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Introduction 

Periods of fast rise in prices, followed by rapid declines—termed “bubbles” and “crashes”—

stimulate economic debate on the reasons behind wide swings in asset values. Recent theoretical and 

empirical work suggests that bubbles can inflate even if there are large numbers of highly capitalized, 

rational arbitrageurs. Abreu and Brunnermeier (2002, 2003) argue that bubbles can persist in the 

presence of rational arbitrageurs who experience a synchronization problem or inability to 

coordinate their trading strategies. This occurs when arbitrageurs lack the power to offset irrational 

exuberance unless they can coordinate their attacks on the bubble. 

Synchronization risk arises from arbitrageur’s uncertainty about when other arbitrageurs will 

start exploiting a common arbitrage opportunity (Abreu and Brunnermeier, 2002 and 2003). The 

arbitrage opportunity appears when prices move away from fundamental values. In a market 

populated by rational investors this arbitrage opportunity will be immediately explored. However, 

the recent literature provides evidence that small noise traders can drive prices significantly further 

from fundamentals (Barber, Odean and Zhu 2006; Hvidkjaer 2006). The effect of noise traders is 

driven by market preferences or sentiment (Shleifer and Summers, 1990). If the small investors are 

optimistic about the stock they will exert buying pressure and move the prices further up from 

fundamental value. In this situation arbitrage is no longer risk-less. Arbitragers acquire another 

factor to account for – investor preferences towards a particular stock or a particular type of stocks. 

If, for example, arbitrager observes that the stock is overpriced and wants to enter a short position 

he might face the risk that the stock will be even more overpriced in the future. If arbitrager cannot 

predict investors’ preferences towards the stock, or for how long the market is going to be 

optimistic about the stock, the arbitrage becomes impossible. Synchronization risk, therefore, leads 

to market timing by arbitrageurs and delays arbitrage.  

 Understanding the nature of synchronization risk is important for the interpretation of the 

recent rise and fall in technology stock prices. Empirical evidence on the nature of synchronization 

risk, however, is difficult to obtain. This is partly because the behavior of investors and their impact 

on prices is hard to observe simultaneously.1 Temin and Voth (2004) use trading behavior of an 

informed investor during the South Sea bubble in 1720’s and find support for the synchronization 

                                                 
1 Brav and Heaton (2002) explore other fundamental reasons for the difficulty of separating competing theories of 
financial anomalies. They find that “behavioral” theories built on investor irrationality, and “traditional structural 
uncertainty” theories built on incomplete information about the structure of the economy, have many mathematical and 
predictive similarities. The theories are difficult to distinguish, in spite of the fact that they relax opposite assumptions of 
the rational expectations paradigm. 
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risk hypothesis. They show that the need for coordination in attacking the South Sea bubble was the 

key to allowing it to inflate.  

In this paper we focus on the behavior of the technology stocks during the period from 

1996 to 2003.2 We develop a measure that reflects important characteristic of investors in 

technology stocks—an estimate of investor risk aversion. Bakshi and Wu (2006) show that 

information in options on the NASDAQ 100 Index can be used to measure the degree of investor 

irrationality during NASDAQ bubble. Closely related are the methods developed in Bliss and 

Panigirtzoglou, (2004) and Jackwerth (2000) that show how equity options on an asset and the 

returns on this asset can be used jointly to extract preferences toward risk of investors in the asset.3 

We measure preferences toward risk of investors in technology stocks by estimating the value of risk 

aversion for the stocks in XCI Index for the period from 1996 through 2003. This is a major index 

of technology stocks. Our estimates capture variation in attitudes of investors in individual stocks. 

As suggested by Shleifer and Summers (1990), change in investors’ beliefs, investor 

sentiment, or attitude toward risk affect the demand for risky assets. Therefore, changes in demand 

associated with change in risk preferences should be reflected in trading activity. We explicitly test 

this hypothesis. We find that changes in investor risk preferences are an important determinant of 

the demand for company shares and of the stock trading activity. Changes in risk preferences are 

closely related to trading activity. In particular, changes in company specific risk preferences are 

positively and significantly related to turnover. Our results are established at the level of individual 

technology stocks. This result survives when, in addition to change in risk preferences at the 

company level, we control for changes in the aggregate, market-level, preferences toward risk. 

 Our first conclusion is that changes in risk preferences of investors in a stock are closely 

related to the demand for shares. When this is the case, stocks that experience similar changes in 

investor risk preferences may be expected to experience similar shifts in demand and therefore 

exhibit similarities in their patterns of stock returns and other economic variables that capture stock 

trading activity. We test this and we find that stocks with similar behavior of investor risk aversion 

also display similarity in other economic characteristics: 

                                                 
2 There is another very important difference. Note that the in case of the South Sea bubble whole bubble was concentrated 
in the one asset (The South Sea Company’s stock), whereas the NASDAQ technology bubble trading behavior was 
spread over many assets. This adds an new and important dimension to the notion of synchronization risk. Our study 
explores this dimension. 
3 This method has been used recently by Blackburn, Goetzmann and Ukhov (2006) to study preferences of value and 
growth investors. 
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• Stocks, for which risk aversion changes in a similar way also tend to have similar 

returns. 

• Stocks that have similar changes in investor preferences are also categorized by similar 

trading behavior (share turnover). 

• Stocks with similar changes in risk aversion have similar changes in liquidity. 

The results suggest that preferences toward risk on individual stock level are a significant 

determinant of demand for the stock and of the stock price behavior. This, conclusion is consistent 

with the literature which argues that individual investors can drive stock prices (Barber, Odean and 

Zhu (2006), Hvidkjaer (2006)).  

Next, we turn to the recent rise and fall of prices of technology stocks. If the technology 

price bubble was driven by similar changes in investor attitudes (or sentiment) across the technology 

stocks than we would expect similarities in the behavior of the estimated risk preferences for 

investors in these stocks. Specifically, the major event of this period--collapse of prices in March 

2000--should be observed in all the measures for all stocks approximately at the same point in time. 

To test for coordination risk we run a test of structural break for each time series of risk aversion. 

The structural break in risk aversion can be associated with a significant change in market sentiment 

about the stock. For example the change from optimism to pessimism would result in change in 

trading behavior, a change from buying to selling. This would lead to significant price decline and 

eventually be reflected as a structural break in time series of estimated risk preferences. This change 

in trading strategies was observed during the bubble: hedge funds were riding the bubble till March 

2000 and they pooled out before the bubble burst (Brunnermeier and Nagel, 2004). Therefore, the 

change in market opinion about the stock or the signal of whether to continue or withdraw from 

investing into the stock should be reflected as a structural break (breaks) in estimated risk aversion.  

We first test for one structural break at unknown date using methodology of Bai, 

Lumsdaine, and Stock (1998). The advantage of this test is that it does not take an a priori stand on 

the date of a structural change. We, therefore, adopt a flexible approach and let the data determine 

the date of a structural change for each stock in the sample. We find that different stocks have 

structural breaks at different times. It means that investors’ behavior in each individual stock was 

independent from other stocks in the same industry (all stocks in the sample are NASDAQ 

technology stocks and are members of a major technology index). It further suggests that similar 

stocks had different levels of either optimism or pessimism during the bubble. The arbitrage 

becomes very difficult in the situation like this. Arbitragers could not predict on average for how 



 6

long the market optimism about the bubble is going to persist. Shleifer and Summers (1990) argue 

that this makes arbitrage a risky strategy, and Abreu and Brunnermeier (2002, 2003) suggest that it 

leads to a synchronization risk.  

We further allow for three structural breaks at unknown dates. Three structural breaks in 

estimated risk preferences are consistent with the interpretation where first, market shifts from a 

“normal” state into a “bubble period,” second, the bubble bursts and a decline begins (a “crash” 

takes place), and finally the prices enter the stable period again. Our stand here is that if 

coordination among arbitragers was possible than the second period for each individual stock 

should come on March or April of 2000. March of 2000 is the last month when prices peaked up 

and we would expect the structural shift in risk preferences either at this time or in April of 2000 if 

arbitragers can forecast market optimism and pool out before the prices collapsed.4 Only one stock 

out of twenty one we analyze and the XCI index has structural breaks associated with our null 

hypothesis. This provides further support of coordination failure and synchronization risk advocated 

by Abreu and Brunnermeier (2002, 2003). 

Brunnermeier and Nagel (2004), however, report that hedge funds pooled out from the 

bubble before prices collapsed. It suggests that some coordination was, indeed, possible before the 

bubble burst. Since individual stocks or the XCI index itself provide no evidence of a coordinating 

signal, we analyze aggregate risk preferences. The aggregate risk preference is obtained as equally-

weighted average preferences in individual stocks. This measure can suggest the general market 

opinion about the technology stocks. This information is not available at individual stock level, 

when stocks are considered separately from one another. Also, on the individual stock level we do 

not know which stock (or a group of stocks) is more influential in driving the technology prices and 

sustaining the same level of optimism. Thus, the aggregate data can be informative. 

As before, we run a test of structural break (breaks) for aggregate time series of risk 

preferences. The result is remarkable. One-structural break test at an unknown date indicates a break 

on April 2000. It means that the general market attitude towards technology stocks changes at this 

time. This is exactly what we observe in the price data. The last month of market optimism is March 

of 2000, when the prices picked up the last time. The three-structural break test at unknown dates 

indicates that, on average, market entered the bubble in August 1998, the bubble bursts in April 

2000, and stabilization period began in July 2001. This pattern very closely corresponds to the 

                                                 
4 Brunnermeier and Nagel (2004) show that hedge-funds pooled out from the market before the prices drop indicating 
that to some extent they were able to predict the market optimism about technology stocks. 
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observed price data. Both tests point towards the fact that the average market opinion or market 

optimism changed in April 2000. Combined with the evidence that hedge-funds quit the bubble 

earlier (Brunnermeier and Nagel, 2004), this result suggests that arbitragers were able to predict the 

aggregate structural change in market optimism and pooled out before it changed. In aggregate, 

markets had a predictable change in preference which, as we find, coincides with the time of bubble 

burst.  

