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As the fallout from subprime losses clearly demonstrates, the credit risk in res-
idential mortgages is large and economically significant. To manage this risk,
this article proposes the creation of derivative instruments based on the credit
losses of a reference mortgage pool. We argue that these derivatives would
enable banks to retain whole loans while also enjoying the capital benefits of
hedging the credit risk in their mortgage portfolios. In comparisons of hedg-
ing effectiveness, the analysis shows that instruments based on credit losses
outperform contracts based on house price appreciation.

The residential finance system has experienced a systemic failure. Mortgage
securitization markets—the major source of mortgage finance—no longer func-
tion, except for those with implicit or explicit government credit guarantees.
While the form that the future mortgage finance system will take is an open
question, it is possible that private mortgage securitization will not recover
and that portfolio lenders will have to provide a greater proportion of housing
finance, and hence carry a greater proportion of the credit risk of residential
mortgages.

This article proposes the creation of derivatives based on the credit losses of a
reference pool, arguing that such derivatives will help depositories hedge the
credit risk of their portfolios without the same drawbacks that may have con-
tributed to the failure of nonagency securitization. The creation of derivatives
with cash flows similar to the loss experience of mortgage portfolios is likely
to enhance the efficiency of the mortgage finance system. To demonstrate how,
take the case of adjustable-rate mortgages (ARMs). Small depositories often
retain this important class of mortgages as whole loans.1 As a result, they have
overexposure to regional economic fluctuations. Residential mortgage credit
derivatives could help depositories diversify their credit exposure while also

∗Jesse H. Johns Graduate School of Business, Rice University, Houston, TX 77005 or
jefferson.duarte@rice.edu.

∗∗Freddie Mac, McLean, VA 22102 or Douglas_McManus@freddiemac.com.

1The Federal Reserve Bulletin (2008) indicates that around $3 trillion of the mortgage
universe is not securitized and is held by commercial banks and savings institutions. It
is likely that these mortgages are primarily ARMs.
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meeting all regulatory and accounting requirements. To the extent that depos-
itories hold suboptimum portfolios, credit derivative hedges could bring their
credit risk closer to the optimum level, freeing capital for more effective use.

Prior to the current mortgage crisis, depositories would typically mitigate resi-
dential mortgage credit risk through securitization. This approach, however, has
several limitations. First, securitization requires the sale of mortgages, which is
a disadvantage for a large portion of the mortgage market because of accounting
and regulatory requirements. Second, the incentives of the various agents in-
volved in the securitization process (originators, credit agencies, servicers and
mortgage-backed securities underwriters) may not be perfectly aligned with
investors’ interests. Third, while the repeated interaction among originators,
servicers and the government-sponsored enterprises (GSEs) may help to align
incentives, agency securitization can be used only on conforming loans.

Other options for hedging credit risk on mortgage portfolios—mortgage insur-
ance and credit default swaps (CDS)—also have major drawbacks. In particular,
mortgage insurance typically takes the first loss position, providing protection
only up to a certain limit. While at first glance CDS on nonconforming whole
loans could serve as a hedging solution, they have never been traded.2 This
may reflect the fact that banks may have asymmetric information on their
loans, which would create a “lemons” problem. This adverse selection problem
is the same as the one described in the optimal security design literature (im-
portant examples are Allen and Gale 1989, Boot and Thakor 1993, Riddiough
1997 and DeMarzo 2005). This lemons problem could impair the trading of
CDS on whole loans because banks with private information on their portfolios
would adversely affect the sellers of protection, either through the decision to
obtain protection on their entire pool or through the selection of which loans
to obtain coverage. The lemons effect could be further amplified because the
available risk transfer through CDS may result in less screening of borrowers
for new originations.

In principle, depositories could use house price index futures to hedge the credit
risk of their mortgage portfolios without facing the same drawbacks as secu-
ritization. In this case, they would retain the mortgages in their portfolios and

2Such a contract would specify some delinquency threshold (such as 120 days), after
which ownership of the mortgage would be transferred to the insurance provider in
exchange for a payment equal to the outstanding principal. To our knowledge, currently
traded mortgage-related CDS have been written only on residential mortgage-backed
securities (RMBS) instead of on nonconforming whole loans. It is not clear if the
trading of CDS written on nonagency RMBS will remain because of the nonagency
securitization debacle, and hence it is not clear whether CDS on RMBS will be feasible
hedge instruments in the future. The same concern applies to derivatives based on the
home equity CDS index, ABX.HE and the Bank of America RESI structure. See Banc
of America Securities (2005) for specific information on this type of offering.
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reap the accounting and regulatory benefits of holding whole mortgages. More-
over, because a single depository’s actions do not affect market house prices,
depositories would have incentives to maintain strict underwriting and moni-
toring standards because they would bear any losses due to poor underwriting.
Although exchange-traded house price index futures can circumvent some of
the limitations of securitization, a hedge based on these instruments may be
far from perfect because the loss experience of the hedged portfolio may not
correlate with the cash flows of the hedging instrument, thereby introducing
basis risk.

This article analyzes the hedging effectiveness of derivatives with cash flows
similar to the loss experience of mortgage portfolios and compares the effec-
tiveness of these contracts with that of house-price-based contracts such as
those recently introduced at the Chicago Mercantile Exchange. The proposed
derivative contract has cash flows similar to the losses of mortgages originated
in a certain year and with certain characteristics (e.g., ARMs backed by prop-
erties in Florida). The proposed derivatives have the same advantages over
securitization as derivatives based on house price indexes (HPI). In addition,
because the payoffs of loss-based derivatives are similar to the credit losses
of depositories’ portfolios, these derivatives may be more effective hedging
instruments than house-price-based derivatives.

