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Abstract

This paper presents a general methodology for measuring and valuing the risk of the FDIC deposit
insurance funds using the martingale valuation approach. The FDIC insurance funds capitalize a
portfolio of insurance policies, each issued against the deposits of an individual commercial bank.
To evaluate this portfolio, our methodology evaluates each individual bank’s insurance policy and
aggregates to obtain the risk of the entire portfolio. Our methodology includes the four relevant
risks: interest rate, credit, deposit growth, and loss. To adequately model these four correlated
risks, a multi-dimensional system is formulated. The risk measurement and valuation results are
based on Monte Carlo simulation. The resulting methodology is flexible and easily modified to
incorporate extensions and generalizations.



1 Introduction

A rigorous approach to risk measurement and valuation of the risks of the FDIC insurance guaran-
tees is essential for effective risk management. The FDIC deposit insurance funds can be viewed
as capital that is held against the portfolio of insurance guarantees that the FDIC provides. This
paper develops a rigorous approach and provides a valuable tool for evaluating the risks posed to the
deposit insurance funds from potential bank failures. The approach utilized herein is based on the
martingale valuation methodology explored in a previous paper by Duffie, Jarrow, Purnanandam,
and Yang [6]. The martingale valuation methodology characterizes financial risks in an arbitrage
free and complete market setting.

To evaluate the potential losses on the FDIC deposit insurance fund, our methodology evaluates
each individual bank’s potential failure and aggregates to obtain the risk of the entire fund. The four
relevant risks of these insurance guarantees are included: interest rate, credit, deposit growth, and
loss. To adequately model these four correlated risks, a multi-dimensional system is formulated.
The risk measurement and valuation results obtained are based on a Monte Carlo simulation. The
resulting risk management tool is constructed to be flexible and easily modified to incorporate
extensions and generalizations.

Of the four risks, we model interest rate risk using a four-factor Heath-Jarrow-Morton [7], or
HJM, model. Credit risk is modeled using the reduced form methodology introduced by Jarrow and
Turnbull [9],[10]. Following the recent insights of Duffie and Lando [5] and Cetin, Jarrow, Protter,
Yildirim [4] in this regard, an intensity process is used because regulators and the market have
less information than do bank management. Less information can generate a totally inaccessible
default time for the regulators and the market, whereas it may be a predictable stopping time for
bank management.1 Merton’s [14] structural approach to credit risk is more appropriate when
valuing these claims from the bank management’s perspective. Deposit growth is modeled using
various bank specific, local- and macro-economic variables in a time series regression. The loss (or
equivalent, recovery rate) process depends on the asset and liability structure of the bank.

The results of the Monte Carlo simulation provide a complete characterization of the risks faced
by the FDIC’s deposit insurance fund. Over a one, three, five, and ten year horizon we compute
various quantiles and summary statistics for the number of bank failures, the total assets in the
failed banks, the total deposits in the failed banks, and the current values of the potential losses
to the FDIC. From these computations, one obtains various risk measures and market valuations.
For example, the value at risk measure (VaR) over a one year horizon using a 99 percent probability
is the 99th percentile loss over a one year horizon, or $1.4 billion. Analogous VaRs for the three,
five, and ten year horizons are $1.5 billion, 2.0$ billion, and $3.0 billion respectively. The market
value of these losses to the FDIC insurance fund over the various horizons, valued as if traded on
public capital markets, are given by the mean of the loss distribution. For a one year horizon, the
market value of the FDIC’s losses are computed to be $191 million. Analogous market values over
the three, five, and ten year horizons are $238 million, $387 million, and $678 million respectively.

The remainder of this paper is organized as follows. Section 2 presents the martingale valuation
methodology. This section characterizes the four risks present in FDIC insurance guarantees and
it presents both the risk measure construction and valuation technology. The simulation model
is the content of section 3. Section 4 presents the parameter estimation used in the simulation,
whose results are discussed in section 5. Section 6 concludes the paper.

1The definitions of totally inaccessible, accessible, and predictable stopping times can be found in Protter [17].
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2 The Martingale Valuation Methodology

This section introduces the notation and economic logic underlying the valuation model for the
FDIC deposit insurance funds. The valuation methodology is based on Duffie, Jarrow, Purnanan-
dam, and Yang [6].

2.1 Model Structure

We are given a filtered probability space (Ω,z, (zt)t∈[0,T ),P) satisfying the usual conditions2 with
P the statistical probability measure. The trading interval is [0, T ]. Default free bonds of all
maturities T ∈ [0, T ] are traded with time t prices denoted p(t, T ), and various stock price indices
introduced below. The spot rate of interest at time t is denoted rt. We assume that markets are
complete and arbitrage free so that there exists a unique equivalent martingale probability measure
Q under which discounted prices are martingales.3

Let i = 1, ..., I represent the banks insured by the FDIC. Let Y i
j (t) for j = 1, ..., Ny be a

collection of characteristics of bank i at time t adapted to the given filtration, for example, the loan
to deposit ratio of bank i at time t. These variables are known to the banks and the regulators,
but perhaps not all of them, such as examination ratings, are available to the market.

2.2 Term Structure Model

Since we will be using a simulation to evaluate the future losses to the FDIC deposit insurance fund,
we employ the most general form of a term structure evolution available. This is a multi-factor
HJM [7] model.

2.2.1 Forward Rate Process

We specify the evolution of the term structure using forward rates under the martingale measure Q.
Let f(t, T ) be the instantaneous (continuously compounded) forward rate at time t for the future
date T . We use a K factor model.

df(t, T ) = α(t, T )dt+
KX
j=1

σj(t, T )dWj(t) (1)

where K is a positive integer, α(t, T ) =
PK

j=1 σj(t, T )
R T
t σj(t, u)du, σj(t, T ) ≡ min[σrj(T )f(t, T ),M ]

forM a large positive constant, σrj(T ) are deterministic functions of T for j = 1, ...,K , andWj(t)
for j = 1, ...,K are uncorrelated Brownian motions initialized at zero. Forward rates are approxi-
mately lognormally distributed under expression (1).

As shown in HJM [5], under the statistical measure P, forward rates follow the process

df(t, T ) = α(t, T )dt+
KX
j=1

θj(t)σj(t, T )dt+
KX
j=1

σj(t, T )dfWj(t)

where θj(t) is the market price of risk (a stochastic process) associated with the jth factor, andfWj(t) for j = 1, ...,K are independent, standard Brownian motions under the statistical measure
P.

2See Protter [17] for the definition of the usual conditions.
3The discount factor at time t is e

R t
0 rsds.
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2.2.2 Spot Rate Process

The spot rate process can be deduced from the forward rate evolution. Let rt ≡ f(t, t), then

drt = [∂f(t, t)/∂T ]dt+ α(t, t)dt+
KX
j=1

σj(t, t)dWj(t). (2)

But α(t, t) =
PK

j=1 σj(t, t)
R t
t σj(t, t)du = 0, so

drt = [∂f(t, t)/∂T ]dt+
KX
j=1

min[σrj(t)r(t),M ]dWj(t) (3)

under the martingale measure Q. Under the statistical measure P, its evolution is

drt = [∂f(t, t)/∂T ]dt+
KX
j=1

min[σrj(t)r(t),M ](θj(t)dt+ dfWj(t)).

2.3 State Variable Processes

We have two sets of state variables. Let Vj(t) for j = 1, ..., Nv be a collection of macro-variables,
adapted to the filtration, that are independent of a particular bank. These state variables are
intended to capture the health of the economy at time t. Second, let Xj(t) for j = 1, ..., Nx

represent another collection of state variables, adapted to the filtration, also characterizing the
state of the economy at time t. The difference between these two sets of state variables is that Xt

represents the prices of traded assets, while Vj(t) need not. We assume that these state variables
give equivalent characterizations of the state of the economy.