Overall, we infer from this evidence that coordination risk may indeed have been present, 

making the job of arbitrageurs difficult or impossible. This supports synchronization risk theory. We 

also observe a dramatic change in aggregate risk preferences across NASDAQ technology stocks 

during the bubble collapse. 

The rest of the paper is organized as follows. Section II describes methodology and data. 

Section III characterizes the relationship between risk aversion, trading activity and other market 

variables. Sections IV and V describe the structural break tests and the results. Section VI concludes.  

 

II. Methodology and Data 

To assess presence of synchronization risk we build a measure of stock-specific characteristics of the 

representative investor in this stock—investor risk preferences. In this section we discuss how the 

marginal investor’s risk aversion for a particular stock can be estimated from the data on stock 

returns and options written on the stock. 

 

Recovering Risk Aversion 

An estimate of risk aversion can be obtained from asset prices. There is a relationship 

between the risk-neutral probability distribution of returns on a stock  i , ( )TiSP , , subjective (true) 

probability distribution ( )TiSQ , , and investor risk aversion. The relation is,5 
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where ( )•U  is the investor’s time–separable utility of wealth. Therefore, knowing the subjective 

distribution and the risk neutral distribution is sufficient to find risk aversion. 

 To determine the two distributions, we combine the methodologies of Bliss and 

Panigirtzoglou (2002, 2004) and Jackwerth (2000). Using option prices for a particular underlying 

                                                 
5 See, for example, discussion in Jackwerth (2000). 
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stock, we estimate the risk-neutral probability density function (PDF) according to Bliss and 

Panigirtzoglou (2002, 2004). We then use five years of past monthly stock returns to determine a 

risk-adjusted (or, subjective) PDF using a nonparametric kernel density estimator similar to the one 

used in Jackwerth (2000).  Risk aversion is the adjustment required to transform the risk-neutral 

PDF into the risk-adjusted PDF. Using this method, the risk aversion coefficient can be estimated 

for every trading day for any asset for which option prices are available. 

 

Risk-neutral probability distribution 

 To find risk-neutral distribution we use the following approach. It is known from option 

pricing theory that the risk-neutral PDF is embedded in option prices.  Let T be the expiration date 

of an option. The PDF, f(Si,T), for the underlying asset i at time T has been shown to be related to 

the price of the European call option, C(Si,t, K, t), by Breeden and Litzenberger (1978).  Here, K is 

the option strike price and Si,t is the price of underlying i at time t where t<T.  This relationship is  
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For each underlying asset, i , and for each expiration date, however, the function ( )tKSC ti ,,,  is 

unknown and only a limited set of call options with different strike prices exist.  Therefore, in order 

to calculate the second derivative we estimate a smoothing function using option prices with 

different strike prices but with the same expiration dates. 

Instead of estimating such a smoothing function in option price/strike price space, we 

follow Bliss and Panigirtzoglou (2002, 2004) by first mapping each option price/strike price pair to 

the corresponding implied volatility/delta. We fit a curve connecting the implied volatility/delta 

pairs using a weighted cubic spline where the option’s vega is used as the weight. We take 300 points 

along the curve and transform them back to the option price/strike price space. We thus obtain a 

smoothed price function, which we numerically differentiate to produce the estimated PDF. Bliss 

and Panigirtzoglou (2002) find that this method of estimating the implied volatility smile and the 

implied PDF is “remarkably free of computational problems.” 

A weighted natural spline is used to fit a smoothing function to the transformed raw data. 

The natural spline minimizes the following function: 
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where we omit the company-identifying index, i , for brevity; jIV  is the implied volatility of the thj  

option on stock i  in the cross section; ( )θ,jIV Δ  is the fitted implied volatility which is a function 

of the thj  option delta, jΔ , and the parameters, θ , that define the smoothing spline, ( )θ;xg ; and 

jw  is the weight applied to the thj  option’s squared fitted implied volatility error. Following Bliss 

and Panigirtzoglou (2004), we use the option vegas, σ∂∂≡ /Cv , to weight the observations. The 

parameter λ  is a smoothing parameter that controls the tradeoff between goodness-of-fit of the fitted 

spline and its smoothness measured by the integrated squared second derivative of the implied 

volatility function.  

From the estimated cubic spline curve, we take 300 equally spaced deltas and their 

corresponding implied volatilities and transform them back to option price/strike price space using 

the Black-Scholes option pricing formula that accounts for dividends paid on the stock. However, 

although the deltas are equally spaced, the strike prices that are obtained after the conversion are 

not. We use a cubic spline for a second time to fit a curve connecting the 300 unequally spaced call 

price/strike price pairs. This allows us to choose 300 equally spaced strike prices with their 

corresponding call prices. Finally, we use finite differences to estimate the second derivative of the 

call price with respect to the strike price. This yields the risk-neutral PDF. This procedure does not 

depend on a specific option pricing model (Bliss and Panigirtzoglou 2004). 

 

Subjective probability distributions 

 We use a kernel density estimator to estimate the subjective (risk-adjusted) probability 

density functions. Similar procedure is used in Jackwerth (2000).6 We use the most recent 60 months 

of stock return data to estimate the risk-adjusted distribution. To find estimates for January 1996, we 

use monthly return data from January 1991 to December 1995. All information used in the 

calculation is part of the investors’ information set. Other windows were considered but results were 

highly correlated. For example, we tried a window of past returns with a lag of one year or six 

month, and we tried using 72 months of returns instead of 60. Varying our initial choices does not 

change the results. 

                                                 
6 This is different from Bliss and Panigirtzoglou (2004) who first hypothesize a utility function (power and exponential 
utility) for the investor and then use this function to convert the risk-neutral PDF to the subjective PDF. We do not 
follow this approach because we do not hypothesize a utility function. 
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 We calculate monthly non-overlapping returns from our 5-year sample and compute the 

kernel density with a Gaussian kernel. The bandwidth 

[ ] 5/1)3/(4ˆ nh σ= , 

where h is the kernel bandwidth, σ̂  is the standard deviation of the sample returns, and n is the 

number of observations, is selected by recommendation of Jones, Marron and Sheather (1996). 

 

Data 

 The data for this study consists of daily closing prices of call options written on the stocks 

that are included in the XCI Index. This is the index of 30 major technology stocks. The study 

covers the eight-year period from January 2, 1996 through December 31, 2003, since this is the 

period when prices of options are available to us. In addition to the daily closing option prices, we 

use monthly stock returns and daily stock closing prices from CRSP. Table 1 lists the firms in the 

sample. We include all stocks for which data on exchange-traded options is available. This gives a 

sample of 21 technology firms. Microsoft is the largest firm in our sample, with market capitalization 

of $295 Billion at the end of the period. The smallest firm in the sample is Advanced Micro Devices 

(AMD) with market capitalization of $5 Billion. The sample includes notable and prominent firms 

that were at the center of attention during the technology bubble—Apple, Cisco Systems, Dell, IBM, 

Intel, Motorola, Sun, and others. 

To estimate risk aversion we need prices of options written on the stocks in the sample. All 

previous researchers have studied risk aversion using the options on the S&P 500 Index. For index 

options, a relatively large cross section of strikes exists, all with the same expiration date. Because of 

this large selection of options, Bliss and Panigirtzoglou (2004) require at least 5 such options in 

order to do their estimation. We are considering individual stocks. Companies tend to have a smaller 

cross section of options with different strike prices and their options are comparatively less liquid 

than index options. Because of this, we require a firm to have options with at least three different 

strike prices. Similar to Jackwerth (2000), we estimate risk aversion with a constraint on the money-

ness. Jackwerth only considers options such that the ratio of the strike price to the stock price is 

between 0.84 and 1.12. This procedure eliminates far-away-from-the-money observations. This may 

cause a problem of missing observations, but only when there are large movements in the stock 

price.  Since options with only a few different strikes are traded for each firm (usually five or six 

strikes), a large enough movement in the stock price causes the money-ness to fall in a window that 

does not have three option contracts for us to use. We do not estimate risk aversion for such days. 
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Not surprising, tossing out options that are way in the money or way out of the money affects risk 

aversion estimates in the tales of the distribution. Our robustness checks indicate that the estimates 

in the middle of the distribution are generally unaffected by the money-ness constraints. We find our 

results to be robust to the selection of options. 

 For our estimation, we use options that expire between one and four months from day t. 

Options on stocks generally exist with expiration dates at three-month intervals. For example, 

options on Microsoft expire in January, April, July, and October.  Therefore, for all days in January, 

we use options expiring in April. For all days in March, we use those options expiring in July. We 

use this approach to maintain a relatively constant horizon for our analysis, and at the same time to 

have a sufficient number of option contracts to obtain reliable risk aversion estimates.  

For each of the 21 technology stocks in the sample, for each trading day between January 4, 

1996 and December 31, 2003 we calculate estimates of Arrow-Pratt risk aversion coefficient, a 

computationally intensive process. We use daily estimates to compute a monthly estimate of risk 

aversion for the stock. Thus, for each stock we have a time series of risk aversion estimates at 

monthly frequency, from January 1996 through December 2003.  

 

 

III. Trading Activity and Risk Aversion 

 As a first step towards understanding the connection between changes in risk preferences 

and asset prices we study whether changes in risk aversion are related to trading activity. Changes in 

demand for securities can reflect changes in risk aversion (Shleifer and Summers, 1990; Barberis and 

Shleifer 2003). If this is the case, then trading activity will be affected by changes in risk preferences. 

When preferences toward risk change, investors adjust their portfolios accordingly. We conduct 

several tests to determine whether there is a connection between investor risk aversion and trading 

activity.  

 In the first set of tests we perform individual regressions for all companies in the sample. 

For each firm we estimate a linear model, 

ttttt RTRNRATRN εβββα +++Δ+= −− 13121 . 

We use turnover, tTRN , as  a measure of trading activity. Turnover is defined as trading volume 

divided by the number of shares outstanding, for a given firm in a month t . Change of the risk 

aversion of investors in the stock over the month, 1−−=Δ ttt RARARA , is the variable whose affect 
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on turnover we would like to assess. Past turnover can affect current turnover (Lee and 

Swaminathan 2000) and we include lag of turnover, 1−tTRN , as well as lag of return on the stock, 

1−tR , in the regression. Table II reports results of these regressions. Change in risk aversion is a 

significant determinant of the turnover in 12 out of 21 firms in the sample.  