Perhaps because CDS on asset-backed securities (ABS) normally have a pay-as-
you-go (PAUG) provision, the proposed credit derivative could be confounded
with a CDS. We note however that the proposed credit derivative is not a CDS.
The essential characteristic of a CDS is that it gives the credit-protection buyer
the option to receive the difference between the underlying bond par value and
its price in case of a specified credit event, such as a credit ratings downgrade or
a default. CDS written on both corporate bonds and on ABS have this common
feature. At the time of exercise of this option, the payoff is made and the
CDS is extinguished. In addition, CDS on ABS also frequently have a PAUG
provision. This provision obliges the protection seller to make payments equal
to the writedown amount (of principal or interest) to the protection buyer. These
PAUG-payments do not extinguish the CDS but do reduce the notional, and
they hence reduce the payoff if the swap is exercised.3 The product that we
propose is distinct from a CDS because it does not give the credit-protection
buyer the option to receive the difference between the underlying bond par
value and its price in case of a credit event.

A further distinction between the product we describe and a CDS is that CDS
are typically written on a specific tranche of a security issuance. The specific

3See Lehman Brothers (2005) for a detailed description of CDS on ABS.
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rules that govern cash flows in a structured instrument will also introduce basis
risk. Examples of such provisions include rules that allocate the priority of
losses in the underlying collateral to the tranches as well as provisions that
retain some component of interest income to pay for first losses. Frequently,
the pool of collateral that is built up this way can be released to the residual
tranche holder under certain conditions. Because CDS are a natural hedging
to the risk associated with a particular tranche of a mortgage-backed security,
they are less optimal for hedging the risk of whole loans.

However, if one adopts the view that the derivative contract we propose results
in payoff very close to CDS on ABS (with a PAUG structure), then from this
alternative perspective, our empirical results provide evidence of the hedging
effectiveness of a CDS for hedging whole loans. This result would be for a
CDS with a PAUG structure where (1) the PAUG-events are credit losses, (2)
the PAUG payments are defined by the credit losses on a reference pool of
mortgages rather than a tranche of an ABS and (3) the swap feature of the CDS
is excluded from the contract. Particularly because of the third restriction—
the removal of the swap feature—most market participants would view the
proposed derivative contract as distinct from a CDS.

We examine the basis risk of the hedges generated by the credit-loss-based and
house-price-based contracts both theoretically (with simulations of a simple
default model) and empirically (using First American’s Loan Performance
Securities data on subprime mortgages). We use adjusted R2’s as the metric for
hedging effectiveness because accounting policies subject hedges to specific
tests based on this metric. The focus here is on the hedging effectiveness of the
proposed instrument with respect to house-price-based contracts rather than
on formal modeling of the optimality and welfare impacts of the proposed
derivative.

The simulations suggest that hedges made with credit-loss-based instruments
perform materially better than those made with house-price-based indexes.
Indeed, a regression of simulated portfolio losses on simulated HPI results in
an average R2 close to 7%, while a regression of simulated portfolio losses
on simulated loss-based indexes results in an average R2 of 86%. The strong
performance of hedges based on credit loss indexes reflects the similarities
between the credit losses of mortgage portfolios and the cash flows of the
derivatives based on loss indexes. Forward contracts based on house price
appreciation indexes, in contrast, do not have payoffs that resemble the credit
losses in residential mortgage portfolios and thus perform poorly in static
hedging.4

4While forward contracts based on house price appreciation could perform well in
dynamic hedging, the emphasis here is on simple dynamic hedges.
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The empirical analysis also indicates that credit-loss-based indexes are better
than house-price-based indexes for hedging credit risk in mortgage portfolios.
A regression of actual monthly portfolio losses on actual monthly HPI results
in an average R2 close to 4.5%, while a regression of portfolio losses on loss-
based indexes results in an average R2 of 13%. The empirical performance
of instruments based on credit losses is, however, well below the accounting
requirement to classify a hedge as highly effective.5

This article contributes to the rapidly growing literature on real estate deriva-
tives. Closest to our work is the paper by Case and Shiller (1996) analyzing
how futures and options written on HPI can hedge mortgage default risk and
demonstrating that a distributed lag model of house price growth captures most
of the variation in delinquency rates. We extend their work by focusing on credit
losses in residential mortgages rather than on delinquency rates. In addition to
assessing the performance of house-price-based derivatives as a hedging tool,
we also analyze derivatives based on the credit losses of mortgage portfolios.
Our article is also related to Shiller (2008b), who argues that part of the solution
for the current subprime crisis is the creation of “new markets for risks that
really matter,” including real estate price risk. This article posits that, while
such markets may be part of the solution for the crisis, the liquidity and the
acceptance of instruments spanning these risks depend on the extent to which
these instruments can create easily implementable hedges with low basis risks.
Moreover, we identify an important clientele that would benefit from the cre-
ation of the proposed derivative product and show that this product can result
in more effective hedges than the next best option, HPI.

Less directly related to this article are a series of papers that examine the impacts
that a liquid market for house price derivatives would have for consumer use (see
Englund, Hwang and Quigley 2002, Clapham et al. 2006, Deng and Quigley
2007, de Jong, Driessen and Hemert 2008, Shiller 2008a). Our analysis differs
from these papers by examining residential mortgage credit derivatives for
use by investors. These derivatives could, however, also benefit residential
borrowers in that they could reduce the cost of mortgage credit risk.

This work is also related to papers that analyze the potential for moral hazard and
adverse selection related to credit risk. Gan and Mayer (2007) provide evidence
of differences in behavior when the servicer is exposed to the credit risk of a
loan. Duffee and Zhou (2001) analyze the effects of introducing CDS written
on whole mortgages on bank monitoring and find that the resulting adverse
selection could worsen the market for loan sales. Writing derivative contracts

5A hedge is classified as highly effective when a regression to measure hedging effec-
tiveness has an adjusted R2 of at least 80%.
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on a broad reference pool will tend to mitigate these incentive problems because
the servicing and origination decisions of any one institution would have limited
impact on aggregate losses.

The remainder of this article is organized as follows. The next section outlines
the institutional features of the banking system that may affect the hedging
problem that depository institutions face. The third section presents the Monte
Carlo simulations used to corroborate the methodology used to assess hedge
effectiveness. The fourth section describes the empirical analysis. The last
section concludes.

Institutional Features and the Hedging Problem

Depositories have few options for managing their residential asset portfolios.
If they are originators, they must decide which loans to retain and which to
sell. Of the loans they retain, they must decide which to hold in a securitized
form and which to retain as whole loans. They must also make decisions on
what forms of mortgage insurance to acquire and at what levels of coverage.6

Among the factors that influence these decisions are risk management practices,
accounting practices and funding flexibility.

