has decent performance in all 

other dimensions, e.g., sum of squared errors across the whole sample, may be unfit for stress 

                                                 
5 In AIRB implementation, bucket-level mean LGDs are used in some cases, while conditional mean LGDs from 

loan-level models are used in other cases. The results of our paper are useful for the latter cases. 
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testing purposes. Ex ante, it is impossible to predict which models perform better for stress 

testing.  

In the simulation exercise we investigate seven commonly-used models: linear 

regression, inverse Gaussian regression with the smearing and naïve estimators (Li, Qi, Zhang, 

and Zhao (2016)),6 fractional response regression (Papke and Wooldrige (1996))7, censored 

gamma regression (Sigrist and Stahel (2011)), two-tiered gamma regression (Sigrist and Stahel 

(2011)), inflated beta regression (Ospina and Ferrari (2010)), and beta regression (Duan and 

Hwang (2014)).8 All models other than the standard linear regression are briefly outlined in 

Appendix A. The standard linear regression is the only model that cannot restrict the predicted 

mean values within the [0,1] range or address the bi-modal distribution pattern. The inverse 

Gaussian regression with a smearing estimator (IG smearing) and fractional response regression 

(FRR) ensure that the mean predictions will fall in the interval [0,1], but these models are not 

specifically designed to handle bi-modal distributions.9 The remaining four models, censored 

gamma regression (CG), two-tiered gamma regression (TTG), inflated beta (IB), and beta 

regression (BR) are all sophisticated and designed specifically to address the bi-modal 

distribution of LGD; their mean predictions are also inside the [0,1] interval. Among the four, 

TTG and IB are more complicated as they involve more parameters and structure, and TTG is 

particularly challenging to fit. We do not include in this study non-parametric methods (such as 

regression trees (Qi and Zhao (2011)) and support vector regression (Yao, Crook, and Andreeva 

                                                 
6 We have investigated the inverse Gaussian regression with beta transformation and smearing estimator as well, and 
those results are quite similar to those from the inverse Gaussian regression with smearing estimator in this paper. 
7 The FRR is technically a semi-parametric method while the other models are parametric.  
8 Note that the “beta regression” from Duan and Hwang (2014) is not the same as the one from Ferrari, and Cribari- 

Neto (2004). See Duan and Hwang (2014) for the details and motivation. 
9 We mainly investigate IG smearing in this paper, because Li, Qi, Zhang, and Zhao (2016) show that the smearing 
estimator makes the inverse regression method more stable. 
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(2015)) because generating predicted distributions and marginal effects for these methods is not 

straightforward. 

We find that, even using the full set of explanatory variables from the DGP, the mean 

predictions from the various models, including the true model from the DGP, perform very 

similarly and poorly in terms of both predictive accuracy (measured by squared error loss) and 

rank ordering (measured by Pearson’s correlation, Spearman’s Rho, and Kendall’s Tau). 

Moreover, when we introduce noise, both predictive accuracy and rank ordering ability 

unsurprisingly decline across all models, and the models still perform similarly to each other. 

Therefore, the findings in the literature that the predictive accuracy and rank ordering ability are 

poor and cluster in a very narrow range are robust, and such findings are not driven by statistical 

model specification or too much noise in the data to be modeled. These results suggest that, in 

conditions where only LGD conditional means are required and performance is measured by 

these performance metrics, all the commonly-used models investigated in this paper perform 

equally well. 

Furthermore, we find that the predicted conditional distributions from the sophisticated 

models all perform reasonably well, while the ones from the linear regression and IG smearing 

significantly underperform. In addition, because FRR is only focused on estimating the mean 

LGD but does not have other assumptions about the underlying parametric structure, generating 

the predicted distributions under FRR involves much uncertainty, and it is difficult to assess the 

performance of FRR based on predicted distributions. Because of this uncertainty, in 

circumstances when knowledge about LGD distributions becomes critical, we conclude that FRR 

is not the most appropriate model to use. 
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We also find that the true model using the full set of explanatory variables is able to 

capture the marginal effects from a macroeconomic shock quite well. However, we find that the 

linear regression, IG smearing, and FRR models using the full set of explanatory variables have 

little macroeconomic sensitivity. Furthermore, even though the smearing estimator helps to 

ensure model stability when model fit is concerned, as documented in Li, Qi, Zhang, and Zhao 

(2016), it does not add value in terms of the marginal effect. Therefore, a method that predicts 

the mean better does not necessarily capture the marginal effect better. The primary challenge 

facing stress testing is that, when some relevant variables are unobserved or when the sample 

size is small, none of the models, including the true model, are able to estimate precisely the 

marginal effect of the macroeconomic factor.10 This challenge suggests that we may need to 

rethink the design of stress testing and, in this context, stressing LGD directly instead of 

indirectly through macroeconomic variables might be more appropriate.  

Overall, we find little difference in all performance metrics investigated in this paper 

among the four sophisticated parametric methods. Even though the true model has a slight 

advantage over the other sophisticated models when using the full set of explanatory variables 

and when using a large sample, the advantage disappears when some relevant explanatory 

variables are not included in the model or when the sample size decreases. Since unobserved 

explanatory variables and small sample sizes are major challenges in empirical studies, we 

conclude that it is not critical to use the most sophisticated parametric methods to model LGD. 

Finally, the results in this paper are not restricted to LGD modeling and can be generally 

applied to situations where either the outcome or explanatory variable has a bi-modal pattern.  

                                                 
10 Our finding that the marginal effects are sensitive to omitted variables is consistent with Ramalho and Ramalho 

(2010). They find that omitting relevant variables biases the marginal effects for probit and binary models with 

loglog link functions. 
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For example, these results can be applied to exposure at default, which is another important risk 

parameter in banking practice that has a bi-modal distribution (see Jacobs (2010) and Tong et. al 

(2016)). 

This paper proceeds as follows. In Section 2, we describe the simulation framework and 

the predicted quantities of interest. We present simulation results in Section 3 and conclude in 

Section 4. 

 

2. Simulation design, predicted distributions, and marginal effect  

2.1 Data generating process (DGP) 

Our LGD data are generated using a zero-and-one inflated beta regression model (see 

Ospina and Ferrari (2010a) and Li, Qi, Zhang, and Zhao (2016)). We simulate a total of 400,000 

observations, with 40 time periods and 10,000 observations in each period. The economic 

interpretation is that we observe 10,000 defaults in each period over 40 periods.11 The 400,000 

observations are independent conditional on a common macroeconomic factor.  

We have 11 explanatory variables in the DGP, including a constant (𝑥𝑥𝑖𝑖1 = 1), a 

macroeconomic factor (𝑥𝑥𝑖𝑖2) set to the actual quarterly national unemployment rates from 2006 to 

2015,12 and 9 normally distributed explanatory variables (𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖11). Each explanatory 

                                                 
11 In reality, there are more defaults and thus more LGD observations during economic downturns relative to benign 
periods. We simulate 10,000 observations every period, regardless of whether it is a normal period or economic 
downturn period, to increase model fit. If most observations are from economic downturns and few observations are 
from normal business conditions, this data imbalance will make it more difficult to capture the macroeconomic 
impact. Further, the number of corporate defaults is much lower than 10,000 in any year. We use 10,000 defaults a 
year to enhance model fit, and we will discuss smaller samples in section 3.5.2. Our simulation design aims to 
investigate the ideal case to understand the challenges we would face, with the understanding that we will face more 
challenges in the real data. 
12Although the 𝑥𝑥𝑖𝑖2 notation suggests that there could be a different macroeconomic factor for each observation i, this 
is not the case. Since there are 40 quarters of unemployment data from 2006 to 2015, we set the first 10,000 values 
(𝑥𝑥𝑖𝑖2 for 𝑖𝑖 = 1, … , 10000) equal to the 2006 Q1 unemployment rate, the next 10,000 values to the 2006 Q2 
unemployment rate, and so on until the last 10,000 observations is the unemployment rate for 2015 Q4. In other 
words, there is a common macroeconomic factor for every 10,000 observations. 
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variable in (𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖11) has a marginal distribution of 𝑁𝑁(0,0.52) and is generated to have a 

correlation of 0.05 with the macroeconomic factor. We introduce the correlation by assuming 

that each element in (𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖11) has a correlated bivariate normal distribution with the 

macroeconomic factor, and we generate each element from its implied conditional distribution, 

e.g., 𝑥𝑥𝑖𝑖3|𝑥𝑥𝑖𝑖2, using a copula function with sample averages and sample variances of the 

unemployment rate as the means and variances for 𝑥𝑥𝑖𝑖2. This correlation is introduced to make the 

stress testing and noise impact exercises more realistic.  