For the subsequent analysis, we do not need to specify the evolution of Vj(t), but we do need to
do so for the traded assets. We assume that the traded state variables follow a diffusion process
under the martingale measure Q.

dXj(t) = rtXj(t)dt+ σxjXj(t)dZj(t) (4)

where σxj is a constant, Zj(t) are correlated Brownian motions with dZi(t)dZj(t) = ρijdt, and with
respect to the term structure of interest rates, dWi(t)dZj(t) = ηijdt. Because the state variables
represent traded prices, the drift of this process is the spot rate of interest rt.

By Girsanov’s theorem, under the statistical measure P, the evolution of these state variables
is

dXj(t)

Xj(t)
= µj(t)dt+ σxjd eZj(t) where (5)

d eZj(t) ≡
µ
r(t)− µj(t)

σxj

¶
dt+ dZj(t)

is a standard Brownian motion under the statistical measure P, and µj(t) is an adapted process.

Note that
³
r(t)−µj(t)

σxj

´
is known as the market price of risk for the jth state variable. For the

subsequent analysis, we define the detrended state variables xj(t) as

dxj(t)

xj(t)
≡ dXj(t)

Xj(t)
− µj(t)dt = σxjd eZj(t). (6)
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Under the martingale measure Q, it evolves as

dxj(t)

xj(t)
= [r(t)− µj(t)]dt+ σxjdZj(t). (7)

2.4 Deposit Growth Model

Consider a particular bank with index i. The FDIC insurance guarantee covers the insured bank
deposits.4 If the insured bank defaults, the FDIC pays the insured depositors and stands in their
place as a claimant in the receivership.5 Although the FDIC covers insured deposits we chose to
model the evolution of total deposits primarily due to data limitations. Insured deposits were not
reported quarterly for much of our sample period and the numbers that are reported are estimates
of insured deposits. We let the total deposits of bank i follow the stochastic process6

Di
t ≡ Di(t, Y i

j (t), Vk(t) for all j, k) (8)

with Di(0, Y i
j (0), Vk(0) for all j, k) = Di

0

where Di
0 are the observed balances at time 0. The deposit balance evolution depends on the

variables Y i
j (t), Vk(t) for all j, k. These variables are known to the banks and the regulators, but

perhaps not the market.

2.5 Bank Default Model

Consider a particular bank with index i. Let τ i be the random default time on this bank and
denote its point process by Ni(t) ≡ 1{τ i≤t}.

2.5.1 The Default Intensity Process.

Following Lando [12], we assume that the default point process follows a Cox process with an
intensity λit = λi(t, Y i

j (t), Vk(t) for all j, k) under the statistical measure P.7 The Cox process
assumption implies that conditional upon the information set generated by (Y i

j (t), Vk(t) for all
j, k)t∈[0,T ] up to time T , Ni(t) behaves like a Poisson process. We assume that these conditional
Poisson processes are independent across banks.

In general, this intensity process is different under the martingale measure Q. Under an equiv-
alent change of measure, this default intensity can be written as

κt · λi(t, Y i
j (t), Vk(t) for all j, k)

4Bank deposits are insured up to $100,000 per ownership category. For example, suppose a bank customer has
an account in their name of $105,000 and a joint account with a spouse with a balance of $280,000. The individual
account is insured up to $100,000 and the individual’s portion of the joint account is insured up to $100,000. Uninsured
deposits for this individual would be $5,000 of the individual account and $40,000 from the joint account. For more
information on deposit insurance coverage please visit www.fdic.gov.

5Here we have provided the most conceptually simple example, a payout, to describe the resolution of a bank.
The FDIC resolves banks in the least costly manner which typically involves selling some of the assets and liabilities
to an acquirer, otherwise known as a purchase and assumption transaction.

6The deterministic function Di : R×RNy ×RNv → R is Borel measurable, so that the process given in expression
(8) is adapted to the filtration. A similar qualification applies to the loss rate process δi defined below.

7This intensity process and the other intensity processes introduced below are assumed to satisfy the necessary
measurability and integrability conditions required to guarantee that the related expressions in expression (14) are
well-defined and exist, see Lando [12] for details.
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where κt is a suitably bounded and integrable stochastic process, adapted to the filtration generated
by Y i

j (t), Vk(t) for all j, k.
8 This is the intensity process used for valuation. If, after conditioning

upon the state variables Y i
j (t), Vk(t) for all j, k, default risk is idiosyncratic, then Jarrow, Lando,

Yu [11] show that κt = 1.

2.5.2 The Loss Rate Process

If default occurs, the loss to the insurance fund as a percent of the banks deposits is assumed to be
equal to δit ≡ δi(t, Y i

j (t), Vk(t) for all j, k) at the time of default. Note that this loss rate process
depends on the same set of state variables as the default intensity process and the deposit growth
model.

2.6 Risk Measures and Valuation

This section discusses risk measures and valuation of the FDIC insurance guarantees.
For bank i, the loss faced by the FDIC at some future date T is given by

δiτ iD
i
τ ie

+
R T
τi
rsds1{τ i≤T}. (9)

If default occurs before time T , then the FDIC incurs the losses δiτ iD
i
τ i , future valued to time T

using the spot rate of interest. If default does not occur, then this is zero (due to the indicator
variable 1{τ i≤T} = 1 if τ i ≤ T , 0 otherwise). The entire FDIC insurance funds losses are the
aggregate losses across all banks:

LT =
IX

i=1

δiτ iD
i
τ ie

+
R T
τi
rsds1{τ i≤T}. (10)

Given the stochastic processes for the forward rate process and state variables, the distribution for
the losses LT is completely determined by expression (10). Due to the dimension of the problem,
a Monte Carlo simulation will be used to compute various risk measures and values.

2.6.1 Loss Risk Measures

Given the losses as quantified in expression (10), we can compute the loss distribution for the FDIC
fund at any time T , i.e.

P(LT ≤ k) for any k ≥ 0. (11)

One might also be interested in the α−quantile of this distribution, defined as

kα = inf{k : P(LT ≤ k) ≥ α}. (12)

2.6.2 Present Value of Losses

The present value of this loss due to bank i is

EQt {δiτ iD
i
τ ie

−
R τi
t rsds1{τ i≤T}} (13)

8See Jarrow, Lando, Yu [11].
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where EQt (·) corresponds to conditional expectation under the martingale measure Q using the
filtration (zt)t∈[0,T ). This is the cost of the FDIC insurance guarantee for bank i. Analogously,
one can compute the present value of the insurance proceeds to determine whether or not FDIC
insurance is properly priced, see Duffie, Jarrow, Purnanandam, and Yang [6].

The present value (PV ) of the losses to the entire FDIC insurance fund over the time interval
[0, T ] is given by

PV (LT ) =
IX

i=1

EQt {δiτ iD
i
τ ie

−
R τi
t rsds1{τ i≤T}}. (14)

To evaluate expression (14) we use Monte Carlo simulation.

