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Abstract
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is short-run and has a zero mean. Our model can be viewed as an affine version of Engle
and Lee (1999), allowing for easy valuation of European options. We investigate the
model through an integrated analysis of returns and options data. The performance of
the model is spectacular when compared to a benchmark single-component volatility
model that is well-established in the literature. The improvement in the model’s
performance is due to its richer dynamics which enable it to jointly model long-maturity
and short-maturity options.
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1 Introduction

There is a consensus in the literature that combining time-variation in the conditional vari-
ance of asset returns (Engle (1982), Bollerslev (1986)) with a leverage effect (Black (1976))
constitutes a potential solution to well-known biases associated with the Black-Scholes (1973)
model, such as the smile and the smirk. To model the smirk, these models generate higher
prices for out-of-the-money put options as compared to the Black-Scholes formula. Equiv-
alently, the models generate negative skewness in the distribution of asset returns. In the
continuous-time option valuation literature, the Heston (1993) model addresses some of these
biases. This model contains a leverage effect as well as stochastic volatility.! In the discrete-
time literature, the NGARCH(1,1) option valuation model proposed by Duan (1995) contains
time-variation in conditional variance as well as a leverage effect. The model by Heston and
Nandi (2000) is closely related to Duan’s model.

Many existing empirical studies have confirmed the importance of time-varying volatility,
the leverage effect and negative skewness in continuous-time and discrete-time setups, using
parametric as well as non-parametric techniques.? However, it has become clear that while
these models help explain the biases of the Black-Scholes model in a qualitative sense, they
come up short in a quantitative sense. Using parameters estimated from returns or options
data, these models reduce the biases of the Black-Scholes model, but the magnitude of the
effects is insufficient to completely resolve the biases. The resulting pricing errors have the
same sign as the Black-Scholes pricing errors, but are smaller in magnitude. We therefore
need models that possess the same qualitative features as the models in Heston (1993) and
Duan (1995), but that contain stronger quantitative effects. These models need to generate
more flexible skewness and volatility of volatility dynamics in order to fit observed option
prices.

One interesting approach in this respect is the inclusion of jump processes. In most
existing studies, jumps are added to models that already contain time-variation in the con-
ditional variance as well as a leverage effect. The empirical findings in this literature have
been mixed. In general, for Poisson processes, jumps in returns and volatility improve option
valuation when parameters are estimated using historical time series of returns, but usually
not when parameters are estimated using the cross-section of option prices.®> Huang and Wu
(2004) find that other types of jump processes may provide a better fit.

!The importance of stochastic volatility is also studied in Hull and White (1987), Melino and Turnbull
(1990), Scott (1987) and Wiggins (1987).

2See for example Ait-Sahalia and Lo (1998), Amin and Ng (1993), Bakshi, Cao and Chen (1997), Bates
(1996, 2000), Benzoni (1998), Bollerslev and Mikkelsen (1999), Chernov and Ghysels (2000), Duan, Ritchken
and Sun (2004), Engle and Mustafa (1992), Eraker (2004), Heston and Nandi (2000), Jones (2003), Nandi
(1998) and Pan (2003).

3See for example Bakshi, Cao and Chen (1997), Eraker, Johannes and Polson (2003), Eraker (2004) and
Pan (2002).



This paper takes a different approach. We attempt to remedy the remaining option biases
by modeling richer volatility dynamics.* It has been observed using a variety of diagnostics
that it is difficult to fit the autocorrelation function of return volatility using a benchmark
model such as a GARCH(1,1). Similar remarks apply to stochastic volatility models such as
Heston (1993). The main problem is that volatility autocorrelations are too high at longer
lags to be explained by a GARCH(1,1), unless the process is extremely persistent. This
extreme persistence may impact negatively on other aspects of option valuation, such as the
valuation of short-maturity options.

In fact, it has been observed in the literature that volatility may be better modeled using
a fractionally integrated process, rather than a stationary GARCH process.” Andersen,
Bollerslev, Diebold and Labys (2003) confirm this finding using realized volatility. Bollerslev
and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigate and discuss
some of the implications of long memory for option valuation. Using fractional integration
models for option valuation is cumbersome. Optimization is very time-intensive and a
number of ad-hoc choices have to be made regarding implementation. This paper addresses
the same issues using a different type of model that is easier to implement and captures the
stylized facts addressed by long-memory models at horizons relevant for option valuation.
The model builds on Heston and Nandi (2000) and Engle and Lee (1999). In our model,
the volatility of returns consists of two components. One of these components is a long-run
component, and it can be modeled as (fully) persistent. The other component is short-run
and mean zero. The model is able to generate autocorrelation functions that are richer than
those of a GARCH(1,1) model while using just a few additional parameters. We illustrate
how this impacts on option valuation by studying the term structure of volatility.

Unobserved component or factor models are very popular in the finance literature. See
Fama and French (1988), Poterba and Summers (1988) and Summers (1986) for applications
to stock prices. In the option pricing literature, Bates (2000) and Taylor and Xu (1994)
investigate two-factor stochastic volatility models. Duffie, Pan and Singleton (2000) provide
a general continuous-time framework for the valuation of contingent claims using multifactor
affine models. Eraker (2004) suggests the usefulness of a multifactor approach based on his
empirical results. Alizadeh, Brandt and Diebold (2002) uncover two factors in stochastic
volatility models of exchange rates using range-based estimation. Unobserved component
models are also very popular in the term structure literature, although in this literature the
models are more commonly referred to as multifactor models.® There are very interesting
parallels between our approach and results and stylized facts in the term structure literature.
In the term structure literature it is customary to model short-run fluctuations around a time-
varying long-run mean of the short rate. In our framework we model short-run fluctuations

4 Adding jumps to the new volatility specification may of course improve the model further.

®See Baillie, Bollerslev and Mikkelsen (1996).

6See for example Dai and Singleton (2000), Duffee (1999), Duffie and Singleton (1999) and Pearson and
Sun (1994).



around a time-varying long-run volatility.

Dynamic factor and component models can be implemented in continuous or discrete
time.”  We choose a discrete-time approach because of the ease of implementation. In
particular, our model is related to the GARCH class of processes and volatility filtering and
forecasting are relatively straightforward, which is critically important for option valuation.
An additional advantage of our model is parsimony: the most general model we investigate
has seven parameters. The models with jumps in returns and volatility discussed above
are much more heavily parameterized. We speculate that parsimony may help our model’s
out-of-sample performance.

We investigate the model through an integrated analysis of returns and options data. We
study two models: one where the long-run component is constrained to be fully persistent
and one where it is not. We refer to these models as the persistent component model and
the component model respectively. When persistence of the long-run component is freely
estimated, it is very close to one. The performance of the component model is spectacular
when compared with a benchmark GARCH(1,1) model. When using all available option
data, the RMSE of the component model is on average 16.5% lower than that of the bench-
mark GARCH model in-sample and 22.1% out-of-sample. When using long-maturity options
only, the RMSE improvement is on average 17.8% in-sample and 33.7% out-of-sample. The
improvement in the model’s performance is due to its richer dynamics, which enable it to
jointly model long-maturity and short-maturity options. Our out-of-sample results strongly
suggest that these richer dynamics are not simply due to spurious in-sample overfitting. The
persistent component model performs better than the benchmark GARCH(1,1) model, but
it is inferior to the component model both in- and out-of-sample. We also provide a detailed
study of the term structure of volatilities for our proposed models and the benchmark model.

We use the GARCH(1,1) as a benchmark model for three reasons: First, the component
model is a natural generalization of the GARCH(1,1) model. Second, Heston and Nandi
(2000) find that the GARCH(1,1) slightly outperforms the ad-hoc implied volatility bench-
mark model in Dumas, Fleming and Whaley (1998). We have confirmed this result with
our data. Third, in separate work we find that the GARCH(1,1) performs very similarly
to the benchmark stochastic volatility model in Heston (1993) which can be viewed as the
continuous time limit of the GARCH(1,1) model.

The paper proceeds as follows. Section 2 introduces the model. Section 3 discusses the
volatility term structure and Section 4 discusses option valuation. Section 5 discusses the
empirical results, and Section 6 concludes.

"Duffie, Pan and Singleton (2000) suggest a multifactor continuous-time model that captures the spirit
of our approach, but do not investigate the model empirically.



2 Return Dynamics with Volatility Components

In this section we first present the Heston-Nandi GARCH(1,1) model which will serve as
the benchmark model throughout the paper. We then construct the component model as a
natural extension of a rearranged version of the GARCH(1,1) model. Finally the persistent
component model is presented as a special case of the component model.

2.1 The Heston and Nandi GARCH(1,1) Model

Heston and Nandi (2000) propose a class of GARCH models that allow for a closed-form
solution for the price of a European call option. They present an empirical analysis of the
GARCH(1,1) version of this model, which is given by

ln(St+1) = 1H(St) +7r—+ )\ht+1 + ht+1zt+1 (1)
hiyi = w+bihi+ai(z —a \/}702

where S; ;1 denotes the underlying asset price, r the risk free rate, A the price of risk and
hiy1 the daily variance on day ¢ + 1 which is known at the end of day t. The 2,1 shock
is assumed to be ii.d. N(0,1). The Heston-Nandi model captures time variation in the
conditional variance as in Engle (1982) and Bollerslev (1986),® and the parameter ¢; captures
the leverage effect. The leverage effect captures the negative relationship between shocks
to returns and volatility (Black (1976)), which results in a negatively skewed distribution
of returns.’ Note that the GARCH(1,1) dynamic in (1) is slightly different from the more
conventional NGARCH model used by Engle and Ng (1993) and Hentschel (1995), which is
used for option valuation in Duan (1995). The reason is that the dynamic in (1) is engineered
to yield a closed-form solution for option valuation, whereas a closed-form solution does not
obtain for the more conventional GARCH dynamic. Hsieh and Ritchken (2000) provide
evidence that the more traditional GARCH model may actually slightly dominate the fit of
(1). Our main point can be demonstrated using either dynamic. Because of the convenience
of the closed-form solution provided by dynamics such as (1), we use this as a benchmark in
our empirical analysis and we model the richer component structure within the Heston-Nandi
framework.