 The demand for company shares may be driven by changes in risk preferences of investors 

in this particular stock as well as by market-wide changes in risk aversion. These are two separate 

effects. Individual stocks are a part of an industry group and are also a part of the overall U.S. stock 

market. The demand for stocks there depends on changes in industry-wide and market-wide 

preferences. In view of this complication we test whether changes in risk aversion at the company 

level remain significant controlling for market-wide changes in preferences. To test this, we include 

change of the risk aversion at the market level, 1−−=Δ ttMt RARARA , and estimate the model 

tMttttt RARTRNRATRN εββββα +Δ+++Δ+= −− 413121 . 

We use risk aversion for the XCI Index for industry-level preferences and risk aversion for the S&P 

500 Index as the market-wide measure. The results of individual company regressions are not 

changed. The coefficient of the change in company-specific risk aversion remains significant (Table 

III). 

 

GLS regressions 

In this section we report the results of pooled cross-section time-series regressions of the 

turnover on risk aversion and the control variables. By estimating simultaneously the coefficient of 

the risk aversion and the coefficients for control variables, we avoid the potential errors-in-variables 

problems associated with the traditional Fama and MacBeth (1973) procedure.7 

We conduct the analysis using the data for 21 technology firms that are members of the XCI 

Index for which estimates of risk aversion are available. The estimation proceeds as follows. Define 

TRN  as the ( )121 ×T  vector of individual company turnover (defined as trading volume over a 

month divided by the number of shares outstanding), where T is the total number of time-series 

observations. The vector is ordered by month so that the first 21 observations correspond to the 

turnover in month 1. Define X as the partitioned matrix 

                                                 
7 Brennan and Subrahmanyam (1996) use this approach in their study of returns and liquidity. 
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⎥⎦
⎤

⎢⎣
⎡= ZWX , 

where Z is a ( )4221 ×T  matrix of control variables. There are two control variables: lagged trading 

volume and lagged return on the stock. The first 21 columns of Z consist of T stacked ( )2121×  

diagonal matrices with elements 1, −tiTRN , the lagged turnover for company i  in month t ; the 

second 21 columns of Z consist similarly of the lagged return on the stock, 1, −tiR . The matrix W is a 

( )221 ×T  matrix, whose first column is a vector of ones and second column is the vector of 

changes in risk aversion, tiRA ,Δ , whose influence on trading activity we wish to assess. 

 We first perform the OLS pooled cross-section time-series regression 

 εβ += XTRN ,        (1) 

where β  is a 44 vector of coefficients, the first element of which is the constant term of the 

regression, the next element of which is the coefficient of the change in risk aversion variable, and 

the last 42 elements of which are the coefficients of the two control variables for the stocks ordered 

by security. ε  is a 121 ×T  vector of errors. In our application the sample consists of monthly 

turnover and risk aversion changes from February 1996 to December 2003 so that 95=T . To 

obtain the GLS estimator of β , we estimate Ω , the variance-covariance matrix of errors in (1) 

assuming that the stock turnover errors are serially independent, but allowing for cross-sectional 

dependence. Then Ω  is a ( )TT 2121 ×  block-diagonal matrix, whose typical element is the 

2121× covariance matrix of errors: it is estimated using the residuals from (1). The GLS estimate of 

β  is given by  

 ( ) YXXX 111 ˆˆˆ −−− Ω′Ω′=β , 

where Ω̂  is the estimate of Ω  from the first-stage regressions. 

The results of the GLS regression (Table IV) confirm the results from individual company 

regressions. The constant term is 802.0=α  with t-statistics of 9.73. The regression coefficient for 

the change in risk aversion is 031.01 =β  with t-statistics of 2.64. For brevity, we do not report the 

remaining 42 company-specific coefficients for the control variables.  

We repeat GLS estimation while controlling for changes in the risk preferences at the market 

level. To do this we modify the Z matrix to become a ( )6321 ×T  matrix of control variables. The 

first 42 columns of Z remain unchanged. We add 21 columns to the right. The new columns consist 
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of T stacked ( )2121×  diagonal matrices with identical elements MtRAΔ , the change in the risk 

aversion at the market level in month Ttt ,...,1, = . We use two different indices as the market. First, 

we use risk aversion computed from options on the XCI Index to capture changes in risk preferences 

of investors in the technology sector. Second, we use risk aversion computed from options on S&P 

500 Index to reflect changes in market-wide attitude toward risk. 

Controlling for market-wide changes in risk preferences does not alter our findings. The 

results are given in Table IV. The coefficient on the change in company-specific risk aversion 

remains unchanged and retains significance. 

 We conclude that changes in risk aversion significantly affect turnover at the level of 

individual firms. This result establishes a connection between risk aversion, trading activity, and 

demand for securities. This is an important finding. It is a test of a widely discussed (refer to Shleifer 

and Summers 1990) but previously untested hypotheses that changes in preferences toward risk may 

affect the demand. We also establish that changes in company-specific risk preferences remain to be 

a significant determinant of the turnover when we control for market-wide changes in risk aversion. 

This finding highlights the importance of changes in risk attitude at a company level as a determinant 

of demand. 

 

Additional Evidence 

Changes in risk preferences of investors in a stock are closely related to the demand for 

shares. When this is the case, stocks that experience similar changes in investor risk preferences may 

be expected to experience similar shifts in demand and therefore exhibit similarities in their patterns 

of stock returns and other economic variables that capture stock trading activity. We perform several 

tests to investigate whether stocks with similarities in the behavior of risk aversion also display 

similarities along other dimensions. To measure the degree of similarity in risk aversion for two 

stocks i and j we compute correlation between time series changes in risk aversion for two 

securities, 

[ ]jiji RARACorrRACORR ΔΔ=Δ ,, . 

This variable measure whether two stocks experienced similar changes in investor risk preferences. 

In our first test, we compute correlation between returns on two stocks as a measure of 

similarity in returns, [ ]jiji rrCorrCORRRET ,, = . We then regress pair-wise correlation coefficients 

of returns on pair-wise correlation coefficients of time series of changes in risk aversion, 
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jiji RACORRCORRRET ,)08.0()000.0(, 128.0410.0 Δ⋅+= , 

where p-values are reported in parentheses. The regression shows that stocks for which investor risk 

aversion changes in a similar way also tend to have similar returns. 

 Next, we study the relationship between similarity in trading activity and similarity in 

investor preferences. We regress pair-wise correlation of turnover on pair-wise correlation 

coefficients of time series of changes in risk aversion, 

jiji RACORRERCORRTURNOV ,)04.0()000.0(, 269.0113.0 Δ⋅+= , 

where p-values are reported in parentheses. Companies that have similar changes in investor 

preferences are also categorized by similar trading behavior. 

 Since trading behavior may be connected to stock liquidity, we also investigate the 

relationship between changes in stock liquidity, measured by effective spread, and similarity in risk 

preferences. The effective spreads are obtained from TAQ data.  Specifically, the effective spread of 

a particular stock on the thk  trade is defined as 

( ) ( )kkk MPEFSPREAD lnln2 −⋅=  

where kP  is the price of the thk  trade and kM  is the midpoint of the consolidated BBO prevailing 

at the time of the thk  trade. For a particular stock aggregated over a time interval i (either a month or a 

year), the EFSPREAD is the dollar-volume-weighted average of kEFSPRAED  computed over all 

trades in each month. We regress pair-wise correlation in changes in effective spread on pair-wise 

correlation coefficients of time series of changes in risk aversion, 

jiji RACORREFSPREADCORR ,)00.0()000.0(, 314.0226.0 Δ⋅+=Δ , 

where p-values are reported in parentheses. There is a strong relationship. Companies with similar 

changes in risk aversion also have similar changes in liquidity.  

 

IV. Testing for a Structural Break 

March 2000 is an important month in the recent capital markets history. It is the month 

when the recent technology burst. All market indices dropped significantly and all aggregate market 

trading data experienced a structural shift at this date. Of course, the importance of this date and the 

prevailing interpretation of it as the date when the bubble burst surfaced after the events.  
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 We use estimates of risk aversion for investors in different technology stocks to assess these 

events. In the presence of synchronization (or coordination), the structural change in measured 

investor risk preferences would occur at the same (or very similar) point in time for all technology 

stocks. If, however, changes in risk preferences for investors in different stocks occur at different 

points in time, this evidence would suggest the presence of synchronization risk, or co-ordination 

risk. In the latter case, synchronization risk comes from inability to predict shifts in investor 

preferences toward different stocks and the resulting shifts in demand. For example, arbitrageurs can 

observe that on average noise traders are overly optimistic today and hence on average may be 

expected to be less optimistic in the future, but the arbitrageurs cannot be certain when this shift in 

preferences will happen. The coordination becomes even more complicated if arbitragers observe 

different level of optimism or pessimism across different technology stocks. If the significant change 

across risk preferences occurs during different times for different stocks than this will provide 

evidence that it was incredibly difficult to predict for how long the market optimism about 

technology stocks will persist.  

 We do not take an a priori stand on the date of a structural change. We adopt a flexible 

approach and let the data determine the date of a structural change for each stock in the sample. We 

then compare the dates of structural change for different technology stocks. We describe the 

statistical procedure and empirical results in this section. 