The zero-and-one inflated beta regression model for the 𝑖𝑖-th LGD observation is 

 Pr(𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 = 0) = 𝑃𝑃0𝑖𝑖 , (1) 

 Pr�𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 ∈ (𝑙𝑙, 𝑙𝑙 + 𝑑𝑑𝑑𝑑)� = �1 − 𝑃𝑃0𝑖𝑖 − 𝑃𝑃1𝑖𝑖�𝑓𝑓�𝑙𝑙; 𝜇𝜇𝑖𝑖,𝜙𝜙�𝑑𝑑𝑑𝑑, (2) 

 Pr(𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 = 1) = 𝑃𝑃1𝑖𝑖 (3) 

for 𝑙𝑙 ∈ (0,1), where 0 < 𝜇𝜇𝑖𝑖 < 1, 𝜙𝜙 > 0, and 𝑓𝑓(⋅) is the probability density function (PDF) of a 

beta random variable with two parameters: 

 𝑓𝑓�𝑙𝑙; 𝜇𝜇𝑖𝑖,𝜙𝜙� = Γ(𝜙𝜙)

Γ�𝜇𝜇𝑖𝑖𝜙𝜙�Γ��1−𝜇𝜇𝑖𝑖�𝜙𝜙�
𝑙𝑙(𝜇𝜇𝑖𝑖𝜙𝜙−1)(1 − 𝑙𝑙)�1−𝜇𝜇𝑖𝑖�𝜙𝜙−1.  

The vector of explanatory variables, 𝑥𝑥𝚤𝚤 ����⃑ = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖11), is linked to the model through the 

following equations: 

 
𝑃𝑃0𝑖𝑖 =

𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛼𝛼

1 + 𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛼𝛼 + 𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛽𝛽 
(4) 

 
𝑃𝑃1𝑖𝑖 =

𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛽𝛽

1 + 𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛼𝛼 + 𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛽𝛽 
(5) 



 

10 

 

 
𝜇𝜇𝑖𝑖 =  

𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛾𝛾

1 + 𝑒𝑒𝑥𝑥𝚤𝚤 ����⃑ 𝛾𝛾 
(6) 

We set the true parameter values as 𝛼𝛼 = (0.1,−5, 0.4, … ,0.4), 𝛽𝛽 = (−1, 6,−0.1, … ,−0.1), 

𝛾𝛾 = (0, 0.5,−0.1, … ,−0.1), and 𝜙𝜙 = 1.6, and we generate 400,000 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 observations according 

to (1)-(6).  

We refer to this set of observed LGD and explanatory variables as the true LGD and 

explanatory variables from the DGP, and we refer to the inflated beta distribution implied by (1)-

(6) as the true distribution or model. Also, the true quantile functions and marginal effects are the 

ones derived from (1)-(6).  

Figure 1 shows the histogram of the true LGD data. It has a strong bi-modal pattern, 

mimicking the distribution of real LGD data from Fig 1 of Qi and Zhao (2011). We use 

maximum likelihood estimation on the log likelihood implied by (1)-(6). See Li, Qi, Zhang, and 

Zhao (2016) for the explicit form of this likelihood function and estimation details. Denote the 

estimates as 𝜙𝜙�, 𝛼𝛼�, 𝛽̂𝛽, and 𝛾𝛾�. Mean estimates are generated by plugging in the maximum 

likelihood estimates into the analytic mean functions. 

We use two approaches to introduce additional noise in the simulation exercise. One way 

is to only use a subset of the true explanatory variables from the DGP when fitting the various 

LGD models. Using the full set of explanatory variables is necessary to be consistent with the 

DGP, so dropping at least one of them would result in omitted variables or noise. We drop either 

four or eight of the non-macroeconomic explanatory variables in this paper. 

The second way is to add “error terms” or random quantities to equations (4)-(6). For 

example, instead of generating the data according to (4)-(6), we generate the data according to 

𝑃𝑃0𝑖𝑖∗ =
𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛼𝛼

1+𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛼𝛼+𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛽𝛽 + 𝑧𝑧0𝑖𝑖, 𝑃𝑃1𝑖𝑖∗ =
𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛽𝛽

1+𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛼𝛼+𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛽𝛽 + 𝑧𝑧1𝑖𝑖, and 𝜇𝜇𝑖𝑖∗ =  
𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛾𝛾

1+𝑒𝑒𝑥𝑥𝚤𝚤 �����⃑ 𝛾𝛾 + 𝑧𝑧01𝑖𝑖, where 𝑧𝑧0𝑖𝑖, 𝑧𝑧1𝑖𝑖, and 
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𝑧𝑧01𝑖𝑖 are unobserved random terms that are unaccounted for during the fitting of our models.13 

Because we do not account for these terms during estimation, this approach can be thought of as 

a different type of misspecification or noise. Due to space constraints and the fact that our main 

qualitative results do not change across the two definitions of noise, we only report results for the 

first approach. 

2.2 Predicted distributions 

2.2.1 Unconditional distributions 

We estimate the distribution of LGD unconditional on the explanatory variables using 

simulation output. In general, we first sample the explanatory variables and then simulate LGD 

conditional on the explanatory variables according to the model of interest. We repeat this 

procedure many times and retain only the LGD draws. These retained draws are from the 

marginal distribution of LGD, unconditional on the explanatory variables, with which we use to 

estimate or test the desired distribution. 

Specifically, we take 1,000 independent draws of the vector of explanatory variables and 

then, for each draw, we generate 1) a realization of LGD based on the true distributional 

assumption and 2) a realization from the model-predicted distributions. For example, for linear 

regressions, for each draw of the vector of explanatory variables, 𝑥𝑥𝚤𝚤 ����⃑ , we simulate 1) a realization 

of LGD from the zero-and-one inflated beta regression using the true parameter values and then 

2) a realization from 𝑁𝑁(𝑥𝑥𝑖𝑖 𝛽̂𝛽,𝜎𝜎2�), where  𝛽̂𝛽 and 𝜎𝜎2�  are estimates from the linear regression. 

                                                 
13 In our simulation exercises, each one of these unobserved random terms is generated from a standard normal 

distribution. 



 

12 

 

Using these draws, we plot and compare their histograms and estimated cumulative distribution 

functions (CDF).  

This process can be easily implemented for IG smearing, CG, TTG, IB, and BR, based on 

their model structure and estimated parameters. However, estimating the predicted distribution 

for FRR is a challenge as it only specifies up to the mean function 𝐸𝐸(𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖|𝑥𝑥𝚤𝚤 ����⃑ ) and not the whole 

distribution (see Appendix A.2). In order to generate a distribution consistent with FRR, we 

assume a beta distribution for LGD. That is, for each observation, we draw a realization from an 

assumed beta distribution, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛼𝛼,𝛽𝛽𝑖𝑖). Since there is no theoretical value for the beta 

distribution parameters, we try three different values for 𝛼𝛼: 0.5, 1, and 5. In addition to these 𝛼𝛼 

values, we empirically estimate 𝛼𝛼 by fitting a beta distribution to the simulated dataset and 

matching the first two moments. Once 𝛼𝛼 is known, we solve for 𝛽𝛽𝑖𝑖 for each observation, based 

on the property that the i-th fitted value from FRR should be equal to the mean of the beta 

distribution for observation i. That is, we solve for 𝛽𝛽𝑖𝑖 in the equation 𝐸𝐸�(𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖|𝑥𝑥𝚤𝚤 ����⃑ ) = 𝛼𝛼
𝛼𝛼+𝛽𝛽𝑖𝑖

.14 We 

then plot the 1,000 draws from this derived 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛼𝛼,𝛽𝛽𝑖𝑖) distribution. 