To better appreciate the workings of the component models presented below, note that
by using the expression for the unconditional variance

w + ap

Bl =02 = —— 1
[ t+1] ? 1—b1—a16%

8For an early application of GARCH to stock returns, see French, Schwert and Stambaugh (1987).

Tts importance for option valuation has been emphasized among others by Benzoni (1998), Chernov
and Ghysels (2000), Christoffersen and Jacobs (2004), Eraker (2004), Eraker, Johannes and Polson (2003),
Heston (1993), Heston and Nandi (2000) and Nandi (1998).
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the variance process can now be rewritten as
hiv1 = 0% + by (ht - 02) +a; ((Z’t —avVh)? = (1+ 0%02)) (2)

2.2 Building a Component Volatility Model

The expression for the GARCH(1,1) variance process in (2) highlights the role of the para-
meter o2 as the constant unconditional mean of the conditional variance process. A natural
generalization is then to specify 02 as time-varying. Denoting this time-varying component
by qi11, the expression for the variance in (2) can be generalized to

hivr = Q1 + B (he — @) + ((Zt — N J@Q —(1+ 7%%)) (3)

This model is similar in spirit to the component model of Engle and Lee (1999). The
difference between our model and Engle and Lee (1999) is that the functional form of the
GARCH dynamic (3) allows for a closed-form solution for European option prices. This is
similar to the difference between the Heston-Nandi (2000) GARCH(1,1) dynamic and the
more traditional NGARCH(1,1) dynamic discussed in the previous subsection. In speci-
fication (3), the conditional volatility h;,; can most usefully be thought of as having two
components. Following Engle and Lee (1999), we refer to the component ¢; 11 as the long-run
component, and to h;11 — @11 as the short-run component. We will discuss this terminol-
ogy in some more detail below. Note that by construction the unconditional mean of the
short-run component h;.1 — q;+1 is zero.

The model can also be written as

bt = e+ (003 +8) (=) + o (2 = 70 V/R)? = (149300
= g+ B (b — @) +a (2= 1/ = (L+9%he)) (4)

where 3 = ay? + (3. This representation is useful because we can think of

2
ve = (=) = (L+ath) (5)
= (zt2 — 1) — 271\/h_tzt

as a mean-zero innovation.
The model is completed by specifying the functional form of the long-run volatility com-
ponent. In a first step, we assume that ¢, follows the process

Qi1 =W+ pg + ¢ ((z,:2 —1) — 27, \/h_tzt) (6)



Note that we can therefore write the component volatility model as

higi = 1+ 5 (he — qi) + avyy (7)
G+1 = W+ PG+ PU2

with
Vi = (zf — 1) — 2%\/h_tzt, for i =1,2. (8)

and E;_j [v;] = 0,7 = 1,2. Also note that the model contains seven parameters: «, [, 7,
Y9, w, p and ¢ in addition to the price of risk, A.

2.3 A Fully Persistent Special Case

In our empirical work, we also investigate a special case of the model in (7). Notice that in
(7) the long-run component of volatility will be a mean reverting process for p < 1. We also
estimate a version of the model which imposes p = 1. The resulting process is

heir = G+ B (he — @) + avry (9)
QG+1 = WF G+ puay

and v;¢, ¢ = 1,2 are as in (8). The model now contains six parameters: «, B Y1, Vo, w and @
in addition to the price of risk, \.

In this case the process for long-run volatility contains a unit root and shocks to the long-
run volatility never die out: they have a “permanent” effect. Recall that following Engle
and Lee (1999) in (7) we refer to ¢;y1 as the long-run component and to h;y1 — g1 as the
short-run component. In the special case (9) we can also refer to ¢;; as the “permanent”
component, because innovations to ¢;y; are truly “permanent” and do not die out. It
is then customary to refer to h;y1 — q;+1 as the “transitory” component, which reverts to
zero. It is in fact this permanent-effects version of the model that is most closely related to
models which have been studied more extensively in the finance and economics literature,
rather than the more general model in (7). We will refer to this model as the persistent
component model.

It is clear that (9) is nested by (7). It is therefore to be expected that the in-sample
fit of (7) is superior. However, out-of-sample this may not necessarily be the case. It is
often the case that more parsimonious models perform better out-of-sample if the restriction
imposed by the model is a sufficiently adequate representation of reality. The persistent
component model may also be better able to capture structural breaks in volatility out-of-
sample, because a unit root in the process allows it to adjust to a structural break, which
not possible for a mean-reverting process. It will therefore be of interest to verify how close
p is to one when estimating the more general model (7).

10See Fama and French (1988), Poterba and Summers (1988) and Summers (1986) for applications to stock
prices. See Beveridge and Nelson (1981) for an application to macroeconomics.
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3 Variance Term Structures

To intuitively understand the shortcomings of existing models such as the GARCH(1,1)
model in (1) and the improvements provided by our model (7), it is instructive to graphically
illustrate the workings of both models in a dimension that critically affects their performance.
In this section we graphically illustrate the variance term structures and some other related
properties of the models that are key for option valuation.

3.1 The Variance Term Structure for the GARCH(1,1) Model

Following the logic used for the component model in (7), we can rewrite the GARCH(1,1)
variance dynamic in (2). We have

hesr = 02+ by (hy — 0%) + ((zf 1) —2¢ \/h_tzt> (10)

where by = by 4+ a 3 and where the innovation term has a zero conditional mean. From (10)
the multi-step forecast of the conditional variance is

E; [hoy) = 0% + W5 (hys — 02)

where the conditional expectation is taken at the end of day ¢. Notice that by is directly
interpretable as the variance persistence in this representation of the model.

We can now define a convenient measure of the variance term structure for maturity K
as

1= b (hyys — 0?)
1—b K

hisra4x = Z E; [hiyi] = e Z o+ bk Yhyyr —0%) =0 +

This variance term structure measure succinctly captures important information about the
model’s potential for explaining the variation of option values across maturities.!!  To
compare different models, it is convenient to set the current variance, h;. 1, to a simple m
multiple of the long run variance. In this case the variance term structure relative to the
unconditional variance is given by

1—bK (m—1)
1-b, K

hivres/o? =1+

The dash-dot lines in the top panels of Figures 1 and 2 show the term structure of variance
for the GARCH(1,1) model for a low and high initial conditional variance respectively. We

I'Notice that due to the price of risk term in the conditional mean of returns, the term structure of variance
as defined here is not exactly equal to the conditional variance of cumulative returns over K days.
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use parameter values estimated via MLE on daily S&P500 returns (the estimation details
are in Table 2 and will be discussed further below). We set m = % in Figure 1 and m = 2
in Figure 2. The figures present the variance term structure for up to 250 days, which
corresponds approximately to the number of trading days in a year and therefore captures
the empirically relevant term structure for option valuation. It can be clearly seen from
Figures 1 and 2 that for the GARCH(1,1) model, the conditional variance converges to the
long-run variance rather fast.

We can also learn about the dynamics of the variance term structure though impulse
response functions. For the GARCH(1,1) model, the effect of a shock at time ¢, z;, on the

expected k-day ahead variance is

OE: hys]) /023 = B ar (1 = e1v/hu/2)

and thus the effect on the variance term structure is

1-0bKa
aEt I:ht:tJrK] /823 = 1_ 511 El (1 — clm/zt>

The bottom-left panels of Figures 3 and 4 plot the impulse responses to the term structure of
variance for h, = 02 and 7, = 2 and 2z, = —2 respectively, again using the parameter estimates
from Table 2. The impulse responses are normalized by the unconditional variance. Notice
that the effect of a shock dies out rather quickly for the GARCH(1,1) model. Comparing
across Figures 3 and 4 we see the asymmetric response of the variance term structure from
a positive versus negative shock to returns. This can be thought of as the term structure
of the leverage effect. Due to the presence of a positive ¢, a positive shock has less impact
than a negative shock along the entire term structure of variance.

3.2 The Variance Term Structure for the Component Model
In the component model we have

heri = Q1+ B (he — @) + aviy

Qi1 = W+ pqr + pugy

The multi-day forecast of the two components are

~k—1
E, [ht+k - Qt+k] = (ht+1 - Qt+1)

By (g = %p + o <C_It+1 - ﬁ)

o> + o (g1 — 0°)



The simplicity of these multi-day forecasts is a key advantage of the component model. The
multi-day variance forecast is a simple sum of two exponential components. Notice that
B and p correspond directly to the persistence of the short-run and long-run components
respectively.

We can now calculate the variance term structure in the component model for maturity
K as

K
hitii4xw = Z [qtx) + Bt [Ptk — Gerk)
k:
K ~k—1
= Z (@1 = 0%) + 5 (hes1 = g4)
k

~K
1—0 Qt+1_02+1_6 Pis1 — Qi

_ 2
A I -5 K

If we set q;11 and hyyq equal to my and ms multiples of the long run variance respectively,
then we get the variance term structure relative to the unconditional variance simply as

1—p8m; —1 I—Bng—ml

1-p K 1-3 K (11)

The solid lines in the top panels in Figures 1 and 2 show the term structure of variance
for the component model using parameters estimated via MLE on daily S&P500 returns
from Table 2. We set m; = %, = % in Figure 1 and m; = g, me = 2 in Figure 2. By
picking my equal to the m used for the GARCH(1,1) model, we ensure comparability across
models within each figure because the spot variances relative to their long-run variances are
identical.'’> The main conclusion from Figures 1 and 2 is that compared to the dash-dot
GARCH(1,1), the conditional variance converges more slowly to the unconditional variance
in the component model. This is particularly so on days with a high spot variance. The
middle and bottom panels show the contribution to the total variance from each component.
Notice the strong persistence in the long-run component.

