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Abstract
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1 Introduction

In this paper, we develop an agency model to analyze an insurer’s optimal investment decision
when failure is a possibility. We demonstrate that an insurer’s investment choice may be inefficient
by showing that a moral hazard problem exists on this side of the market. This insurer moral
hazard problem does have an upside however, as we show that it can alleviate the possible adverse
selection problem on the part of the insured.

The credit crisis of 2007/2008 has given considerable media attention to counterparty risk.1 The
bond insurers and, specifically, the monoline insurers2 have experienced nothing short of a crisis as
they try to pay claims to insured parties. The question then remains: what are the incentives of
those parties who insure credit risk? This paper will attempt to address this question in a general
insurance framework. Accordingly, we will not focus specifically on bond insurers. The framework
can be easily adapted however to include some of the features that are unique to the bond insurance
environment.

The market for risk protection is one of the most important markets available today. In this
paper, we will use the market for credit risk transfer as our motivation; however, as discussed above,
we can think of this paper as developing a general insurance model. Figure 1 shows the growth
rate in credit derivatives since 2003.3 It is easy to see the rapid growth that these financial markets
have experienced. An institution on which these markets have a particularly profound effect is the
banking system. The reason is that banks were once confined to a simple borrow short and lend long
strategy. However, they can now disperse credit risk through credit derivatives markets to better
implement risk management policies. This in itself may be a positive development; however, two
features make these markets potentially different (and dangerous) when compared to traditional
insurance markets. First, the potential for unstable counterparties. In other words, potentially
large credit risks are being ceded to parties such as hedge funds which may or may not be in a
better position to handle them.4 The second feature which is unique to this market is the large
size of the contracts.5 It would seem prudent then to ask the question of how stable is, and what
are the incentives of the insurer? This entails a study of counterparty risk. In what is to follow,
we define counterparty risk as the risk that when a claim is made, the insurer is unable to fulfil its
obligations.

1For a review on the causes and symptoms of the credit crises see Greenlaw et al. (2008) and Rajan (2008).
2Monoline insurers guarantee the timely repayment of bond principal and interest when an issuer defaults.
3A credit derivative, and specifically a credit default swap is an instrument of credit risk transfer whereby an

insurer agrees to cover the losses of the insured that take place if pre-defined events happen to an underlying borrower.
(In many cases, this event is the default of the underlying bond. However, some contracts include things like re-
structuring and ratings downgrades as triggering events.) In exchange for this protection, the insured agrees to pay
an ongoing premium at fixed intervals for the life of the contract.

4Fitch (2006) reports that banks are the largest insured party in this market. On the insurer side, banks and
hedge funds are the largest, followed by insurance companies and other financial guarantors. It should be noted that
the author’s of the Fitch report suspect that banks are the largest insurers, followed by hedge funds; however, they
add that the data is poor and that other research reports do not support this.

5The two typical credit default swap contract denominations are $5 and $10 million.
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Figure 1: Notional Value of Credit Derivatives (in Trillions of Dollars)6
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This paper arrives at two novel results. The first is that there can exist a moral hazard on the
part of the insurer. We call this the moral hazard result. This moral hazard arises because the
insurer may choose an excessively risky portfolio. The intuition behind this result is as follows.
There are two key states of the world that enter into the insurer’s decision problem: the first in
which a claim is not made, and the second in which it is. We assume that the insurer can default
in both of these states if it receives an unlucky draw. However, it can invest and influence the
chances that it fails. This investment choice comes with a tradeoff: what reduces the probability of
failure the most in the state in which a claim is not made, makes it more likely that the insurer will
fail in the state in which it is. For example, if the insurer believes that the contract is relatively
safe, it may be optimal to put capital into less liquid assets to reap higher returns, and lower the
chance of failure in the state in which a claim is not made. However, assets which yield these higher
returns can also be more costly to liquidate, and therefore make it more difficult to free up capital
if a claim is made. The moral hazard arises because the premium is not made conditional on an
observed outcome, rather it is paid upfront.7 Therefore, there is no way to influence the insurer’s
investment decision by imposing penalties. We show that the resulting equilibrium is inefficient.