3 The Simulation Model

This section presents the simulation model used to evaluate losses to the FDIC insurance funds.
To compute the risk measures and present values of the FDIC insurance losses using Monte Carlo
simulation, we must first simulate the time series processes for Y i

j (t), Vk(t) for all j, k, i. Unfor-
tunately, this direct simulation has two problems. One, the complexity of the default, loss, and
deposit growth models (see the subsequent sections) makes the direct simulation of these models
problematic. Second, even if this were not the case, the dimension of a direct simulation would be
too large given that the number of banks (I) is approximately 9,000 (the dimension of the problem
is (Ny × Nv × I)). To make the simulation tractable, we need to reduce the dimension of this
problem. In addition, to avoid the need to estimate the market prices of risk associated with the
state variable processes Vk(t), we will use the traded state variables Xk(t) instead of the local- and
macro-variable indices Vk(t).

3.1 Projection to a Smaller Dimensional Problem

For simulation, we use the traded asset prices Xj(t), and only a static subset of the bank’s char-

acteristics, denoted by Y
i
j for j = 1, ..., Ny. This subset includes characteristics like the bank’s

geographical location.
The simulated insured deposit growth process is given by its conditional expectation, given the

reduced information set, i.e.

bDi
t ≡ EP{Di(t, Y i

j (t), Vk(t) for all j, k) | Y i
j , Xj(t) for all j} (15)

with bDi
0 = Di

0. Using the strong Markov property of a diffusion process, we can write this as

bDi
t ≡ bDi(t, Y

i
j ,Xk(t) for all j, k) (16)

where Xj(t) follows the process in (5) under the statistical measure P, and where Xj(t) follows the
process in (4) under the martingale measure Q. We compute risk measures under P, and valuation
using expression (16) under the martingale measure Q.

Analogous to the deposit growth model, we use the following intensity process in the simulation:

bλit ≡ EP{λi(t, Y i
j (t), Vk(t) for all j, k) | Y i

j , Xj(t) for all j} (17)

= bλi(t, Y i
j ,Xk(t) for all j, k).
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This is the intensity process used for valuation. Under the martingale measure Q, as previously
discussed, this default intensity can be written as

κt · bλi(t, Y i
j ,Xk(t) for all j, k) (18)

where κt is a suitably bounded and integrable stochastic process, adapted to the filtration generated
by Xk(t) for all k. This is the intensity process used for valuation. In the simulation, we set
κt = κ, a constant. Furthermore, we assume that default risk is conditionally diversifiable as in
Jarrow, Lando, Yu [11] and set κ = 1.9.

Following a similar line of reasoning, the loss rate process is

bδit ≡ EP{δi(t, Y i
j (t), Vk(t) for all j, k) | Y i

j , Xj(t) for all j} (19)

= bδi(t, Y i
j ,Xk(t) for all j, k) with bδi0 = δi0

where δi0 is the observed loss rate on deposits defaulting at time 0, Xj(t) follows the process in (5)
under the statistical measure P, and Xj(t) follows the process (4) under the martingale measure
Q.

Although the lower dimensional projection described above is used to faciliate computation,
this projection has an economic interpretation. This formulation is consistent with only bank
management and regulators observing the bank specific characteristics Y i

j (t) for all i, j, perhaps
because this is proprietory information. In contrast, the market sees only a static subset of
these bank characteristics represented by the variables Y

i
j for j = 1, ..., Ny. Consequently, given

the market’s reduced information set, the deposit growth and bankruptcy processes are given by
expressions (16), (17), and (19). Under this interpretation, these processes are the correct ones to
use for market valuation of the FDIC insurance guarantees (see Duffie and Lando [5] and Cetin,
Jarrow, Protter, Yildirim [4]).

3.2 Algorithm

To compute the loss distribution to the FDIC insurance fund (11) or its present value (14), we need
to be able to simulate the forward rate process, the traded state variables, and the bankruptcy
processes. The simulation algorithm is now described under the martingale measure Q. The
analogous simulation can take place under the statistical measure, with the appropriate change in
drift.

• Step 1. Discretize the time interval [0, T ] as t = 0, 1, 2, ..., T . Generate a sample path for
W1(t), ...,WK(t), Z1(t), ..., ZNx(t) over this discretization, called a scenario. Note that these
variables are normally distributed with covariance matrix given by

dW1(t) ... ... dWK(t) dZ1(t) ... ... dZNx(t)

9 In subsequent research, we will explore the impact of utilizing market determined estimates for κ 6= 1.
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dW1(t)
...
...

dWK(t)
dZ1(t)
...
...

dZNx(t)



dt 0 ... 0 η11dt η12dt ... η1Nx
dt

0 dt
. . .

... η21dt
. . .

...
...

. . . . . . 0
...

. . .
...

0 ... 0 dt ηK1dt ... ... ηKNx
dt

η11dt η12dt ... η1Nx
dt dt ρ12dt ... ρ1Nx

dt

η21dt
. . .

... ρ21dt dt
...

. . .
...

...
. . .

ηK1dt ... ... ηKNx
dt ρ1Nx

dt ... ... dt


• Step 2. Given a sample path for W1(t), ...,WK(t), Z1(t), ..., ZNx(t), use expressions (1) and
(4) to obtain a sample path for the forward rates f(t, T ) and traded state variables Xj(t).10

• Step 3. Use the sample paths for the forward rates and state variables, to obtain realizations
of the deposits bDi(t, Y

i
j ,Xk(t) for all j, k), the intensity process κ ·bλi(t, Y i

j ,Xk(t) for all j, k),

and the loss rate bδi(t, Y i
j ,Xk(t) for all j, k).

• Step 4. Generate I independent unit exponentially distributed random variables Ei for
i = 1, ..., I. Compute

τ i ≡ inf{s ∈ [0, T ] :
Z s

0
κ · bλi(t, Y i

k,Xj(t) for all k, j)dt ≥ Ei} (20)

and compute
Ni(t) ≡ {1 if t ≥ τ i, 0 otherwise}. (21)

This point process determines the time of failure for all the banks under the given scenario.11

Given a failure, the loss rate process bδi(t, Y i
k,Xj(t) for all k, j) then applies to the depositsbDi(t, Y

i
j ,Xk(t) for all j, k) to determine the loss to the insurance funds.

• Step 5. For this scenario, compute LT in expression (10).

• Step 6. Repeat steps 1 - 5m times. Let ω ∈ {1, ...,m} represent an arbitrary scenario. From
this collection of scenarios, the risk measures and values can be computed. For example,
expression (14) is approximated by

PV (LT ) '
mX
ω=1

1

m
[LT (ω)e

−
R T
0 rs(ω)ds]. (22)

4 The Parameter Estimation

This section presents the parameter estimation procedures and results for the underlying stochastic
processes, including the forward rates, the stock price indices, and the deposit growth and loss rate
models.
10 In the subsequent simulation, we actually use the detrended trade state variables xj(t) and add the spot rate of

interest rt.
11For efficiency, we assume that the intensity process is constant between quarters. This simplification allows us

to approximate the default process in expression (20) using a Bernoulli representation, see the appendix.
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4.1 Term Structure Model

To estimate the forward rate process given in expression (1), we employ a principal compo-
nent analysis as discussed in Jarrow [8]. Given a time series of discretized forward rate curves
{f(t, T1), f(t, T2), ..., f(t, TNr)}mt=1 where Nr is the number of discrete forward rates observed, the
interval between sequential time observations is ∆ and m is the number of observations. Then, per-
centage changes are computed {f(t+∆,T1)−f(t,T1)

f(t,T1)
, ...,

f(t+∆,TN )−f(t,TNr )
f(t,TNr )

}mt=1. From the percentage
changes, the Nr ×Nr covariance matrix (from the different maturity forward rates) is computed,
and its eigenvalue/eigenvector decomposition calculated. The normalized eigenvectors give the
discretized volatility vectors {σrj(T1)

√
∆, ..., σrj(TNr)

√
∆} for j = 1, ..., Nr.