We can also calculate impulse response functions in the component model. The effects
of a shock at time t, z; on the expected k-day ahead variance components are

OB sl /022 = 70 (1= v/hi/)
OF; [hiyk — qevr] /8Zt2 = ~k 1 <1 N \/_/Zt)

k

OE, [he] /022 = B a (1 — %\/h_t/zt) + 0" (1 — %\/h_t/zt)

2Note that we need m; # my in this numerical experiment to generate a “short-term” effect in (11).
Changing m, will change the picture but the main conclusions stay the same.

hisrair/o” =1+
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Notice again the simplicity due to the component structure. The impulse response on the
term structure of variance is then

1 K

1__pp % (1 — 2 \/h_t/zt>

The top-left panels of Figures 3 and 4 plot the impulse responses to the term structure
of variance for hy = 0% and 2, = 2 and z = —2 respectively. The figures reinforce the
message from Figures 1 and 2 that using parameterizations estimated from the data, the
component model is quite different from the GARCH(1,1) model. The effects of shocks are
much longer lasting in the component model using estimated parameter values because of
the parameterization of the long-run component. Comparing across Figures 3 and 4 it is
also clear that the term structure of the leverage effect is more flexible. As a result current
shocks and the current state of the economy potentially have a much more profound impact
on the pricing of options across maturities in the component model.

It has been argued in the literature that the hyperbolic rate of decay displayed by long
memory processes may be a more adequate representation for the conditional variance of
returns.’> We do not disagree with these findings. Instead, we argue that Figures 1 through
4 demonstrate that in the component model the combination of two variance components
with exponential decay gives rise to a slower decay pattern that sufficiently adequately
captures the hyperbolic decay pattern of long memory processes for the horizons relevant for
option valuation. This is of interest because although the long memory representation may
be a more adequate representation of the data, it is harder to implement.

Figure 5 presents a final piece of evidence that helps to intuitively understand the dif-
ferences between the GARCH(1,1) and component models. It shows the autocorrelation
function of the squared return innovations, e}, = z7,,htq for the GARCH(1,1) and the
component model. The expressions used to compute the autocorrelation functions for the
models are available upon request. The component model generates larger autocorrelations
at shorter and longer lags. The autocorrelation for the GARCH (1,1) starts low and decays
to zero rather quickly. Finally, notice again that the shape of the autocorrelation func-
tion for the component model mimics the autocorrelation function of long memory models
much more closely than the GARCH (1,1) model (see Bollerslev and Mikkelsen (1996) for
evidence on long memory in volatility). Maheu (2002) presents Monte-Carlo evidence that
a component model similar to the one in this paper can capture these long-range dependen-
cies. The component model can therefore be thought of as a viable intermediary between
short-memory GARCH(1,1) models and true long-memory models.

S K
1
aEt [ht:t+K] /8Zt2 = 1 _63 % (1 - N \/h_t/zt) +

13See Bollerslev and Mikkelsen (1996,1999), Baillie, Bollerslev and Mikkelsen (1996) and Ding, Granger
and Engle (1993).
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4 Option Valuation

We now turn to the ultimate purpose of this paper, namely the valuation of derivatives on
an underlying asset with dynamic variance components. For the purpose of option valuation
we need the risk-neutral return dynamics rather than the physical dynamics in (1), (7) and

(9)-

4.1 The Risk-Neutral GARCH(1,1) Dynamic

The risk-neutral dynamics for the GARCH(1,1) model are given in Heston and Nandi
(2000) as

n(Se1) = In(S) +7 — Lhepr + Vherzin (12)
hiy1 = w+bihe +a1(zf — Cﬁf\/h_t)2

with ¢ = ¢ + A+ 0.5 and z; ~ N(0,1). For the component volatility models, the most
convenient way to express the risk-neutral dynamics is to use the following mapping with
the GARCH(2,2) model.

4.2 The GARCH(2,2) Mapping

In order to construct the mapping from a component model to a GARCH(2,2) model note
that ¢4 in (6) can be written as

w+ ¢ ((z2 = 1) = 27,V he2t)
dt+1 = 1- .0
P

where L denotes the lag operator. Substituting this expression and its lagged version into
the expression for h;,; in (4), it becomes clear that we can write the conditional variance in
the component model as a GARCH (2, 2) process.

1H(St+1) == ln(St) +7r—+ >\ht+1 + 4/ ht+1zt+1 (13)

2 2
hivi = w+bihy+ bbby +ay (Zt —a \/h_t> + as (zH — C2y/ hH)

1 For the underlying theory on risk neutral distributions in discrete time option valuation see Rubinstein
(1976), Brennan (1979), Amin and Ng (1993), Duan (1995), Camara (2003), and Schroeder (2004).
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where

a = a+ (14)
ag = —(pa+ Byp)
~ vy, + 2
b — (p+5)_<’71 at)
a1
oy, + 3 2 ~
by — _(pays + Bes) B
Qa2
N1t Y0
g = ———
a1
Pt 1B
g = —————————
a2

w = (W-¢p)(1-p)-a(l-)p)

The relationship between the model in (13) and the model in (7) deserves more comment.
Equation (14) shows that the component model can be viewed as a GARCH(2,2) model with
nonlinear parameter restrictions. These restrictions yield the component structure which
enables interpretation of the model as having a potentially persistent long-run component
and a rapidly mean-reverting short-run component. We implement the model and present
the empirical results in terms of the component parameters rather than the GARCH(2,2) pa-
rameters. This interpretation of the results is very helpful when thinking about the variance
term structure implications of the model, as Figures 1-4 above illustrate. The component
structure allows for simple term structure formulas which in the general GARCH(2,2) model
are much more cumbersome and harder to interpret. Due to its natural extension of the
GARCH(1,1) model, the component model is also useful for implementation when sensible
parameter starting values must be chosen for estimation. In contrast, it is quite difficult to
come up with sensible starting values for estimating a GARCH(2,2) process.

The restrictions in (14) allow us to obtain the GARCH(2,2) parameters given the com-
ponents estimates. A natural question is if we can obtain the component parameters given
GARCH(2,2) estimates. In Appendix A we invert the mapping in (14) to get the component
model parameters as functions of the GARCH(2,2) parameters. The mapping illustrates
more advantages from implementing the component model as opposed to a GARCH(2,2)
model: It turns out that the roots in the characteristic equation for the GARCH(2,2) model
are exactly the persistence parameters 3 and p in the component model. Thus estimating
the component model forces the characteristic roots in the GARCH(2,2) model to be real.
Furthermore, the stationarity requirement in the component model is simply that B<1
and p < 1 whereas it is much more complicated in the GARCH(2,2) model. The upshot is
that the component model is much easier to implement from the point of view of finding
reasonable starting values and enforcing stationarity in estimation.
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The mapping between the component model and the GARCH(2,2) model is useful for
the purpose of option valuation. For option valuation, we need the risk-neutral dynamic.
For the GARCH(2,2) model in (13), the risk-neutral representation is

In(Si1) = In(S) +r— %htﬂ + vV ez (15)

2 2
ht+1 = w-+ blht + bghtfl + aq (Z;k — CI \/h_t> + Qo (Zz;l — C;w ht,1>

where ¢f = ¢; + A+ 0.5,i = 1,2 and z; ~ N(0,1).

4.3 The Option Valuation Formula

Given the risk-neutral dynamics, option valuation is relatively straightforward. We use the
result of Heston and Nandi (2000) that at time ¢, a European call option with strike price
K that expires at time T is worth

Call Price = e "=V E*[Maz (St — K, 0)] (16)

1 —r(T—t) 0o K=t T4 1
-8+ / Re[ S Thig & )}dqb
2 0 i

e (L [ [fL G T )
0

2 110,

where f*(t,T;i¢) is the conditional characteristic function of the logarithm of the spot price
under the risk neutral measure. For the return dynamics in this paper, we can characterize
the generating function of the stock price with a set of difference equations. We apply the
techniques in Heston and Nandi (2000) to get for the GARCH(2,2) representation of the
model in (15):

f(t, T, ¢) = Sg) exp <At + Bltht—|—1 —+ Bgtht + Ct(Zt — C9 \/h_t)2>

with coefficients

At = At+1 + ¢T’ + Blt+1w — %hl (1 — 2alBlt+1 — 20t+1)

n 1/2¢2 + 2 (Bygra1c1 + Cipr62) (Bryiaicr + Cipca — )
1 =2Byy101 — 20
+ (Blt+1@16% + Cmc%) + b1 Biiy1 + Barya

By = ¢(—0.5)

By = bQBlt—l—l
Cy = a2Blt+1
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where A;, By, By, and C; implicitly are functions of 7" and ¢. This system of difference
equations can be solved backwards using the terminal condition

Ap = Bir = Byr = Cr = 0.

Note that this result for the GARCH(2,2) model is different from the one listed in Ap-
pendix A of Heston and Nandi (2000), which contains some typos. We present the derivation
for the GARCH(2,2) model in Appendix B. The correction of the general GARCH(p,q) case
is available upon request.'®

5 Empirical Results

This section presents the empirical results. We first discuss the data, followed by an empirical
evaluation of the model estimated under the physical measure using a historical series of stock
returns. Subsequently we present estimation results obtained by estimating the risk-neutral
version of the model using options data.

