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1 Introduction

Credit derivatives are means of transferring credit risk (on a reference entity) between two
parties by means of bilateral agreements. They can refer to a single credit instrument or
a basket of instruments. In the last decade, credit derivatives have become increasingly
popular. According to the International Swaps and Derivatives Association (ISDA), credit
derivatives outstanding notionals grew 44 percent in the first half of 2005 to $12.4 trillion,
up by more than 19 times from $631.5 billion at mid year 2001. Credit derivatives are traded
over the counter, and many contracts are documented under ISDA swap documentation and
the “1999 ISDA Credit Derivative Definitions,” as amended by various supplements.

Credit Default Swaps (CDS) are the most important and widely used single-name credit
derivatives. Under a CDS, the buyer of credit protection pays a periodic fee to an investor in
return for protection against a potential credit event of a given firm known as the underlying
reference entity. Credit events in practice are associated with credit-rating downgrading, firm
restructuring, and default, among others. In this paper, the credit event refers only to the
default of the reference entity. Recently, European options on CDS have been issued. They
are also called credit default swaptions, a term borrowed from the interest rate derivatives
market. CDS options give the investor the right, but not the obligation, to enter into a CDS
contract at the option maturity. In general, a single-name default swaption is knocked out
if the reference entity defaults during the life of the option. The knock-out feature marks
the fundamental difference between a CDS option and a vanilla option. Following on the
evolution of the interest rate derivatives market, we believe that there will be a need to trade
CDS options with early exercise opportunities.

The aim of this paper is to price single name knock-out credit derivatives. In particular,
we focus on European- and American-style CDS options. Credit derivatives, like many
over-the-counter products, may suffer from a lack of liquidity, which often results in market
mispricing. In this context, financial modeling and analysis is crucial in providing investors
with rational asset prices, sensitivity measures, and optimal investment policies. Our work
comes as a small contribution to this area.

Pricing derivatives can be considered as a Markov decision process and hence can be ad-
dressed as a stochastic dynamic programming (DP) problem. For a general overview on
DP, we refer the reader to Bertsekas [1995]. Buttler and Waldvogel [1996] and Ben-Ameur
et al. [2004] used DP to price default-free bonds with embedded options. We propose a
numerical procedure based on a DP approach and piecewise linear approximations of value
functions for pricing single-name knock-out derivatives. We adopt a reduced form approach
where the default intensity, the state variable, is modeled through a CIR++ process (Brigo
and Mercurio [2001] and Brigo and Alfonsi [2003]). In this context, the DP value function
is the value of the credit derivative to be priced. Our numerical investigation shows con-
sistency, robustness, and efficiency. For low-dimension cases, DP combined with piecewise
linear approximations over-performs the least square Monte Carlo approach (Longstaff and
Schwartz [2001], Tsitsiklis and Van-Roy [2001]); this is not surprising since the first only
induces numerical errors while the second induces both numerical and statistical errors. For
higher dimension problems, however, DP combined with Monte Carlo simulation is more
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convenient.

There are two main credit model families: structural models and reduced-form models. In
the structural approach, the default time is the first instant where the firm value hits, from
above, either a deterministic (Merton [1974] and Black and Cox [1976]) or a stochastic barrier
(Giesecke [2001]). On the other hand, in reduced-form models, default time is modeled by
means of an exogenous doubly stochastic Poisson process also known as a Cox process (See
Section 3 for a formal definition). Here, unlike in the structural approach, default comes
as a complete surprise. The reduced-form approach was adopted by a number of authors,
including Jarrow et al. [1997], Lando [1998], Duffie and Singleton [1997], and Brigo and
Alfonsi [2003].

The first attempts to price CDS options directly model the underlying credit spread.
Schönbucher [2000] introduces a credit-risk model for credit derivatives, based on the “Libor
market” framework for default-free interest rates. He provides formulas for CDS option
prices under the so called survival measure (see also Schönbucher [2004]). In a similar setup,
but with a different numéraire, Jamshidian [2004] provides CDS options prices, differently
from Schoenbucher, under an equivalent measure. This approach is pursued further by Brigo
[2005], who introduces a candidate market model for CDS options and callable defaultable
floaters under an equivalent pricing measure. Hull and White [2003] use Black’s formula
(Black [1976]) to price CDS options and give numerical examples using data on quoted CDS
spreads. A further results on CDS options is in Brigo [2005], where a variant of Jamshidian’s
decomposition for coupon bearing bond options or swaptions under affine short rate models
is considered to derive a formula for CDS options under the CIR++ model.

The remainder of this paper is organized as follows. Section 2 charaterizes CDS and CDS
options contracts. We set up the model in Section 3 and specify the dynamic programming
procedure in Section 4. The model estimation step is addressed in Section 5. We provide a
numerical investigation in Section 6. Finally, Section 7 concludes the paper.