Managing interest-rate risk is an especially important consideration. Deposito-
ries tend to hold mortgage assets that provide a good match with their liabilities
(primarily short-term funding such as demand deposits). Because ARMs have
floating rates, they are a natural choice. Small depositories thus find it ad-
vantageous to hold ARMs because they can match the duration of assets and
liabilities without using dynamic hedging. The drawback of keeping ARMs as
whole loans is their credit risk, which can be significant for small depositories
lacking geographic diversity. The duration of fixed-rate mortgage assets, in
contrast, substantially exceeds that of bank liabilities and will fluctuate with
changes in the interest-rate environment (convexity risk). Hedging the duration
and convexity risk of these assets requires a high level of sophistication and
substantial investment in risk-management strategies. For this reason, most
depositories sell or securitize the fixed-rate mortgages they originate.

At the same time, several key differences in accounting treatment make it
more attractive for depositories to hold mortgages as whole loans rather than
as securities. In typical implementations of Financial Accounting Standard
(FAS) 5, many institutions set loan loss reserves for whole loans based on
simplified estimates of credit-loss exposure, such as a fixed multiple of expected

6Mortgage insurance is the dominant form of hedging of ARMs held by depositories as
whole loans. Mortgage insurance is typically required only for loans with loan-to-value
ratios above 80%.
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annual default costs. Securities, in contrast, are subject to fluctuations in market
value, effectively marking-to-market the lifetime of future credit exposures
along with any risk and liquidity premiums. Another important accounting
difference relates to asset sales. Whole loan sales are covered by different
rules (specifically FAS 65) than mortgage-backed securities (FAS 115). These
differences make it less consequential to sell whole loans than securities, thus
providing institutions more flexibility to adjust their portfolios.

On the other hand, there are some benefits to holding residential mortgage
securities issued by Freddie Mac and Fannie Mae. For example, a liquidity ad-
vantage of securitizing mortgage assets is that participation certificates (PCs)
allow investors to borrow funds more cheaply because PCs allow easy access
to collateralized borrowing through the repo market and through dollar rolls.
By holding whole loans, an institution may therefore forgo some funding flex-
ibility that securities provide. Moreover, holding mortgage assets in securities
rather than as whole loans has implications for regulatory capital requirements.
Depository investments are constrained by both tier 1 and risk-based capital
requirements. In nearly all cases, mortgage assets held through GSE-issued
securities face lower risk-based capital charges than whole loans. In periods
when institutions are constrained (or likely to be constrained) by regulatory
capital, this relief tends to favor securitization.

Residential mortgage credit derivatives may offer the best of both worlds. Using
credit derivatives, a depository could benefit from all the accounting advantages
of holding whole loans in their portfolios while simultaneously decreasing the
economic capital required to retain the loans.

Cash Flow Hedging

Depositories holding whole loans currently use cash flow hedging, matching
the time patterns of losses on a portfolio of loans with the cash flows of
a derivative instrument. Traditionally, derivative hedging is based on delta-
hedging procedures that hedge market value, that is, take an offsetting position
that makes the sensitivity of the price of the portfolio with respect to the
underlying security equal to zero. Depositories holding whole loans, however,
focus on cash flow hedging instead of price hedging because the prices of
the loans in a given portfolio do not affect the institutions’ earnings unless
loan credit quality becomes severely impaired. The fact that whole loans are
not generally marked-to-market also implies that the prices of loans in the
portfolio of depositories are not easily observable.

As a result, we set up the hedging problem of a depository institution as a cash
flow hedge. The accounting treatment of cash flow hedging is articulated in the
Financial Accounting Standards Board Statement no. 133. The standards for
determining hedge effectiveness vary, but once a standard is adopted it must
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be adhered to. One such standard is based on the adjusted R2 produced by a
regression of the changes in the value of the hedged item on changes in the
derivative value. For cash flow hedges, the regression can also be based on
cumulative cash flows.

If a hedge is determined to be highly effective, it can receive favorable ac-
counting treatment. For instance, a highly effective hedge instrument does not
need to be marked-to-market, which eliminates possible divergence between
the value of the loan book and the value of the hedging instrument in case of
liquidity shocks on the hedging instrument market. A hedge is classified as
highly effective when the regression described earlier has an adjusted R2 of at
least 80% (Lipe 1996). An assessment of effectiveness is required whenever
financial statements or earnings are reported and at least every 3 months.

To formally define the hedging problem that depositories face, let the loss due
to default in a mortgage i at time t be given by Lossi,t:

0 if there no default at time t

Li × Bi otherwise,
(1)

where Bi is the original mortgage balance, and Li is the loss per dollar of original
mortgage balance. Losses are expressed as a percentage of the origination
amount because the focus is primarily on static hedges. Note that the loss to
the mortgage i at time t is equal to zero (Lossi,t = 0) if the mortgage is current,
has been prepaid or if the borrower defaulted before time t. Let the losses in
this portfolio due to default at time t be represented by

Loss�
t =

N∑
i=1

Lossi,t =
NLoss∑
k=1

LiBi, (2)

where the last summation in the above equation is over all the mortgage loans
that are subject to a real estate owned (REO) or short sale7 at time t. The loss
per origination unpaid principal balance at time t is

Loss OUPB�
t = Loss�

t∑N

i=1
Bi

=
NLoss∑
k=1

Liwi, (3)

where wi is the weight of mortgage i in the portfolio at time zero. Note that
Equation (3) implies that, as mortgages are prepaid or go into default, the

7A foreclosed property is classified as real estate owned after an unsuccessful sale at
a foreclosure auction, usually where the minimum bid is set as the outstanding loan
balance plus additional expenses. A short sale is when a mortgage lender agrees to
forgive some of the loan to allow the owner to sell the mortgaged property for less than
the outstanding balance.
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Loss OUPD�
t decreases. This simply results from the assumption that the loss

in the mortgage i at time t is equal to zero if the mortgage is prepaid or in
default before time t.