5.1 Data

We conduct our empirical analysis using six years of data on S&P 500 call options, for the
period 1990-1995. We apply standard filters to the data following Bakshi, Cao and Chen
(1997). We only use Wednesday options data. Wednesday is the day of the week least likely
to be a holiday. It is also less likely than other days such as Monday and Friday to be
affected by day-of-the-week effects. For those weeks where Wednesday is a holiday, we use
the next trading day. The decision to pick one day every week is to some extent motivated
by computational constraints. The optimization problems are fairly time-intensive, and
limiting the number of options reduces the computational burden. Using only Wednesday
data allows us to study a fairly long time-series, which is useful considering the highly
persistent volatility processes. An additional motivation for only using Wednesday data is
that following the work of Dumas, Fleming and Whaley (1998), several studies have used
this setup (see for instance Heston and Nandi (2000)).

We perform a number of in-sample and out-of-sample experiments using the options data.
We first estimate the model parameters using the 1990-1992 data and subsequently test the
model out-of-sample using the 1993 data. We also estimate the model parameters using
the 1992-1994 data and subsequently test the model out-of-sample using the 1995 data. For

15We verified the accuracy of our results by comparing closed-form prices with Monte Carlo prices. The
empirical results in Heston and Nandi (2000) are for the GARCH(1,1) case and are not affected by this
discrepancy for higher-order models. Our implementation of the pricing for the GARCH(1,1) case thus uses
the expressions in Heston and Nandi (2000). The moment generating function can also be derived explicitly
in terms of the component model. This result is available upon request.
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both estimation exercises we use a volatility updating rule for the 500 days predating the
Wednesday used in the estimation exercise. This volatility updating rule is initialized at
the model’s unconditional variance. We also perform an extensive empirical analysis using
return data. Ideally we would like to use the same sample periods for these estimation
exercises, but it is well-known that it is difficult to estimate GARCH parameters precisely
using relatively short samples on returns. We therefore use a long sample of returns (1963-
1995) on the S&P 500.

Table 1 presents descriptive statistics for the options data for 1990-1995 by moneyness
and maturity. Panels A and B indicate that the data are standard. We can clearly observe
the volatility smirk from Panel C and it is clear that the slope of the smirk differs across
maturities. Descriptive statistics for different sub-periods (not reported here) demonstrate
that the slope also changes across time, but that the smirk is present throughout the sample.
The top panel of Figure 6 gives some indication of the pattern of implied volatility over time.
For the 312 days of options data used in the empirical analysis, we present the average implied
volatility of the options on that day. It is evident from Figure 6 that there is substantial
clustering in implied volatilities. It can also be seen that volatility is higher in the early
part of the sample. The bottom panel of Figure 6 presents a time series for the 30-day
at-the-money volatility (VIX) index from the CBOE for our sample period. A comparison
with the top panel clearly indicates that the options data in our sample are representative
of market conditions, although the time series based on our sample is of course a bit more
noisy due to the presence of options with different moneyness and maturities.

5.2 Empirical Results using Returns Data

Table 2 presents estimation results obtained using returns data for 1963-1995 for the physical
model dynamics. We present results for three models: the GARCH(1,1) model (1), the
component model (7) and the persistent component model (9). Almost all parameters are
estimated significantly different from zero at conventional significance levels.!o In terms of
fit, the log likelihood values indicate that the fit of the component model is much better than
that of the persistent component model, which in turn fits much better than the GARCH(1,1)
model.

The improvement in fit for the component GARCH model over the persistent compo-
nent GARCH model is perhaps somewhat surprising when inspecting the persistence of the
component GARCH model. The persistence is equal to 0.996. It therefore would appear
that equating this persistence to 1, as is done in the persistent component model, is an
interesting hypothesis, but apparently modeling these small differences from one is impor-
tant. It must of course be noted that the picture is more complex: while the persistence

16The standard errors are computed using the outer product of the gradient at the optimal parameter
values.
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of the long-run component (p) is 0.990 for the component model as opposed to 1 for the
persistent component model, the persistence of the short-run component (B ) is 0.644 versus
0.764 and this may account for the differences in performance. Note that the persistence
of the GARCH(1,1) model is estimated at 0.955, which is consistent with earlier literature.
It is slightly lower than the estimate in Christoffersen, Heston and Jacobs (2004) and a bit
higher than the average of the estimates in Heston and Nandi (2000).

The ability of the models to generate richer patterns for the conditional versions of
leverage and volatility of volatility is critical. For option valuation, the conditional versions
of these quantities and their variation through time are just as important as the unconditional
versions. The conditional versions of leverage and volatility of volatility are computed as
follows. For the GARCH(1,1) model the conditional variance of variance is

Vardheyo) = Eylhess — By [hygo]]” (17)

2 2 2
= 2aj +4ajcihi

and the leverage effect can be defined as

Covy(In (Sp41)  hera) = Ei[(In(Ser1) — By [In (Ses1)]) (R — Ei [Re4o])] (18)
= F [\/ ht—|—lzt+1 (Glzfﬂ — 2a1¢12441 V ht—|—1 - Gl)]
= —2a1c1M441

The conditional variance of variance in the component model is
Var(hiya) = 2 (@ +¢)" + 4 (.0 +750) hug (19)

and the leverage effect in the component model is

Covy(In (Si11) , hega) = =2 (710 + Y90) hig (20)

Figures 7 and 8 present the conditional leverage and conditional variance of variance for
the GARCH(1,1) model and the component model over the option sample 1990-1995 using
the MLE parameter values in Table 2. It can be clearly seen that the level as well as the
time-series variation in these critical quantities are fundamentally different between the two
models. In Figure 7 the leverage effect is much more volatile in the component model and
it takes on much more extreme values on certain days. In Figure 8 the variance of variance
in the component model is in general much higher than in the GARCH(1,1) model and it
also more volatile. Thus the more flexible component model is capable of generating not
only more flexible term structures of variance, it is also able to generate more skewness and
kurtosis dynamics which are key for explaining the variation in index options prices.

Table 2 also presents some unconditional summary statistics for the different models.
The computation of these statistics deserves some comment. For the GARCH(1,1) model
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and the component model, the unconditional versions of the volatility of volatility are com-
puted using the estimate for the unconditional variance in the expressions for the conditional
moments (17) and (19). For the persistent component model, the unconditional volatility
and the unconditional variance of variance are not defined. To allow a comparison of the
unconditional leverage for all three models, we report the moments in (17) and (19) divided
by h¢y1. While the unconditional volatility of the GARCH(1,1) model (0.137) is very similar
to that of the component GARCH model (0.141), the leverage and the variance of variance
of the component GARCH model are larger in absolute value than those of the GARCH(1,1)
model. The leverage for the persistent component model is of the same order of magnitude
as that of the component model.

We previously discussed Figures 1-4, which emphasize other critical differences between
the models. These figures are generated using the parameter estimates in Table 2. Figures
1 and 2 indicate that for the GARCH(1,1) model, forecasted model volatility reverts much
more quickly towards the unconditional volatility over long-maturity options’ lifetimes than
is the case for the component model. Figures 3 and 4 demonstrate that the effects of shocks
are much longer lasting in the component model because of the parameterization of the
long-run component. As a result current shocks and the current state of the economy have
a much more profound impact on the pricing of maturity options across maturities.

Figures 9 and 10 give another perspective on the component models’ improvement in
performance over the benchmark GARCH(1,1) model. These figures present the sample
path for volatility in all three models, as well as the sample path for volatility components
for the component model and persistent component model. In each figure, the sample path
is obtained by iterating on the variance dynamic starting from the unconditional volatility
500 days before the first volatility included in the figure, as is done in estimation. Initial
conditions are therefore unlikely to affect comparisons between the models in these figures.
Figure 9 contains the results for the component model. The overall conclusion seems to
be that the mean zero short run component in the top-right panel adds short-horizon noise
around the long-run component in the bottom-right panel. This results in a volatility
dynamic for the component model in the top-left panel that is more noisy than the volatility
dynamic for the GARCH(1,1) model in the bottom-left panel. The more noisy sample path
in the top-left panel is of course confirmed by the higher value for the variance of variance
in Table 2. This increased flexibility results in a better fit. The results for the permanent
component model in Figure 10 confirm this conclusion, even though the sample paths for
the components in Figure 10 look different from those in Figure 9.7

17The figures presented so far have been constructed from the return-based MLE estimates in Table 2.
Below we will present four new sets of (risk-neutral) estimates derived from observed option prices. In order
to preserve space we will not present new versions of the above figures from these estimates. The option-based
estimates imply figures which are qualitatively similar to the return-based figures presented above.
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5.3 Empirical Results using Options Data

Tables 3-10 present the empirical results for the option-based estimates of the risk-neutral
parameters. We present four sets of results. Table 3 presents results for parameters estimated
using options data for 1990-1992 using all option contracts in the sample. Note that the
shortest maturity is seven days because options with very short maturities were filtered
out. Table 4 contains results for 1990-1992 obtained using options with more than 80 days
to maturity, because we expect the component models to be particularly useful to model
options with long maturities. Tables 5 and 6 present results obtained using options data for
1992-1994, using all contracts and contracts with more than 80 days to maturity respectively.
When using the 1990-1992 sample in estimation, we test the model out-of-sample using data
for 1993. When using the 1992-1994 sample in estimation, we test the model out-of-sample
using 1995 data. Tables 7-10 present results for the two in-sample and two out-of-sample
periods by moneyness and maturity. In all cases we obtain parameters by minimizing the
dollar mean squared error

SMSE = — 3 (€8 — M)’ (21)

T
where le’t is the market price of option ¢ at time ¢, C% is the model price, and Ny = > N;.
t=1

T is the total number of days included in the sample and N; the number of options included
in the sample at date t.