2.2.2 Predicted conditional distributions 

A. Kolmogorov-Smirnov (KS) box plots 

In this section, we compare the model-predicted and the true conditional distributions for 

each observation. We first take 5,000 independent draws of the vector of explanatory variables, 

and then for each of these draws, we generate 1,000 draws of LGD based on the model of 

interest, and calculate their Kolmogorov-Smirnov (KS) statistic and p-value relative to the 

                                                 
14 This method of assuming a beta distribution for LGD and estimating the parameters of the mean function using 
FRR is mentioned in page 620 of Papke and Wooldridge (1996). See Li (2018) for a Bayesian application of this 
method. 



 

13 

 

DGP.15 We then plot the distributions of the 5,000 KS statistics and p-values using boxplots. A 

model with a predicted conditional distribution close to the conditional distribution from the 

DGP will have KS statistics closest to 0, and a wilder dispersion in the KS statistics would point 

towards inferior model performance. 

This process can be easily repeated for IG smearing, CG, TTG, IB, and BR. Constructing 

the conditional distribution for FRR is again subject to the assumption of 𝛼𝛼 in the beta 

distribution.  

B. Quantile plots 

Similar in spirit to the previous subsection, we compare the quantile functions between the 

estimated models and the DGP. This exercise was suggested in Sigrist and Stahel (2011). To 

calculate the quantiles, we essentially invert the analytic CDFs implied by the PDFs for each 

model, and then we plot the quantile functions for a specific quantile as a function of a single 

explanatory variable, with the remaining explanatory variables set at their sample means. We 

choose the 0.2, 0.4, 0.6, and 0.8 quantiles, and vary them as a function of 𝑥𝑥𝑖𝑖3 from -6 to 6. A 

model with a predicted quantile function close to the quantile function from the DGP would 

indicate a good model. 

2.3 Marginal effect 

We numerically compute the average marginal effect of each model with respect to the 

macroeconomic factor, 𝑥𝑥𝑖𝑖2. Specifically, the average marginal effect without any omitted 

variables at each point in time is 

                                                 
15 These KS statistics and p-values correspond to a two-sample Kolmogorov-Smirnov test comparing the conditional 
distributions from the DGP and from the assumed model. The KS statistic measures the largest deviation between 
the two sets of estimated CDFs. The p-value corresponds to the null hypothesis that the two distributions are equal 
and the alternative hypothesis that the two distributions are not equal. 
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where ℎ = 0.0001. The marginal effects with omitted variables are calculated the same way 

except that the set of explanatory variables in the conditioning set is appropriately reduced. We 

calculate these marginal effects when the macroeconomic factor varies between 4% to 10% in 

Figure 8. 

3. Results 

3.1 Mean predictions 

We first discuss the mean prediction results using the full set of explanatory variables 

from the DGP, followed by the mean prediction results when four and eight variables are omitted 

from the models.  

To demonstrate that we are able to recover consistent maximum likelihood estimates, we 

present the estimates of the IB model in Panel A of Table 1. As expected, the coefficient 

estimates are quite close to the true values of the parameters used in the DGP, and the standard 

errors are small. This shows that we can recover the true values from the DGP quite well using 

IB and the full set of explanatory variables. 

Panel B of Table 1 reports various performance metrics for the mean predictions using 

the full set of explanatory variables: sum of squared errors (SSE), R-squared (𝑅𝑅2), Pearson’s 

correlation, Spearman’s Rho, and Kendall’s Tau. First, as expected, IB has the lowest SSE value 

of 68123 among all the models. Second, although the literature has argued that the linear 

regression model may not be the most appropriate model to use, its SSE value of 68149 does not 

fall far behind that of IB and is even slightly lower than those from FRR, CG, and IG smearing. 

This suggests that the linear regression is not necessarily the most inappropriate model to use for 
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LGD, assuming that the researcher is only interested in obtaining mean predictions and evaluates 

model performance using SSE and 𝑅𝑅2. Third, even though all the models, including IB, use the 

full set of explanatory variables from the DGP, the 𝑅𝑅2 metrics are very low at around 8%. 

Therefore, contrary to some of the literature and banking practice, we cannot gauge LGD model 

fit based on the magnitude of 𝑅𝑅2 alone. For instance, an 𝑅𝑅2 of 8% for a particular model might 

be interpreted as very low, but from this exercise, even the IB model using the full set of 

explanatory variables from the DGP cannot get an 𝑅𝑅2 of above 8%. All in all, Panel B of Table 1 

indicates that the various models perform very similarly under these two types of performance 

metrics. This finding is consistent with the existing literature and suggests that the mean 

predictions across these models perform similarly when assessed with squared error and rank 

ordering loss functions.  

Furthermore, Figure 2 depicts a histogram of the predicted means used in Panel B of 

Table 1. It is clear that all histograms in this figure are bell-shaped and do not have mass at the 

boundaries. This finding is consistent with Qi and Zhao (2011) and Li, Qi, Zhang, and Zhao 

(2016).  

The aforementioned findings from Panel B of Table 1 and Figure 2 may be initially 

unintuitive to some because the fitted IB model using the full set of explanatory variables does 

not appear to “fit” the data very well despite being consistent with the DGP. For example, one 

might ask: why is the SSE not closer to zero and why are the predictions not closer to the 

realized values when the parameter estimates from Table 1 Panel A are so close to the true 

values? We explain this finding in the context of the simple logistic regression. Assume the DGP 

is 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖|𝑋𝑋𝑖𝑖 ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(exp(𝑋𝑋𝑖𝑖𝛽𝛽)/(1 + exp (𝑋𝑋𝑖𝑖𝛽𝛽)), where 𝑋𝑋𝑖𝑖 = 0.5 and 𝛽𝛽 = 1. Plugging these 

values in, we know that theoretically 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖|𝑋𝑋𝑖𝑖 = 0.5 ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.6225). An observed value 
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of 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖|𝑋𝑋𝑖𝑖 = 0.5 would be a realization from the distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.6225), for example 

0. Now, even in the best case scenario in which we could perfectly estimate the unknown 

parameters 𝛽𝛽 to be 𝛽̂𝛽 = 1, our conditional mean estimate for this LGD value would be 

exp�𝑋𝑋𝑖𝑖𝛽̂𝛽 �/(1 + exp�𝑋𝑋𝑖𝑖𝛽̂𝛽�) = 0.6225, which is obviously not equal to the realized LGD value 

of 0. From this example, it should be obvious that even though if we could perfectly estimate the 

unknown parameters and knew the true parametric form of the model (i.e., the Bernoulli 

distribution), the conditional mean estimates do not need to be very “close” to the realized values 

due to randomness in the realizations. Also, because means are measures of central tendency, 

they are typically closer to the “center” of the distribution and thus away from the LGD 

boundary value, which explains why there aren’t values close to 0 or 1 in Figure 2. 

We introduce additional noise into the model specification by dropping four explanatory 

variables and refitting the various models. The results are reported in Panel C of Table 1. 

Unsurprisingly, the performance metrics decline in every dimension from Panel B to Panel C of 

Table 1, when some relevant explanatory variables are omitted. The decline occurs at about the 

same rate across various models, and again, the performance metrics do not differ much across 

the various models in Panel C. We do not report the performance metrics when fewer or more 

explanatory variables are omitted from the specifications due to space constraints, but the 

qualitative conclusions from Panel B to C of Table 1 remain the same. This finding provides 

additional evidence for the findings in the literature that the mean predictions from these models 

perform very similarly in terms of the squared error and rank ordering loss functions. 