2 CDS and CDS Options

2.1 CDS: Various Formulations

Under a typical default swap, the protection buyer pays the protection seller a regular and
periodic premium, which is determined at the beginning of the transaction. If no default
occurs during the life of the swap, these premium payments are the only cash flows. Following
a default, the protection seller makes a payment to the protection buyer, which typically takes
the form of a physical exchange between the two parties. The protection buyer provides the
seller with a specific qualifying debt instrument, issued by the reference entity, in return for a
cash payment corresponding to its full notional amount, i.e., par. The protection buyer stops
paying the regular premium following the default. The loss given default to the protection
seller is, therefore, par less the recovery value on the delivered bond. There are various CDS
payoffs formulations resulting from different conventions and approximations.

Consider a CDS, incepted at time ts, where the protection buyer pays the premium rate R
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at times Ta+1, . . . , Tb in exchange for a single protection payment LGD (loss given default)
at the default time τ of the reference entity, provided that Ta < τ ≤ Tb (protection time
window). In practice, the premium rate R is also known as the CDS spread. We assume
that the recovery value and, hence, the protection payment are known at the inception of the
contract. This is the prototype of the most diffused CDS contract, referred to as a running
CDS. From the standpoint of the protection seller, the running CDS cash flows, discounted
at time t ∈ [ts, Ta+1), are

Πa,b (R) = D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} (1)

−1{Ta<τ≤Tb}D(t, τ)LGD,

where 1{·} is the indicator function, D (t, u) is the default-free discount factor over [t, u], τ is
the default time, Tβ(τ) is the first date among the Ti’s that follows τ , and αi is the year fraction
between Ti−1 and Ti. The three elements of the right-hand side of (1) correspond respectively
to the accrued premium term, the premium payments, and the protection payment given
default. The total of discounted premium payments is known as the premium leg, whereas
the discounted loss given default is known as the protection leg.

A slightly different CDS formulation is the postponed running CDS, under which, the pro-
tection payment LGD is postponed to Tβ(τ), instead to be paid at τ . The postponed running
CDS cash flows, discounted at time t ∈ [ts, Ta+1), are

Πa,b (R) =
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} −
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, Ti)LGD.

Recently, market participants have shown interest in upfront CDS characterized by a unique
upfront premium payment ΠUCDS. The upfront CDS cash flows that we need to set to zero
to get the upfront CDS premium, discounted at time ts, are

Πa,b = ΠUCDS−
b∑

i=a+1

1{Ti−1<τ≤Ti}D(ts, τ)LGD.

where ΠUCDS is the unique upfront premium.

Alternatively, the cash flows of a postponed upfront CDS, discounted at time ts, are

Πa,b = ΠPUCDS−
b∑

i=a+1

1{Ti−1<τ≤Ti}D(ts, Ti)LGD, (2)

where ΠPUCDS is the unique upfront premium.

2.2 CDS Options

A European CDS option is a claim that gives its holder the right, but not the obligation, to
enter into a CDS with a specified spread at option maturity. The underlying CDS protection
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period, also known as the CDS tenor, starts at the option maturity. The option we consider
here is knocked out if the reference entity defaults before the option maturity. The holder
of a payer (or receiver) CDS option has the right to buy (or sell) a protection on a given
CDS. This term convention is borrowed from the interest rate derivatives market. European
CDS options are tradable over the counter, are quoted either with a knock-out or without
knock-out feature, and generally have short maturities. Following on the evolution of the
interest-rate derivatives market, we believe that a need will emerge for CDS options with
early exercise features.

A Bermudan CDS option is an option on a CDS with a finite number of exercise opportuni-
ties. We indicate the latter dates by t0 = 0, . . . , tn = T , where T is the option maturity. If
the option is exercised at tm, for m = 0, . . . , n, the holder enters into a CDS with a protection
period spanning [tm, Tb]. That is, ts = Ta = tm. As an example, consider a Bermudan CDS
option annually exercisable with a two-year maturity on a CDS with a protection maturity
of Tb = 10 years. If the CDS option is exercised at t1 = 1 year, the option holder enters into
a CDS with a protection period of 9 years, whereas if the option is exercised at t2 = 2 years,
the underlying CDS has a protection period of 8 years. Note that a European CDS option
is a particular Bermudan CDS option with n = 1.