The parameters in Tables 3-6 are found by applying the nonlinear least squares (NLS)
estimation techniques on the $MSE expression in (21). In the GARCH(1,1) case the im-
plementation is simple: the NLS routine is called with a set of parameter starting values.
The variance dynamic in (1) is then used to update the variance from one Wednesday to the
next and the GARCH(1,1) option valuation formula from Heston and Nandi (2000) is used
to compute the model prices on each Wednesday. In the component models an extra step
is needed. Here the NLS routine is called with starting values for the component model,
but the component model is converted to a GARCH(2,2) structure inside the optimization
routine using (14). The implied GARCH(2,2) model is now used to update variance from
Wednesday to Wednesday using (13) and to price options on each Wednesday using the
option valuation formula in (16). Note that the NLS routine is thus optimizing the $MSE
over the component parameters and not over the implied GARCH(2,2) parameters, which
enforces the component structure throughout the optimization. The component structure is
again useful both for the interpretation of the model and in implementation where reasonable
starting values must be found and stationarity imposed.!®

18Recall that the risk neutral GARCH process used in option valuation uses the parameterization ¢} =
¢; + A+ 0.5 so that ¢; and )\ are not separately identified. We therefore simply set A equal to the MLE
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In Table 3 we present results for the 1990-1992 period (in-sample) and the 1993 period
(out-of-sample). The standard errors indicate that almost all parameters are estimated
significantly different from zero.'® There are some interesting differences with the parameters
estimated from returns in Table 2, but the parameters are mostly of the same order of
magnitude. This is also true for critical determinants of the models’ performance, such as
unconditional volatility, leverage and volatility of volatility. It is interesting to note that in
both tables the persistence of the GARCH(1,1) model and the component GARCH model is
close to one. This of course motivates the use of the persistent component model, where the
persistence is restricted to be one. Note also that the persistence of the short-run components
and the long-run components is not dramatically different from Table 2. In the in-sample
period, the RMSE of the component model is 89.7% of that of the benchmark GARCH(1,1)
model. For the out-of-sample period, it is 76.5%. For the persistent component model,
this is 95.5% and 97.1% respectively. Table 4 confirms that the same results obtain when
estimating the models using only long-maturity options.

Tables 5 and 6 present the results for the 1992-1994 period (in-sample) and the 1995
period (out-of-sample).  The results largely confirm those obtained in Tables 3 and 4.
The most important difference is that the in-sample and out-of-sample performance of the
component model is even better relative to the benchmark, as compared with the results
in Tables 3 and 4. For the 1992-1994 in-sample period, the component model’s RMSE
is 77.3% of that of the GARCH(1,1) model in Table 5 and 74.8% in Table 6. For the
1995 out-of-sample period, this is 79.2% and 60.4% respectively. The performance of the
persistent component model in some cases does not improve much over the performance of
the GARCH(1,1) model, and in other cases its performance is actually worse than that of
the benchmark. Another interesting difference with Tables 3 and 4 is that in Tables 5 and 6,
the persistence of the short-run component is much higher. Finally note that the persistence
of the GARCH(1,1) process in Table 5 is lower than in Table 3 but in line with the MLE
estimate in Table 2.

We conclude from Tables 3-6 that the performance of the component GARCH model is
very impressive. Its RMSE is between 60.4% and 89.7% of the RMSE of the benchmark
GARCH(1,1) model. The performance of the persistent component model is less impressive,
both in-sample and out-of-sample.

5.4 Discussion

It must be emphasized that this improvement in performance is remarkable and to some
extent surprising. The GARCH(1,1) model is a good benchmark which itself has a very
solid empirical performance (see Heston and Nandi (2000)). The model captures important

estimate from Table 2 for the respective models and do not report on it in Tables 3-6. This procedure
identifies ¢; which in turn identifies the component model parameters.
19The standard errors are again computed using the outer product of the gradient at the optimum.
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stylized facts about option prices such as volatility clustering and the leverage effect (or
equivalently negative skewness). When estimating models from option prices, Christoffersen
and Jacobs (2004) find that GARCH models with richer news impact parameterizations do
not improve the model fit out-of-sample. Christoffersen, Heston and Jacobs (2004) find that
a GARCH model with non-normal innovations improves the model’s fit in-sample and for
short out-of-sample horizons, but not for long out-of-sample horizons.?’

One may wonder how the GARCH(1,1) performs compared with the popular continuous-
time stochastic volatility model in Heston (1993). Heston and Nandi (2000) demonstrate
that the Heston (1993) model is the limit of the GARCH(1,1) model we use in this paper,
but the interpretation of limit results is somewhat tenuous (see for example Corradi (2000)).
In work not reported here, we therefore compared the empirical performance of the Heston
(1993) and GARCH(1,1) models and found that their empirical performance is very similar
in-sample as well as out-of-sample. This is not necessarily surprising because both models
contain time-variation in conditional variance as well as a leverage effect. We also compared
the performance of the GARCH(1,1) model with the implied Black-Scholes model in Dumas,
Fleming and Whaley (1998) and confirm the finding of Heston and Nandi (2000) that the
GARCH model slightly outperforms the implied Black-Scholes model out-of-sample.

Most of the continuous-time literature has attempted to improve the performance of the
Heston (1993) model by adding to it (potentially correlated) jumps in returns and volatility.
The empirical findings in this literature have been mixed. In general, Poisson jumps in re-
turns and volatility improve option valuation when parameters are estimated using historical
time series of returns, but usually not when parameters are estimated using the cross-section
of option prices (see for example Andersen, Benzoni and Lund (2002), Bakshi, Cao and Chen
(1997), Bates (1996, 2000), Chernov, Gallant, Ghysels and Tauchen (2003), Eraker, Johannes
and Polson (2003), Eraker (2004) and Pan (2002)). In a recent paper, Broadie, Chernov
and Johannes (2004) use a long data set on options and an estimation technique that uses
returns data and options data and find evidence of the importance of some jumps for pricing.
Carr and Wu (2004) and Huang and Wu (2004) model a different type of jump process and
find that they are better able to fit options out-of-sample. Finally, Duan, Ritchken and Sun
(2002) find that adding jumps to discrete-time models leads to a significant improvement in
fit. We therefore conclude that adding jumps or fat-tailed shocks to our model may further
improve the fit.

In summary, the option valuation literature is developing rapidly and it is not possi-
ble to convincingly judge the importance of some recent developments at this point. We
merely want to emphasize that although some available models may achieve a similar perfor-
mance to the GARCH(1,1) or slightly outperform it in some dimension, there are no models
available that spectacularly outperform it in- and out-of-sample. Given its parsimony, the

20Hsieh and Ritchken (2000) contains a discussion on the empirical performance of the HN GARCH(1,1)
model vis-a-vis the performance of the more traditional GARCH model of Duan (1995).
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GARCH(1,1) is therefore an excellent benchmark for our empirical study. It models a num-
ber of important issues such as volatility clustering and negative skewness that are deemed
critical for option valuation, and there is not yet consensus regarding the empirical relevance
of more richly parameterized models. By choosing GARCH(1,1) as a reference point we
set a high standard in terms of empirical performance and parsimony. Because of the per-
formance of this model in other studies, in our opinion the improvement of our model over
GARCH(1,1) is spectacular.

Tables 7-10 present results by moneyness and maturity. To save space we only report for
the samples that include all options. Note that the tables contain information on MSEs, not
RMSEs. In each table, Panel A contains the MSE for the GARCH(1,1) model. To facilitate
the interpretation of the table, panels B and C contain MSEs that are normalized by the
corresponding MSE for the GARCH(1,1) model. It is clear that an overall MSE which is not
too different across the three models as in Table 3 can mask large differences in the models’
performance for a given moneyness/maturity cell. Inspection of the out-of-sample results
in Tables 8 and 10 is very instructive. The overwhelming conclusion is that the improved
out-of-sample performance of the component models is due to the improved valuation of
long-maturity options. This is perhaps not surprising given the differences in the impulse
response functions discussed above.

Figure 11 graphically represents some related information. For different moneyness bins,
we first compute the average Black-Scholes implied volatility for all the options in our sample.
Subsequently we compute implied volatilities based on model prices and also average this
for all options in the sample. Note that while the implied volatility fit is not perfect, the
component model matches the volatility smirk better than the two other models.

Figures 12 and 13 evaluate the performance of the three models along a different dimen-
sion, by presenting average weekly bias (average observed market price less average observed
model price) over the 1990-1993 and 1992-1995 sample periods respectively. The bias seems
to be more highly correlated across models in the 1990-1993 sample. In the 1993-1995 sample,
the persistent component model in particular has a markedly different fit from the two other
models. The most important conclusion is that the improved performance of the component

model does not derive from any particular sample sub-period: the bias of the component
GARCH model is smaller than that of the GARCH(1,1) model in most weeks.

6 Conclusion and Directions for Future Work

This paper presents a new option valuation model based on the work by Engle and Lee (1999)
and Heston and Nandi (2000). The empirical performance of the new variance component
model is significantly better than that of the benchmark GARCH (1,1) model, in-sample as
well as out-of-sample. This is an important finding because the literature has demonstrated
that it is difficult to find empirical models that improve on the GARCH(1,1) model or its
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continuous-time limit. The improved performance of the model is due to a richer para-
meterization which allows for improved joint modeling of long-maturity and short-maturity
options. This parameterization can capture the stylized fact that shocks to current condi-
tional volatility impact on the forecast of the conditional variance up to a year in the future.
Given that the estimated persistence of the model is close to one, we also investigate a special
case of our model in which shocks to the variance never die out. The performance of the
persistent component model is satisfactory in some dimensions, but it is strictly dominated
by the component model. Note that this is not a trivial finding: even though the persistent
component model is nested by the component model, a more parsimonious model can easily
outperform a more general one out-of-sample. This is not the case here.