As a different visualization of the results from our noise exercises, Figure 3 depicts, for 

each method, the kernel density plots of the predicted means when zero, four, and eight 

explanatory variables are omitted from the model specification. It is clear from Figure 3 that the 
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distributions are again bell-shaped for each case of omitted variables and for each model. 

Furthermore, the empirical distributions of the predicted means become more concentrated 

towards the unconditional empirical average of LGD, when more explanatory variables are 

omitted. Because the percentiles of the distributions of predicted mean LGDs are often used as 

inputs to capital formulas, our results suggest that these percentiles are likely to be 

underestimated when there are omitted explanatory variables. This is a common problem in 

empirical work and banking practice. 

3.2 Predicted distributions 

3.2.1 Predicted unconditional distributions 

This section compares the predicted unconditional distributions using histograms, 

estimated CDFs, and KS statistics.  

Figure 4 illustrates the predicted unconditional distributions from the various models. In 

Panel A, we depict the distributions from the six models: linear regression, IG smearing, CG, 

TTG, IB, and BR. Unsurprisingly, this panel shows that the predicted unconditional distribution 

from the linear regression has a bell shape, while all the other models show similar bi-modal 

patterns. Panel B shows various distributions for FRR resulting from using different values of 𝛼𝛼. 

The shapes of the distributions are clearly quite different for different values of 𝛼𝛼. Smaller values 

of 𝛼𝛼 lead to distributions that are more bi-modal. The estimated value of 𝛼𝛼 = 0.0029 leads to the 

most extreme bi-modal distribution with high peaks at both ends but little mass in between. The 

results from Panel B suggest that the FRR is very sensitive to the choice of 𝛼𝛼, and because there 

is no theoretical basis to determine this parameter, FRR has a clear disadvantage over the other 

models when predicted distributions are needed. 
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It is difficult to assess the similarity or the differences between the distribution from the 

true data and the predicted unconditional distributions from various models based on the pictures 

in Panel A of Figure 4. So, we report the KS statistics of various models in Table 2. We do not 

include FRR here, as it is very sensitive to the 𝛼𝛼 parameter, and any choice of 𝛼𝛼 might be 

difficult to justify. 

Table 2 contains the KS statistics from the comparisons of the predicted unconditional 

distributions against the true unconditional distribution from the DGP. Using the full set of 

explanatory variables, the results from the first column suggest that the predicted unconditional 

distributions of LGD generated by the IG smearing and linear regression models differ the most 

from the true unconditional distribution. This is unsurprising as these two models do not 

accommodate bi-modal distributions and positive probability masses at LGD values of 0 and 1. 

Furthermore, from the rest of the results in the first column, the IB model has the lowest KS 

statistic, and the CG, TTG, and BR models all have very small KS statistics. This suggests that 

the “sophisticated” CG, TTG, and BR models are able to capture the unconditional distributions 

quite well, despite not having the correct distributional assumption as the DGP. The other 

columns show that, when some variables are dropped from the full set of explanatory variables, 

there is little change in the KS statistics across various models, which is to be expected for LGD 

distributions unconditional on the explanatory variables. 

Since the KS statistics cannot fully capture differences across the entire distribution, we 

plot the CDFs in Figure 5. The models in Panel A use the full set of explanatory variables, and 

this figure corresponds to the KS statistics in the first column of Table 2. It is clear from this 

panel that the predicted unconditional distribution from the linear regression is quite different 

from the true distribution which explains the large KS statistic. The difference between the IG 
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smearing and true CDFs is also noticeable, particularly at the tails. These deviations at the tails 

are responsible for the large KS statistic for IG smearing in Table 2. Furthermore, the CDFs from 

the true and predicted distributions from CG, TTG, IB, and BR are quite similar, which is 

consistent with the small KS statistics from Table 2. Although IB is the correct distributional 

assumption, its advantage over CG, BR and TTG is almost undiscernible.  

Panel B of Figure 5 compares the true unconditional distribution and the predicted 

unconditional distributions from the various models when four explanatory variables are omitted; 

this figure corresponds to the KS statistics in the second column of Table 2. We can see that the 

predicted unconditional distributions from the linear regression and IG smearing are again quite 

different from the true distribution. The CDFs for CG, TTG, IB, and BR are once again quite 

close in this panel, suggesting that these four models generate predicted unconditional 

distributions that are quite similar. Again, this is the expected result as these are LGD 

distributions that are unconditional on the explanatory variables, and such results indicate that we 

cannot rely on unconditional predicted distributions to assess variable selection.  

3.2.2 Predicted conditional distributions  

3.2.2.1 KS boxplots 

This section compares the predicted conditional distributions of LGD against the true 

conditional distribution using results from KS tests. We do not include the FRR model. 

Panels A and B of Figure 6 show the distributions of the KS statistics and p-values from 

our 5,000 two-sample KS tests using the full set of explanatory variables. From Panel A, it is 

clear that the distribution of KS statistics for the linear regression and IG smearing models are 

centered away from 0, which suggests that the predicted conditional distributions generated by 

the linear regression and IG smearing models are dissimilar to the true conditional distribution. 

The analogous KS statistic distributions for the sophisticated models (i.e., CG, TTG, IB, and BR) 
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are centered much closer 0, which suggests that the predicted conditional distributions for the 

sophisticated models are similar to the true conditional distribution. The p-values from Panel B 

support these findings as the distributions of p-values for the linear regression and IG smearing 

are essentially degenerate at 0 while the distributions corresponding to the sophisticated models 

are centered away from 0. Being centered away from 0 means that, there is not enough evidence 

in the data to suggest that the conditional distributions for the sophisticated models are 

statistically different from the true conditional distribution.  

Panels C and D of Figure 6 show the distributions of the KS statistics and p-values from 

our KS tests when four explanatory variables are dropped from the full set. There is less 

dispersion for the four sophisticated models in Panel C than the linear regression and IG 

smearing in Panel A. Also, the IB model does not seem more similar to the true distribution  

relative to CG, TTG, and BR. We tried dropping other numbers of explanatory variables, but the 

results are qualitatively similar to those in Panel C. In summary, we find that the sophisticated 

models all behave similarly when some of the explanatory variables are dropped from the model. 

Furthermore, we find that, in terms of the similarity with the true conditional distribution, even 

with the majority of explanatory variables dropped and the sophisticated models not performing 

well, these sophisticated models still outperform the linear regression and IG smearing models 

with the full set of explanatory variables.  

3.3.2 Quantile plots 

We next depict the quantile plots for the various estimated models and compare them 

against the true model. To save space, we only plot the 0.2, 0.4, 0.6, and 0.8 quantiles without 

dropping any explanatory variables in Figure 7. We do not include FRR for the same reason as in 

the previous sections. 
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In all four panels of Figure 7, the linear regression quantiles stand out as they are straight 

lines, and they are not similar to the true quantiles. Surprisingly, the IG smearing quantile 

resembles the true quantile better than the linear regression quantile, despite our previous results 

from the conditional distribution section. However, it is obvious that the IG smearing quantiles 

deviate more from the true quantile than the ones for CG, TTG, BR, and IB, especially for the 

lower quantiles. The quantiles for the sophisticated models (i.e., CG, TTG, IB and BR) are rather 

close to each other, and the quantile function for IB is almost entirely on top of the true quantile. 

The latter result is not surprising, as we have shown earlier that the IB model using the full set of 

explanatory variables can recover the true DGP quite well.   

We do not report the quantile results when some explanatory variables are dropped from 

the models due to space limitations, so we briefly discuss the results here. With some 

explanatory variables dropped, the IB quantile plots show the most shift, and as a result, the IB 

model no longer substantially outperforms the other three sophisticated methods (CG, TTG, and 

BR). Also, similar to the previous results, the linear regression and IG smearing quantiles always 

deviate much from the true quantile. 