A depository that wishes to implement a static hedge of its portfolio of mortgage
loans would buy at time zero n�

0 contracts of a residential mortgage credit
derivative that pays ft every month between t = 1 and T . The number of
contracts n�

0 that minimizes the variance of the loss of the hedged portfolio
is −(

∑N
i=1 Bi × β

�,f
0 ), where β

�,f
0 is the beta of Loss OUPD�

t with respect
to ft. A depository executing a dynamic hedge, in contrast, would buy n�

t

contracts at time t to hedge against the possibility of default at time t + 1.
The number of derivative contracts that minimizes the variance of the hedged
portfolio is −(

∑N
i=1 Bi × β

�,f
t ), where β

�,f
t is the time-varying beta of the

loss per origination unpaid principal balance with respect to the derivative
payoff.

Static hedging is of course easier to implement than dynamic hedging. The
simplicity of the static hedging does, however, come at the cost of reduced
effectiveness if the optimum hedge ratios vary substantially over time. As a
result, the choice between static and dynamic hedging involves a trade-off
between ease of implementation and effectiveness. Because of their level of
sophistication, large mortgage investors may prefer dynamic hedging while
small mortgage investors probably prefer static hedging. In fact, depositories
that hold ARMs instead of fixed-rate mortgages in their balance sheets due to
the close matching of ARMs with the bank’s funding liabilities are likely to
prefer static hedging of the credit risk in their mortgage portfolios.

Depositories could potentially use any of the residential mortgage credit deriva-
tives to hedge the credit risk of a portfolio of whole loans. For instance, they
could use contracts that have payoffs similar to the credit losses of mortgages.
In this case, we propose writing contracts that have payoffs that depend on
an index of realized credit losses for a reference pool of mortgages. To for-
malize this concept, imagine an index of losses of mortgages originated in a
certain year and with certain characteristics (e.g., ARMs backed by properties
in Florida). Let the number of mortgages in the index at its creation be equal to
NIndex. The value of the index at time t equals the losses due to REO and short
sales per origination unpaid principal balance. That is,

Indext =
∑NIndex

i=1
Lossi,t∑NIndex

i=1
Bi

=
NLoss

Index∑
k=1

Li

Bi∑NIndex

i=1
Bi

=
NLoss

Index∑
k=1

Liw
Index
i , (4)
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where the latest summation in the equation above is over all mortgage loans in
the index that are subject to an REO or short sale at time t. Note that the loss in
mortgage i at time t equals zero if the mortgage is current, has been prepaid or
was in default before time t.

Depositories could also use a contract based on home price appreciation, which
would have a payoff ft+1 at time t + 1 proportional to the return of a house
price index between t and t + 1. Because both types of contracts offer similar
accounting and capital benefits, the choice between derivatives based on HPI or
on credit loss indexes depends on how effective they are as hedging instruments.
The remainder of this article therefore analyzes the hedging effectiveness of
such contracts. Most of the discussion addresses static hedging because small
depositories that hold ARMs as whole loans are likely to prefer this approach.
We do, however, analyze one dynamic hedging procedure for the benchmark
contract based on house price appreciation.

Methodology to Estimate Hedge Effectiveness

Given the losses per dollar of origination balance of the portfolio at time
t, Loss OUPB�

t , the hedging performance of a given instrument is analyzed
through the regression:

Loss OUPB�
t = α + β�,j × CFj

t + εt , (5)

where CFj
t is the cash flow of jth hedge instrument at time t. We calculate

Loss OUPD�
t according to Equation (3) for a series of proxy mortgage portfo-

lios, termed pseudo portfolios. We then estimate the regression above for each
of these portfolios, comparing the efficiency of different instruments using a
standard accounting measure of hedging effectiveness, that is, the adjusted R2

of the above regression.

To assess the hedging performance of derivatives based on credit loss indexes,
we assume that such derivatives have cash flow at time t, CFj

t proportional to
the loss-based index calculated according to Equation (4) for a given reference
pool. (Construction of the pseudo portfolios and of the reference pools of
indexes is detailed later.) To benchmark the performance of derivatives based
on credit loss indexes, we also examine the hedging performance of derivatives
based on house price appreciation indexes. These derivatives have cash flow at
time t + 1 (CFj

t+1) proportional to house appreciation between t and t + 1.

A simple stylized model of default is useful in motivating the form of Equation
(5) above. Assume that the price of a residential property backing a mortgage
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is Si,t at time t follows the log-normal process:

dSi,t

Si,t

= μi dt + σiρidZt + σi

√
1 − ρ2

i dZi,t , (6)

where μi, σ i and ρ i are constant, and Zt and Zi,t are standard Brownian motions.
Default in mortgage i occurs if the property value reaches a level equal to or
less than an exogenous default trigger level Di at time t + �t. The loss due to
default at time t + �t is zero if St+�t > Di and Li × Bi, otherwise where Li

is a constant. Also assume that the house price index in the region follows the
process:

dSt

St

= μdt + σdZt , (7)

which implies that the correlation between the property i and the local real
estate market is ρ i.

Using a Monte Carlo simulation, we run 1,000 paths of the model above and es-
timate Regression (5) for each path. We estimate the regressions with either the
loss-based index or house-price-based index, where house price appreciation
is based on Equation (7). In this simulation exercise, a mortgage investor has a
portfolio of 1,000 loans collateralized by properties that have the same initial
value of $100,000. Default trigger points Di

′
s are randomly selected from a

uniform distribution with support between $70,000 and $90,000. Default may
happen any month after the origination of the mortgage until its maturity 30
years later. The reference pool has 10,000 mortgages, including the 1,000 mort-
gages from the investor. The properties collateralizing the mortgages also have
initial values equal to $100,000, and their default triggers are randomly selected
from the same distribution as above. Both the mean house price appreciation
and the mean index appreciation are 5% per year (μi = μ = 0.05); the annual-
ized volatility of both the house prices and the index is 15% (σ i = σ = 0.15);
and the correlation between the returns on the houses and the house price index
is 50% (ρ i = 0.5). The default severity is 30% (Li = 0.3).