Given the success of the proposed model, a number of further extensions to this work are
warranted. First, the empirical performance of the model should of course be validated using
other datasets. In particular, it would be interesting to test the model using LEAPS data,
because the model may excel at modeling long-maturity LEAPS options. In this regard a
direct comparison between component and fractionally integrated volatility models may be
interesting. It could also be useful to combine the stylized features of the model with other
modeling components that improve option valuation. One interesting experiment could be
to replace the Gaussian innovations in this paper by a non-Gaussian distribution in order to
create more negative skewness in the distribution of equity returns. Combining the model
in this paper with the inverse Gaussian shock model in Christoffersen, Heston and Jacobs
(2004) may be a viable approach. Finally, in this paper we have proposed a component
model that gives a closed form solution using results from Heston and Nandi (2000) who
rely on an affine GARCH model. We believe that this is a logical first step, but the affine
structure of the model may be restrictive in ways that are not immediately apparent. It
may therefore prove worthwhile to investigate non-affine variance component models.

6.1 Appendix A

The mapping between the GARCH(2,2) and the component model given in (14) can be
inverted to solve for the component parameters implied by a given GARCH(2,2) specification.
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We get the following solution

B a1b? + 4arby + 2430162 + a3ct + dajasc:  2as + arby + alc?
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where
A= (b + alc%)2 +4(by + agcg)

Notice that «, E, ¢, and p are real and finite as long as A > 0.
Notice that the solutions for 8 and p above are the roots of the polynomial

Y2 — (bl -+ C%Cll)y — (bg + CgGQ) (Al)

Recall now the GARCH(2,2) process

2
hiv1 =w+bihe + bahy—1 + a1 (Zt —a \/h_t> + as (zH — C2y/ hH)

which can be written

heyr (1= (b1 4 a1e}) L — (by + a263) L%) = w + a127 + arca/hes + a2, + ascar/he 121

where L is the lag operator.
Nelson and Cao (1992) and Bougerol and Picard (1992) show that the roots of

2

1— (bl + alc%) L— (bg + CLQC%) L2 (AQ)

need to be real and lie outside the unit circle in order for the variance to be stationary.

Notice that 3 and p which are the roots of (Al) are the inverse of the roots of (A2).
Therefore, § < 1 and p < 1 are required for the variance to be stationary in the GARCH(2,2)
and the implied component model. Note that the component models forces the roots of the
GARCH(2,2) to be real and it makes the stationarity requirements much easier to implement
and monitor.
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6.2 Appendix B

This appendix presents the moment generating function (MGF) for the GARCH(p,q) process
used in this paper and in Heston and Nandi (2000). We first derive the MGF of a GARCH(2,2)

2 2
hiyr = w + bihy + bahy—1 + ay <Zt —C ht) + as (Zt—l — C2y/ ht—l)

as an example and then generalize it to the case of the GARCH(p,q). Let z; = log(S;).
For convenience we will denote the conditional generating function of S; (or equivalently the
conditional moment generating function (MGF) of z7) by f; instead of the more cumbersome
ftT,9)

fr = Eifexp(¢or)] (B1)

We shall guess that the MGF takes the log-linear form. We again use the more parsi-
monious notation A; to indicate A(t; T, ¢).

fi =exp <¢$t + Ay + Bithiy1 + Bathe + Ci(z — 62\/h7t)2> (B2)
We have
fi = Ey [fira] = By [GXP <¢1L"t+1 + Apt1 + Busihiso + Boypihigpr + Cipa (241 — c2/ ht+1)2>]
(B3)

Since zr is known at time 7', equations (A1) and (A2) require the terminal condition
AT - BiT = CT =0
Substituting the dynamics of x; into (B3) and rewriting we get

2
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Biiria1 + Ciq

Cip1 =
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and we have used

2
(Bg1a1 + Ciiq) (Zt+1 — (G411 — ¢ ))\/ ht+1>

2(By+1a1 + Cia

= Biy101(2e41 — 1/ ht+1)2 + Cii1(2e41 — 2/ ht+1>2

_ ¢
- B h
+Zt+1¢ t+1 + ( ¢Ct+1 + 4(B1t+1a1 —+ Ct+1) o

2 >
— (Bus101¢} + Crya€y — Topa (Brgra1cr + Cryn6a)) huga

Using the result
E [exp(a(z +)")] = exp(~3 (1 — 20) + ay?/(1 — 21) (B5)
in (B4) we get
d(xe +71) + A1 + Brw — %ln(l —2By1a1 — 2C0)+

(Blt+1al+ct+l)(5t+1*2(3a+¢0))2
f, = ex Biii1bahy + Biyyias(ze — cav/he)? + 1—2Bu+1a1—201:11) LTSV
— (;52
OA+ Bunby+ Bava + (001 — qmsarogn) T ) g,
<Bl"/+1alcl + Ct+1c2) — Gt (BltJrlalCl + Ct+162)

(B6)
Matching terms on both sides of (B6) and (B2) gives

1
Ay = A + ¢r + Bypw — 3 In(1 - 2Byy41a1 — 2C14)

By = ¢A+ Busbi + Bay + (Bupraici + Criac3)

n 1/2¢52 + 2 (Byra1c1 + Cip162) (Biyraicr + Crprca — )
1- 231t+1a1 - 20t+1

Byt = Bigy1b2, Ci = B0z
where we have used the fact that
&
4(Bri101 + Cyp1)
(Big1a1 + Cey1) (Cor — W’MV
1 —2By1a1 — 2C4
1/2¢° + 2 (Bysra1¢1 + Cry10) (Brpraicy + Cryrca — ¢)
1- 231t+16l1 - 20t+1

The case of GARCH(p,q) follows the same logic but is more notation-intensive. This
result is available upon request.

@Chy1 — — Ci1 (Bugraicr + Criaca)
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Figure 1. Term Structure of Variance with Low Initial Variance.
Component Model Versus GARCH(1,1).
Normalized by Unconditional Variance. Estimates Obtained from MLE.
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Notes to Figure: In the top panel we plot the variance term structure implied by the com-
ponent GARCH and GARCH(1,1) models for 1 through 250 days. In the second and third
panel we plot the term structure of the individual components for the component model. The
parameter values are obtained from MLE estimation on returns in Table 2. The initial value
of g1 is set to 0.750% and the initial value of h;,; is set to 0.502. The initial value for h;
in the GARCH(1,1) is set to 0.50% as well. All values are normalized by the unconditional
variance o2
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Figure 2. Term Structure of Variance with High Initial Variance.
Component Model Versus GARCH(1,1).
Normalized by Unconditional Variance. Estimates Obtained from MLE.
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Notes to Figure: In the top panel we plot the variance term structure implied by the com-
ponent GARCH and GARCH(1,1) models for 1 through 250 days. In the second and third
panel we plot the term structure of the individual components for the component model.
The parameter values are obtained from MLE estimation on returns in Table 2. The initial
value of g;1; is set to 1.7502 and the initial value of h;, is set to 202. The initial value for
hiy1 in the GARCH(1,1) is set to 202 as well. All values are normalized by the unconditional
variance o2
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Figure 3. Term Structure Impulse Response to Positive Return Shock (z; = 2).
Component Model Versus GARCH(1,1).
Normalized by Unconditional Variance. Estimates Obtained from MLE.
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Notes to Figure: In the left-hand panels we plot the variance term structure response to a
2z = 2 shock to the return in the component and GARCH(1,1) models. For the component
model, the right-hand panels show the response of the individual components. The parameter
values are obtained from the MLE estimation on returns in Table 2. The current variance is
set equal to the unconditional value. All values are normalized by the unconditional variance.
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Figure 4. Term Structure Impulse Response to Negative Return Shock, (z; = —2).
Component Model Versus GARCH(1,1).
Normalized by Unconditional Variance. Estimates Obtained from MLE.
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Notes to Figure: In the left-hand panels we plot the variance term structure response to a
2 = —2 shock to the return in the component and GARCH(1,1) models. For the component
model, the right-hand panels show the response of the individual components. The parameter
values are obtained from the MLE estimation on returns in Table 2. The current variance is
set equal to the unconditional value. All values are normalized by the unconditional variance.
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Figure 5. Autocorrelation Function of Component GARCH and GARCH(1,1).
Estimates Obtained from MLE.
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Notes to Figure: We plot the autocorrelation function of the squared GARCH innovations
ef.1 = 22, huy for lag 1 through 250 lags. The solid line denotes the component GARCH
model and the dash-dot line the GARCH(1,1). The parameter values are taken from the
MLE estimation on returns in Table 2.
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Figure 6. Sample Average Weekly Implied Volatility and VIX.
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Notes to Figure: The top panel plots the average weekly implied Black-Scholes volatility for
the S&P500 call options in our sample. The bottom panel plots the VIX index from the
CBOE for comparison.
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Figure 7. Conditional Leverage Paths.
Estimates Obtained from MLE.
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Notes to Figure: We plot the conditional covariance between return and next-day variance as
implied by the GARCH models and refer to it as conditional leverage. The top panel shows
the component model and the bottom panel shows the GARCH(1,1) model. The scales are
identical across panels to facilitate comparison across models. The parameter values are
obtained from the MLE estimates on returns in Table 2.
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Figure 8: Conditional Variance of Variance Paths.
Estimates Obtained from MLE.
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Notes to Figure: We plot the conditional variance of next day’s variance as implied by the
GARCH models. The top panel shows the component model and the bottom panel shows the
GARCH(1,1) model. The scales are identical across panels to facilitate comparison across
models. The parameter values are obtained from the MLE estimates on returns in Table 2.
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Figure 9. Spot Variance of Component GARCH versus GARCH(1,1).
Estimates Obtained from MLE.
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Notes to Figure: The left-hand panels plot the variance paths from the component and
GARCH(1,1) models. The right-hand panels plot the individual components. The parameter
values are obtained from MLE estimation on returns in Table 2.
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Figure 10. Spot Variance of Persistent Component Model versus GARCH(1,1).
Estimates Obtained from MLE.
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Notes to Figure: The left-hand panels plot the variance paths from the persistent component
(p = 1) and GARCH(1,1) models. The right-hand panels plot the individual components.
The parameter values are obtained from MLE estimation on returns in Table 2.
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Figure 11. Average Implied Volatility Smiles: Data and Models.
Estimates Obtained from NLS.
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Notes to Figure: We plot the average Black-Scholes implied volatility from observed price
data (solid line) and from our three sets of model prices against moneyness. The options
are from the 1990-1992 sample, and the option valuation model parameter values are taken
from the NLS estimation in Table 3.
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Figure 12.