3 Model Setup

3.1 The Default Intensity Process

Let (Ω,F ,F, Q) be a filtered probability space endowed with the filtration F = {Ft, t ≥ 0},
Ft ⊂ F , associated with a positive Markov process with left-limit right-continuous tra-
jectories {λt, t ≥ 0}. We consider the Cox process {Nt, t ≥ 0} associated with intensity
{λt, t ≥ 0}. Conditional on FT , the process {Nt, t ≤ T} verifies N0 = 0, has independent
increments, and the random variable Nt − Ns, for 0 ≤ s ≤ t ≤ T , has the Poisson distri-
bution with parameter Λt − Λs, where Λt − Λs =

∫ t

s
λudu. We define the random variable

τ = inf {t, Nt > 0} (first jump-time of N) as the default time of a given reference entity.
The intensity process {λt, t ≥ 0} is also known as the hazard rate of the default time τ .1

In practice, the hazard rate process {λt, t ≥ 0} is extracted from the quoted credit spreads.
The filtration F, hence, represents the information flow of quoted spreads in the market.
Let G = {Gt, t ≥ 0} be the augmented filtration defined by Gt = Ft ∨ σ({τ ≤ u}, u ≤ t).
Under the filtration F, given Ft at the present time t, an investor cannot know whether
default occurred before the present time, and if so when exactly. This information is instead
contained in Gt. The filtration F can be extended to include information from the market
of default-free interest rates. In our framework, however, we assume a flat term structure
of interest rates. The default-free discount factor over [t, u] is therefore given by D (t, u) =
e−r(u−t), where r is the risk-free rate.

1Although the terms “intensity” and “hazard rate” do not refer exactly to the same framework, since the
former is linked to Poisson or Cox processes while the latter is more general, we refer to the two terms as
equivalent in this paper. For a general discussion on hazard rates and intensities see for example Bielecki
and Rutkowski [2002]
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In this paper, we model the hazard rate with a CIR++ process (Brigo and Alfonsi [2003]).
Under CIR++, the hazard rate λt is the sum of a positive deterministic function ψt and of
a Markovian process yt, that is,

λt = yt + ψt, t ≥ 0. (3)

The process {yt, t ≥ 0} follows the Cox et al. [1985] (CIR) dynamics:

dyt = κ(γ − yt)dt + σ
√

ytdZt,

where {Zt, t ≥ 0} is a standard Brownian motion under Q, and β = (κ, γ, σ, y0) is a vector
of positive deterministic constants such that 2κγ > σ2, to ensure that the origin is not
accessible. Like CIR, CIR++ insures strictly positive and mean-reverting trajectories with
the additional advantage of fully calibrating market data via the function ψt, for t ≥ 0.
Moreover, there are closed-form solutions for survival probabilities and zero-coupon bonds
(Brigo and Alfonsi [2003]).

3.2 No-Arbitrage Pricing

We are interested in pricing European and Bermudan single-name credit derivatives with
knock-out features. We focus now on pricing the European claims and deal with their
Bermudan counterparts in the next subsection. We represent a European credit deriva-
tive by a future cash flow Yu, Gu−measurable, of the form Yu = Ȳu1{τ>u}, where Ȳu is an
Fu−measurable random variable defining the “non-defaultable” (in that we omit the default
indicator) part of Yu.

We consider a no-arbitrage intensity-based setting, as defined by Bielecki and Rutkowski
[2002]. Under the usual regular conditions, there exists a risk-neutral probability measure
Q under which the price of Yu at time t, for u ≥ t, is

vt (λ) = E [D (t, u) Yu | Gt] (4)

= 1{τ>t}
E [D (t, u) Yu | Ft]

Q (τ > t | Ft)

= 1{τ>t}E
[
D (t, u) Ȳue

−(Λu−Λt) | λt = λ
]
,

where E [·] is the expectation operator under Q. Equation (4) comes from the following
development (incorporating iterated expectation):

vt (λ) = 1{τ>t}
E

[
D (t, u) Ȳu1{τ>u} | Ft

]

Q (τ > t | Ft)
= 1{τ>t}

E
[
E

{
D (t, u) Ȳu1{τ>u} | Fu

} | Ft

]

Q (τ > t | Ft)

= 1{τ>t}
E

[
D (t, u) ȲuQ (τ > u | Fu) | Ft

]

Q (τ > t | Ft)
= 1{τ>t}E

[
D (t, u) Ȳue

−(Λu−Λt) | λt = λ
]
,

where Q (τ > t | Ft) = Q (Nt −N0 = 0 | Ft) = e−Λt . We provide, below, some useful results
that are relevant to price single-name credit derivatives with knock-out.
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Example 1 From the perspective of an investor at time t, the survival probability up to time
T is

S(t, T, λ) = Q (τ > T | Gt) (5)

= 1{τ>t}
Q (τ > T | Ft)

Q (τ > t | Ft)

= 1{τ>t}E
[
e−(ΛT−Λt) | λt = λ

]
=: 1{τ>t}S̄(t, T, λ)

Under CIR++, the survival probabilities are known in closed form (Brigo and Alfonsi [2003]).

Example 2 The price at time t of a defaultable, no-recovery, zero-coupon bond with maturity
T and notional amount of 1 dollar is

P (t, T, λ) = 1{τ>t}E
[
D (t, T ) e−(ΛT−Λt) | λt = λ

]
=: 1{τ>t}P̄ (t, T, λ),

known in closed form for affine hazard rates {λt, t ≥ 0} and CIR++ in particular (Duffie
et al. [2000], Duffie et al. [2003] and Brigo and Alfonsi [2003]).