The simulations indicate that the hedging performance of the loss-based index
is quite promising, while that of the house price appreciation index is poor.
As the results presented in Table 1 show, the average R2 is quite high at
0.86 when the loss-based index is used to hedge, but only 0.07 when the
monthly return of the HPI is used as an independent variable. In addition, the
statistical significance of house price appreciation disappears when the house
price appreciation and loss-based indexes are both in the regression. Indeed,
when house price appreciation is alone in the regression, it has an average
t statistic of –4.99; when used with the loss-based index, the average t statistic
is –0.14.
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Figure 1 � Features of the simulated credit model.
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Notes: Panel A presents the average of losses per origination balance across 1,000 simulations of
the simple credit model. Losses are presented as a function of the age of the loans in the portfolio.
Panel B presents the number of contracts that must be sold to hedge the one-month-ahead loss of
one mortgage, based on the price of the underlying property. The derivative based on house price
appreciation pays the rate of return on the house price index during 1 month. The mortgage is in
default if the house price is below $80,000 1 month ahead.

One possible reason for the poor performance of the contracts based on house
price appreciation is the seasoning pattern of the credit losses. The top panel
of Figure 1 depicts the average loss in the portfolio as a hump-shaped function
of loan age, with a peak around 8 months. This seasoning pattern is common
to first-passage models of default (see Duffie and Singleton 2003). A static
hedge based on house price appreciation may not be able to account for this
nonlinearity. Hedges based on the loss indexes, in contrast, may be able to do
so because the index itself is a nonlinear function of the age of the loans in
the reference pool. To check this, we add the age of the loans in the pseudo
portfolio (AGE) into the regression, along with a dummy variable (AGEDUM)
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that has a value of one if the age is less than 8 months, and zero otherwise. The
break point of the variable AGEDUM is set to 8 months because this is the age
when losses peak. As Table 1 indicates, once age-related variables are added to
the regression with house price appreciation, the R2 increases substantially to
0.32. This increase, however, does not result in a substantial change in the point
estimate of the coefficient on house price appreciation. While this suggests that
controlling for loan age may improve the low R2 of the regression with the HPI,
doing so does not result in a better hedge performance because the hedge ratio
does not change.

The poor performance of the house price appreciation index in part results from
the fact that the optimal hedge ratio of a loan varies with the house price level.
To understand this point, assume that an investor in this mortgage wishes to
hedge the credit exposure with a contract written on house price appreciation
in the region. The payoff of this contract at time t + �t is equal to house price
appreciation between t and t + �t, that is, ft+�t = (St+�t / St–1). We derive an
equation for the optimal number of forward contracts that need to be shorted
to hedge the credit risk in a mortgage in this model. (See the Appendix for
details.) The bottom panel of Figure 1 plots the optimal number of forward
contracts as a function of the price of the underlying property. To create this
chart, we assume that the investor wishes to hedge the losses in a mortgage due
to default 1 month ahead (�t = 1 – month), and default happens if the price
of the house 1 month from now is below $80,000 (Di). The other parameters
are assumed to be same as in the simulations. The results indicate that the
hedge ratio varies sharply with house prices. Indeed, the optimal hedge ratio
increases 7.5 times if the underlying house price decreases from $100,000 to
$85,000. The variability of the hedge ratio implies that an investor trying to
hedge the credit risk of a mortgage portfolio would have to sell a much larger
number of contracts based on the house price appreciation index as the prices
of the underlying properties drop. This implies that the hedging performance of
derivatives based on HPI may be substantially improved with dynamic hedges.

We also analyze the performance of house price appreciation contracts in
dynamic hedging to improve the performance of the benchmark based on the
house price appreciation index. To do so, we add the interaction of house price
appreciation with a dummy variable (CHPIDUM) that has a value of one if
the house price index decreases more than a constant c, and zero otherwise.
Addition of this dummy variable in effect allows the hedge ratio with respect
to the HPI contract to vary over time. If the HPI decreases by more than c, the
hedge ratio is the coefficient on the house price appreciation plus the coefficient
on the interaction term. If the HPI decreases by less than c, the hedge ratio is the
coefficient on the house price appreciation. While we could construct optimal
hedge ratios based on this simple default model, we are using the model only
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to illustrate a simple way to empirically estimate the hedge effectiveness of a
residential mortgage credit derivative.

In the simulations, we set c equal to 1% to be consistent with the value used
in the empirical analysis described later. We also interact the HPI with loan
age-related variables. These interactions are equivalent to allowing the hedge
ratio with respect to the HPI contract to vary with the age of the loans in the
pseudo portfolio. The dynamic hedge based on the house price appreciation
index performs better than the static hedge based on that index. Nevertheless,
the static hedge based on the loss-based index outperforms them both. As the
last two columns of Table 1 show, allowing the hedge ratio to change with AGE,
AGEDUM and CHPIDUM substantially improves the hedge effectiveness of
the contract based on house price appreciation. The R2 of the regression where
the hedge ratio moves with these characteristics (0.21) is much higher than
the R2 of the regression with house price appreciation only (0.07). In addition
to allowing the hedge ratio to change over time, we also control for age-
related effects on the mean losses of mortgages. The last column of Table 1
indicates that controlling for such age effects also substantially improves the
hedge effectiveness of house-price-based contracts. Overall, the simulations
thus suggest some controls that may be used in the empirical evaluation of the
hedging effectiveness of contracts written on credit loss and HPI.

Empirical Analysis

This section presents an analysis of the hedge performance of the proposed
instrument and of the HPA indexes using Loan Performance data.

Data and Summary Statistics

We create indexes of credit losses based on First American’s Loan Perfor-
mance data, primarily from loan servicing and securities performance records.
The Loan Performance subprime data are drawn from subprime securities and
include more than four million mortgages originated from 1997 to 2006. Mort-
gage performance data are also available through securities, because issuers
of nonagency securities typically disclose information about the delinquency,
default and loss performance of loans that form the collateral for the securities.
The Loan Performance securities database contains loan-level information on
more than $1.5 trillion in nonagency mortgage backed securities and ABS, rep-
resenting more than 85% of this segment of the market. We use data on ABS
(Alt-A and nonprime) at the loan level. Information on the Loan Performance
securities data is as of December 4, 2006.