The term structure data was provided by Kamakura Corporation.12 It consists of quarterly
forward rates with maturities T1 = 1/4, T2 = 1/2, T3 = 3/4, T4 = 1, T5 = 2, T6 = 3, T7 = 5,
T8 = 7, T9 = 10, T10 = 15, T11 = 20 measured in years. The data set starts on January 4, 1982
and goes to August 2, 2003. Table 1 provides the volatility coefficients for the .25, .5, .75, 1, 2, 3,
5, 7, 10, 15 and 20 year forward rates and the percentage variance explained by the factors based
on quarterly observation intervals (∆ = 1/4). As indicated, the first four factors explain 93.16
percent of the variation in quarterly forward rate movements. For the subsequent analysis, we set
K = 4 in expression (1).

4.2 State Variable Processes

To compute the parameters of expression (4), we use the quadratic variation, which is invariant
under a change of equivalent probability measures. Given is a time series of {Xi(t)}mt=1 where the
interval between sequential time observations is ∆, a quarter, and m is the number of observations.
Define ∆Xi(t) ≡ [Xi(t+∆)−Xi(t)].13 We compute

mX
t=1

µ
∆Xi(t)

Xi(t)

¶2 1
m

giving an estimate of σ2xi∆. (23)

Next we calculate

mX
t=1

µ
∆Xj(t)

Xj(t)

∆Xi(t)

Xi(t)

¶
1

m
giving an estimate of σxjσxiρji∆. (24)

To obtain the correlation between the forward rates, the house price index, and the bank stock
price index index ηji for j = 1, ...,K we compute

mX
t=1

µ
∆f(t, Tk)

f(t, Tk)

∆Xi(t)

Xi(t)

¶
1

m
giving an estimate of

KX
j=1

σrj(Tk)σxiηji∆. (25)

This is computed for k = 1, ...,K for distinct T1, ..., TK yielding K equations in K unknowns
{η1i, ..., ηKi}. The estimates of σrj(Tk) come from the forward rate principal components analysis
discussed in the previous section. Solving this system gives the estimates. This is done for all i.
For this estimation, we set K = 4 and we use the four forward rate maturities T1 = 1/2, T2 = 1,
T3 = 3, T4 = 5.

12See www.kamakuraco.com.
13This could be done using log differences instead of returns or using the detrended variables xj(t) instead of Xj(t).
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Empirically, {Xi(t)}mt=1 includes a series of house price indices and a series of bank price indices.
House prices are measured by the OFHEO indices for the nine census regions.14

Comparable bank price indices were compiled from CRSP data.15 The indices include only
those banks with at least $1 billion dollars (1996 dollars), a total turnover of 1 million shares per
quarter, and five years of data. A total of 267 stocks was used. The banks were divided into ten
groups: a set of money center banks and one set for each of the census regions. An equal weighted
index was created for each group of banks

Table 2 summarizes the correlation matrix of the data. By construction, the principal compo-
nents of the interest rate process are uncorrelated. These components are also weakly correlated
with changes in the house and bank stock price indices. The mean correlation between interest
rate components and changes in the house price index is 0.025 and the mean with the stock price
index -0.063. Both the median and standard deviation of the correlations show that they are
clustered around zero. Changes in the house price indices are correlated with changes in other
house price indices; the mean correlation is 0.281. Changes in bank stock prices indices are even
more correlated with changes in other bank stock prices; the mean correlation is 0.677. However,
changes in house and bank stock prices are weakly correlated with a mean correlation of 0.051.

4.3 Bank Default Model

For the empirical default intensity, we estimated a standard bank failure model. The variables as
well as the sample means and medians are found in Table 3. Most of the variables are conventional
in the bank failure literature, although there are several differences. Income excludes taxes,
and both it and the chargeoff rate are twelve-month totals adjusted for mergers. The CAMEL
composite rating was entered as a series of dummies; in estimation, the dummy for 2-rated banks
was excluded.16 In addition, the model included the difference between the individual bank’s
CAMEL rating and the weighted average rating assigned to all the banks owned by the same bank
holding company. The natural logarithm of assets was included as well as the square and the cube
of the logarithm. The model also included the total assets of problem banks (with CAMEL ratings
of 4 or 5) was entered as a percentage of total assets in all banks as was the square of the same
variable.17

A pooled time series, cross sectional model with a logistic specification was used. The dependent
variable was failure within the second quarter after the Call Report was filed. Consequently, the
model used December 1990 data to estimate the probability of failure between April and June 1991.
Banks receiving open bank assistance were considered failures. The sample included all banks and
thrifts with the necessary data between December 1984 and December 2002.

Table 4 displays the results from the estimation of the model. The log-likelihood test ratio is
11191 and indicates that the model is statistically significant at any reasonable significance level.

14The Office of Federal Housing Enterprise Oversight (OFHEO) house price index is available quarterly since 1975.
15CRSP is the Center for Research in Security Prices, an affiliate of the University of Chicago Business School.

Among other things, CRSP compiles daily data on stock trades.
16CAMEL composite ratings are a summary of individual C apital, Asset quality, M anagement, Earnings, and

Liquidity ratings that are assigned after bank examinations. After 1997, a market Sensitivity rating was added, and
the ratings became CAMELS. The ratings are integers between 1 and 5 with 1 being the best rating. A rating of
2 is an appropriate benchmark because that rating is assigned to basically sound banks that have some relatively
minor weakness and because most banks receive that rating.
17The variables were selected from a larger set of potential variables. For example, CAMEL components were

considered, but they did not improve the overall fit of the model substantially. For an explanation of the details of
this specification, see Nuxoll [15].
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Individual variables are generally significant at the 0.1% level and generally have the expected sign.
The three size variables are individually insignificant, but as a group they are significant at the
0.1% level.18

The model described above was used to generate estimates of the probability of failure for
December 2002. The desciptive statistics for the estimated probabilities of failure are given in
Table 5 along with some results from a stress scenario which is explained later. Obviously, this
model indicates that most banks are very safe. The vast majority of institutions have failure
probabilities of less than 0.01%. The expected number of failures in the second quarter of 2003 is
1.1, and in fact, there was one failure during this period.19

As explained earlier, the failure probabilities were projected into a smaller space to make the
simulation tractable. The coefficients from this projection are summarized in Table 6. The mean
coefficients on the bank stock price index and the house price index are positive which suggests that
an increase in house prices and an increase in the bank stock index would increase the probability of
failure. This result is counter-intuitive. The signs on the interest rate variables are more plausible
given the conventional wisdom that banks borrow short and lend long. It should be noted that
the standard deviations reported in this table are very large, indicating that there is a good deal
of variability among banks.

The last column of Table 5 reports how a stress scenario and the method of projection affect
estimated failure probabilities. In the stress scenario, bank stock prices decline by approximately
30% while house prices are constant.20 The term structure is assumed flat with both interest
rates at 2% The estimated probability of failure of most banks is not affected substantially by
these events. The median probability actually decreases slightly. However, for a notable minority
of banks, the probability of failure increases, so the mean probability increases from 0.0125% to
0.0199%. This amounts to an increase from expected failures of about one a quarter to about 1.7
a quarter.

Three further sets of refinements are contemplated. First, more bank holding company data
will be tested in the basic failure model. Second, the possibility of using cross-equation restrictions
will be explored in the projection methodology. Currently, each bank has its own set of coefficients.
The projection methodology could be modified so that similar groups of banks share some, if not
all, the same coefficients. Finally, data is not available for banks that have been in existence less
than about three and a half years. The projection methodology demands ten quarters of data, and
banks must have a full year’s worth of data to have estimated failure probabilities. An analysis of
young banks could provide the missing data.