 

Methodology: Wald Test for a Break at an Unknown Date 

 A test for a structural break at an unknown date has been developed in Bai, Lumsdaine, and 

Stock (1998). The methodology imposes minimal requirements on the data generation process and 

allows statistical inference about structural breaks. Non-parametric technique developed in Bai, 

Lumsdaine, and Stock (1998) searches for a single break in univariate or multivariate time series 

models. To test for a structural regime shift we specify the relation 

( ) [ ] .31213121 tittitit tRAkdtRARA εγγγβββ +⋅+⋅+⋅+⋅+⋅+= −−  

In the above expression, itRA  is an estimate of risk aversion for a security i at time t , k  is a 

potential break date, and ( ) 1=kdt  if kt ≥  and zero otherwise. Define vectors ( )′= 321 ,, ββββ  

and ( )′= 321 ,. γγγγ . This is a model of full structural change. 
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 The tests for a break in the coefficients are based on the sequence of F-statistics testing 

0=γ , for ** ,,1 kTkk −+= K , where *k  is some trimming value. Trimming is necessary for the 

model to be of full rank before and after any potential break date k . The null hypothesis is that no 

break exists ( )0=γ . For each k , the estimator ( ) ( )′′′= γββ ˆ,ˆˆ k  of the regression parameter is 

obtained by OLS and the F-statistic testing 0=γ  are computed. 

( ) ( )( ) .ˆˆˆˆ
11121 γσγ ⋅⎥⎦

⎤
⎢⎣
⎡ ′⋅⋅′⋅⋅⋅′⋅=

−−−− RXXTRTkF  

The matrix X  contains independent variables, so that the row t  is ( ) ( )( )tRAkdtRA ttt ,,1,,,1 11 −− ⋅ , 

2σ̂  is the estimator of 2σ  based on OLS residuals under the alternative hypothesis given k , and 

the matrix ( )IR ,0=  so that γβ =R , where I  is a 33×  identity matrix. The estimated break date 

is the one that gives the highest F-statistics, ( )kFk ˆmaxargˆ = . The break date is statistically 

significant if ( )kF ˆˆ  is greater than a critical value at the chosen significance level. In our study we use 

critical values for the test developed in Bekaert, Harvey, and Lumsdaine (2002). 

 

Empirical Evidence 

Table V presents the results of the test of a structural break at an unknown date for each 

individual stock risk aversion from the XCI index and for the index itself. If we assume that the 

estimates of time varying investor risk aversion should have one structural break associated with 

bubble collapse, the table clearly demonstrates how coordination failure in arbitrageurs’ trading 

strategies can occur. Risk aversion estimates for different stocks all have different structural break 

dates. For example, Microsoft has structural break in January, 1999, when some hedge-funds 

withdraw from the market (Brunnermeier and Nagel, 2004) in expectation of prices to decline. Dell 

experiences structural break in January, 2001, almost a year after the bubble collapsed. The risk 

aversion of the XCI index itself was giving a false signal suggesting a bubble burst in June of 1999. 

Indeed, as reported by Brunnermeier and Nagel (2004), several hedge-funds pull out from the 

market in the second half of 1999, but there were also many hedge-funds which increased their 

holdings of technology stocks during this time. Abreu and Brunnermeier (2002), Abreu and 

Brunnermeier (2003) and Brunnermeier and Nagel (2004) argue that synchronization risk derives 

from arbitrageurs’ uncertainty about when other arbitrageurs will start exploiting a common 

arbitrage opportunity. This uncertainty is represented by the dispersion of opinion characterized by 
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structural changes in risk preferences in Tables V at different times across different stocks. 

Therefore, arbitrage was highly risky (if not impossible), and as Brunnermeier and Nagel (2004) 

report, many hedge-funds chose to ride the technology bubble instead of exerting a price correcting 

force. 

 

V. Testing for Multiple Structural Breaks 

 Our study of investor risk preferences covers the period from the beginning of 1996 through 

the end of 2003. If this was the period when US market shifted from a “normal” state into a “bubble 

period,” then experienced the bubble bursting” and a decline (or a “crash”), and finally stabilized, 

then there may be three points of structural change in risk preference. The first point reflects the 

shift from a normal market into the “bubble.” The second point of structural change corresponds to 

the bubble bursting, and to the beginning of the decline. The third point corresponds to the end of 

the period of decline and to the return to the “normal” state. We address the hypothesis of multiple 

structural breaks taking place at the same time across different securities using the following test for 

multiple structural breaks. 

 

Methodology: Wald Test for Multiple Breaks at Unknown Dates 

 We generalize the test for a structural break at an unknown date of Bai, Lumsdaine, and 

Stock (1998) to the case of multiple structural breaks, all taking place at unknown dates. Let 

{ }mlk ,,≡κ  be a triplet containing three possible dates of structural breaks, mlk ,, . To test for 

several  structural regime shifts we specify the relation 

( ) [ ]
( ) [ ] ( ) [ ] .3121,33121,2

3121,13121

tittitt

ittitit

tRAmdtRAld
tRAkdtRARA

ελλλδδδ
γγγβββ

+⋅+⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+=

−−

−−  

The variables are: an estimate of risk aversion for security i at time t , itRA ; the dummy variables are 

{ } ( ) 1,3,2,1 =xd t  if xt ≥  and zero otherwise for { }mlkx ,,∈ . Define ( )′= 321 ,, ββββ , 

( )′= 321 ,, γγγγ , ( )′= 321 ,, δδδδ , and ( )′= 321 ,, λλλλ . The tests for structural breaks in the 

coefficients are based on the value of F-statistics computed for all possible triplets { }mlk ,,≡κ of 

structural break dates. The null hypothesis is that no break exists ( 0=== λδγ ). For each κ , the 
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estimator ( ) ( )′′′′′= λδγβκβ ˆ,ˆ,ˆ,ˆˆ of the regression parameter is obtained by OLS and the F-statistics 

are computed, 

( ) ( )( ) .ˆˆˆˆ
11121 βσβκ ⋅⎥⎦

⎤
⎢⎣
⎡ ′⋅⋅′⋅⋅⋅′⋅=

−−−− RXXTRTF  

The matrix X contains independent variables, so that the row t  is 

( ) ( ) ( ) ( ) ( )( )tRAdtRAldtRAkdtRA ttttttt ,,1,,,1,,,1,,,1 1,31,21,11 −−−− ⋅⋅⋅ , 

2σ̂ is the estimator of 2σ based on OLS residuals under the alternative hypothesis given κ . The 

estimated triplet of break dates is the one that gives the highest F-statistics. The break date is 

statistically significant if ( )kF ˆˆ  is greater than a critical value at the chosen significance level. 

 

Empirical Evidence 

The results of the test are presented in Table VI. Technology stocks experience different 

structural breaks corresponding to the three periods in the life cycle of the firm during the bubble: 

entering the bubble, the bubble burst and subsequent stabilization. Similarly to evidence reported in 

Table V, we find that different stocks experienced structural changes at different dates. We find no 

evidence that the bubble burst at individual firm level occurs in March 2000 for all stocks. We do 

find a stock which fits the expected pattern. This is Sun Microsystems (SUNW). It enters the bubble 

in June 1998. In April 2000, right after the bubble burst, the risk preferences of investors in this 

stock experience the second structural break. Finally, the stock enters the normal path in July 2001.  

The other stocks either exit the bubble and stabilize before March 2000 (for example IBM 

Corp (IBM), and Hewlett Packard (HPQ)) or experience the structural break associated with bubble 

collapse and stabilization after March 2000 (for example, Dell Computer (DELL), Apple Computer 

(AAPL)). These findings support the hypothesis of synchronization risk as a barrier to arbitrage. By 

looking at individual stocks it was impossible to predict for how long the same attitudes towards the 

technology stocks will persist, or for how long the market optimism will last. The challenges in 

predicting investor preferences result in difficulties in forecasting demand for these stocks. Different 

stocks can be sending very different signals to an arbitrageur who is attempting to forecast appetite 

for risk and the demand for stocks in the technology sector. When investor risk preferences in each 

of the technology stocks differ, an arbitrageur may infer from one stock that sentiment toward these 

securities worsens, while a very similar can signal strong optimism. In the absence of a strong 

coordination signal, attacking the technology bubble becomes a risky proposition. This finding is in 
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line with recent theoretical work by Abreu and Brunnermeier (2003) and with the empirical findings 

in Temin and Voth (2004) who study the trading by Hoare’s Bank during the 1720 South Sea bubble 

and find evidence consistent with synchronization risk. 

 

Evidence from Aggregate Behavior 

The evidence reported above indicates that it was difficult to predict the movements of 

active investors on the individual stock level. The level of the XCI index itself does not provide any 

indication of when the bubble can burst. The presence of coordination risk is evident from this data. 

Brunnermeier and Nagel (2004), however, report that hedge funds had some success in exiting the 

bubble before prices collapsed. This indicates that hedge-fund managers had some ability to mitigate 

some of the coordination risk by predicting on average when changes in preference may occur or 

had the ability to forecast investors’ sentiment (Shleifer and Summers, 1990).  

Can we observe a change in risk preference in our data during the bubble collapse? Was 

there a signal, albeit a weak one, for hedge funds to pool out? To address these questions we analyze 

an aggregate risk aversion obtained as equally-weighted average of risk aversion estimates for 

individual stocks. The motivation for looking at aggregate data is that on individual stock level the 

marginal investors in different stocks are different and we do not know which one leads the market. 

On the aggregate level, however, we can observe and measure a general trend in risk preferences of a 

marginal investor in the whole market. This represents a general opinion about stocks in the bubble 

market.  

We analyze aggregate risk aversion. Table VII presents a test of one and three structural 

breaks for the aggregate time series. One structural break test indicates that the break occurred in 

April 2000 (Panel A). The test for three structural breaks suggests that on aggregate, the market 

entered the bubble in August 1998, the bubble bursts in April 2000, and stabilization period began in 

July 2001. This finding is remarkable. March 2000 is the last month when the prices peaked during 

the bubble. Right after this, in April 2000, we observe a significant change in risk preferences at the 

aggregate level.  

A structural change in aggregate risk aversion in April 2000 is informative in light of the high 

persistence of aggregate risk aversion. Autocorrelation coefficients for one, two, and three lags are 

0.93, 0.90, and 0.87, respectively (p-values in all cases are below 0.0001). Because of the high 

persistence, the best predictor for the future value is based on the recent past. An abrupt change in 

preferences, therefore, can serve as a signal. If, on average, hedge funds were able to predict the 
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structural change in the markets in April 2000, then they would be able to withdraw from the market 

before prices fell. Our finding of a major structural change in April 2000 is consistent with the 

hypothesis where hedge funds were able to forecast the future change in market-level optimism of 

market sentiment and quit the market before the collapse. 