In summary, we find convincing evidence that the sophisticated models produce 

conditional distributions that are much more similar to the true conditional distribution than both 

the linear regression and IG smearing models. Also, the performance difference between the four 

sophisticated models is not large, especially when there are missing explanatory variables from 

the model specification. 

3.4 Marginal effect 

  The marginal effect results using the full set of explanatory variables are depicted in 

Panel A of Figure 8. This figure shows that the true marginal effect is slightly upward sloping. 
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The linear regression marginal effect curve is flat, which is not surprising because of the linearity 

assumption in this model. Further, both IG smearing and FRR show low macroeconomic 

sensitivity in the stressed scenarios. With the macroeconomic factor at 10% (corresponding to a 

higher level of LGD because of the positive true marginal effect in Panel A), the linear 

regression, FRR, and IG Smearing all under-estimate the true marginal effect, with the IG 

smearing marginal effect showing the largest under-estimation. The IB marginal effect curve 

almost entirely overlaps with the true marginal effect curve, which is not surprising, as the IB 

model with the full set of explanatory variables can recover the true coefficients quite well with 

400,000 observations (see Table 1). CG, TTG, and BR over-estimate the marginal effect, with 

BR showing the most over-estimation. The degree of over-estimation from the sophisticated 

models is not large in Panel A of Figure 8: when the macroeconomic factor is at 10%, the true 

marginal effect is 1.53 versus 1.58 from BR.   

Panel B of Figure 8 depicts the marginal effects when four variables are dropped from the 

models. This panel shows that all models under-estimate the true marginal effect, with IG 

smearing under-estimating the most. The IB model shows more under-estimation than the other 

three sophisticated models. Note that given the particular set of parameters we use in the DGP, 

the under-estimation of all models other than IG smearing is due to our assumption of positive 

correlation between the macroeconomic variable and the other explanatory variables. If we 

assume a negative correlation while keeping the other parameters the same, we would observe 

drastic over-estimation in Panel B of Figure 8 for all models except IG smearing. 

We do not report results when more or fewer explanatory variables are dropped from the 

model due to space constraints, but we briefly describe the results here. We find that, the more 

explanatory variables we drop, the larger the gap between the true marginal effect and the 
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estimated marginal effect. This finding poses a serious challenge to stress testing in practice, 

because it is likely that only a subset of the key risk drivers that are important for stress testing 

are observed by practitioners. 

Figure 9 contains more analyses for the IG models. We plot the IG smearing and IG 

naïve average marginal effects across the whole range of the macroeconomic variable for 15 new 

sets of random data, where for each set of data we randomly select the values for the true 

parameters 𝜙𝜙, 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾, and randomly draw a new set of full explanatory variables like in 

Section 2.1. The correlation between the macroeconomic factor and the other explanatory 

variables is 0.05, and we use 40,000 observations in this exercise.16  

 We can draw several conclusions from Figure 9. First, regardless of which IG method is 

used, there is generally a large gap between the true marginal effect and the IG marginal effects. 

Therefore, the IG methods generally cannot capture the true marginal effect well. Second, the 

smearing estimator does not seem to add value in terms of capturing the true marginal effect. For 

most of the new sets of random data, the IG smearing is worse than the naïve IG in terms of 

predicting the marginal effect. Interestingly, Li, Qi, Zhang, and Zhao (2016) find that IG 

smearing improves IG model fit in terms of SSE and conditional mean LGD predictions, 

however, the results in Figure 9 suggest that a method predicting the mean better, in this case IG 

smearing, is not necessarily better at capturing the marginal effects. Therefore, using SSE with 

conditional mean LGD predictions may not be the best model evaluation strategy for stress 

testing models. 

3.5 Further investigations 

3.5.1 Alternative DGPs 

                                                 
16 This can be interpreted as observing 1000 defaults in each period over 40 periods. 
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The exercises in this subsection aim to address the concerns that the DGP in the main results 

may not mimic the complexity in real data and that our findings may be restricted to the specific 

set of parameters we choose.  We tried several other DGPs, including the IB model with different 

parameter values and the TTG model. In order to increase the similarity with real data, we also 

generate explanatory variables with moments matching the explanatory variables from Moody’s 

URD data used in Li, Qi, Zhang, and Zhao (2016), and use their estimated IB and TTG 

parameters. We account for the correlations between the loan–level variables and the 

macroeconomic variables by resampling with replacement from the real dataset.  In all these 

exercises, we use a total of 400,000 observations with noise in the DGP.  

Results from the alternative DGPs are very similar to those reported in the previous 

sections. That is, there is little variation in predictive accuracy and rank ordering ability across 

all models investigated in this paper. Therefore, if the main focus is model fit in terms of SSE or 

rank ordering using conditional mean predictions, all models show similar performance. In 

addition, using the full set of explanatory variables, the four sophisticated models are able to 

generate predicted conditional distributions more similar to the true conditional distributions and 

show higher sensitivity to the macroeconomic factor, relative to the simpler models. 

Recovering the true parameters is more difficult for some DGPs. Among all the 

performance metrics we have investigated, the marginal effects show the most sensitivity to 

parameter estimates. For some DGPs, even using the full set of explanatory variables with the 

true distributional assumptions, we cannot recover the true parameters very precisely, in which 

case even the true models do not appear to be better than the other sophisticated models in terms 

of accurately capturing the marginal effects. Also, we find similar problems with accurately 
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capturing the marginal effects as in previous sections when key explanatory variables are 

missing, which suggests that this conclusion is robust for different DGP assumptions. 

3.5.2 Different number of observations in the DGP 

 We also tried simulating data with a different number of observations. The purpose of 

such an exercise is to investigate whether the sophisticated models perform similarly when the 

sample size is small. Banks typically only have between 1,000 to 4,000 internal LGD data points, 

which is a lot less than the number of observations we used in previous sections.   

  We find that the four sophisticated models still out-perform the less sophisticated models 

by a large margin even for small samples. However, it is more difficult to recover the true 

parameters within a small sample, even with the full set of explanatory variables and the true 

distributional assumptions. As a result, similar to our findings from the previous section, the 

marginal effects show the most sensitivity to small sample sizes. When the sample size is a few 

thousand, we do not observe any advantage in using IB or TTG over CG or BR, even though IB 

and TTG are the true models with a full set of explanatory variables. This problem is particularly 

severe for TTG, because parameter estimation is exceptionally challenging.17 

4. Conclusions 
We compare via a simulation exercise seven parametric models to estimate LGDs: linear 

regression, inverse gamma regression with a smearing estimator (IG smearing), fractional 

response regression (FRR), censored gamma regression (CG), two-tiered gamma regression 

(TTG), inflated beta regression (IB), and beta regression (BR). The last four of these models are 

designed specifically to address the bi-modal distribution unique to the LGD data.  

                                                 
17 Even when it is the true model, TTG often underperforms the other sophisticated models when the sample size is 
small, e.g., in thousands. 
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We find that, even using the full set of explanatory variables from the data generating 

process and without noise, all models still provide poor model fit, and perform similarly in terms 

of both predicative accuracy and rank ordering. When we omit some explanatory variables from 

the model or add extra noise to the data generating process, both predicative accuracy and rank 

ordering ability decline, but various models still perform similarly in these two dimensions. 

Therefore, the finding in the literature that model fit across different LGD models cluster in very 

narrow and poor ranges is robust and not driven by omitted explanatory variables or noise in the 

data. If the only focus of LGD modeling is in producing mean predictions, then all models 

investigated in this paper can serve that purpose reasonably well. 

However, we argue that, in addition to predicative accuracy and rank ordering, we should 

also investigate predicted LGD distributions from various models, because the LGD distribution 

is important in various aspects of risk management in the banking industry. Based on predicted 

conditional distributions, the four sophisticated models, CG, TTG, IB, and BR, show similar 

levels of performance, outperforming the linear regression and IG smearing by a large margin. 