The second result deals with the adverse selection problem that may be present because of the
superior information that the insured has about the underlying claim. Akerlof (1970) describes the
dangers of informational asymmetries in insurance markets. In his seminal paper, it is shown how
the market for good risks may break down, and one is left with insurance only being issued on the
most risky of assets, or in Akerlof’s terminology, lemons. The incentive that underlies this result
is that the insured only wishes to obtain the lowest insurance premium. This incentive will still be

6Note that these values are likely subject to double counting.
7To have a conditional premium would require a higher payment from the insured to the insurer when the insurer

is able to pay than when it is not. This goes against the nature of an insurance contract: when a claim is made, the
insured party does not want to pay the insurer.
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present in our model; however, we uncover an opposing incentive.
In our work we show that the safer the underlying claim is perceived to be, the more severe

the moral hazard problem is. Consequently, conditional on a claim being made, counterparty risk
is higher for insured assets perceived by the insurer as safer. We show that truthful revelation can
be optimal for the insured with a poor quality asset. In this case, the insurer will have incentives
more in line with the insured, and consequently the insured is subjected to less counterparty risk.
We show that this new effect, which we call the counterparty risk effect allows a unique separating
equilibrium to be possible. This result is new in that separation can occur in the absence of
a costly signalling device. After Akerlof’s (1970) model showed that no separating equilibrium
can exist, the literature developed the concept of signalling devices with such famous examples
as education in Spence’s job market signalling paper. These papers allowed the high (safe) type
agents to separate themselves by performing a task which is “cheaper” for them than for the low
(risky) type agents. Our paper can achieve separation by the balance between the insured’s desire
for the lowest insurance premium, and the desire to be exposed to the least counterparty risk. One
can think of this result as adding to the cheap talk literature by showing an insurance problem in
which costless communication can bring about separation of types.8 We call this the separating

equilibrium result.
The moral hazard result holds regardless of the contract size or number of insured parties.

The separating equilibrium result holds if one or both of the following two conditions are met:
first, a contract is sufficiently large to affect the insurer’s investment decision, and second, there
is aggregate private risk shared among a pool of insured parties. The former case is plausible in
some situations (e.g., as discussed above, in some financial markets single contracts can be large),
however, the latter likely constitutes a wider range of cases. The former case is, however, better
suited for developing the intuition behind our results, so in section 2 we model only one insured
party and one insurer. In section 4, we generalize the model to the case of multiple insurers, each
of which is insignificant to the insurer’s investment decision. We consider the case in which the
insured parties share a common component of risk (i.e., correlated risk). Martin et al. (2008) serve
as an example of the importance of this type of risk in the context of the credit crises. It has
become clear that there was correlated information that inside financial institutions had on the key
risks being traded (i.e., bundled mortgages). The results obtained in this section follow intuitively
from the base model.

We also extend the model to analyze the case of multiple insurers, although we omit this section
for brevity (see Appendix B, section 7 which is not intended for publication). We show that the
moral hazard problem increases as the size of the contract that each insurer takes on decreases. In
a setup in which all the insurers are ex-ante identical (but not necessarily ex-post, i.e., they receive
iid portfolio draws), we find that counterparty risk may remain unchanged from the case in which
there is only one insurer.

Also in this section we enrich the model to include a possible moral hazard problem on the

8For a review of the cheap talk literature, see Farrell and Rabin (1996).
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part of the insured. This moral hazard arises by the insured’s ability to affect the probability
that a claim is made. If we use the example of a bank insuring itself on one of its loans, the
literature typically assumes that a bank possesses a proprietary monitoring technology (due to a
relationship with the borrower). It is straightforward to see that if the bank is fully insured, it
may not have the incentive to monitor the loan and, consequently, the probability of default could
rise. This represents the classical moral hazard problem in the insurance literature. This extension
shows that the new moral hazard introduced in this paper may increase the desire of the insured to
monitor. This happens because counterparty risk forces the bank to internalize some of the default
risk which it otherwise would not. In this section we show that with a redefinition of a payoff
function, the addition of this insured moral hazard problem does not affect the results of the paper.

1.1 Related Literature

This paper contributes to two streams of literature: that of credit risk transfer and credit
derivatives and that of insurance economics. The literature on credit risk transfer (CRT) is relatively
small but is growing. Allen and Gale (2006) motivate a role for CRT in the banking environment
while Parlour and Plantin (2007) derive conditions under which liquid CRT markets can exist.
Using the same framework as Allen and Gale (2006), Allen and Carletti (2006) show how a default
by an insurance company can cascade into the banking sector causing a contagion effect when
the two parties are linked through CRT. Wagner and Marsh (2006) argue that setting regulatory
standards that reflect the different social costs of instability in the banking and insurance sector
would be welfare improving. Our paper differs from these because they do not consider the agency
problems of insurance contracts. As a result, they do not discuss the consequences that instability
can have on the contracting environment, and how this affects the behavior of the parties involved.
Duffee and Zhou (2001) and Thompson (2007) both analyze informational problems in insurance
contracts; however, they focus on the factors that affect the choice between sales and insurance of
credit risk. In contrast, we do not focus on the choice of an optimal risk transfer technique, but
rather, we look deeper into one of them: insurance.