We match the loan servicing and securities databases to create a large database
of mortgage loans. Loan attributes include age, loan-to-value ratio (LTV),
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Figure 2 � Summary statistics for Loan Performance database.

Notes: Panel A displays the shares of each type of loan in each origination year in the sample.
ARMs are adjustable-rate mortgages; SFFRs are single-family fixed-rate mortgages; BALLOONs
are mortgages with a balloon payment; IOs are interest-only mortgages. Panel B displays the shares
of loans requiring full documentation (FULLDOC) and of loans with some type of prepayment
penalty (PREPAY), as well as the number of loans (LOANS) per origination year.

purpose (refinancing or purchase), size, term, coupon, borrower FICO score,
loan credit rating, mortgage type, whether the borrower took cash out of the
transaction, whether the purchase is for an investment or primary residence
and property type. These data can be aggregated at several levels—national,
regional, state and metropolitan area, or by origination date—and contain in-
formation on delinquency, foreclosure, REO status and loss amount.

Summary statistics on the loans are presented in Figure 2. The top panel
displays the percentage of different types of mortgages by origination years;
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it reveals how important ARMs became after 2000. Specifically, about 50%
of the mortgages in the Loan Performance database originated in 1997 had
fixed rates, while less than 30% of loans originated in 2006 did so. ARMs thus
composed the majority of subprime mortgages. Figure 2 also indicates that
balloon and interest-only mortgages make up only a small share of the sample.

The bottom panel of Figure 2 displays the number of mortgages originated
by year, along with the percentage of mortgages with full documentation re-
quirements and prepayment penalties. This panel clearly shows the growth
of the subprime market along with the relaxation of mortgage underwriting
standards.

As Table 2 shows, the median origination balance of the loans in the sample
is $122,000, the median LTV is 80% and the median borrower FICO score
is 613. Based on originator-specific credit ratings, Loan Performance assigns
standardized letter grades for mortgage loans. In this sample, more than 80%
are classified as A−. These loans tend to be made to borrowers who have
higher credit scores, larger balances and higher LTV ratios. The statistics in
Table 2 also indicate that the Loan Performance credit ratings are consistent
with borrowers’ FICO scores. Indeed, the median FICO score of borrowers in
the A− loan group is 626, while the median FICO score of those in the D loan
group is 549.

The empirical analysis summarized in the next section uses a subset of the
data described in Table 2 and Figure 2. Specifically, we select all the loans
that are in ABS collateralized by pools of mortgages containing at least 1,000
loans. This criterion is important because Loan Performance does not report
losses on all loans in its database. Working with pools with at least 1,000
mortgages guarantees that all pools in the analysis have reported losses. Because
of their short history, balloon and interest-only mortgages are excluded from
the empirical analysis.

In addition to the Loan Performance data on mortgage losses, we also use the
Office of Federal Housing Enterprise Oversight (OFHEO) HPI. OFHEO creates
quarterly HPI for conforming single-family detached properties using a repeat-
sales methodology. The index is estimated from repeat transactions (sales or
refinance) taken from mortgages purchased or securitized by Freddie Mac or
Fannie Mae starting from the first quarter of 1975. The OFHEO methodology
is a variant of that developed by Bailey, Muth and Nourse (1963) and Case and
Shiller (1989) and explained in detail by Calhoun (1996). This methodology
fits a house price appreciation path that is most consistent with the collection of
observed value changes that occur between repeat transactions for a particular
property in a particular geographic area. The HPI is updated each quarter as
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additional repeat transactions enter the sample. This article uses the state-level
HPI based on purchase transactions. We do not use the S&P/Case-Shiller HPI
because they cover only 20 metropolitan areas (see Standard and Poor’s 2008).

Estimating the Hedge Effectiveness

To create the dependent variable for the hedge effectiveness regressions, we
build pseudo portfolios of mortgages by selecting loans from the securitized
pools that are backed by properties in a given state and with a given origination
year. We then calculate the average loss per dollar of origination amount of
these portfolios for every month of the sample according to Equation (3). This
method should result in portfolios resembling those held by small depository
institutions with exposure in a given state.

We segment by origination year because the loss experience of a given mortgage
portfolio depends on variables for which Regression (5) does not control. For
instance, a large interest-rate drop during the life of mortgages in a portfolio
triggers refinancing, which decreases the credit losses of the portfolio. By
creating indexes based on origination year, we put together mortgages that
are subject to the same history and control for macroeconomic variations that
affect the amount of losses in the portfolio. We discard portfolios with less than
200 mortgages. The time series of losses starts in December 1997 and ends in
August 2007, so the maximum number of monthly observations for a given
pool is 117. There are a total of 3,199 security pools for which we can examine
hedge effectiveness.

While using securitized loans may be one of the only ways to analyze the hedge
effectiveness of residential mortgage credit derivatives, doing so may bias the
results. This approach may overstate the effectiveness of the hedge if the loans
held in an investor’s portfolio differ from assets that are securitized (and hence
in the reference pool) in unobservable ways. Some evidence suggests that this
may be the case. For example, Stanton and Wallace (1998) show that there
will be a separating equilibrium in the mortgage origination market in which
borrowers with different mobility select different combinations of points and
coupon rates. Because points paid are typically observable to the originator but
not to the secondary market, this could result in systematic differences between
loans held in portfolio and those that are securitized.

The set of independent variables includes house price appreciation indexes
because we want to analyze the effectiveness of futures contracts based on
these indexes as hedging instruments. House price appreciation is a proxy for
the cash flows of futures contracts based on house price appreciation (CF i

t

in Equation (5)). The HPI are state-level, purchase transaction, repeat sales.
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Quarterly growth rates are calculated using this index, and they are converted
into a monthly series by assigning the growth at a constant level over the 3
months in the quarter. For example, if Georgia had a growth rate of 2% in the
first quarter of 2007, the growth rate for January, February and March would
be set to 0.66%.