Example 3 For a given premium rate K, the value of a running CDS at time t < Ta is

CDS (t,K, λ) = E [Πa,b (K) | Gt] =: 1{τ>t}CDS(t,K, λ) = (6)

= 1{τ>t}

[
R

∫ Tb

Ta

P (t, u)(Tβ(u)−1 − u)duS̄(t, u, λ) +

+R

n∑
i=a+1

P (t, Ti)αiS̄(t, Ti, λ) + LGD

∫ Tb

Ta

P (t, u)duS̄(t, u, λ)

]
,

where the above integrals are computed with numerical integration. The premium rate R of
a CDS is best computed by solving the following equation:

CDS (ts, R, λ) = 0 (⇒ CDS (ts, R, λ) = 0). (7)

As an example the premium rate of a postponed running CDS is

R = Ra,b(t) =

∑b
i=a+1 αiE

[
D(ts, Ti)e

−(ΛTi
−Λts) | λts = λ

]

∑b
i=a+1 E

[
D(ts, Ti)

(
e−(ΛTi−1

−Λts) − e−(ΛTi
−Λts)

)
| λts = λ

] .

In the same line, the premium payment ΠUCDS of a postponed upfront CDS is obtained in a
closed form:

ΠPUCDS = 1{τ>ts}LGD

b∑
i=a+1

D (ts, Ti) E
[
e−(ΛTi−1

−Λts) − e−(ΛTi
−Λts) | λts = λ

]
(8)

For more details on a suitable definition of CDS forward rates in general see Brigo [2005].
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3.3 Pricing Bermudan CDS Options

The main concern in pricing Bermudan CDS options is to identify the optimal strategy to
enter into the underlying CDS. We assume, without loss of generality, that the decision dates
t0, . . . , tn are a subset of the CDS payment schedule Ta, . . . , Tb, where the option maturity
tn is strictly less than the CDS maturity Tb. We define the following entities:

• The option strike as the strike CDS premium rate (or strike CDS spread) K;

• The value, exercise value, and holding value of the CDS option at time tm, for m =
0, . . . , n, respectively as vm (λ), ve

m (λ), and vh
m (λ), where λ = λtm is the current hazard

rate;

• The “non-defaultable” counterpart of the value, exercise value, and holding value of
the CDS option at time tm, for m = 0, . . . , n, respectively as v̄m (λ), v̄e

m (λ), and v̄h
m (λ),

where λ = λtm is the current hazard rate.

The value functions v̄m (·), v̄e
m (·), and v̄h

m (·) verify the properties vm (·) = v̄m (·) 1{τ>tm},
ve

m (·) = v̄e
m (·) 1{τ>tm}, and vh

m (·) = v̄h
m (·) 1{τ>tm}, where v̄m (·), v̄e

m (·), and v̄h
m (·) are

Ftm−measurable random variables.

Proposition 4 Consider a payer CDS Bermudan option with strike K, exercise dates t0 =
0, . . . , tn < Tb, and CDS option payment schedules nested in Ta, . . . , Tb. The cash flows of
the underlying CDS discounted at time tm, for m = 0, . . . , n, are indicated by Πm,b (K). The
value function of the option at maturity is

vn (λ) = 1{τ>tn}v̄n (λ) (9)

= 1{τ>tn}v̄
e
n(λ),

where
v̄e

n(λ) = (−E [Πn,b (K) | Ftn ])+ . (10)

For m = 0, ..., n− 1, the option value is

vm (λ) = 1{τ>tm}v̄m (λ) (11)

= 1{τ>tm} max
{
v̄e

m (λ) , v̄h
m (λ)

}
,

where
v̄e

m (λ) = (−E [Πm,b (K) | Ftm ])+ , (12)

and
v̄h

m (λ) = E
[
Dme−(Λtm+1−Λtm)v̄m+1

(
λtm+1

) | λtm = λ
]
,

with Dm = D (tm, tm+1).
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Proof. We provide a proof by induction. At the option maturity tn, the value function is

vn (λ) = 1{τ>tn} max
{
v̄e

n (λ) , v̄h
n (λ)

}

with the convention that v̄h
n (·) = 0. This results in

vn (λ) = 1{τ>tn}v̄
e
n (λ)

= 1{τ>tn} (E [Πn,b (R) | Ftn ]− E [Πn,b (K) | Ftn ])+ ,

where R is the fair CDS premium rate prevailing at time tn. By equation (7), or by definition
of CDS premium rate, having the CDS net present value vanishing for that premium rate,
we have

vn (λ) = 1{τ>tn} (−E [Πn,b (K) | Ftn ])+ .