4.4 Deposit Growth Model

Deposit growth was measured on a year-over-year basis to eliminate seasonal effects. The deposit
growth model used lagged deposit growth, the equity to asset ratio, the loan to asset ratio, CAMEL
ratings, and age as explanatory variables. The CAMEL variable was entered as series of dummies.
Age was measured in quarters, and dummies were used for age until a bank had attained an age of
ten. Ten year old banks were considered mature. The combination of year-over-year growth and

18For further discussion of the coefficients and especially of the non-linearities in the model, see Nuxoll [15].
19 It should be noted that expected assets and expected deposits in failed banks are very large ($600 million and

$414 million respectively). This occurs because of the larger institutions. A single bank with $100 billion of deposits
and a failure rate of 0.0001 would add $10 million to expected deposits in failed banks.
20The house price indices have increased 4% on average. Consequently, when house prices are constant, the

detrended state variable xk(t) decreases by 4%. Thus there is a negative shock in the housing market.
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the presence of lagged deposit growth in the model meant that banks had to be at least two years
old to be included in the model.

Data was taken from the period March 1986 to March 2003. Sample means and medians are
reported in Table 7.21

The coefficients for the deposit growth model are shown in Table 8. The coefficients for the age
dummies are averages of the dummies for the various quarters, so the coefficient for two years old is
an average of the coefficients for the dummies for nine to eleven quarters old. Although standard
errors and significance labels on those variables are not reported in the table, all the standard errors
range from 0.40 to 0.50, making the coefficients significant at the 0.01% level.

The desciptive statistics for forecasted deposit growth based on the December 2002 data are in
Table 9. Also included in the table are the forecasts for a stress scenario which will be explained
later. This model forecasts that most banks will experience modest deposit growth, averaging
7.43% over the next year This growth is actually slightly lower than the 10.4% experienced by the
average bank during 2002.22

As explained earlier, deposit growth was projected into a smaller space. The coefficients from
this projection are summarized in Table 10. The average coefficients are close to zero, although
the R2 are generally respectable. Except for the house price index there is not much variation
among banks.

The stress scenario shown in the last column of Table 9 is the same as that used to evaluate the
bank failure projection model. In this scenario, the average deposit growth rate increases slightly.
The most noticeable aspect of the stress scenario is that the standard deviation of the distribution
increases with larger deposit losses among some banks and more rapid growth for other banks.

Three general sets of refinements are contemplated. First, the effects of size and age on deposit
growth will be explored more fully and possibly some additional structure imposed. Second,the
possibility of using cross-equation restrictions will be explored in the projection methodology. Fi-
nally, a complete set of data is not available for the banks that have not been in existence for almost
five years The projection methodology demands ten quarters of data, and banks that have not
filed nine call reports are excluded from the model. An analysis of young banks could provide the
missing data.

4.5 Loss Rate Model

The estimate of loss for individual institutions is calculated using a model similar to that used to
estimate losses for the Least Cost Test.23 This model uses a loss rate calculated from historical
data and applies it to asset types from the Call Report for the institution. The resulting estimated
market value of assets is then distributed across claimants on the receivership according to their
priority: secured creditors, insured depositors, uninsured depositors, general trade creditors and
subordinated debt holders. The FDIC pays insured depositors in full and then stands in the place
of the insured depositors in the receivership. Therefore, the estimated loss to insured depositors
is the estimated loss to the FDIC. Table 11 provides an example of the loss calculation.

The loss to the FDIC in this example is $876,000. This loss would then be divided by the total

21For more details on the deposit growth model, see Nuxoll [16].
22This deceleration would be in line with the trend over the last year. The average bank experienced 12.7% deposit

growth during 2001.
23This model described here is used only when the FDIC does not have enough time to enter the bank and value

the assets on site.
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deposits of the institution to arrive at the loss rate that is used in the simulation.24

The model uses loss rates for six types of assets: consumer loans, commercial loans, securities,
mortgages, owned real estate (ORE) and other assets.25 As noted above, losses for each asset
type are defined as the the amount of assets less the present discounted value of collections and
expenses.26 Losses are then divided by the the amount of assets for that asset type to arrive at a
loss rate.

The data are available from 1986 to 2002. The loss rates are calculated using a sample of 369
failures from the 1990 to 2002 period.27 Table 12 provides the decriptive statistics for the loss
rates. Also note that rather than weighting each failure equally, the loss rate is weighted by the
amount of assets of that type, henceforth this is referred to as the weighted average loss rate.

Descriptive statistics for the estimated losses in the event of failure generated from this model
for December 2002 are shown in Table 13. In addition, the table includes statistics on estimated
losses for a stress scenario that will be explained below.

Approximately 10% of the sample has an expected loss of 0.01% of total deposits. In fact,
for these institutions, the model estimated that the loss on assets were small enough to allow the
FDIC to be reimbursed in full for the amount it would have paid to insured depositors. However,
the loss rate was set equal to one basis point of total deposits to accomodate the functional form of
the regression. The maximum loss exceeds 100% of total deposits because the FDIC pays accrued
interest on deposits.

To project the estimated losses into a smaller space, an estimate of losses was calculated for each
institution in each quarter from 1986 to the present using the weighted average loss rates shown
in Table 12 and the method described above. This information was then used to run a regression
that projected into a smaller space. The regression coefficients are summarized in the following
table.

This method used to calculate losses assumes that loss rates are constant, so that the state of the
credit cycle has no effect on the loss rates for the assets. However, banks’ balance sheets change over
the cycle, so the coefficients are identifying the effect of the shift between loans, for example, and
securities or between secured borrowing, insured deposits, uninsured deposits and other borrowed
funds. The coefficients indicate that decreases in the price of bank stocks, increases in house prices,
higher short term rates, and lower long term rates are associated with higher estimated loss rates.

The last column of Table 13 reports the results of using the projection for estimated loss rates.
The stress scenario is the same as that used to evaluate the bank failure projection model This
scenario has little effect on estimated loss rates for most banks. However, estimated loss rates
increase notably for the fraction of the industry that already has high rates. The net result is the
average estimated loss rate almost doubles.

The FDIC is currently undertaking an evaluation and redevelopment of the model used to esti-

24Bennett [1] provides more detail on the methodology.
25The model assumes the following about losses on asset categories. First, the loss rates on cash and federal funds

are zero. Second, there is a category of assets including intangible assets that experience 100 percent losses. Third,
fixed assets such as bank premises will have the same loss rate as that experienced on ORE.
26The discount rate used is the average of the 2-year Treasury-bill rate over the 1986 to 2002 period, or 5.4 percent.
27The concern was to use loss experience from more recent failures. A Chow test revealed that 1990 was a valid

structural break in the loss data. The sample was constructed from the 1,235 BIF failures, excluding institutions
where the FDIC provided assistance, from 1986 to 2002. The following types of transactions were excluded from the
sample: (1) transactions where the acquirer purchased all of the assets (2) transactions with loss sharing agreements
(3) transactions with bridge banks (4) transactions with cross guarantees, and (5) failures where fraud was the
primary cause of failure. This resulted in a sample of 876 failures for the 1986 to 2002 period and 369 from 1990 to
2002.
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mate losses from Call Report data for use in the Least Cost Test and reserving process. This de-
velopment effort includes investigating different modeling strategies and testing their out-of-sample
forecast accuracy. Possible refinements include more sophisticated modeling of the coefficients.
Since the current method employs weighted averages for the coefficients, it is possible that more so-
phisticated modeling such as using regression techniques or nonparametric estimation will increase
out-of-sample forecast accuracy. As refinements are made to the methodology to estimate losses
they will be incorporated into the simulation model.