FRR, on the other hand, is not a proper method when the LGD distribution is the performance 

metric of interest because of uncertainty in generating the predicted distributions. 

Further, we assess the marginal effects generated from various models given their critical 

importance in stress testing. We find that, with missing explanatory variables or when the sample 

size is small, none of the models, including the true model, can accurately capture the marginal 

effect from the macroeconomic factor. This latter finding poses a challenge in practice as we 

always face the problem of unobserved risk factors and limited data on LGD. Our results further 

indicate that model fit in terms of SSE and mean predictions may not be a good criterion to 

evaluate stress testing models. Evidence on the challenges of capturing the marginal effect from 
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the macroeconomic variables suggests that we might need to rethink the design of stress testing. 

Instead of indirectly stressing LGD via a macroeconomic variable translation, it might be more 

appropriate to stress the LGDs directly.   

Finally, we do not observe a clear advantage for the true model, especially if there are 

missing explanatory variables or if the sample size is small. Under such conditions, the less 

computationally challenging models, i.e., CG and BR, can perform as well as the more 

complicated ones, i.e., TTG and IB. As a result, in real practice, we may not need the most 

sophisticated statistical models for LGD.  
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Appendix A: Econometric models investigated in this paper 

A.1 Transformation regressions - inverse Gaussian regression with a smearing estimator (IG 

smearing) 

Because LGDs are bounded in the unit interval [0, 1], whereas the predicted LGDs from 

a linear regression are not bounded, certain transformations can be applied to LGDs before 

running the regression and the fitted LGDs from the regression are then transformed back to 

(0,1). The naïve inverse Gaussian regression (Hu and Perraudin (2002) and Qi and Zhao (2011) 

first transforms LGDs from the unit interval (0,1) to (−∞,∞) using an inverse Gaussian 

distribution function and then runs an OLS regression using the transformed LGDs. Finally, the 

fitted values are transformed back from (−∞,∞) to (0,1) using the Gaussian distribution 

function. This method is termed naïve, because it does not account for the fact that the optimal 

predictions on the untransformed scale are generally not equal to the inversions of the optimal 

predictions on the transformed scale. This non-linear transformation is taken care of by the 

smearing estimator proposed by Duan (1983) and applied in Li, Qi, Zhang, and Zhao (2016). 

The inverse Gaussian transformations result in infinite values when they are applied to 

LGD observations that equal exactly 0 or 1. Because infinite values are not useful in the 

statistical model, we first need to convert 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 ∈ [0,1] into 𝐿𝐿𝑖𝑖 ∈ (0,1) before we can apply the 

inverse Gaussian transformations. Specifically, 𝐿𝐿𝑖𝑖 is defined as 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 when 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 ∈ (0,1), 

𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 − 𝜖𝜖 when 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 = 1, and 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 + 𝜖𝜖 when 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 = 0. In the previous expressions, 𝜖𝜖 is a 

small positive number. The inverse Gaussian transformations are applied to 𝐿𝐿𝑖𝑖  to produce 𝑍𝑍𝑖𝑖. A 

linear regression model is assumed and estimated for 𝑍𝑍_𝑖𝑖 (i.e., 𝑍𝑍𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑒𝑒𝑖𝑖) and then 

predictions for 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 are obtained from predictions for 𝑍𝑍𝑖𝑖 and 𝐿𝐿𝑖𝑖. 
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More specifically, define 𝐿𝐿�𝑖𝑖 as the predictor for 𝐿𝐿𝑖𝑖, and we can invert 𝑍̂𝑍𝑖𝑖 = 𝑋𝑋𝑖𝑖 𝛽̂𝛽 to 

produce the retransformed predictor 𝐿𝐿�𝑖𝑖 =  ℎ−1�𝑍̂𝑍𝑖𝑖;𝛼𝛼� =  ℎ−1(𝑋𝑋𝑖𝑖 𝛽̂𝛽;𝛼𝛼). The smearing estimator 

works as follows. First, the empirical CDF of the estimated residuals is computed as  

 
𝐹𝐹�𝑁𝑁(𝑟𝑟) =  

1
𝑁𝑁
�𝐼𝐼(𝑒̂𝑒𝑗𝑗 ≤ 𝑟𝑟)
𝑁𝑁

𝑗𝑗=1

  
(A.1) 

where 𝑒̂𝑒𝑖𝑖 = 𝑍̂𝑍𝑖𝑖 − 𝑋𝑋𝑖𝑖 𝛽̂𝛽, N is the number of observations, and 𝐼𝐼(𝐴𝐴) denotes the indicator function 

of the event 𝐴𝐴. Second, using the empirical CDF, an estimate of the mean is expressed as  

 
𝐸𝐸�(𝐿𝐿𝑖𝑖|𝑋𝑋𝑖𝑖) =  

1
𝑁𝑁

 �ℎ−1(𝑋𝑋𝑖𝑖𝛽𝛽 +  𝑒̂𝑒𝑗𝑗;𝛼𝛼)
𝑁𝑁

𝑗𝑗=1

 
(A.2) 

Because 𝛽𝛽 is unknown, the third step is to plug in the OLS estimator and obtain 

 
𝐸𝐸�(𝐿𝐿𝑖𝑖|𝑋𝑋𝑖𝑖) =  

1
𝑁𝑁

 �ℎ−1(𝑋𝑋𝑖𝑖𝛽̂𝛽 +  𝑒̂𝑒𝑗𝑗;𝛼𝛼)
𝑁𝑁

𝑗𝑗=1

 
(A.3) 

For details of this method, please refer to Li, Qi, Zhang, and Zhao (2016). 

Li, Qi, Zhang, and Zhao (2016) show that results from the IG naïve method is sensitive to 

the choice of 𝜖𝜖, the small value to adjust values at 0 or 1. Results based on IG smearing, by 

contrast, is not very sensitive to the choice of 𝜖𝜖. For this reason, we use the IG smearing method 

in this paper. We use 𝜖𝜖 = 0.000001 in the paper. 

 

A.2 Fractional response regression (FRR) 

This simple quasi-likelihood method was proposed by Papke and Wooldridge (1996) to 

model a continuous variable ranging between 0 and 1 and to perform asymptotically valid 

inference. The model specification is as follows: 



 

30 

 

 𝐸𝐸(𝐿𝐿𝐿𝐿𝐿𝐿|𝑋𝑋) = 𝐺𝐺(𝑋𝑋𝑋𝑋) (A.4) 

where 𝑋𝑋 is a vector of explanatory variables, 𝛽𝛽 is a vector of model parameters, and we choose 

the logistic function for 𝐺𝐺(), 

 
𝐺𝐺(𝑋𝑋𝑋𝑋) =  

1
1 + exp(−𝑋𝑋𝑋𝑋) 

(A.5) 

To estimate the coefficients 𝛽𝛽, Papke and Wooldridge (1996) recommend maximizing the 

following quasi-log-likelihood function:      

 �𝑙𝑙𝑖𝑖�𝛽̂𝛽� =  � {𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 × log�𝐺𝐺�𝑋𝑋𝑖𝑖𝛽̂𝛽�� + (1 − 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖) × log [1 − 𝐺𝐺(𝑋𝑋𝑖𝑖𝛽̂𝛽)]}
𝑖𝑖𝑖𝑖

 (A.6) 

A.3 Censored Gamma Regression 

Sigrist and Stahel (2011) introduce gamma regression models to estimate LGD. The probability 

function for the i th observation is 

 
𝑃𝑃𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿; 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖) = �

𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿 = 0) = 𝐺𝐺(𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)
𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿 ∈ (𝑙𝑙, 𝑙𝑙 + 𝑑𝑑𝑑𝑑)� = 𝑔𝑔(𝑙𝑙 + 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)𝑑𝑑𝑑𝑑, 𝑖𝑖 0 < 𝑙𝑙 < 1

𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿 = 1) = 1 − 𝐺𝐺(1 + 𝜉𝜉,𝛼𝛼, 𝜃𝜃𝑖𝑖)
 

(A.7) 

where  𝑔𝑔(𝑢𝑢;  𝛼𝛼,𝜃𝜃𝑖𝑖) =  1
𝜃𝜃𝑖𝑖
𝛼𝛼Γ(𝛼𝛼)

 𝑢𝑢𝛼𝛼−1 𝑒𝑒−𝑢𝑢/𝜃𝜃𝑖𝑖 and  𝐺𝐺(𝑢𝑢;  𝛼𝛼,𝜃𝜃𝑖𝑖) =  ∫ 𝑔𝑔(𝑥𝑥;  𝛼𝛼,𝜃𝜃𝑖𝑖)𝑑𝑑𝑑𝑑
𝑢𝑢
0   are the PDF and 

CDF for a gamma random variable, respectively. Also, 𝛼𝛼 > 0, 𝜉𝜉 > 0, and 𝜃𝜃𝑖𝑖 > 0. Note that 

Sigrist and Stahel (2011) define the underlying latent variable to follow a gamma distribution 

shifted by – 𝜉𝜉. The use of a gamma distribution with a shifted origin, instead of a standard 

gamma distribution, is motived by the fact that the lower censoring occurs at zero. 

The connection between explanatory variables 𝑋𝑋𝑖𝑖 and the expected LGD for the ith 

observation is through the linear equations as follows: 
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 log(𝛼𝛼) = 𝛼𝛼∗, log(𝜉𝜉) = 𝜉𝜉∗, log(𝜃𝜃𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛽𝛽 , (A.8) 

where 𝛽𝛽 is the vector of model coefficients. These coefficients and the parameters 𝛼𝛼∗ and 𝜉𝜉∗ are 

estimated by maximizing the log likelihood function. The resulting estimates are then used to 

obtain LGD predictions: 𝐸𝐸(𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖) =  𝛼𝛼𝜃𝜃𝑖𝑖[𝐺𝐺(1 + 𝜉𝜉,𝛼𝛼 + 1,𝜃𝜃𝑖𝑖) − 𝐺𝐺(𝜉𝜉,𝛼𝛼 + 1,𝜃𝜃𝑖𝑖)] + (1 + 𝜉𝜉)�1 −

𝐺𝐺(1 + 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)� −  𝜉𝜉(1 − 𝐺𝐺(𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)). For more detail on the censored gamma regression, refer 

to Sigrist and Stahel (2011).  

 

A.4 Two-Tiered Gamma Regression 

Sigrist and Stahel (2011) extend the censored gamma model into the two-tiered gamma model. 

This extension allows for two underlying latent variables, one that governs the probability of 

LGD being 0 and another for LGD being in (0, 1). The extension is useful in that it allows each 

latent variable to have its own set of explanatory variables and parameters. 

More specifically, the two-tiered gamma regression assumes that there are two latent 

variables: the first latent variable, 𝐿𝐿1∗ , which follows a shifted gamma distribution with density 

function 𝑔𝑔(𝐿𝐿1∗ + 𝜉𝜉,𝛼𝛼,𝜃𝜃�𝑖𝑖), and the second variable, 𝐿𝐿2∗ , which is a shifted gamma distribution 

lower truncated at zero with the density function  𝑔𝑔(𝐿𝐿2∗ + 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖),. These two latent variables are 

then related to LGD through 

 𝐿𝐿𝐿𝐿𝐿𝐿 = 0 𝑖𝑖𝑖𝑖 𝐿𝐿1∗ < 0  

 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿2∗  𝑖𝑖𝑖𝑖 0 < 𝐿𝐿1∗ , 𝐿𝐿2∗ < 1 (A.9) 

 𝐿𝐿𝐿𝐿𝐿𝐿 = 1 𝑖𝑖𝑖𝑖 0 < 𝐿𝐿1∗ , 1 ≤ 𝐿𝐿2∗   

The distribution of LGD can be characterized as follows: 
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𝑃𝑃𝑖𝑖�𝐿𝐿𝐿𝐿𝐿𝐿;  𝜉𝜉,𝛼𝛼,𝜃𝜃𝚤𝚤� ,𝜃𝜃𝑖𝑖� =  

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿 = 0) = 𝐺𝐺(𝜉𝜉,𝛼𝛼, 𝜃𝜃𝚤𝚤�) 

𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿 ∈ (𝑙𝑙, 𝑙𝑙 + 𝑑𝑑𝑑𝑑)� = 𝑔𝑔(𝑙𝑙 + 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)
1−𝐺𝐺�𝜉𝜉,𝛼𝛼,𝜃𝜃𝚤𝚤� �
1−𝐺𝐺(𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)

𝑑𝑑𝑑𝑑, 𝑖𝑖𝑖𝑖 0 < 𝑙𝑙 < 1

𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿 = 1) = 1 − 𝐺𝐺(1 + 𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)
1−𝐺𝐺(𝜉𝜉,𝛼𝛼,𝜃𝜃𝚤𝚤� ) 
1−𝐺𝐺(𝜉𝜉,𝛼𝛼,𝜃𝜃𝑖𝑖)

     

(A.10) 

 

The connection between the explanatory variables 𝑋𝑋𝑖𝑖 and the expected LGD is through the linear 

equations as follows: 

 log(𝛼𝛼) = 𝛼𝛼∗  

 log(𝜉𝜉) = 𝜉𝜉∗ (A.11) 

 log�𝜃𝜃𝚤𝚤�� = 𝑋𝑋𝑖𝑖𝛽𝛽 (A.12) 

 log(𝜃𝜃𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛾𝛾 (A.13) 

where 𝛽𝛽, 𝛾𝛾 are vectors of model coefficients. These coefficients and the parameters 𝛼𝛼∗and 𝜉𝜉∗are 

estimated by maximizing the log likelihood.  

A.5 Inflated Beta Regression 

Ospina and Ferrari (2010a) propose inflated beta distributions that are mixtures between a beta 

distribution and a Bernoulli distribution degenerated at 0, 1, or both 0 and 1. Ospina and Ferrari 

(2010b) then further develop inflated beta regressions by assuming the response distribution to 

follow the inflated beta and by incorporating explanatory variables into the mean function. 

Ospina and Ferrari (2010a) propose that the probability function for the ith observation is



 

33 

 

 
𝑃𝑃𝑖𝑖�𝐿𝐿𝐿𝐿𝐿𝐿;  𝑃𝑃0𝑖𝑖 ,𝑃𝑃1𝑖𝑖 , 𝜇𝜇𝑖𝑖,𝜙𝜙� =  �

𝑃𝑃0𝑖𝑖                                                 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿 = 0
�1 − 𝑃𝑃0𝑖𝑖 −  𝑃𝑃1𝑖𝑖�𝑓𝑓�𝐿𝐿𝐿𝐿𝐿𝐿;  𝜇𝜇𝑖𝑖,𝜙𝜙�    𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿 ∈ (0,1)

𝑃𝑃1𝑖𝑖                                                 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿 = 1
 

(A.14) 

where 0 < 𝜇𝜇𝑖𝑖 < 1, 𝜙𝜙 > 0, and 𝑓𝑓(⋅) is a beta probability density function (PDF), i.e., 

 
𝑓𝑓�𝐿𝐿𝐿𝐿𝐿𝐿;  𝜇𝜇𝑖𝑖,𝜙𝜙� =

Γ(𝜙𝜙)
Γ(𝜇𝜇𝑖𝑖𝜙𝜙)Γ�(1 − 𝜇𝜇𝑖𝑖)𝜙𝜙�

𝐿𝐿𝐿𝐿𝐷𝐷𝜇𝜇𝑖𝑖𝜙𝜙−1(1 − 𝐿𝐿𝐿𝐿𝐿𝐿)�1−𝜇𝜇𝑖𝑖�𝜙𝜙−1 
(A.15) 

Note that 𝜇𝜇𝑖𝑖 is the mean of the beta distribution, and 𝜙𝜙 is interpreted as a dispersion parameter. 