We contribute to the literature on insurance economics by raising the issue of counterparty
risk which has received little attention. Henriet and Michel-Kerjan (2006) recognize that insurance
contracts need not fit the traditional setup in which the insurer is the principal and the insured, the
agent. The authors relax this assumption and allow the roles to change. Their paper however does
not consider the possibility of counterparty risk as ours does, as they assume that neither party can
fail. Plantin and Rochet (2007) raise the issue of prudential regulation of insurance companies. They
give recommendations for countries to better regulate these parties. This work does not consider
the insurance contract itself under counterparty risk as is done in our paper. Consequently, the
authors do not analyze the effects of counterparty risk on the informational problems. Instead,
they conjecture an agency problem arising from a corporate governance standpoint. We analyze
an agency problem driven entirely by the investment incentives of the insurer.

The paper proceeds as follows: Section 2 outlines the model and solves the insurer’s problem.
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Section 3 determines the equilibria that can be sustained when asymmetric information is present.
Furthermore, this section shows a moral hazard problem on the part of the insurer by determining
that an inefficient investment choice is made. Section 4 analyzes the case of multiple insured
parties, and section 5 concludes. Many of the longer proofs are relegated to the appendix in section
6. Section 7 (not for publication) extends the model to the case of multiple insurers and to the
case of the classical moral hazard problem on the insured side of the market.

2 The Model Setup

The model is in three dates indexed t = 0, 1, 2. There are two main agent types, an insured
party, whom we will call a bank, and multiple risk insurers, whom we will call Insuring Financial
Institutions (IFIs). As well, there is an underlying borrower who has a loan with the bank. We
model this party simply as a return structure. The size of the loan is normalized to 1 for simplicity.
We motivate the need for insurance through an exogenous parameter (to be explained below) which
makes the bank averse to risk. We assume there is no discounting; however, adding this feature
will not affect our qualitative results.

2.1 The Bank

The bank is characterized by the need to shed credit (loan) risk. We use the example of a
bank that faces capital regulation and must reduce its risk, or else could face a cost (which we
denote by Z ≥ 0). It is this cost that makes the bank averse to holding the risk and so finds it
advantageous to shed it through insurance. This situation can be thought of as arising from an
endogenous reaction to a shock to the bank’s portfolio; however for simplicity, we will not model
this here. There are two types of loans that a bank can insure, a safe type (S) and a risky type (R).
A bank is endowed with one or the other with equal probability for simplicity. We assume that the
return on either loan is RB > 1 if it succeeds which happens with probability pS (pR) if it is safe
(risky), where 1 > pS > pR > 0. We assume that the return of a failed loan is zero for simplicity.
The loan type is private knowledge to the bank and reflects the unique relationship between them
and the underlying borrower. We assume that the loan can be costlessly monitored, so that there is
no moral hazard problem in the bank-borrower relationship. In section 7.2 (not for publication) we
relax this assumption and show that introducing costly monitoring does not change the qualitative
results of the paper. Note that there is nothing in the analysis to follow that requires this to be a
single loan. When we interpret this as a single loan, the insurance contracts to be introduced in
section 2.3 will resemble that of a credit default swap. In the case that this is a return on many
loans, the insurance contract will closely resemble that of a portfolio default swap or basket default

swap.9

9A portfolio or basket default swap is a contract written on more than one loan. There are many different
configurations of these types of contracts. For example, a first-to-default contract says that a claim can be made as
soon as the first loan in the basket defaults.
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The regulator requires the bank to insure a fixed, and equal proportion of either loan. For
simplicity, the bank must insure a proportion γ of its loan, regardless of its type.10 As will be
shown in section 3, we are able to obtain a separating equilibrium without any signalling device. In
standard models of insurance contracts, a costly signaling device can be the amount of insurance
that the safe and risky type take on. The safe type is able to signal that it is safe by taking on less
insurance (e.g., a higher deductible). In this paper, we shut down this mechanism for obtaining
a separating equilibrium so that we can better understand the mechanism that counterparty risk
creates. We impose the exogenous cost Z on the bank if the loan defaults and it is not insured
for the appropriate amount, or if it is insured for the appropriate amount, but the counterparty is
not able to fulfil a claim.11 This two part linearity of the payoff function is what imposes the same
contract size on both bank types.12

In what follows, we only model the payoff to this loan for the bank; however, it can be viewed as
only a portion of its total portfolio. For simplicity, we assume that the bank cannot fail. Allowing
the bank to fail will not affect our qualitative results since it will not affect the insurance contract
to be introduced in section 2.3. We now turn to the modelling of the IFI.