5 The Simulated Results

Tables 15 to 18 contain the simulation results for the one-, three-, five- and ten-year horizons.
These results are based on 10,000 replications of the model with starting values given by December
2002 data. The tables show the distribution of the number of bank failures, the total assets in the
failed banks, the total deposits in the failed banks, and the current value of the losses to the FDIC.28

Total losses are discounted as in expression (22) from the estimated failure time to December 2002.
Discounted losses are used so they are comparable to the dollar value of the FDIC capitalization
on December 2002.

The results for the one-year horizon indicate that the FDIC should expect approximately five
failures between January and December of 2003, and the expected total deposits for the failed banks
should be on the order of $1.7 billion. The expected loss to the insurance funds is $87 million, and
the median loss is approximately $44 million. Between January and August of 2003 two banks
have failed resulting in $109 million in estimated losses to the FDIC insurance funds. In 2002,
11 banks failed resulting in a total estimated cost of approximately $621 million. Looking at the
5th and 95th percentiles, the model estimates that there is a 90% chance that between 2 and 9
banks will fail between January and December of 2003 and that losses will amount to between $4.4
million and $215 million.

The distribution presented in Tables 15 to 18 can be used to construct various risk measures.
For example, the value-at-risk measure (VaR) over a one-year horizon using a 99 percent probability
is the 99th percentile loss, or $1.2 billion. The market value of losses to the FDIC insurance fund
over the one-year horizon as given in expression (22), valued as if traded on public capital markets,
is given by the mean of the loss distribution, or $87 million.

The loss distributions presented in Tables 16, 17 and 18 can be used to construct risk measures
over longer horizons. For example, the 99 percent VaR is $2.6 billion over three years, $2.0 billion
over five years, and $3.1 billion over ten years. The market value of the losses amount to $307
million over three years, to $387 million over five years, and to $678 million.over ten years.

6 Conclusion

This paper provides a general methodology for measuring and valuing the risk of the FDIC deposit
insurance funds. This methodology is implemented using Monte Carlo simulation. Illustrative
results are provided.

28 Note that although total deposits are as of the time of failure, total assets are as of December 2002 because asset
growth is not part of the simulation.
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7 Appendix: Simulation Method

The nonhomogeneous (or nonstationary) Poisson process can be simulated in two main ways [13]
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1. Inverse Transform Method – In general, this method requires integration of the rate function
λ(t), and then performing an inversion.

2. Acceptance-Rejection Method29 – This method requires simulation of a homogeneous (sta-
tionary) Poisson process of sufficiently large rate λ∗ ≥ λ(t) ∀t . Event epochs epochs on a
sample path τ1, τ2, . . . are “accepted" (kept) or “rejected" (deleted) according to a Bernoulli
coin flip with probability λ(τ i)/λ∗.

The advantages of the Acceptance-Rejection Method are its simplicity and easy application
for complicated rate functions, because it avoids the integration and inversion operations. Aside
from being potentially non-trivial, these operations may also require additional storage. The chief
disadvantage of the Acceptance-Rejection Method is that in general it will require a larger number
of random numbers to be generated.

A special case of the Acceptance-Rejection Method is a discrete-time Bernoulli (coin flipping)
where the discrete time increments are sufficiently small compared to the expected number of
Poisson events in the increment (i.e., the expected number should be well under 1). In other words,
it exploits the defining properties that the nonhomogeneous Poisson process still retains:

(i) Poisson distribution;

(ii) independent increments.

This special case of the Acceptance-Rejection Method is extremely simple, but a disadvantage
of is that one random number (for each failure process simulated) must be generated every period.

Thus, assume that over periods of length ∆, denoted by Ii, that λ(t) is constant with rate λi,
and that P (N(Ii) > 1) ≈ 0 ∀i, where N(I) is the number of Poisson events over the interval I.
The Poisson assumption then implies P (N(Ii) = 1) ≈ λi∆ = Pi. This Pi is the conditional failure
probability in a quarter that is provided by the empirical estimation of λit

30. Thus, the failure
process can be simulated as a discrete-time Bernoulli process where failure occurs in the period
with probability λit. The actual failure time can be generated randomly (i.e. from a uniform
distribution) over the period.

Note that the assumption of P (N(I > 1) ≈ 0 is necessary only to use the Bernoulli random
variable. More generally, one could use a Poisson random variable with parameter λ∆ (or γ(t) =R∆
0 λ(t)dt for the non-constant case). Under the assumption that the rate is constant over the
period, the Poisson event (unordered) epochs would then be randomly distributed over the period
using the property of a homogeneous Poisson process that given N(I) = n, the distribution of
unordered epochs are independently and identically distributed U(0,∆) (replace by cumulative
density function. γ(·)/γ(∆) for the non-constant case). This case would not apply in the context
of modeling bank failures since we assume that a bank can only fail once over the horizon (or at
least in a quarter).

However, it turns out that for the constant-over-an-interval case, the Inverse Transform Method
also simplifies considerably, since integrals are just rectangle areas. Again, let Pi denote the condi-
tional failure probability in period i as above. Let X ∼ exp(1). Then,

Q = failure period = min{q :
qX

i=1

Pi ≥ X}, τ = failure time = (Q− 1)∆+
Ã
X −

Q−1X
i=1

Pi

!
∆/PQ.

29This method is also known as "thinning".
30The estimation of λit is described above in section 4.0.3.
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The corresponding algorithm is as follows:

• Set Sum := 0 and Q := 1.

• Generate a random variable X ∼ exp(1).

• Loop until Q > # quarters to simulate:
If Sum+ PQ ≥ X, then return failure time τ = (Q− 1 + (X − Sum)/PQ)∆;

else Sum := Sum+ PQ;Q := Q+ 1.

This method requires only a single random number per failure process simulated, and there is
no complicated integration or inversion required, nor extra storage of sample path quantities, just
one simple counter sum (corresponding to the cumulative integral).

In numerical test cases with 8,532 banks, 19 state variables, a 4-factor HJM interest rate model
and a 10-year horizon, we found that the difference in using the two different failure processes is
indistinguishable for a single replication with ∆t of 1 week (1/52), because the forward rate process
simulation dominates the failure rate process in terms of computational burden. However, for 200
replications with ∆t of a quarter (1/4), we found a reduction in computation time of nearly 50%,
as in this case, the forward rate process no longer dominates the simulation nearly as much.
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Table 1
Forward Rate Volatility Functions

Estimated from January 4, 1982 to August 2, 2003, Quarterly Observations
Factors

Maturities 1 2 3 4 5 6 7 8 9 10 11
0.25 -0.211 -0.094 0.017 0.049 0.079 0.018 0.012 0.005 -0.012 0.013 0.001
0.5 -0.256 -0.066 0.022 0.039 0.032 -0.015 -0.004 0.006 0.013 -0.019 -0.004
0.75 -0.262 -0.025 0.028 0.035 -0.047 -0.032 0.008 -0.009 0.000 -0.003 0.008
1 -0.260 -0.010 0.007 0.007 -0.066 -0.002 -0.007 -0.024 -0.008 -0.008 -0.006
2 -0.240 -0.006 -0.027 -0.059 -0.004 0.057 -0.034 0.004 0.010 0.002 0.003
3 -0.200 0.038 -0.007 -0.041 -0.039 -0.017 0.011 0.043 -0.006 0.003 -0.001
5 -0.137 0.060 -0.009 -0.071 0.023 0.025 0.019 -0.012 -0.019 -0.016 0.000
7 -0.116 0.072 0.035 -0.053 0.023 0.002 0.036 -0.011 0.021 0.009 -0.001
10 -0.117 0.044 -0.148 -0.026 0.048 -0.051 -0.014 -0.007 -0.000 0.004 0.000
15 -0.082 0.152 -0.044 0.130 -0.003 0.029 0.003 0.004 0.001 -0.001 -0.000
20 -0.53 0.107 0.142 -0.011 0.041 -0.027 -0.029 -0.000 -0.005 0.002 0.000