Suppose that the value function vm+1 (·) is known. From the perspective of an investor at
time tm, the value function vm+1 (·) = 1{τ>tm+1}v̄m+1 (·) can be interpreted as a European
knock-out option. By section (3.2) the holding value is

vh
m (λ) = E

[
Dmvm+1

(
λtm+1

) | Gtm

]

= E
[
Dm1{τ>tm+1}v̄m+1

(
λtm+1

) | Gtm

]

= 1{τ>tm}E
[
Dme−(Λtm+1−Λtm)v̄m+1

(
λtm+1

) | λtm = λ
]
.

On the other hand, the exercise value is

ve
m (λ) = 1{τ>tm} (−E [Πm,b (K) | Ftm ])+ . (13)

The optimal exercise strategy is the following: exercise at time tm and state λ if, and only
if, ve

m (λ) > vh
m (λ), otherwise hold the option up to tm+1. The value function at time tm is

therefore
vm (λ) = 1{τ>tm} max

(
v̄e

m (λ) , v̄h
m (λ)

)
.

4 Dynamic Programming Approach

American-style derivatives cannot, in general, be priced in closed form. We propose a numer-
ical procedure based on dynamic programming (DP) and piecewise linear approximations of
value functions to price Bermudan CDS options. In our context, the DP value function is
the value of the credit derivative to be priced and, at each decision date, the state variable
is the hazard rate.

Let a0 = 0 < a1 < ... < ap+1 = +∞ be a set of points to which we associate a sequence of
intervals Ri = [ai, ai+1), for i = 0, ..., p. Given an approximation ṽm (·) of the value function
v̄m (·) at time tm, fully determined at each point of the grid, we introduce a piecewise linear
interpolation v̂m (·) of ṽm (·) that extends ṽm (·) everywhere:

v̂m (λ) =

p∑
i=0

(αm
i + βm

i λ) 1{λ∈Ri}. (14)
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The coefficients αm
i and βm

i are obtained by solving

v̂m (ai) = ṽm (ai) , for i = 1, ..., p− 1,

which implies the continuity of v̂m (·). Therefore, we obtain

βm
i =

ṽm (ai+1)− ṽm (ai)

ai+1 − ai

and αm
i =

ai+1ṽm (ai)− aiṽm (ai+1)

ai+1 − ai

.

We add the following restrictions αm
0 = αm

1 , βm
0 = βm

1 , αm
p = αm

p−1, and βm
p = βm

p−1.

Assume now that v̂m+1 (·) is known. An approximation of the holding value at time tm is

ṽh
m (ak) = E

[
Dme−(Λtm+1−Λtm)v̂m+1

(
λtm+1

) | λtm = ak

]
(15)

= Dm

p∑
i=0

(
αm+1

i Am
ki + βm+1

i Bm
ki

)
,

where

Am
ki = E

[
e−(Λtm+1−Λtm)1{λtm+1∈Ri} | λtm = ak

]

Bm
ki = E

[
e−(Λtm+1−Λtm)λtm+11{λtm+1∈Ri} | λtm = ak

]
,

for m = 0, ..., n−1. Here, A and B could be interpreted as transition matrices. For example,
Am

ki represents the probability that the hazard rate migrates from the state ak at time tm
to the interval Ri at time tm+1. Closed-form solutions for A and B under CIR are given in
Ben-Ameur et al. [2004]. The following proposition gives an extension under CIR++.

Proposition 5 The transition coefficients Am
ki are

Am
ki = Sm (ak)

( ∞∑
n=0

e−
(δk/2)n

n!
(δk/2)n

n!

(
Fd+2n

(
am

i+1

η

)
− Fd+2n

(
am

i

η

)))

where am
i = ai − ψtm+1, Sm (ak) is the survival probability over [tm, tm+1] when the initial

state λtm is ak, given by equation (5), and

η =
σ2

(
eh∆m − 1

)

(2 (h + κ) (eh∆m − 1) + 2h)
, δk =

8h2eh∆mak

σ2 ((h + κ) (eh∆m − 1) + 2h)
,

with ∆m = tm+1 − tm. The transition coefficients Bm
ki are

Bm
ki = Sm (ak) η

( ∞∑
n=0

e−
(δk/2)n

n!
(δk/2)n

n!
Qn

(
am

i , am
i+1

)
)

+

Sm (ak) ψtm+1

( ∞∑
n=0

e−
(δk/2)n

n!
(δk/2)n

n!

(
Fd+2n

(
am

i+1

η

)
− Fd+2n

(
am

i

η

)))
,
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where

Qn

(
am

i , am
i+1

)
= −2

(
am

i+1fd+2n

(
am

i+1

η

)
− aifd+2n

(
am

i

η

))

+ (d + 2n)

(
Fd+2n

(
am

i+1

η

)
− Fd+2n

(
am

i

η

))
,

with h =
√

κ2 + 2σ2 and d = 4κ
γ
. The functions Fd+2n (·) and fd+2n (·)are respectively the

cumulative distribution and density of a chi-2 with d + 2n degrees of freedom.