Weekly Average Dollar Bias from Sample 90-93.
Estimates Obtained from NLS.
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Notes to Figure: We plot the average weekly bias (market price less model price) for the
three GARCH models during the 1990-1993 sample. The parameter values are obtained from
NLS estimation in Table 3 on options quoted during the 1990-1992 period. The vertical lines
denote the end of the estimation sample period. The horizontal lines are at zero and the
scales are identical across panels to facilitate comparison across models.
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Figure 13.

Weekly Average Dollar Bias from Sample 92-95.
Estimates Obtained from NLS.
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Notes to Figure: We plot the average weekly bias (market price less model price) for the
three GARCH models during the 1992-1995 sample. The parameter values are obtained from
NLS estimation in Table 5 on options quoted during the 1992-1994 period. The vertical lines
denote the end of the estimation sample period. The horizontal lines are at zero and the
scales are identical across panels to facilitate comparison across models.
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Table 1: S&P 500 Index Call Option Data (1990-1995)

Panel A. Number of Call Option Contracts

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 147 2,503 2,322 1,119 6,091
0.975<S/X<1.00 365 1,604 871 312 3,152
1.00<S/X<1.025 378 1,524 890 382 3,174
1.025<S/X<1.05 335 1,462 797 311 2,905
1.05<S/X<1.075 307 1,315 713 297 2,632
1.075<S/X 736 3.096 2,112 982 6.926
All 2,268 11,504 7,705 3,403 24,880

Panel B. Average Call Price

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.91 2.67 6.86 11.94 5.93
0.975<S/X<1.00 2.64 7.95 16.99 27.50 11.77
1.00<S/X<1.025 9.37 15.37 24.90 34.41 19.62
1.025<S/X<1.05 19.64 24.53 33.13 42.14 28.21
1.05<S/X<1.075 30.06 34.33 41.98 48.83 37.54
1.075<S/X 57.42 59.05 65.29 68.34 62.10
All 27.65 26.66 32.07 36.07 29.71

Panel C. Average Implied Volatility from Call Options

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.1553 0.1284 0.1348 0.1394 0.1335
0.975<S/X<1.00 0.1331 0.1329 0.1461 0.1562 0.1389
1.00<S/X<1.025 0.1555 0.1489 0.1572 0.1605 0.1534
1.025<S/X<1.05 0.1940 0.1676 0.1679 0.1656 0.1705
1.05<S/X<1.075 0.2445 0.1855 0.1792 0.1739 0.1894
1.075<S/X 0.3877 0.2371 0.1996 0.1869 0.2345
All 0.2484 0.1738 0.1642 0.1607 0.1758

Notes to Table: We use European call options on the S&P500 index. The prices are taken
from quotes within 30 minutes from closing on each Wednesday during the January 1, 1990
to December 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and
Chen (1997) are applied here as well. The implied volatilities are calculated using the Black-
Scholes formula.



Table 2: MLE Estimates and Properties
Sample: Daily Returns, 1963-1995

Persistent Component

GARCH(1,1) Component GARCH
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter
w 2.101E-17  1.120E-07 B 6.437E-01  1.892E-01 B
b, 9.013E-01 4.678E-03 o 1.580E-06 1.200E-07 o
a; 3.313E-06 1.380E-07 Y1 4.151E+02 3.156E+02 Y1
i 1.276E+02 8.347E+00 Y2 6.324E+01 7.279E+00 Y2
A 2.231E+00 1.123E+00 ® 8.208E-07 1.860E-07 ®
[0} 2.480E-06 1.200E-07 [0)
p 9.896E-01 1.950E-03 p
A 2.092E+00 7.729E-01 A
Total Persist 0.9552 Total Persist 0.9963 Total Persist
Annual Vol 0.1366 Annual Vol 0.1413
Var of Var 8.652E-06 Var of Var 1.557E-05
Leverage -8.455E-04 Leverage -1.626E-03 Leverage
Ln Likelihood 33,955 Ln Likelihood 34,102 Ln Likelihood

Estimate Std. Error
7.643E-01 5.963E-03
7.639E-07 1.230E-07
7.645E+02 1.121E+01
1.137E+02 8.202E+00
2.448E-07 7.280E-09
1.482E-06 3.500E-08
1.000E+00

-6.659E+00  5.410E+00
1.0000

-1.505E-03
34,055

Notes to Table: We use daily total returns from January 1, 1963 to December 31, 1995 on the S&P500 index to estimate the three
GARCH models using Maximum Likelihood. Robust standard errors are calculated from the outer product of the gradient at the
optimum parameter values. Total Persist refers to the persistence of the conditional variance in each model. Annual Vol refers to the
annualized unconditional standard deviation as implied by the parameters in each model. Var of Var refers to the unconditional
variance of the conditional variance in each model. Leverage refers to the unconditional covariance between the return and the
conditional variance. Ln Likelihood refers to the logarithm of the likelihood at the optimal parameter values.



Table 3: NLS Estimates and Properties
Sample: 1990-1992 (in-sample) 1993 (out-of-sample).
7 - 365 Days to Maturity

GARCH(1,1) Component GARCH Persistent Component
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate Std. Error
W 3.891E-14 3.560E-12 B 6.998E-01 1.345E-01 E 6.870E-01 2.049E-01
b, 6.801E-01 3.211E-03 o 1.788E-06 7.121E-09 o 1.127E-06 4.409E-09
a, 2.666E-07 6.110E-09 Y1 5.592E+02 4.524E+01 71 7.386E+02 6.904E+01
i 1.092E+03 5.432E+01 Y2 5.612E+02 2.136E+02 s 4.651E+02 1.204E+02
2.382E-07 1.093E-07 4.466E-07 1.909E-08
5.068E-07 2.305E-10 7.474E-07 8.344E-09
p 9.966E-01 9.970E-04 p 1.000E+00
Total Persist 0.9981 Total Persist 0.9990 Total Persist 1.0000
Annual Vol 0.1857 Annual Vol 0.1320
Var of Var 6.820E-06 Var of Var 2.161E-05
Leverage -5.822E-04 Leverage -2.569E-03 Leverage -2.360E-03
RMSE (in) 1.038 RMSE (in) 0.931 RMSE (in) 0.991
Normalized 1.000 Normalized 0.897 Normalized 0.955
RMSE (out) 1.284 RMSE (out) 0.983 RMSE (out) 1.247
Normalized 1.000 Normalized 0.765 Normalized 0.971

Notes to Table: We use Wednesday option prices from from January 1, 1990 to December 31, 1992 on the S&P500 index to estimate
the three GARCH models using Nonlinear Least Squares on the valuation errors. Robust standard errors are calculated from the outer
product of the gradient at the optimum parameter values. RMSE refers to the square root of the mean-squared valuation errors.
RMSE(in) refers to 1990-1992 and RMSE(out) to 1993. Normalized values are divided by the RMSE from GARCH(1,1).



Table 4: NLS Estimates and Properties
Sample: 1990-1992 (in-sample) 1993 (out-of-sample)
80 - 365 Days to Maturity

Persistent Component

GARCH(1,1) Component GARCH
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter
w 1.023E-14 1.346E-14 B 6.031E-01 2.599E-01 B
b, 6.842E-01 4.673E-02 4.707E-06 7.896E-10
a 2.679E-07 7.836E-09 Y1 3.378E+02 1.838E+01 Y
C 1.082E+03 5.024E+01 Y2 6.922E+02 2.683E+02 Y2
) 1.596E-07 9.790E-08
3.793E-07 7.540E-10
p 9.975E-01 2.900E-03 p
Total Persist 0.9980 Total Persist 0.9990 Total Persist
Annual Vol 0.1833 Annual Vol 0.1277
Var of Var 6.705E-06 Var of Var 3.065E-05
Leverage -5.798E-04 Leverage -3.705E-03 Leverage
RMSE (in) 1.133 RMSE (in) 1.013 RMSE (in)
Normalized 1.000 Normalized 0.895 Normalized
RMSE (out) 1.452 RMSE (out) 1.048 RMSE (out)
Normalized 1.000 Normalized 0.722 Normalized

Notes to Table: See notes to Table 3. Only options with at least 80 days to maturity are used here.