Percent Explained. 68.44 10.39 8.15 6.18 3.49 1.70 0.73 0.50 0.23 0.17 0.02
Cumulative Percent Explained 68.44 78.83 86.98 93.16 96.65 98.35 99.08 99.58 99.81 99.98 100.00



Table 2
Descriptive Statistics

Correlation Matrix of Data Used in Projection
Statistics House Price Indices Bank Stock Price Indices

Interest Rate Factors Mean 0.025 -0.063
Median 0.036 -0.061
Std. Dev. 0.106 0.101

House Price Indices Mean 0.281 0.051
Median 0.330 0.027
Std. Dev. 0.294 0.133

Bank Stock Price Indices Mean 0.667
Median 0.678
Std Dev. 0.100
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Table 3
Descriptive Statistics
Failure Model Variables

Variable Mean Median
Equity / Total Assets 9.64% 8.69%
Pre-tax Income / Total Assets* 3.11% 1.34%
Loans Past Due 30 - 89 Days / Total Assets 1.10% 0.80%
(Loans Past Due 90 or More Days + Nonaccual Loans +

Other Real Estate Owned) / Total Assets 1.46% 0.77%
Loss Reserves / Total Assets 0.87% 0.75%
Chargeoffs / Total Assets∗ 0.46% 0.18%
CAMEL Composite Rating of 1 (Dummy) 30.3%
CAMEL Composite Rating of 2 (Dummy) 53.9%
CAMEL Composite Rating of 3 (Dummy) 10.4%
CAMEL Composite Rating of 4 (Dummy) 4.3%
CAMEL Composite Rating of 5 (Dummy) 1.1%
CAMEL Composite - BHC CAMEL Composite Rating -0.008 0
Examination Interval (Years) 0.829 0.644
Ln(Assets) 11.21 11.05
(Ln(Assets))2 127.45 122.21
(Ln(Assets))3 1470.03 1351.18
Percentage of Assets in Problem Banks 6.93% 7.41%
(Percentage of Assets in Problem Banks)2 85.49 54.91
Number of Observations 891,171
Source: Author’s calculations.
∗The data are twelve-month totals and are merger-adjusted.
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Table 4
Model Estimates

Variable Coefficient Standard Error
Intercept -0.4562 5.8714
Equity / Total Assets 0.1504*** 0.0086
Pre-tax Income / Total Assets* 0 0
Loans Past Due 30 - 89 Days / Total Assets -0.1274%*** 0.0107
(Loans Past Due 90 or More Days + Nonaccual Loans +

Other Real Estate Owned) / Total Assets -0.0872*** 0.0045
Loss Reserves / Total Assets -0.0005 0.0156
Chargeoffs / Total Assets* -0.0148*** 0.0031
CAMEL Composite Rating of 1 2.8378*** 0.2999
CAMEL Composite Rating of 2
CAMEL Composite Rating of 3 -2.1960*** 0.1542
CAMEL Composite Rating of 4 -3.6029*** 0.1466
CAMEL Composite Rating of 5 -5.2500*** 0.1536
CAMEL Composite - BHC CAMEL Composite Rating 2.0462*** 0.0915
Examination Interval -0.6886*** 0.0362
Ln(Assets) 2.1272 1.4844
(Ln(Assets))2 -0.1480 0.1236
(Ln(Assets))3 0.0033 0.9657
Percentage of Assets in Problem Banks -0.1355*** 0.0256
(Percentage of Assets in Problem Banks)2 0.00564*** 0.0011
Log Likelihood Ratio 11191
Somer’s D 0.948
Source: Authors’ calculations.
*** Indicates that the coefficient is signficant at the 0.1% level.
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Table 5
Descriptive Statistics

Forecasted Probability of Failure
December 31, 2002

Baseline Stress
Mean 0.0125% 0.0199%
Standard Deviation 0.1271% 0.3041%
Minimum 0.0000% 0.0000%
1st Percentile 0.0001% 0.0000%
10th Percentile 0.0001% 0.0001%
25th Percentile 0.0002% 0.0002%
Median 0.0024% 0.0021%
75th Percentile 0.0047% 0.0049%
90th Percentile 0.00827% 0.0104%
99th Percentile 0.1936% 0.2393%
Maximum 6.69% 18.3142%
Source: Author’s calculations.
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Table 6
Projection Coefficients for Changes in Probability of Failure

Bank Stock House Interest Rate Interest Rate
Price Index Price Index 3 Month 3 Year R2

Mean 0.0661 0.7272 0.0294 -0.0211 0.0561
Standard Deviation 0.6546 8.0512 0.1318 0.1474 0.0623
Median 0.0521 0.7045 0.0283 -0.0215 0.0398
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Table 7
Descriptive Statistics

Deposit Growth Model Variables
Variable Mean Median
Deposit Growth 7.07% 4.84%
Lagged Deposit Growth 8.53% 5.14%
Equity / Total Assets 9.32% 8.70%
Loan / Total Assets 57.22% 58.86%
Ln (Assets) 11.26 11.10
CAMEL Composite Rating of 1 30.56%
CAMEL Composite Rating of 2 53.51%
CAMEL Composite Rating of 3 10.27%
CAMEL Composite Rating of 4 4.34%
CAMEL Composite Rating of 5 1.31%
Two Years Old 0.99%
Three Years Old 1.34%
Four Years Old 1.25%
Five Years Old 1.16%
Six Years Old 1.08%
Seven Years Old 1.01%
Eight Years Old 0.95%
Nine Years Old 0.92%
Number of Observations 824,082
Source: Authors’ calculations
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Table 8
Deposit Growth Model Estimates

Variable Coefficient Standard Error
Intercept -2.91 0.23
Lagged Deposit Growth 0.022*** 0.0011
Equity / Total Assets -0.77*** 0.0054
Loan / Total Assets 0.114*** 0.0015
Ln(Assets) 1.46*** 0.019
CAMEL Composite Rating of 1 0.72*** .055
CAMEL Composite Rating of 2
CAMEL Composite Rating of 3 -5.03*** 0.080
CAMEL Composite Rating of 4 -12.12*** 0.12
CAMEL Composite Rating of 5 -22.08*** 0.21
Two Years Old (Average) 29.97
Three Years Old (Average) 18.10
Four Years Old (Average) 11.43
Five Years Old (Average) 8.35
Six Years Old (Average) 6.64
Seven Years Old (Average) 5.19
Eight Years Old (Average) 5.43
Nine Years Old (Average) 4.93
R2 0.087
Source: Authors’ calculations.
*** Indicates that the coefficient is signficant at the 0.1% level.
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Table 9
Descriptive Statistics

Forecasted Deposit Growth
December 2002

Baseline Stress
Mean 7.43% 8.13%
Standard Deviation 5.86 8.90
Minimum -54.16% -52.18%
1st Percentile -8.72% -11.51%
10th Percentile 1.61% 0.34%
25th Percentile 4.80% 4.08%
Median 7.80% 7.67%
75th Percentile 10.31% 10.88%
90th Percentile 13.12% 14.78%
99th Percentile 21.20% 39.79%
Maximum 39.13% 167.34%
Source: Author’s calculations.
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Table 10
Projection Coefficients for Deposit Growth
Bank Stock House Interest Rate Interest Rate
Price Index Price Index 3 Month 3 Year R2