The mean function is 𝐸𝐸(𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖) = 𝑃𝑃1𝑖𝑖 +  𝜇𝜇𝑖𝑖�1 − 𝑃𝑃0𝑖𝑖 − 𝑃𝑃1𝑖𝑖�. The connection between explanatory 

variables 𝑋𝑋𝑖𝑖 and the expected LGD is through the three equations as follows: 

 𝑃𝑃0𝑖𝑖 = 𝑒𝑒𝑋𝑋𝑖𝑖𝛼𝛼/(1 + 𝑒𝑒𝑋𝑋𝑖𝑖𝛼𝛼 + 𝑒𝑒𝑋𝑋𝑖𝑖𝛽𝛽) (A.16) 

 𝑃𝑃1𝑖𝑖 = 𝑒𝑒𝑋𝑋𝑖𝑖𝛽𝛽/(1 + 𝑒𝑒𝑋𝑋𝑖𝑖𝛼𝛼 + 𝑒𝑒𝑋𝑋𝑖𝑖𝛽𝛽) (A.17) 

 𝜇𝜇𝑖𝑖 = 𝑒𝑒𝑋𝑋𝑖𝑖𝛾𝛾/(1 + 𝑒𝑒𝑋𝑋𝑖𝑖𝛾𝛾) (A.18) 

where the parameters 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are model coefficients. These coefficients along with 𝜙𝜙 are 

estimated by maximizing the log likelihood function. For details on the inflated beta regression 

in general, see Ospina and Ferrari (2010b), Pereira and Cribari-Neto (2010), and Yashkir and 

Yashkir (2013).18   

A.6 Beta Regression 

Beta regression was proposed by Duan and Hwang (2014). These authors assume that the 

recovery rate 𝐿𝐿𝐺𝐺𝐺𝐺𝑖𝑖  is defined as  

                                                 
18 Our parameterizations of the probabilities in (13) and (14) are slightly different from the ones in Yashkir and 
Yashkir (2013). Our parameterizations ensure that each probability is positive and that the mixture weights in (11) 
sum to 1, while the parameterizations in Yashkir and Yashkir (2013) do not guarantee that 𝑃𝑃0𝑖𝑖+ 𝑃𝑃1𝑖𝑖<1, resulting in 
mixture weights in (11) that may be negative for 𝐿𝐿 ∈ (0, 1). 
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𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 =  �

0                   𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖 ∈ (−𝐶𝐶𝑙𝑙, 0]
𝑍𝑍𝑖𝑖                        𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖 ∈ (0, 1)
1                𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖 ∈ [1, 1 + 𝐶𝐶𝑢𝑢)

 
(A.19) 

where the two constants 𝐶𝐶𝑙𝑙 ≥ 0, 𝐶𝐶𝑢𝑢 ≥ 0, and 𝑍𝑍𝑖𝑖+𝐶𝐶𝑙𝑙
1+𝐶𝐶𝑙𝑙+𝐶𝐶𝑢𝑢

 follows a beta distribution with parameters, 

𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖, and 𝑎𝑎𝑖𝑖 = ln {1 + exp(𝑥𝑥𝑖𝑖𝜃𝜃)} and 𝑏𝑏𝑖𝑖 = ln {1 + exp(𝑥𝑥𝑖𝑖Ψ)}. The parameters 𝑐𝑐_𝑙𝑙, 𝑐𝑐𝑢𝑢, 𝜃𝜃, 

and Ψ can be estimated by maximizing the log likelihood function. For more details of this 

method, please see Duan and Hwang (2014). 
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Table 1: Model Fit  

 
Panel A: Coefficient estimates of the IB, the true model     

 Alpha Beta Gamma Phi 

 True 
parameter 

Estimation 
True 
parameter 

Estimation 
True 
parameter 

Estimation 
True 
parameter 

Estimation 
  Coeff SE Coeff SE Coeff SE Coeff SE 

X1 0.1 0.105 0.015 -1 -0.994 0.016 0 0.001 0.011 1.6 1.599 0.014 

X2 -0.05 -0.051 0.002 0.06 0.060 0.002 0.005 0.004 0.002    

X3 0.4 0.400 0.008 -0.1 -0.105 0.008 -0.1 -0.110 0.006    

X4 0.4 0.406 0.008 -0.1 -0.104 0.008 -0.1 -0.111 0.006    

X5 0.4 0.398 0.008 -0.1 -0.097 0.008 -0.1 -0.090 0.006    

X6 0.4 0.403 0.008 -0.1 -0.098 0.008 -0.1 -0.104 0.006    

X7 0.4 0.391 0.008 -0.1 -0.107 0.008 -0.1 -0.114 0.006    

X8 0.4 0.404 0.008 -0.1 -0.102 0.008 -0.1 -0.100 0.006    

X9 0.4 0.396 0.008 -0.1 -0.100 0.008 -0.1 -0.094 0.006    

X10 0.4 0.418 0.008 -0.1 -0.091 0.008 -0.1 -0.107 0.006    

X11 0.4 0.406 0.008 -0.1 -0.087 0.008 -0.1 -0.106 0.006       

 
 
Panel B: Full set of explanatory variables on the RHS 
  SSE R2 Pearson Kendall Spearman 

 OLS 68148.936 0.0770 0.278 0.204 0.284 
 IG Smearing 68542.935 0.0717 0.277 0.204 0.284 
 FRR 68149.380 0.0770 0.278 0.204 0.284 
 CG 68175.058 0.0767 0.278 0.204 0.284 
 TTG 68142.629 0.0771 0.278 0.204 0.284 
 BR 68140.991 0.0771 0.278 0.204 0.284 
 IB 68122.967 0.0774 0.278 0.204 0.284 
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Panel C: Omission of four explanatory variables from the RHS 

  SSE R2 Pearson Kendall Spearman 
 OLS 70632 0.043 0.208 0.152 0.213 
 IG Smearing 70786 0.041 0.208 0.152 0.213 
 FRR 70631 0.043 0.208 0.152 0.213 
 CG 70650 0.043 0.208 0.152 0.213 
 TTG 70641 0.043 0.208 0.152 0.213 
 BR 70632 0.043 0.208 0.152 0.213 
 IB 70626 0.043 0.209 0.152 0.213 
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Table 2: KS Statistics     

 
Full set of explanatory 
variables 

Omitting explanatory variables 

 
4 Omitted 8 Omitted 

OLS 0.203 0.204 0.203 
IG Smearing 0.346 0.346 0.346 
CG 0.023 0.023 0.023 
TTG 0.021 0.021 0.020 
BR 0.004 0.004 0.004 
IB 0.001 0.001 0.001 

 

 

 

Figure 1 – Original distributions of data generated from the IB  distribution with the true 

parameters shown in Panel A of Table 1.  
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Figure 2: Predicted means from a full set of explanatory variables on the RHS 
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Figure 3: Kernel densities of predicted means from various model specifications 
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Figure 4: Predicted distributions from a full set of explanatory variables on the RHS 

Panel A, Predicted distributions of OLS, IG Smearing, TTG and CG, TTG, IB, and BR 

 

Panel B, Predicted distributions for FRR with different alphas 
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Figure 5 CDFs of the predicted unconditional distributions 

Panel A: Full specification 

 

Panel B: Omitting four explanatory variables from the RHS  
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Figure 6: Predicted conditional distributions - KS statistics 

Panel A:  

 

Panel B:  
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Figure 6  Continued 

Panel C:  

 

Panel D:  
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Figure 7 Predicted conditional distributions - Quantile plots – Full specification 
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Figure 7 Continued 
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Figure 8  Marginal effects 
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Figure 9 IG naïve versus the IG smearing method 
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