 
VI. Conclusion 

 Asset price bubbles may inflate when rational arbitrage forces do not prevent prices from 

deviating from fundamental values. One of the reasons for arbitrageurs not to attempt actions that 

force prices to fundamentals may be synchronization risk. This risk arises when arbitrageurs lack the 

power to offset irrational exuberance unless they can coordinate, or synchronize, their actions. If 

synchronization is difficult or risky, and when individual arbitrageurs are not large enough to bring 

down the market on their own, prices may deviate from fundamental values. This approach has been 

used recently to interpret the rise and fall in prices of technology stocks. 

 We use a novel approach to study whether synchronization risk was present in the recent 

NASDAQ technology bubble. First, we develop a measure that reflects an important characteristic 

of investors in individual technology stocks--an estimate of investor risk aversion. Change in 

demand associated with change in preferences should cause portfolio rebalancing and subsequently 

affect trading activity. We then show that this prediction holds and that changes in estimated risk 

preferences of investors in a stock are closely related to changes in demand for the stock, and to the 

trading activity in the stock. After demonstrating the robustness of this result, we expect and find 

the following: 

• Stocks, for which risk aversion changes in a similar way also tend to have similar returns. 

• Stocks that have similar changes in investor preferences are also categorized by similar 

trading behavior (share turnover). 

• Stocks with similar changes in risk aversion have similar changes in liquidity. 

We therefore establish that preferences toward risk on individual stock level are a significant 

determinant of demand for the stock and of the stock price behavior. 

 Next, we turn to the recent rise and fall in prices of technology stocks. If the technology 

price bubble was driven by similar changes in investor attitudes (or sentiment) across the technology 

stocks than we would expect similarities in the behavior of the estimated risk preferences for 

investors in these stocks. Specifically, the major event of this period--collapse of prices in March 

2000--should be observed in all the measures for all stocks approximately at the same point in time. 
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In the presence of synchronization risk, however, this will not be the case. Estimated preferences for 

investors in different stocks will experience changes in different points in time. This will be source of 

synchronization risk. 

We study structural changes in estimates of investor risk preferences. Structural changes do 

take place in our sample, but they occur at very different points in time for different stocks. This 

means that similar stocks have different levels of optimism or pessimism and may be exposed to 

different trading strategies at the same time. This finding is consistent with the presence of 

synchronization risk. We also find that significant changes in individual risk preferences do not 

occur during the time of bubble collapse, but rather either before or after the burst. This is not 

surprising, given the finding of Bakshi and Wu (2006) who report that volatility of the NASDAQ 

100 index spiked after the bubble burst, not before. Taking all the results together, we conclude that 

coordination uncertainty or synchronization risk was very high and the arbitrage was highly risky, if 

not impossible.  

 This evidence stimulates the discussion of what has become a signal for market participants 

to pool out from the market before the prices dropped (Brunnermeier and Nagel, 2004). It means 

that some coordination may have become possible right before the markets collapsed. The analysis 

of individual stocks and the XCI index does not provide a clear answer.  

 We also find that our measures contain important information about the burst of the bubble 

in March 2000. The aggregate market preference is obtained as equally-weighted average of the 

preferences for individual stocks. The advantage of using an aggregate data is that on individual level 

we do not know which stock (or group of stocks) is more influential in driving the technology prices 

and sustaining the same level of optimism. The aggregate risk preference experiences a structural 

shift in April 2000, right after the March of 2000 when the prices peaked for the last time. This is a 

strong and astonishing result. It suggests that change in aggregate market opinion, the change from 

market optimism to pessimism, was expected to occur in April. Hedge-funds started withdrawing 

from the bubble before this happened (Brunnermeier and Nagel, 2004). We infer that overall, 

changes in investor preferences and sentiment, and the presence of synchronization risk, made the 

job of rational arbitrageurs very difficult, risky, or virtually impossible.  
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Table I 
Descriptive Statistics for Sample Stocks 

 
The table reports descriptive statistics for the technology stocks in our sample, from the beginning of the sample period (2_Jan-1996) through the 
end of the sample period (31-Dec-2003). All selected stocks are members of the Computer Technology Index (XCI). This index trades on 
American Stock Exchange and contains 30 largest technology companies. To be included in the study, we require that a stock has options traded on 
it for the sample period. The companies in the table satisfy this requirement. We report market capitalization (in millions of US Dollars) and per 
share price at the beginning and the end of the sample period. We also report holding period return (HPR) and the minimum and maximum per 
share prices achieved during this period. All data is adjusted for stock splits. 

 
 

Ticker 

Market Cap 
2-Jan-96 
($MM) 

Market Cap 
31-Dec-03 

($MM) 

Price 
2-Jan-96 

($) 

Price 
31-Dec-03 

($) 

HPR 
2-Jan-96 to 
31-Dec-03 

Max Price 
96-03 

($) 

Min Price 
96-03 

($) 
         

Apple Computer Inc AAPL 3,955.17 7,880.42 16.06 21.37 33.04% 72.09 6.47
Adobe Systems Inc ADBE 4,670.48 9,312.76 16.03 39.08 143.77% 83.25 6.11
Automatic Data Processing Inc ADP 10,548.15 23,545.69 18.31 39.61 116.30% 68.88 18.19
Applied Materials Inc AMAT 7,417.63 37,732.19 5.17 22.44 333.89% 57.44 2.81
Advanced Micro Devices Inc AMD 1,798.66 5,194.01 8.63 14.90 72.75% 47.28 3.20
Computer Associates Intl Inc CA 13,622.85 15,832.10 25.06 27.34 9.12% 74.69 7.61
Computer Sciences Corp CSC 3,901.90 8,284.99 35.06 44.23 26.15% 96.56 24.56
Cisco Systems Inc CSCO 21,107.38 167,267.88 4.24 24.23 471.05% 80.06 3.63
Dell Computer Corp DELL 3,260.47 87,003.28 1.11 33.98 2952.24% 58.13 0.65
EMC Corp EMC 3,856.76 31,081.53 2.13 12.92 508.00% 103.94 1.94
Hewlett Packard Co HPQ 42,735.30 70,038.75 20.88 22.97 10.04% 77.25 11.16
International Bus Machines Corp IBM 50,736.88 159,448.80 22.72 92.68 307.94% 137.88 20.78
Intel Corp INTC 48,142.85 207,908.35 7.33 32.05 337.36% 74.88 6.27
Motorola Inc MOT 34,866.82 32,588.74 19.67 14.00 -28.81% 60.21 7.71
Microsoft Corp MSFT 52,952.50 295,294.93 5.61 27.37 387.93% 59.56 5.01
Micron Technology Inc MU 8,567.18 8,205.16 20.75 13.47 -35.08% 96.56 6.76
National Semiconductor Corp NSM 2,807.10 7,305.94 22.75 39.41 73.23% 84.44 8.00
Oracle Corp ORCL 18,826.90 69,160.98 3.20 13.23 312.96% 46.31 2.96
Storage Technology Corp STK 1,269.10 222,349.28 11.94 34.04 185.15% 50.19 9.00
Sun Microsystems Inc SUNW 8,202.94 14,692.43 2.80 4.47 59.82% 64.31 2.34
Texas Instruments Inc TXN 9,157.38 50,845.76 6.06 29.38 384.62% 93.81 5.22
         



Table II 
Changes in Risk Preferences and Turnover 

This table reports the results of OLS regressions by firm that relate turnover to the changes in risk aversion, 

ttttt RTRNRATRN εβββα +++Δ+= −− 13121 . 

The turnover tTRN is trading volume divided by the number of shares outstanding, for a given firm in a month 

t . The independent variables are: change of the risk aversion over the month, 1−−=Δ ttt RARARA ; lag of 

turnover, 1−tTRN ; and lag of return on the stock, 1−tR . The t-statistics based on bootstrap standard errors from 
1,000 simulations are in parentheses below the coefficients. The data covers the period from February 1996 to 
December 2003. The cases where the variable of interest ( )tRAΔ is statistically significant are in bold. 

Symbol α  
1β  2β  3β  2R  

      

AAPL 2.53 
(2.80) 

0.35 
(1.71) 

0.44 
(4.74) 

-0.098 
(-0.08) 

0.21 

      

ADBE 2.77 
(8.37) 

0.049 
(1.98) 

0.26 
(7.23) 

-0.48 
(-2.24) 

0.12 

      

ADP 0.26 
(3.73) 

0.011 
(1.75) 

0.55 
(7.97) 

-0.41 
(-2.11) 

0.34 

      

AMAT 2.21 
(5.01) 

-0.02 
(-0.39) 

0.53 
(7.92) 

-0.96 
(-2.17) 

0.30 

      

AMD 1.45 
(1.20) 

0.13 
(0.94) 

0.67 
(6.71) 

1.21 
(1.32) 

0.50 

      

CA 0.72 
(3.55) 

0.04 
(2.70) 

0.37 
(7.20) 

-0.48 
(-3.84) 

0.21 

      

CSC 0.78 
(3.86) 

-0.008 
(-0.45) 

0.42 
(6.62) 

-0.009 
(-0.05) 

0.17 

      

CSCO 0.91 
(2.13) 

0.12 
(2.91) 

0.59 
(7.91) 

-1.14 
(-2.55) 

0.48 

      

DELL 0.49 
(0.29) 

0.13 
(0.45) 

0.84 
(6.55) 

1.07 
(0.60) 

0.77 

      

EMC 0.73 
(3.88) 

0.064 
(3.08) 

0.52 
(7.10) 

-0.68 
(-3.91) 

0.37 

      

HPQ 0.51 
(6.88) 

0.025 
(3.06) 

0.37 
(7.96) 

-0.13 
(-2.00) 

0.16 

      

IBM 0.62 
(2.79) 

0.034 
(2.04) 

0.42 
(3.81) 

-0.85 
(-2.74) 

0.26 

      

INTC 0.83 
(2.54) 

0.047 
(0.89) 

0.59 
(6.97) 