At this point, we specify the step-by-step procedure to be implemented:

1. Set m = n;

2. Compute ṽn (ak) = ve
n (ak), for k = 1, . . . , p, by (6) substituted in (13);

3. Compute v̂n (λ), for λ > 0, by (14);

4. Set m = m− 1;

5. Compute ve
m (ak), for k = 1, . . . , p, by (6) substituted in (13);

6. Compute ṽh
m (ak), for k = 1, . . . , p, by (15);

7. Compute ṽm (ak) = max
(
ve

m (ak) , ṽh
m (ak)

)
, for k = 1, . . . , p;

8. Identify the optimal decision at time tm;

9. Compute v̂m (λ), for λ > 0, by (14);

10. If m = 0 stop, else go to step 4.

At steps 2 and 5, numerical integration is required to compute the expected value of the
discounted accrued term for a running CDS.

5 Model Estimation

The model estimation step alternates between the implicit method based on quoted spreads
and the historical approach based on maximum likelihood. We use the implicit calibration
to extract the time series of the “unobservable” hazard rates from observable CDS premium
rates. Then we optimize the likelihood function over the set of admissible model parameters
in correspondence of the “unobservable” hazard rate series we estimated from CDS quotes.
The two steps are repeated until convergence.

The implicit method is based on matching the theoretical CDS premium rate with the market
spread RM , which is done implicitly by solving in λ the equation:

CDS
(
ts, R

M , λ
)

= 0. (16)
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From equation (6), finding λ = λts amounts to computing survival probabilities. Under
CIR++, the survival probability is obtained by means of (Brigo and Alfonsi [2003])

S̄(t, T, λ) = E
[
e−(ΛT−Λu)

]
(17)

= e−(ΨT−Ψt)E
[
e−(YT−Yt)

]

= e−(ΨT−Ψt)P CIR(t, T, y),

where Ψt =
∫ t

0
ψ(s)ds, Yt =

∫ t

0
ysds, and P CIR(t, T, y) is the price at time t of a zero-coupon

bond with maturity T under CIR. In this paper, we choose ψ (·) to be piecewise constant
over a number J of intervals, i.e., ψt =

∑J−1
j=0 ψtj1{tj≤t<tj+1} with the convention that tJ = ∞.

To combine the implicit and the historical approaches, we need to specify the relationship
between the dynamics of the intensity under the physical probability measure P and the
risk-neutral probability measure Q. Define the risk premium2 η

√
yt, where η is a positive

real parameter. Under the probability measure P , the process {yt, t ≥ 0} is given by

dyt = κ̄(γ̄ − yt)dt + σ
√

ytdZ
P
t ,

where κ̄ = κ − ση and γ̄ = κγ/ (κ− ση). Let θ = (β, η) be the vector of parameters to
estimate, where β = (κ, γ, σ, y0) is the risk-neutral set of parameters.

Assume at this step that the time series −→y T = (y0, ..., yT ) is known, where T is the length
of the time series. The likelihood function is

LT (θ) = ΠT−1
t=0 f (yt+1 | yt; θ) f (y0) ,

where

f (yt+1 | yt; θ) = ce(−u−v)
(v

u

) q
2
Iq

(
2
√

uv
)

c = 2κ̄/ (σ2 (1− exp (−κ̄))), u = cyte
−κ̄, v = cyt+1, q = 2κ̄γ̄/σ2− 1 and Iq (.) is the modified

Bessel function of the first kind of order q. The density function at time t0 is

f (y0) =
1

baΓ (a)
ya−1

0 e
y0
b ,

where a = 2κ̄γ̄/σ2, b = σ2/ (2κ̄), and Γ (·) is the gamma function. The maximum likelihood
estimator of θ is

θ̂ = arg max
θ

LT (θ) . (18)

The estimation procedure runs as follows:

1. Set ψ (t) = 0 for all t, that is, {λt = yt, t ≥ 0} is a CIR process;

2. Set the parameter vector θ at an initial value θ0 and define θ̂0 = θ0;

3. Set m = 0;

2This is the standard approach in specifying the risk premium, we refer the reader to Pan and Singleton
[2005] for a more general and detailed treatment of the subject
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4. Extract the intensity time series λm
t , for t = 0, . . . , T , by solving (16), where the survival

probabilities in the CDS price to be set to zero come from the CIR hazard-rate model
with parameter θ̂m;

5. Compute the maximum likelihood estimator θ̂m+1 by (18);

6. If
∣∣∣θ̂m+1 − θ̂m

∣∣∣ < ε, for a given strictly positive ε, stop and proceed to the next point;

else set m = m + 1, θ̂m = θ̂m+1, and go to step 4;

7. At a given time u ≥ T , determine ψ (·) by equating (6) to zero with S (u, Tb, λ), for
selected CDS maturities Tb, given by (17) with CIR parameters θ̂m.