Mean 0.0013 -0.0353 0.0001 0.0000 0.4607
Standard Deviation 0.0192 0.2733 0.0030 0.0042 0.2030
Median -0.0001 0.0020 0.0001 -0.0002 0.4521
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Table 11
Example of Least Cost Test Model

Book Value Loss
(000 omitted) (000 omitted)

Cash and Due Froms 600 0
Fed Funds 1,300 0
Securities 1,300 30
Consumer Loans 4,100 251
Mortgages 3,900 1,209
Commercial Loans 4,700 2,336
Fixed Assets 200 136
Other Assets 1,300 355
Loss Assets 400 400
Trading Assets 0 0
Customer Liabilities 0 0
ORE 50 34
Total Gross Assets/Loss 17,250 4,751
Less: Loss on Assets 4,751

Net value of assets available for distribution 12,499
Less: Claims on Receivership 16,009

Total Loss to Creditors in Receivership 3,510

Distribution of Claims and Losses Claim Loss
Secured and Preferred Creditors 900 0
FDIC 9,138 876
Uninsured Depositors 3,691 354
General Creditors 2,136 2,136
Subordinated Creditors 144 144
Total 16,009 3,510
Source: Author’s calculations.
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Table 12
Descriptive Statistics

Loss as a Percent of Assets
1990-2002 Sample

Consumer Commercial Other
Asset Type Loans Loans Securities Mortgages ORE Assets
Weighted Average 18.4% 40.0% 1.1% 22.0% 62.2% 25.9%
Number 343 345 341 337 338 349
Mean 26.6% 40.0% 1.7% 28.3% 65.8% 25.2%
Standard Deviation 19.68 17.6 6.8 17.8 21.6 19.5
Minimum 0.4 0.3 -34.9 -48.4 0.35 -30.7
25th Percentile 12.6 27.7 0.0 17.8 53.5 10.7
Median 22.0 37.6 0.0 25.6 65.8 22.2
75th Percentile 35.31 51.1 1.3 34.9 77.8 37.4
Maximum 135.4 152.5 86.7 145.5 154.2 100.2
Source: Author’s calculations. Excludes observations where initial assets are less than
$10,000, pre-expenses losses are over 100 percent or where total direct expenses are
more than 110 percent of assets. Negative values for direct expenses are set to zero.
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Table 13
Descriptive Statistics

Estimated Losses as a Percent of Total Deposits
December 2002

December 2002 Stress Scenario
Mean 6.94% 13.31%
Standard Deviation 5.23% 23.25%
Minimum 0.01% 0.01%
1st Percentile 0.01% 0.01%
10th Percentile 0.01% 0.01%
25th Percentile 2.63% 1.49%
Median 7.03% 7.02%
75th Percentile 10.51% 12.62%
90th Percentile 13.27% 24.72%
99th Percentile 18.33% 110.00%
Maximum 101.13% 110.00%
Source: Author’s calculations. Note that losses can be larger than total
deposits since the FDIC pays accrued interest on deposits.
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Table 14
Projection Coefficients for Estimated Loss Rates
Bank Stock House Interest Rate Interest Rate
Price Index Price Index 3 Month 3 Year R2

Mean -0.3654 3.0063 0.0791 -0.0694 0.4309
Standard Deviation 2.1434 27.4325 0.4153 0.6105 0.1902
Median -0.0890 0.6789 0.0401 -0.0364 0.4310
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Table 15
Simulation Results
December 2002
One-Year Horizon

Total Assets Total Deposits Total Losses
Number in Failed Banks in Failed Banks to the FDIC
of Failures (000 omitted)

Mean 4.96 2,535,383 1,710,570 86,653
Standard Deviation 2.14 18,253,448 11,349,264 294,951
Minimum 0 0 0 0
1st Percentile 1 16,196 13,317 61
5th Percentile 2 104,369 90,528 4,425
10th Percentile 2 172,505 152,167 9,369
25th Percentile 3 319,143 275,940 22,552
Median 5 569,501 483,805 44,103
75th Percentile 6 1,106,227 923,366 79,816
90th Percentile 8 2,624,251 2,067,607 140,265
95th Percentile 9 12,985,079 7,888,961 215,245
99th Percentile 10 20,023,384 12,865,840 1,166,497
Maximum 15 633,194,383 413,867,996 19,808,656
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Table 16
Simulation Results
December 2002

Three-Year Horizon
Total Assets Total Deposits Total Losses

Number in Failed Banks in Failed Banks to the FDIC
of Failures (000 omitted)

Mean 14.46 7,885,398 5,208,262 307,306
Standard Deviation 3.52 31,889,148 19,307,108 808,190
Minimum 3 131,207 101,976 5,107
1st Percentile 7 580,431 492,516 33,708
5th Percentile 9 828,049 706,451 56,225
10th Percentile 10 1,024,487 867,190 73,700
25th Percentile 12 1,478,213 1,236,868 111,446
Median 14 2,521,024 2,050,133 169,715
75th Percentile 17 4,837,810 3,640,753 258,419
90th Percentile 19 17,321,182 11,565,855 444,574
95th Percentile 21 21,081,382 13,443,997 794,415
99th Percentile 23 53,740,926 33,328,379 2,606,415
Maximum 29 639,188,968 413,500,219 25,535,710

33



Table 17
Simulation Results
December 2002
Five-Year Horizon

Total Assets Total Deposits Total Losses
Number in Failed Banks in Failed Banks to the FDIC
of Failures (000 omitted)

Mean 22.96 12,819,552 8,601,416 386,574
Standard Deviation 4.32 43,016,590 25,999,019 790,760
Minimum 7 523,754 481,276 43,157
1st Percentile 14 1,296,296 1,108,938 87,708
5th Percentile 16 1,734,299 1,474,439 122,650
10th Percentile 18 2,063,842 1,746,618 143,462
25th Percentile 20 2,883,950 2,404,249 187,149
Median 23 4,449,118 3,639,744 255,141
75th Percentile 26 14,841,599 8,688,974 370,045
90th Percentile 29 20,718,702 14,301,658 636,334
95th Percentile 30 30,001,850 19,045,706 1,194,580
99th Percentile 34 96,030,875 62,951,947 2,040,721
Maximum 47 652,024,795 414,060,254 41,137,936
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Table 18
Simulation Results
December 2002
Ten-Year Horizon

Total Assets Total Deposits Total Losses
Number in Failed Banks in Failed Banks to the FDIC
of Failures (000 omitted)

Mean 41.54 24,797,297 16,623,473 678,283
Standard Deviation 5.63 60,234,903 37,339,418 1,134,199
Minimum 17 2,079,341 1,763,453 108,835
1st Percentile 29 3,380,380 2,840,576 206,501
5th Percentile 33 4,312,643 3,615,688 258,206
10th Percentile 34 5,024,319 4,183,269 291,264
25th Percentile 38 6,704,073 5,482,686 359,622
Median 41 13,985,348 8,788,646 467,896
75th Percentile 45 23,119,224 16,339,595 676,392
90th Percentile 49 37,390,491 24,471,547 1,280,989
95th Percentile 51 54,008,330 34,714,308 1,669,792
99th Percentile 55 340,601,035 222,384,122 3,072,332
Maximum 65 684,093,273 431,320,735 58,733,274
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