-0.56 
(-1.66) 

0.38 

      

MOT 0.98 
(7.78) 

0.062 
(3.86) 

0.19 
(3.60) 

-0.44 
(-2.83) 

0.12 

      

MSFT 0.93 
(2.93) 

0.005 
(0.30) 

0.35 
(3.55) 

-0.31 
(-1.06) 

0.13 

      

MU 1.67 
(2.86) 

-0.07 
(-0.76) 

0.58 
(8.01) 

0.54 
(1.14) 

0.40 

      

NSM 1.21 
(2.18) 

0.04 
(0.58) 

0.59 
(5.96) 

0.28 
(0.63) 

0.36 

      

ORCL 1.37 
(5.56) 

0.07 
(2.76) 

0.30 
(3.75) 

-0.62 
(-2.58) 

0.16 

      

STK 0.45 
(1.93) 

-0.01 
(-0.44) 

0.69 
(8.43) 

-0.19 
(-0.53) 

0.48 

      

SUNW 1.96 
(6.54) 

0.06 
(1.98) 

0.44 
(7.93) 

-0.32 
(-1.00) 

0.25 

      

TXN 0.67 
(1.89) 

0.075 
(2.59) 

0.58 
(8.06) 

-0.38 
(-1.45) 

0.47 



 
 

Table III 
Changes in Risk Preferences and Turnover:  

Controlling for Market-Wide Changes in Risk Preferences 
 

This table reports the results of OLS regressions by firm that relate turnover to the changes in risk aversion. To 
control for market-wide changes in risk preferences we include the change in risk aversion estimated for the 
market index, 1−−=Δ MtMtMt RARARA , and estimate the regression equation 

tMtiitiitiitit RARTRNRATRN εββββα +Δ+++Δ+= −− 413121 . 

We use risk aversion for the XCI Index (Panel A) and S&P 500 Index (Panel B). The turnover variable tTRN is 
trading volume divided by the number of shares outstanding, for a given firm in a month t . The independent 
variables are: change of the risk aversion over the month, 1−−=Δ ttt RARARA ; lag of turnover, 1−tTRN ; and 

lag of return on the stock, 1−tR . The t-statistics based on bootstrap standard errors from 1,000 simulations are in 
parentheses below the coefficients. The data covers the period from February 1996 to December 2003. The 
cases where the variable of interest ( )tRAΔ is statistically significant are in bold. 
 

Panel A: Risk Aversion for XCI Index 
Symbol α  

1β  2β  3β  4β  2R  
AAPL 2.53 

(1.83) 
0.35 

(2.04) 
0.44 

(5.99) 
-0.08 

(-0.07) 
0.01 

(0.16) 
0.21 

       
ADBE 2.77 

(8.73) 
0.05 

(1.91) 
0.26 

(7.25) 
-0.49 

(-2.07) 
-0.01 

(-0.45) 
0.12 

       
ADP 0.26 

(1.63) 
0.01 

(1.78) 
0.55 

(8.76) 
-0.41 

(-2.36) 
0.0004 
(0.07) 

0.34 

       
AMAT 1.42 

(1.29) 
-0.03 

(-0.42) 
0.53 

(5.42) 
-0.94 

(-1.36) 
-0.04 

(-0.69) 
0.30 

       
AMD 1.42 

(1.29) 
0.10 

(0.76) 
0.67 

(5.86) 
1.29 

(1.46) 
-0.12 

(-1.31) 
0.52 

       
CA 0.72 

(2.96) 
0.04 

(2.43) 
0.37 

(6.98) 
-0.48 

(-3.25) 
0.01 

(1.14) 
0.21 

       
CSC 0.79 

(2.86) 
-0.01 

(-0.36) 
0.42 

(5.53) 
0.01 

(0.03) 
0.03 

(1.76) 
0.19 

       
CSCO 0.89 

(1.99) 
0.13 

(2.69) 
0.60 

(7.03) 
-1.21 

(-2.46) 
-0.04 

(-1.23) 
0.49 

       
DELL 0.48 

(0.40) 
0.13 

(0.63) 
0.85 

(8.82) 
1.04 

(0.85) 
-0.03 

(-0.28) 
0.77 

       
EMC 0.73 

(2.53) 
0.06 

(2.99) 
0.51 

(6.81) 
-0.67 

(-3.44) 
0.01 

(0.43) 
0.37 

       



 
 
 

Table III—Continued 
 

       
HPQ 0.50 

(4.24) 
0.02 

(1.72) 
0.38 

(6.61) 
-0.10 

(-1.07) 
0.02 

(3.53) 
0.20 

       
IBM 0.59 

(2.60) 
0.03 

(2.12) 
0.44 

(4.37) 
-0.85 

(-3.15) 
-0.02 

(-1.07) 
0.27 

       
INTC 0.76 

(2.51) 
0.06 

(1.14) 
0.62 

(6.77) 
-0.60 

(-2.11) 
-0.04 

(-1.62) 
0.40 

       
MOT 0.98 

(5.24) 
0.06 

(3.33) 
0.19 

(2.65) 
-0.44 

(-2.02) 
0.002 
(0.20) 

0.12 

       
MSFT 0.92 

(4.93) 
0.01 

(0.52) 
0.35 

(4.37) 
-0.31 

(-1.45) 
-0.01 

(-0.43) 
0.13 

       
MU 1.67 

(1.81) 
-0.07 

(-0.60) 
0.59 

(5.64) 
0.55 

(0.89) 
0.01 

(0.23) 
0.40 

       
NSM 1.20 

(1.57) 
0.04 

(0.81) 
0.59 

(6.29) 
0.29 

(0.67) 
0.02 

(0.49) 
0.36 

       
ORCL 1.34 

(3.00) 
0.07 

(1.92) 
0.31 

(2.91) 
-0.67 

(-1.93) 
-0.03 

(-1.04) 
0.17 

       
STK 0.45 

(1.77) 
-0.02 

(-0.47) 
0.69 

(7.35) 
-0.17 

(-0.49) 
0.05 

(2.07) 
0.51 

       
SUNW 1.99 

(5.29) 
0.07 

(1.84) 
0.44 

(8.75) 
-0.30 

(-0.87) 
0.04 

(1.07) 
0.26 

       
TXN 0.66 

(3.64) 
0.07 

(2.58) 
0.58 

(7.59) 
-0.37 

(-1.62) 
-0.03 

(-1.56) 
0.47 

       
 
 
 



Table III—Continued 
 

Panel B: Risk Aversion for S&P 500 Index 
Symbol α  

1β  2β  3β  4β  2R  
AAPL 2.53 

(1.95) 
0.34 

(2.07) 
0.44 

(6.19) 
-0.08 

(-0.08) 
-0.02 

(-0.49) 
0.21 

       

ADBE 2.80 
(8.90) 

0.04 
(1.73) 

0.25 
(8.69) 

-0.45 
(-2.20) 

0.02 
(2.03) 

0.13 

       

ADP 0.26 
(3.64) 

0.01 
(1.71) 

0.55 
(9.05) 

-0.41 
(-2.33) 

-0.0003 
(-0.10) 

0.34 

       

AMAT 2.20 
(2.38) 

-0.02 
(-0.30) 

0.53 
(6.02) 

-0.97 
(-1.52) 

-0.01 
(-0.54) 

0.30 

       

AMD 1.45 
(1.35) 

0.13 
(1.31) 

0.67 
(7.73) 

1.20 
(1.81) 

0.003 
(0.08) 

0.50 

       

CA 0.72 
(3.60) 

0.04 
(2.52) 

0.37 
(7.16) 

-0.48 
(-3.34) 

-0.0002 
(-0.02) 

0.21 

       

CSC 0.77 
(5.97) 

-0.01 
(-0.61) 

0.43 
(7.85) 

-0.02 
(-0.12) 

0.01 
(1.76) 

0.18 

       

CSCO 0.93 
(1.55) 

0.12 
(2.47) 

0.58 
(6.82) 

-1.19 
(-2.49) 

0.01 
(0.67) 

0.48 

       

DELL 0.50 
(0.34) 

0.13 
(0.54) 

0.84 
(7.48) 

1.07 
(0.72) 

0.003 
(0.05) 

0.77 

       

EMC 0.74 
(3.48) 

0.07 
(2.85) 

0.51 
(6.90) 

-0.68 
(-3.28) 

0.01 
(1.27) 

0.38 

       

HPQ 0.51 
(7.86) 

0.02 
(2.17) 

0.37 
(6.93) 

-0.13 
(-1.65) 

0.002 
(0.71) 

0.16 

       

IBM 0.62 
(2.94) 

0.03 
(2.94) 

0.41 
(5.02) 

-0.85 
(-4.03) 

0.002 
(0.47) 

0.26 

       

INTC 0.79 
(2.18) 

0.04 
(0.67) 

0.61 
(6.63) 

-0.52 
(-1.39) 

-0.02 
(-1.08) 

0.39 

       

MOT 0.98 
(5.43) 

0.07 
(2.87) 

0.19 
(2.14) 

-0.43 
(-1.76) 

-0.012 
(-1.55) 

0.14 

       

MSFT 0.94 
(3.62) 

0.004 
(0.31) 

0.34 
(3.86) 

-0.35 
(-1.55) 

0.01 
(1.10) 

0.14 

       

MU 1.64 
(2.87) 

-0.07 
(-0.75) 

0.59 
(8.13) 

0.56 
(1.21) 

-0.01 
(-0.44) 

0.40 

       

NSM 1.21 
(1.86) 

0.04 
(0.92) 

0.59 
(7.47) 

0.29 
(0.83) 

-0.01 
(-0.72) 

0.36 

       

ORCL 1.31 
(4.10) 

0.09 
(3.28) 

0.32 
(3.85) 

-0.53 
(-2.17) 

-0.04 
(-2.98) 

0.24 

       

STK 0.48 
(1.71) 

-0.01 
(-0.48) 

0.67 
(6.41) 

-0.23 
(-0.84) 

0.02 
(1.14) 

0.49 

       

SUNW 2.00 
(4.47) 

0.06 
(1.85) 

0.44 
(8.93) 

-0.36 
(-0.94) 

0.01 
(0.66) 

0.26 

       

TXN 0.62 
(2.22) 

0.08 
(2.43) 

0.61 
(6.85) 

-0.40 
(-1.61) 

-0.01 
(-1.22) 

0.47 

       

 



 
 
 

Table IV 
GLS Regressions 

Changes in Risk Preferences and Turnover 
 

This table reports the results of GLS regressions of turnover on the change in risk aversion and control variables. 
The first regression equation is 

titiitiitit RTRNRATRN εβββα +++Δ+= −− 13121 , 

where itTRN denotes the turnover of stock i in month t , the turnover variable itTRN is trading volume divided 
by the number of shares outstanding, for a given firm in a month t . The independent variables are: change of 
the risk aversion of investors in stock i over the month, 1−−=Δ ititit RARARA ; lag of turnover, 1−itTRN ; and 

lag of return on the stock, 1−itR . To control for market-wide changes in risk preferences we include the change 

in risk aversion estimated for the market index, 1−−=Δ MtMtMt RARARA , and estimate the regression equation 

tMtiitiitiitit RARTRNRATRN εββββα +Δ+++Δ+= −− 413121 . 
We use risk aversion for the XCI Index and S&P 500 Index. The data covers the period from February 1996 to 
December 2003. The t-statistics are in parentheses. 
 