In practice u = T is the current date and the CDS protection periods Tb − u refer to the
most liquid CDS contracts.

6 Numerical Investigation

Our numerical investigation focuses on the reference entity Ford Motor Credit Corporation
(from now on “Ford Credit”). The estimation step is based on five-year CDS contracts on
Ford Credit provided by Deutsche Bank Securities Inc. The spread is paid quarterly and
quoted in basis points. We choose a five-year maturity CDS since it is the most liquid
contract. The data sample covers the period from November 29, 2002, to February 18, 2005,
with 562 daily observations. To reduce noise from the daily observations, we construct the
associated weekly data series by picking spreads on each Friday (or on a Thursday if there
is no data for a particular Friday). Figure (1) shows the evolution of the quoted spread
RM over the sample period. We choose a piecewise constant function ψ (·) with the key
maturities being 1, 3, 5, 7, and 10 years. Tables (1) and (3) show the data used for March
10, 2004, and September 8, 2004, respectively, as given by the credit desk of Banca IMI.
Tables (2) and (4) provide the piecewise constant hazard rates and their associated survival
probabilities. Tables (5) and (6) show the estimates of the CIR model parameters and the
pieces of ψ (·) on September 8, 2004, for the key maturities.

Table 1: CDS Ford Credit quotes RM in basis points from 03/10/04
date Mid Bid Ask

21-mar-05 110.5 110 111
20-mar-07 116 115.9 116.3
20-mar-09 204.5 204 205
21-mar-11 212 207 217
20-mar-14 226 221 231
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Figure 1: 5-year maturity FORD Credit CDS quotes

Table 2: Calibration of the Intensity Model to FORD Credit CDS quotes from 03/10/04
Default Intensity Curve

date intensity (%) survival pr (%)
21-mar-05 1.837 98.100
20-mar-07 3.141 92.055
20-mar-09 4.694 83.685
21-mar-11 3.929 77.268
20-mar-14 4.593 67.194

Table 3: CDS Ford Credit quotes RM in basis points from 09/08/04
date Mid Bid Ask

20-Sep-05 37.74 28.8 46.67
20-Sep-07 132.5 95.2 169.7
21-Sep-09 175.1 147.6 202.6
20-Sep-11 175.1 147.6 202.6
22-Sep-14 175.1 147.6 202.6
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Table 4: Calibration of the Intensity Model to FORD Credit CDS quotes from 09/08/04
Default Intensity Curve

date intensity (%) survival pr (%)
20-Sep-05 0.627 99.346
20-Sep-07 2.340 94.742
21-Sep-09 4.460 86.527
20-Sep-11 2.697 81.929
22-Sep-14 2.695 75.463

Table 5: CIR parameters estimation using MLE
κ θ σ y0 η

.44178 0.0348468 0.23264 0.015 -0.0002
(0.070078) (0.0092541) (0.04282) (0.04245) (0.000001)

Table 6: Estimation of ψ on September 08,2004
Maturity 1 3 5 7 10

ψ 0.00007 0.00429 0.00334 0.00208 0.00351
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A postponed upfront CDS can be priced in a closed form, as shown in equation (8). Table
(7) shows the convergence of the DP price of the upfront postponed CDS to its closed-form
limit. We can see that even with a low number of grid points (p = 500), our algorithm is
accurate to the fourth digit. Accuracy can be enhanced with an increase in the number of
grid points.

Table 7: Price of 5 years maturity upfront postponed CDS with yearly payments, REC = 40%.
λ0 p =100 p=500 p=1000 p=2000 Closed Formula
0.01 0.062161 0.063246 0.063290 0.063301 0.063305
0.02 0.071711 0.072854 0.072898 0.072909 0.072909
0.03 0.081261 0.082293 0.082331 0.082341 0.082345
0.04 0.090352 0.091546 0.091589 0.091600 0.091604
0.05 0.099429 0.100637 0.100679 0.100690 0.100694
0.06 0.108507 0.109568 0.109605 0.109614 0.109618

CPU (sec) 0.05 2.11 8.03 47.86

Table (8) gives the price of a one-year-maturity European and Bermudan options on a CDS
with a protection maturity Tb = 6 years as a function of the option strike. The Bermudan
option can be exercised quarterly. For example, if the option is exercised in 3 months, the
holder enters a CDS of 5 years and 9 months. From Tables (8) and (9) we can see that
the difference in price between European and Bermudan options increases with the option
maturity. Table (10) shows how the frequency of the exercise opportunity impacts the price
of the Bermudan option. As expected, the price of the option increases with the exercise
frequency.