Estimate Std. Error
7.964E-01 3.935E-01
2.757E-07 7.099E-08
1.891E+03 6.921E+02
5.369E+02 2.300E+02
4.612E-07 2.964E-07
6.643E-07 8.733E-09
1.000E+00

1.0000
-1.756E-03
1.112
0.982
1.553
1.070



Table 5: Model Estimates and Properties

Sample: 1992-1994 (in-sample) 1995 (out-of-sample)

Persistent Component

7 to 365 Days to Maturity
GARCH(1,1) Component GARCH
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter
w 7.521E-16 3.498E-09 ﬁ 9.241E-01 3.780E-01 E
b, 4.694E-01 1.251E-01 o 1.849E-06 1.103E-09 o
a; 1.936E-06 3.986E-07 Y1 5.827E+02 1.505E+02 11
Cy 5.078E+02 1.041E+02 Y2 5.714E+02 2.110E+02 Y2
) 2.043E-07 1.301E-07
2.420E-07 1.035E-08
p 9.958E-01 1.039E-03 p
Total Persist 0.9687 Total Persist 0.9997 Total Persist
Annual Vol 0.1250 Annual Vol 0.1113
Var of Var 1.572E-05 Var of Var 1.731E-05
Leverage -1.967E-03 Leverage -2.432E-03 Leverage
RMSE (in) 1.107 RMSE (in) 0.855 RMSE (in)
Normalized 1.000 Normalized 0.773 Normalized
RMSE (out) 1.227 RMSE (out) 0.972 RMSE (out)
Normalized 1.000 Normalized 0.792 Normalized

Notes to Table: See notes to Table 3. RMSE(in) now refers to 1992-1994 and RMSE(out) to 1995.

Estimate Std. Error
9.763E-01 3.435E-01
1.678E-06 3.430E-08
2.552E+02 1.123E+02
1.924E+02 3.425E+01
1.246E-07 2.054E-08
7.191E-07 2.453E-08
1.000E+00

1.0000
-1.133E-03
0.994
0.898
1.076
0.877



Parameter
W
b
a1

Y

Total Persist
Annual Vol
Var of Var

Leverage

RMSE (in)

Normalized

RMSE (out)

Normalized

GARCH(,1)
Estimate

3.238E-07
1.341E-01

1.894E-06
6.624E+02

0.9650
0.1264
2.016E-05
-2.509E-03

1.190
1.000
1.743
1.000

Table 6: Model Estimates and Properties

Sample: 1992-1994 (in-sample) 1995 (out-of-sample)
80 to 365 Days to Maturity

Std. Error

1.099E-08
9.100E-02

5.232E-07
8.010E+01

Persistent Component

Component GARCH
Parameter Estimate Std. Error Parameter
B 9.448E-01 2.935E-01 B
o 1.125E-06 2.542E-09 o
Y1 7.337E+02 2.400E+02 Y1
Y2 5.318E+02 1.769E+02 Y2
2.260E-07 1.390E-07
2.864E-07 1.109E-08
p 9.957E-01 1.009E-02 p
Total Persist 0.9998 Total Persist
Annual Vol 0.1147
Var of Var 1.427E-05
Leverage -1.956E-03 Leverage
RMSE (in) 0.890 RMSE (in)
Normalized 0.748 Normalized
RMSE (out) 1.052 RMSE (out)
Normalized 0.604 Normalized

Estimate

9.756E-01
4.569E-07

9.492E+02
7.317E+02
2.127E-07
3.319E-07
1.000E+00

1.0000

-1.353E-03

0.926
0.778
1.201
0.689

Std. Error

2.104E-01
9.353E-10

3.091E+02
6.055E+01
8.785E-08
4.936E-10

Notes to Table: See notes to Tables 3. RMSE(in) refers to 1992-1994 and RMSE(out) to 1995. Only options with at least 80 days to
maturity are used here.



Table 7: 1990-1992 (in-sample) MSE and Ratio MSE by moneyness and maturity

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel B. Ratio of Component GARCH to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel C. Ratio of Persistent Component to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Contracts with 7-365 days to maturity

Panel A. GARCH(1,1) MSE

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.191 0.791 1.205 1.628
0.441 1.112 1.260 1.297
0.331 0914 1.100 0.987
0.309 0.822 1.060 0.901
0.472 0.979 1.360 1.236
0.412 1.156 L511 1.044
0.372 0.953 1.262 1.324

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.882 0.666 0.718 0.855
0.802 0.761 0.852 1.101
0.851 0.839 0912 0.999
0.760 0.777 0914 1.130
0.813 0.721 0.821 1.005
0.942 0.769 0.718 0.900
0.851 0.749 0.780 0.922

DTM<20 20<DTM<80 80<DTM<180 DTM>180
0.720 0.702 0.819 1.263
0.707 0.749 0.777 1.206
0.824 0.805 0.807 1.205
0.789 0.805 0.794 1.112
0.840 0.807 0.775 1.090
0.830 0.780 0.799 1.173

All
1.162
1.110
0913
0.844
1.064
1.164
1.079

All
0.762
0.860
0.896
0.876
0.813
0.780
0.808

All
0.972
0.848
0.886
0.843
0.849
0.830
0.891

Notes to Table: We use the NLS estimates from Table 3 to compute the mean squared
option valuation error (MSE) for various moneyness and maturity bins during 1990-1992.
Panel A shows the MSEs for the GARCH(1,1) model. Panel B shows the ratio of the
component GARCH MSEs to the GARCH(1,1) MSEs from Panel A. Panel C shows the

ratio of the persistence component GARCH MSEs to the GARCH(1,1) MSEs.



Table 8: 1993 (out-of-sample) MSE and Ratio MSE by moneyness and maturity

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel B. Ratio of Component GARCH to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel C. Ratio of Persistent Component to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Contracts with 7-365 days to maturity

Panel A. GARCH(1,1) MSE

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.083 1.339 1.764 3.780
0.335 2.282 3.241 5.924
0.248 1.316 2.132 5.243
0.351 0.524 1.309 4.056
0.422 0.427 0.696 2.496
1316 1.345 0.983 1.965
0.661 1.263 1.582 3.318

DTM<20 20<DTM<80 80<DTM<180 DTM>180
0.513 0.371 0.340 0.259
0.638 0.453 0.434 0.284
1.181 0.712 0.569 0.347
0.933 1.158 0.758 0.475
1.256 1.076 1.080 0.386
0.989 0.685 0.606 0.425

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.440 0.306 0.714 1.664
0.629 0.297 0.495 0.454
1.207 0.557 0.770 0.710
1.007 1.499 1.124 0.413
1.390 1.511 2.135 0.920
0.984 1.094 1.889 L1119
1.010 0.690 0.990 1.139

All
2.133
2.659
1.839
1.015
0.740
1.359
1.648

All
0.309
0.415
0.560
0.780
0.813
0.954
0.586

All
1.065
0.394
0.680
0.985
1.417
1.259
0.934

Notes to Table: See Table 7. We use the NLS estimates from Table 3 to compute the out-

of-sample mean squared option valuation error (MSE) for various moneyness and

maturity bins during 1993.



Table 9: 1992-1994 (in-sample) MSE and Ratio MSE by moneyness and maturity

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel B. Ratio of Component GARCH to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel C. Ratio of Persistent Component to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Contracts with 7-365 days to maturity

Panel A. GARCH(1,1) MSE

DTM<20 20<DTM<80 80<DTM<180 DTM>180
0.233 0.862 1.199 1.861
0.977 1.646 1.673 1.953
0.818 1.469 1.401 2.248
0.347 0.908 0.997 1.818
0.617 0.646 0.785 2.398
0.850 0.750 0.735 2.094
0.734 1.018 1.092 2.023

DTM<20 20<DTM<80 80<DTM<180 DTM>180
0.661 0.410 0.371 0.332
0.597 0.592 0.530 0.479
0.750 0.679 0.529 0.395
0.922 0.669 0.511 0.619
0.845 0.706 0.513 0.564
0.826 0.654 0.514 0.553

DTM<20 20<DTM<80 80<DTM<180 DTM>180
0.652 0.770 1.086 1.335
0.488 0.746 1.083 1.290
0.582 0.658 0.984 1.213
0917 0.698 0.988 0.993
0.971 0.795 1.012 0.727
0.989 1162 1.180 0.958
0.780 0.808 1.072 1.110

All
1.259
1.625
1.507
1.004
0.982
1.065
1.225

All
0.365
0.558
0.578
0.624
0.616
0.844
0.591

All
1.114
0.905
0.867
0.858
0.822
1.061
0.978

Notes to Table: See Table 7. We use the NLS estimates from Table 5 to compute the mean

squared option valuation error (MSE) for various moneyness and maturity bins during

1992-1994.



Table 10: 1995 (out-of-sample) MSE and Ratio MSE by moneyness and maturity

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel B. Ratio of Component GARCH to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel C. Ratio of Persistent Component to GARCH(1,1) MSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Contracts with 7-365 days to maturity

Panel A. GARCH(1,1)

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.150 0.745 2.120 6.033
0.991 1.381 2.954 4.381
0.566 1.134 2.292 3.505
0.289 0.827 1.599 2.103
0.816 0.380 0.751 1.963
0.415 0.380 0.326 0.929
0.553 0.716 1.408 3415

DTM<20 20<DTM<80 80<DTM<180 DTM>180
1.700 1.404 0.947 0.378
0.988 0.815 0.571 0.481
0.703 0.562 0.543 0.424
1.074 0.559 0.432 0.465
0.959 0.691 0.588 0.550
0.957 0.863 0.717 0.449

DTM<20 20<DTM<80 80<DTM<I180 DTM>180
0.749 0.987 0.647 0.372
0.824 0.780 0.564 0.660
0.748 0.678 0.675 0.605
1.216 0.899 0.671 0.712
1.059 1.492 1.364 0.641
0.927 1753 2.457 1.099
0.922 1.034 0.822 0.536

All
3.135
2.391
1.930
1.233
0.803
0.463
1.507

All
0.572
0.613
0.501
0.497
0.634
1.052
0.613

All
0.475
0.670
0.648
0.767
1.041
1.589
0.718

Notes to Table: See Table 7. We use the NLS estimates from Table 5 to compute the out-

of-sample mean squared option valuation error (MSE) for various moneyness and

maturity bins during 1995.