Table 3 displays some percentiles of the sample distribution of monthly house
price appreciation in each state for which we create pseudo portfolios. These
percentiles reveal that most of the states had substantial house price increases
during the sample period. Indeed, the mean appreciation is 50 basis points
per month, with a first quartile around 30 basis points. Table 3 also presents
the amounts of loans in each state relative to the entire sample and indicates
that subprime loans were highly concentrated in a few states. In fact, the top
six states account for more than half of the origination amount in the sample.
Moreover, the states used in the hedging effectiveness regressions have close
to 94% of the total origination amount of the entire Loan Performance sample.

The set of characteristic-based loss indexes to choose from is quite large because
the Loan Performance database is so rich. For instance, we could create an
index based on the losses of ARMs backed by properties in California with
an origination LTV ratio above 90% and borrower FICO scores below 630.
As a result, we could create thousands of indexes based on these data, which
would improve the assessed hedging performance at the risk of overfitting. To
keep the analysis parsimonious and to allow direct comparison with the house
price appreciation indexes, we restrict the focus to indexes based on mortgage
origination year and the state in which the property is located.

The empirical analysis starts with the seasoning pattern in Figure 3, which
shows the average loss per origination principal balance (Loss OUPD�) for
a given age across all the pseudo portfolios. The average Loss OUPD� is
largest when mortgages are around 25 months old and then decreases thereafter
and becomes quite noisy. The hump-shaped pattern of losses is consistent
with those predicted in first-passage models of default and with the pattern of
losses generated by the simulations (Figure 1). The break point of the variable
AGEDUM in the empirical analysis is set in the same way as in the simulation,
that is, equal to one if AGE is less than 25 months (when losses peak), and zero
otherwise.

Recall that house prices increased substantially during the sample period. As a
result, only a few pseudo portfolios were subject to house price declines. This is
an issue for the empirical analysis because some regressions add the interaction
of house price appreciation with a dummy variable (CHPIDUMt−3) that has a
value of one if the HPI decreases more than a constant c between the mortgage
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Table 3 � House price appreciation in the states and period used in the hedging
effectiveness regressions.

Monthly House Price Appreciation (in percent) Percent of Total
Std. Origination

State Mean Deviation p1 p25 Median p75 p99 Amount

CA 0.9 0.7 −1.4 0.6 1.0 1.4 2.2 26.4
FL 0.8 0.6 −1.1 0.5 0.8 1.1 2.2 9.2
NY 0.7 0.4 −0.1 0.5 0.7 1.1 1.2 5.1
TX 0.4 0.2 0.0 0.2 0.4 0.6 0.8 4.8
IL 0.5 0.3 −0.2 0.3 0.4 0.6 1.1 4.3
MI 0.2 0.4 −1.0 0.1 0.3 0.6 0.9 3.3
NJ 0.8 0.5 −0.3 0.5 0.9 1.2 1.7 3.2
MD 0.8 0.6 −0.2 0.4 0.7 1.3 2.1 3.1
MA 0.7 0.6 −0.7 0.4 0.7 1.2 1.8 2.8
AZ 0.8 0.7 −0.7 0.3 0.6 0.9 3.3 2.5
GA 0.4 0.2 −0.3 0.3 0.4 0.6 0.9 2.5
VA 0.7 0.4 −0.2 0.4 0.7 1.0 1.6 2.5
WA 0.7 0.4 0.0 0.4 0.5 0.9 1.9 2.4
CO 0.4 0.4 −0.3 0.1 0.3 0.9 1.1 2.3
OH 0.3 0.3 −0.5 0.1 0.2 0.5 0.8 2.1
PA 0.6 0.4 0.0 0.3 0.6 0.9 1.3 2.1
MN 0.6 0.5 −0.6 0.3 0.6 0.9 1.4 1.8
NC 0.4 0.2 0.0 0.2 0.4 0.5 0.9 1.5
CT 0.7 0.5 −0.4 0.3 0.6 1.1 1.6 1.4
MO 0.4 0.3 −0.2 0.2 0.4 0.6 1.0 1.2
TN 0.4 0.2 0.0 0.2 0.3 0.5 1.0 1.2
IN 0.2 0.3 −0.7 0.1 0.2 0.5 0.9 1.2
WI 0.4 0.3 −0.2 0.1 0.4 0.7 1.1 1.1
OR 0.7 0.5 −0.1 0.4 0.7 1.0 2.0 1.1
UT 0.6 0.5 −0.1 0.2 0.5 1.1 1.6 0.8
SC 0.4 0.2 0.0 0.2 0.4 0.6 1.0 0.8
LA 0.5 0.3 −0.1 0.3 0.4 0.6 1.6 0.7
AL 0.4 0.3 −0.1 0.2 0.4 0.6 1.0 0.7
NH 0.5 0.6 −0.7 0.4 0.5 0.9 1.8 0.5
KY 0.3 0.2 −0.1 0.1 0.3 0.5 0.7 0.5
OK 0.4 0.3 −0.1 0.2 0.3 0.6 1.0 0.4
MS 0.4 0.3 −0.2 0.1 0.3 0.6 1.1 0.4

Total 93.9

Notes: This table presents summary statistics of the monthly house price appreciation
in every state for which there is at least one pseudo portfolio. Also displayed is each
state’s share of the total amount of subprime mortgage originations.

origination and month t – 3, and zero otherwise.8 Ideally, we would set the
constant c equal to a negative number that represents a substantial decrease

8Because our HPI is quarterly, we lag the CHPIDUM in the regressions by 3 months to
avoid any possible look-ahead bias.
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Figure 3 � Average credit losses in the pseudo portfolios.
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Notes: This figure presents the average losses per origination principal balance across all 3,199
pseudo portfolios created from the Loan Performance database. Losses are displayed as a function
of the age of the loans in the portfolio.

in the HPI. The cost of doing so, however, is that CHPIDUM would be equal
to zero throughout most of the history of the losses in the pseudo portfolios.
We therefore set c equal to –1%, which is not a substantial decrease in house
prices. However, there are only 252 pseudo portfolios that have CHPIDUM
equal to one at some point in their history. Of these, just 49 pseudo portfolios
have AGEDUM equal to zero at some point in their history.