Table 8: Price of CDS Bermudan and European options for different strikes. Option maturity
= 1 year, protection maturity = 6 years, exercise quarterly, default recovery REC = 0.4, λ0

= 600 bps, risk free rate r = 2%
Strike (bps) Bermudan Option (bps) European Option (bps)

700 1.02 0.94
600 3.21 2.91
500 10.11 8.93
400 31.63 26.98
300 97.27 78.88

Table (11) sheds more light on how maturity affects the pricing of European and Bermudan
CDS options. For Bermudan options, the price rises with an increase in the maturity. This
obvious characteristic is due to the fact that shorter maturity Bermudan options are nested in
longer maturity options; hence, there is always a gain in having a longer option. This feature
is not guaranteed for European options. There are actually two effects: the default risk effect
and the economic cycle effect. Since European options are knocked out at default, the longer
the option maturity, the riskier the option, and the less attractive it is. The economic cycle
effect refers to the different cycles affecting the solvency of the reference entity. For example,
for a financially stressed company, short-maturity European options are more attractive,
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Table 9: Price of CDS Bermudan European options for different strikes. Option maturity =
5 year, protection maturity = 6 years, exercise quarterly, default recovery REC = 0.4, λ0 =
600 bps, risk free rate r = 2%

Strike (bps) Bermudan Option (bps) European Option (bps)
700 23.71 6.57
600 38.33 9.77
500 63.34 14.61
400 107.72 22.01
300 190.74 33.5

Table 10: Price of CDS Bermudan options for different exercise opportunities. Option
maturity = 5 year, protection maturity = 6 years, exercise quarterly, default recovery REC =
0.4, λ0 = 600 bps, risk free rate r = 2%

Strike (bps) Exercise quarterly Exercise annually
700 23.71 17.75
600 38.33 29.33
500 63.34 49.73
400 107.72 86.95
300 190.74 157.32

whereas, for a healthier company, long-maturity options are more attractive. The choice of
the CIR++ process in this context is relevant. The economic cycle effect may either enhance
or offset the default risk effect. In Table (11), with λ0 = 800 bps while γ = 348 bps, the
default intensity is expected to decrease. Thus, the cycle effect strengthens the default risk
effect. In Table (12), with λ0 = 200 bps while γ = 348 bps, the default intensity is expected
to increase. The cycle effect offsets the default risk effect.

The most traded European CDS options have either three- or six- month maturities. We
think that the lack of liquidity in longer maturity European options is due to the default risk
effect. CDS Bermudan options may offer an interesting alternative for longer maturities, the
default risk effect being less relevant. CDS Bermudan options can then complete the credit
derivatives market by allowing investors to focus on spread movements without worrying
about default risk.

Table 11: Price of CDS Bermudan options for different maturities opportunities. Option
maturity = protection maturity - 1 year, exercise quarterly , default recovery REC = 0.4,
strike = 500 bps, λ0 = 800 bps, risk free rate r = 2%
Protection Maturity (years) Bermudan Option (bps) European Option (bps)

2 58.31 39.10
3 78.02 33.14
4 81.40 25.23
5 84.58 19.54
6 84.65 15.74
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Table 12: Price of CDS Bermudan options for different maturities opportunities. Option
maturity = protection maturity - 1 year, exercise quarterly , default recovery REC = 0.4,
strike = 500 bps, λ0 = 200 bps, risk free rate r = 2%
Protection Maturity (years) Bermudan Option (bps) European Option (bps)

2 4.74 4.16
3 14.58 9.23
4 23.63 11.4
5 31.02 12.11
6 36.67 12.15
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7 Conclusion

In this paper, we use a DP approach for pricing CDS and CDS options. Our main contribu-
tion is twofold. First, we address the pricing of single-name knock-out credit derivatives as
a DP problem. Second, we propose a numerical procedure to efficiently solve the Bellman
equation. The numerical investigation yields the following results. For Bermudan credit
derivatives, the value of the early exercise opportunity increases with the option maturity
and the exercise frequency. The impact of maturity on European CDS options is less ob-
vious. Depending on the strength of the default risk effect relative to the economic cycle
effect, the option price might increase or decrease with the option maturity.
In the examples presented in Brigo and Cousot [2006] it is shown that with the CIR++
model the large ranges of possible CDS volatilities never exceed levels about 30%. Since
Brigo [2005] shows that market implied volatilities may easily exceed 50%, we may need to
include jumps in the core CIR process for λ in order to attain high enough levels of implied
CDS volatilities, according to the suggestion in El-Bachir [2005]. The dynamic programming
approach presented here can be extended to a more general jump-diffusion affine setting for
stochastic intensities where we can incorporate stochastic interest rates as well. Finally, we
can extend our work to price other class for credit derivatives such as defaultable bonds with
embedded options. We leave these extensions for future research.
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Philipp Schönbucher. A measure of survival. Risk, pages 79–85, 2004.

Kenneth Singleton. Dynamic asset pricing models: Econometric specifications and empirical
assessments. Princeton University Press, forthcoming, 2006.

John N. Tsitsiklis and Benjamin Van-Roy. Regression methods for pricing complex american-
style options. IEEE Transactions on Neural Networks, 12:684–703, 2001.

21