  
α  

 

1β  
1β  

With XCI Index
1β  

With S&P 500 Index 
Turnover and risk aversion 0.802 

(9.73)
0.031 
(2.64)

  

     
Controlling for MRAΔ  using XCI Index 0.795 

(9.63)
 0.030 

(2.55) 
 

     
Controlling for MRAΔ  using S&P 500 0.798 

(9.61)
  0.030 

(2.61) 
     

 



Table V 
Wald Test for a Break at an Unknown Date 

To test for a structural regime shift in estimated risk aversion coefficient itRA  for firm i  at time t . We 
specify the relation 

( ) [ ] .31213121 tittitit tRAkdtRARA εγγγβββ +⋅+⋅+⋅+⋅+⋅+= −−  
All coefficients are allowed to change. The relation is estimated for all possible break dates, k . The 
variable ( ) 1=kd t  if kt ≥  and zero otherwise. For each potential structural break date k  we compute 
( )kF  statistic as 

( ) ( )( ) .ˆˆˆˆ
11121 γσγ ⋅⎥⎦

⎤
⎢⎣
⎡ ′⋅⋅′⋅⋅⋅′⋅=

−−−− RXXTRTkF  

The matrix X  contains independent variables, so that the row t  is ( ) ( )( )tRAkdtRA ttt ,,1,,,1 11 −− ⋅ , 2σ̂  is 
the estimator of 2σ  based on OLS residuals under the alternative hypothesis given k , and the matrix 

( )IR ,0=  so that γβ =R , where I  is a 33×  identity matrix. 
 
Company 

1β  2β  3β  1γ  2γ  3γ  Adj R2 F(k) 
         
AAPL -0.07 0.82 -0.003 -25.43 -0.43 0.27 0.85 20.14 
K = Oct,02 (-0.37) (12.12) (-0.65) (-4.41) (-2.71) (4.32)   
         
ADBE -3.41 0.33 0.07 8.11 0.11 -0.14 0.79 35.23 
K=Sept,99 (-4.93) (2.94) (3.73) (5.22) (0.53) (-5.06)   
         
         
ADP 14.02 -0.12 -0.24 -12.18 0.95 0.21 0.94 20.81 
K=Apr,97 (5.09) (-0.60) (-2.06) (-4.15) (4.56) (1.73)   
         
AMAT -2.24 0.45 -0.002 6.04 -0.09 -0.07 0.85 20.32 
K=Dec,99 (-4.33) (4.72) (-0.15) (3.64) (-0.37) (-2.17)   
         
AMD -2.24 -0.03 0.11 3.84 0.46 -0.15 0.67 23.87 
K=Mar,97 (-2.56) (-0.14) (1.26) (3.96) (1.91) (-1.67)   
         
CA 0.21 0.14 0.19 10.39 0.21 -0.37 0.94 45.24 
K=Apr,98 (0.40) (0.90) (3.95) (4.95) (1.04) (-6.26)   
         
CSCO 1.00 0.65 -0.04 3.89 -0.28 -0.03 0.70 15.59 
K=Dec,98 (1.86) (7.06) (-1.56) (2.88) (-1.56) (-1.05)   
         
DELL 0.18 0.59 0.002 0.96 0.001 -0.05 0.94 23.31 
K=Jan,01 (0.69) (6.16) (0.27) (0.69) (0.01) (-1.92)   
         
HPQ 2.74 0.46 -0.10 0.26 0.16 0.04 0.90 19.44 
K=Apr,99 (4.18) (4.23) (-4.20) (0.23) (0.99) (1.52)   
         
IBM 1.42 -0.26 -0.74 1.37 0.73 0.64 0.93 30.52 
K=Dec,96 (1.06) (-0.66) (-2.70) (0.94) (1.84) (2.35)   
         
INTC 0.19 0.91 -0.02 2.48 -0.35 -0.03 0.88 26.58 
K=Nov,98 (0.66) (11.60) (-1.34) (4.08) (-3.13) (-1.76)   
         
MSFT 1.39 0.13 -0.06 0.74 0.64 0.01 0.85 21.54 
K=Jan,99 (1.88) (0.89) (-1.75) (0.46) (3.67) (0.28)   
         
MOT -0.29 0.82 -0.01 -18.31 -0.74 0.18 0.92 18.92 
K=Sep,01 (-0.93) (12.16) (-1.10) (-4.27) (-3.69) (4.15)   
 
 



Table V – Continued 
 
Company 

1β  2β  3β  1γ  2γ  3γ  Adj R2 F(k) 
EMC -2.01 0.08 -0.28 2.63 0.29 0.26 0.65 33.96 
K=Dec,96 (-1.68) (0.32) (-2.15) (2.13) (1.09) (2.02)   
         
CSC 6.17 0.36 -0.13 -11.03 0.15 0.18 0.89 28.30 
K=Nov,00 (5.40) (3.25) (-5.29) (-4.43) (0.70) (5.16)   
         
MU 1.06 0.49 -0.03 121.33 -1.19 -1.34 0.80 19.45 
K=Aug,03 (3.90) (5.40) (-4.45) (3.77) (-2.66) (-3.81)   
         
XCI 1.20 0.78 -0.01 0.56 -0.54 -0.03 0.76 14.53 
K=Jun,99 (1.58) (8.70) (-0.38) (0.40) (-3.32) (-0.86)   
         
ORCL 0.20 0.52 -0.05 2.62 -0.11 -0.001 0.65 19.93 
K=Dec,98 (0.40) (3.64) (-1.92) (2.88) (-0.64) (-0.04)   
         
STK 0.77 0.84 -0.02 -287.83 -1.42 2.93 0.87 70.82 
K=Aug,03 (2.43) (15.01) (-2.81) (-6.81) (-7.50) (6.63)   
         
NSM 5.74 -0.51 -1.20 -4.56 0.92 1.17 0.63 23.28 
K=Oct,96 (3.14) (-1.40) (-3.62) (-2.46) (2.45) (3.52)   
         
SUNW -0.53 0.36 0.002 -10.56 0.54 0.16 0.98 49.21 
K=Apr,00 (-1.24) (3.06) (0.14) (-4.25) (4.34) (4.36)   
         
TXN -0.36 0.59 -0.04 1.67 0.03 0.01 0.81 17.59 
K=Dec,98 (-0.73) (6.70) (-1.94) (2.22) (0.22) (0.50)   



Table VI 
Wald Test for Three Breaks at Unknown Dates 

To test for a structural regime shift in estimated risk aversion coefficient itRA  for firm i  at time t  we specify the relation 

( ) [ ] ( ) [ ] ( ) [ ] .3121,33121,23121,13121 tittittittitit tRAmdtRAldtRAkdtRARA ελλλδδδγγγβββ +⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+= −−−−  

All coefficients are allowed to change. The relation is estimated for all possible break dates, k, l and m. The variable ( ) 1,1 =kd t  if kt ≥  and zero 

otherwise, ( ) 1,2 =ld t  if lt ≥  and zero otherwise, ( ) 1,3 =md t  if mt ≥  and zero otherwise. The matrix X contains independent variables, so that the 

row t  is ( ) ( ) ( ) ( ) ( )( )tRAdtRAldtRAkdtRA ttttttt ,,1,,,1,,,1,,,1 1,31,21,11 −−−− ⋅⋅⋅ , 2σ̂ is the estimator of 2σ based on OLS residuals under the alternative 

hypothesis given κ . For each potential structural break date triplet k, l and m we compute ( )κF  statistic as 

( ) ( )( ) .ˆˆˆˆ
11121 βσβκ ⋅⎥⎦

⎤
⎢⎣
⎡ ′⋅⋅′⋅⋅⋅′⋅=

−−−− RXXTRTF  

Company 
1β  2β  3β  1γ  2γ  3γ  1δ  2δ  3δ  1λ  2λ  3λ  Adj R2 F(k) 