Table 4 displays the means of the point estimates, t statistics, R2’s and adjusted
R2’s of the hedging effectiveness regressions across these 49 pseudo portfolios.
As in the simulations, the R2’s of the regressions with house price appreciation
alone are quite low with an average value of 2%. Unlike the simulation results,
however, the point estimates of the HPI are not significant with an average
t statistic of –0.05. The loss-based indexes fit the loss of the portfolios better than
the HPI, with an average adjusted R2 close to 13%. Perhaps not surprisingly, the
R2s of the regression with the loss-based index using actual data are smaller than
the R2s using simulated data. As in the simulations, the average point estimates
of the coefficient on the loss-based index are close to one and statistically
significant.

In addition to running the regressions with the cash flows of derivatives contem-
poraneous with the cash flows of losses, we also estimate regressions in which
the cash flows of derivatives are lagged up to three months because servicers
have different reporting procedures, and as a result, losses in the overall market
may be not synchronous with the losses of one pseudo portfolio of mortgages.
The results in Table 4 indicate that this may in fact be happening because the
average R2 and the average adjusted R2 increase to 17% and 15%, respectively,
once the lagged loss indexes are added into the regression.
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Controlling for age effects or allowing for dynamic hedging with a house-price-
based contract does not seem to improve hedge effectiveness. The results of
Regression (6) in Table 4 show that the adjusted R2 more than doubles once we
control for age in the regression with the house price appreciation index. This
increase, however, is not related to any significant change in the estimation of
the coefficients of the house price index, which are not statistically different
from zero. Moreover, the average of the point estimates of the coefficient of the
HPI is positive, which is not consistent with credit risk models.

Allowing the hedge ratio of the HPI to change with cumulative house price
appreciation makes the average point estimates of the hedge ratio negative,
which is consistent with the theory. However, there is no increase in hedging
effectiveness as measured by the average of the adjusted R2’s, which is only
5% in Regression (9). Allowing hedge ratios to change with age effects and
the cumulative house price appreciation seems to make a difference in the
hedging with the HPI. Even though all the coefficients of Regression (10) are
not statistically different from zero, the adjusted R2 is relatively high at 12%.
Nevertheless, the adjusted R2 is still smaller than that in the regression based
on the credit loss index only.

Table 5 displays the means of the point estimates, t statistics, R2’s and adjusted
R2’s of the hedging effectiveness regressions across all the pseudo portfolios.
The results are analogous to those in Table 4, indicating that the superior
performance of the hedge with derivatives written on the loss-based index is
not just a result of the small sample of pseudo portfolios used to calculate the
means in Table 4.

Static hedges with loss-based indexes still seem to have a reasonable amount of
basis risk as measured by the adjusted R2s. Even so, the basis risk is smaller than
that present in simple dynamic hedges with house price appreciation indexes.
Loss-based indexes may therefore provide a promising direction to expand the
risk management tools of agents carrying real estate risks. In addition, there
is some indication that the population of loans examined here is especially
challenging for hedging instruments because there are substantial issuer and
servicer effects that create asynchronicity between the losses of the pseudo
portfolios and the cash flows of the index of losses. These effects may contribute
to the relatively large amount of basis risk in the hedged positions examined.

Conclusion

Creating an effective market for mortgage credit risk is likely to be economi-
cally beneficial in that widely dispersing depositories’ exposure would likely
decrease the cost of these risks. This article proposes the development of
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derivative contracts based on the credit loss of mortgage portfolios. We ar-
gue that such instruments would complement the menu of available tools for
hedging the credit risk in mortgage portfolios and would contribute to the
development of real estate derivatives advocated by Shiller (2008a). This anal-
ysis explores the effectiveness of instruments based on credit loss indexes and
benchmarks their performance with house price appreciation indexes. The re-
sults indicate that loss-based indexes are better than house-price-based indexes
for hedging credit risk in mortgage portfolios.

Hedges with loss-based indexes do, however, carry a substantial amount of
basis risk, which may be due in part to issuer and servicer effects. The amount
of basis risk found here may be viewed as an upper bound because there are
ways to improve the hedge efficiency of loss-based contracts. For instance,
if the portfolio to be hedged is composed of ARMs backed by properties in
California with an origination LTV ratio above 90%, an index based on a large
pool of mortgages with the same characteristics as the hedged portfolio could
be created. It is quite likely that the hedging performance of such an index
would be better than the ones assessed here. We leave the examination of this
type of index for future research.

The views expressed in the article are those of the authors and do not necessarily
represent those of Freddie Mac. We would like to thank Jorge Reis for suggesting
this topic to us as well as seminar participants at the 2008 AREUEA meeting,
the Bank of Canada and the University of California in Berkeley for their
helpful comments. All errors are ours.
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Appendix

To compute ni,t, let us change variables from St+�t and Si,t+�t to ln(St+�t) and
ln(Si,t+�t).

ln(St+�t ) = ln(St ) + (μ − 0.5σ 2)�t + σ�Zt+�t , (A.1)

ln(Si,t+�t ) = ln(Si,t ) + (μi − 0.5σ 2
i )�t + σiρi�Zt + �t

+ σi

√
1 − p2

i �Zi,t+�t . (A.2)

Also, let’s define the distance to default as xt = ln(St/Di), that is default happens
when xt reaches zero. Under this model, ni,t is

ni,t = −β
i,f
t = −cov[ft+�t , Lossi]

var[ft+�t ]
= − cov[ft+�t , Lossi]

eμ�t × (eσ 2�t − 1)
. (A.3)



30 Duarte and McManus

The covariance cov[ft+�t, Lossi] is given by E[(St+�t / St-1) × Lossi] – E[(St+�t/
St– 1)] × E[Lossi], which is

cov[f (St+�t ), Lossi] = Li × Bi × eμ�t

×
∫ ∞

−∞

⎧⎨
⎩N

⎡
⎣−xt − (μi − 0.5σ 2

i )�t − σi

√
1 − p2

i Zi,t+�t − σσipi�t

σipi

√
�

⎤
⎦

−N

⎡
⎣−xt − (μi − 0.5σ 2

i )�tσi

√
1 − p2

i Zi,t+�t

σipi

√
�

⎤
⎦

⎫⎬
⎭

×f (�Zi,t+�t )d�Zi,t+�t (A.4)

where N[x] is the standard cumulative normal distribution evaluated at x.