AAPL               
k=Dec,99 -1.17 0.25 0.002 7.60 0.31 -0.14 30.14 -0.32 -0.37 -57.68 0.001 0.69 0.89 73.57 
l=Jun,02 (-3.86) (1.72) (2.71) (3.86) (1.54) (-3.99) (3.66) (-1.52) (-3.46) (-3.75) (0.04) (4.06)   
m=Apr,03               
ADBE               
k=Oct,96 -4.07 -0.34 -0.21 -7.55 0.007 0.62 -28.97 0.74 0.93 41.05 0.34 -1.35 0.83 83.35 
l=Mar,98 (-2.81) (-1.05) (-1.28) (-3.18) (0.20) (3.46) (-3.66) (2.57) (3.51) (5.32) (1.42) (-5.30)   
m=Sep,98               
ADP               
k=May,96 4.76 -0.005 2.86 20.20 -0.25 -4.58 3.12 -0.05 0.59 -25.54 1.17 1.08 0.96 66.15 
l=Oct,96 (0.66) (-0.10) (2.90) (0.98) (-0.25) (-2.65) (0.16) (-0.06) (0.41) (-6.32) (5.91) (6.07)   
m=Sep,97               
AMAT               
k=Sep,98 -1.94 0.51 -0.003 -164.30 -0.61 4.71 144.70 0.30 -4.28 26.04 0.08 -0.51 0.90 87.33 
l=Dec,98 (-3.83) (5.37) (-0.14) (-6.18) (-2.09) (6.10) (5.38) (0.92) (-5.51) (5.91) (0.27) (-5.87)   
m=Apr,00               
AMD               
k=Sep,96 -2.54 -1.55 -0.52 10.33 0.97 -0.23 -0.96 0.54 0.52 -5.57 0.66 0.20 0.78 89.23 
l=Mar,97 (-2.71) (-3.09) (-2.03) (3.16) (1.58) (-0.62) (-0.29) (1.45) (1.87) (-4.70) (3.91) (5.28)   
m=Jan,99               
CA               
k=Jul,96 -8.40 -0.57 2.41 5.56 0.39 -1.76 -0.65 0.20 -0.26 13.81 0.33 -0.57 0.95 95.19 
l=Feb,97 (-4.46) (-2.17) (5.11) (2.01) (0.85) (-3.36) (-0.28) (0.45) (-1.08) (6.34) (1.39) (-6.23)   
m=Sep,98               
CSCO               
k=May,97 0.45 0.07 0.18 32.82 -0.08 -1.78 -22.40 -0.32 1.08 -8.13 0.91 0.49 0.78 68.77 
l=Dec,97 (0.70) (0.36) (2.61) (3.11) (-0.18) (-3.63) (-1.79) (-0.70) (1.96) (-1.20) (3.22) (1.87)   
m=Jun,98               



 
Table VI – Continued 

 
Company 

1β  2β  3β  1γ  2γ  3γ  1δ  2δ  3δ  1λ  2λ  3λ  Adj R2 F(k) 
DELL               
k=Feb,99 0.71 0.53 -0.03 -0.63 -0.34 0.04 -13.59 0.15 0.16 11.71 0.26 -0.19 0.95 55.59 
l=Jan,01 (1.94) (4.75) (-1.92) (-0.45) (-1.29) (1.32) (-1.79) (0.43) (1.33) (1.53) (0.94) (-1.53)   
m=Oct,01               
HPQ               
k=Apr,98 3.59 0.19 -0.09 -56.03 -0.45 1.82 41.37 0.46 -1.45 13.12 0.50 -0.31 0.93 71.96 
l=Aug,98 (4.96) (1.26) (-3.96) (-5.03) (-1.48) (4.90) (3.64) (1.47) (-3.87) (5.02) (2.30) (-5.22)   
m=Jan,00               
IBM               
k=Dec,96 1.42 -0.26 -0.74 3.30 0.82 0.53 13.36 -0.30 -0.25 -13.58 0.25 0.34 0.94 72.94 
l=Dec,98 (1.23) (-0.76) (-3.12) (2.10) (2.28) (2.23) (2.68) (-1.64) (-2.03) (-2.66) (1.30) (2.82)   
m=Dec,99               
INTC               
k=Sep,96 -1.74 -0.09 -0.03 3.80 0.78 -0.07 35.72 0.02 -0.90 -36.05 0.01 0.97 0.92 87.57 
l=Nov,98 (-2.51) (-0.25) (-0.25) (4.51) (2.06) (-0.50) (2.88) (0.09) (-2.66) (-2.90) (0.05) (2.87)   
m=Jul,99               
MSFT               
k=Oct,97 0.61 -0.02 0.06 -5.68 0.12 0.07 14.14 0.25 -0.31 -15.57 -0.003 0.19 0.88 63.58 
l=Dec,98 (0.74) (-0.11) (1.02) (-1.69) (0.42) (0.54) (3.51) (0.97) (-2.54) (-4.53) (-0.02) (3.52)   
m=Mar,01               
MOT               
k=Jul,97 -2.14 0.37 0.09 10.17 0.12 -0.42 -10.82 0.02 0.34 -15.80 -0.43 0.16 0.94 58.06 
l=Mar,99 (-3.12) (2.01) (1.79) (4.61) (0.52) (-4.37) (-3.95) (0.08) (4.00) (-3.87) (-1.87) (3.66)   
m=Sep,01               
EMC               
k=Dec,96 -2.01 0.08 -0.28 4.60 -0.11 0.17 -3.82 0.12 0.13 15.54 0.14 -0.20 0.76 105.15 
l=Dec,98 (-2.09) (0.40) (-2.68) (3.94) (-0.49) (1.54) (-3.85) (0.60) (4.50) (2.05) (0.34) (-2.15)   
m=Jun,02               
CSC               
k=Jul,96 4.49 -0.25 1.70 2.77 0.43 -1.82 -64.77 -0.60 2.36 57.31 1.22 -2.24 0.92 87.35 
l=Feb,98 (2.28) (-1.03) (4.07) (0.92) (1.32) (-4.31) (-5.61) (-2.00) (5.61) (5.06) (5.55) (-5.38)   
m=Jul,98               
MU               
k=Jun,98 2.19 0.28 -0.09 0.27 0.08 0.04 13.74 -0.78 -0.17 106.19 -0.28 -1.14 0.83 53.45 
l=Jun,02 (3.20) (1.51) (-3.06) (0.29) (0.35) (1.16) (2.76) (-2.58) (-2.63) (3.71) (-0.59) (-3.64)   
m=Aug,03               
XCI               
k=Nov,97 2.80 0.43 0.04 -21.74 -0.31 0.64 88.95 -0.70 -2.24 -68.05 0.82 1.52 0.82 57.21 
l=Jan,99 (2.78) (2.12) (0.63) (-5.28) (-1.11) (4.13) (4.70) (-1.55) (-5.17) (-3.67) (1.93) (3.70)   
m=Nov,99               



Table VI – Continued 
 
Company 

1β  2β  3β  1γ  2γ  3γ  1δ  2δ  3δ  1λ  2λ  3λ  Adj R2 F(k) 
ORCL               
k=Sep,97 1.31 0.45 -0.18 -0.22 -0.65 0.07 0.41 0.34 0.09 -2.27 -0.09 -0.01 0.72 58.38 
l=Jan,99 (1.81) (2.44) (-2.51) (-0.11) (-2.17) (0.68) (0.21) (1.21) (1.34) (-0.39) (-0.32) (-0.09)   
m=Sep,02               
STK               
k=Jul,99 0.05 0.44 0.04 7.46 0.13 -0.17 25.76 -0.50 -0.31 -320.34 -0.64 3.34 0.91 144.67 
l=May,02 (0.15) (3.20) (2.20) (3.08) (0.68) (-3.83) (3.39) (-2.13) (-3.10) (-8.93) (-2..60) (8.85)   
m=Aug,03               
NSM               
k=Oct,96 5.74 -0.51 -1.20 -4.53 0.59 1.16 -13.19 0.16 0.31 16.78 -0.16 -0.36 0.72 71.62 
l=Jan,99 (3.74) (-1.66) (-4.30) (-2.74) (1.73) (4.15) (-3.79) (0.62) (3.82) (4.58) (-0.61) (-4.57)   
m=May,00               
SUNW               
k=Jun,98 1.43 -0.03 -0.17 -0.93 0.07 0.15 7.49 0.46 -0.19 -45.71 0.17 0.73 0.98 105.54 
l=Apr,00 (2.54) (-0.22) (-4.28) (-0.52) (0.26) (2.64) (1.13) (1.81) (-1.51) (-1.95) (0.68) (2.27)   
m=Jul,01               
TXN               
k=May,97 -4.03 0.24 0.28 -6.95 -0.39 0.09 0.34 0.34 -0.13 12.03 0.45 -0.26 0.85 54.94 
l=Apr,98 (-2.55) (1.28) (2.28) (-2.09) (-1.15) (0.54) (0.10) (1.05) (-1.08) (5.42) (2.29) (-5.67)   
m=Apr,00               
 
 



Table VII 
Wald Test for Breaks at Unknown Dates for the Aggregate Risk Aversion 

Panel A reports the results for a test of one structural regime shift in aggregate risk aversion coefficient tRA  at time t . We specify the relation 

( ) [ ] ttttt tRAkdtRARA εγγγβββ +⋅+⋅+⋅+⋅+⋅+= −− 31213121  

All coefficients are allowed to change. The relation is estimated for all possible break dates, k . The variable ( ) 1=kd t  if kt ≥  and zero otherwise. 

Panel B reports the results for a test of three structural regime shifts in aggregate risk aversion coefficient tRA  at time t . We specify the relation 

( ) [ ] ( ) [ ] ( ) [ ] tittittittitit tRAmdtRAldtRAkdtRARA ελλλδδδγγγβββ +⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+= −−−− 3121,33121,23121,13121  

where the variable ( ) 1,1 =kd t  if kt ≥  and zero otherwise, ( ) 1,2 =ld t  if lt ≥  and zero otherwise, ( ) 1,3 =md t  if mt ≥  and zero otherwise. 
 
 

1β  2β  3β  1γ  2γ  3γ  1δ  2δ  3δ  1λ  2λ  3λ  Adj R2 F(k) 

Panel A. Wald Test for a Break at an Unknown Date 
K=Apr,00 -0.53 0.36 0.002 -10.56 0.54 0.16       0.98 49.21 
 (-1.24) (3.06) (0.14) (-4.25) (4.34) (4.36)         
               
Panel B. Wald Test for Three Breaks at Unknown Dates 
k=Aug,98 1.06 0.01 -0.13 1.92 -0.30 0.06 5.01 0.78 -0.14 -45.71 0.17 0.73 0.98 105.29 
l=Apr,00 (1.99) (0.08) (-3.81) (0.91) (-0.95) (0.93) (0.75) (2.53) (-1.03) (-1.95) (0.68) (2.27)   
m=Jul,01               
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