2.2 The Insuring Financial Institution

Without the sale of the insurance contract, we assume that the IFI has a payoff function of the
form:

ΠNo Insurance
IFI =

∫ Rf

0
θf(θ)dθ +

∫ 0

Rf

(θ −G) f(θ)dθ, (1)

where f(θ) is assumed for simplicity to be a uniform probability density function (with corresponding
distribution F(θ)) representing the random valuation of the IFI’s portfolio,13 and G is a bankruptcy
cost. One interpretation of G is lost goodwill, but any reason for which the IFI would not like to go
bankrupt will suffice.14 Note that bankruptcy occurs when the portfolio draw is in the set [Rf , 0],

10The assumption of a fixed amount of insurance regardless of type is not crucial. We can think of γ being solved
for by the bank’s own internal risk management. Therefore, we could have a differing γ depending on loan quality.
What is important in this case is that the IFI is not able to perfectly infer the probability of default from γ. This
assumption is justified when the counterparty does not know the exact reason the bank is insuring. To know so
would require them to know everything about the bank’s operations, which should be excluded as a possibility. In
this enriched case, γ can be stochastic for each loan type reflecting different (private) financial situations for the
bank. This topic has been addressed in the new Basel II accord which allows banks to use their own internal risk
management systems in some cases to calculate needed capital holdings. One reason for this change is because of
the superior information banks are thought to have on their own assets; regulators have acknowledged that the bank
itself may be in the best position to evaluate their own risk.

11It is not crucial that Z be the same for both the situation in which the bank does not purchase insurance, and
when is does but a claim cannot be fulfilled by the counterparty. We could posit different values for each situation;
however, this will not affect our qualitative results.

12A smooth concave payoff function can be employed instead of a two part linear payoff function. This, however,
will only distract from the separating mechanism that this paper uncovers below.

13The uniform assumption can be relaxed to a general distribution, provided that it satisfies some conditions. For
example, there must be mass in a region above and below zero. We explore this extension in a previous version of
the paper which is available from the author upon request.

14Note that in the case of monoline insurance, we can think of bankruptcy as a ratings downgrade. The monoline
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where it is assumed Rf < 0.15 It is assumed that the IFI receives this payoff at time t = 2, so that
at time t = 1, the random variable θ represents the portfolio value if it could be costlessly liquidated
at that time. However, the IFI’s portfolio is assumed to be composed of both liquid and illiquid
assets. In practice, we observe financial institutions holding both liquid (e.g., t-bills, money market
deposits) and illiquid (e.g., loans, some exotic options, some newer structured finance products)
investments on their books.16 Because of this, if the IFI wishes to liquidate some of its portfolio
at time t = 1, it will be subject to a liquidity cost which we discuss below in section 2.3. Since
the IFI’s payoff before taking on the insurance contract will not play a role in our results, we set
ΠNo Insurance

IFI = 0 for simplicity.

2.3 The Insurance Contract

We now introduce the means by which the bank is insured by the IFI. Because of the possible
cost Z, at time t = 0 the bank requests an insurance contract in the amount of γ for one period of
protection. Therefore, the insurance coverage is from t = 0 to t = 1. To begin, we assume that the
bank contracts with one IFI who is in Bertrand competition.17 The IFI forms a belief b about the
probability that the bank loan will default. In section 3 we will show how b is formed endogenously
as an equilibrium condition of the model. In exchange for this protection, the IFI receives an
insurance premium Pγ, where P is the per unit price of coverage. The IFI chooses a proportion β

of this premium to put in a liquid asset that, for simplicity, has a rate of return normalized to one
in both t = 1 and t = 2, but can be accessed at either time period. The remaining proportion 1−β

is put in an illiquid asset with an exogenously given rate of return of RI > 1 which pays out at
time t = 2.18 This asset can be thought of as a two period project that cannot be terminated early.
It is this property that makes it illiquid. As will be shown below, the payoff to the IFI is linear in
β in the state in which a claim is not made and therefore a redefinition of the return would allow
us to capture uncertainty in the illiquid asset to make it risky as well as illiquid. Therefore there is
no loss of generality assuming this return is certain.19 The key difference between these two assets
is that the liquid asset is accessible at t = 1 when the underlying loan may default, whereas the

business is based on having a better credit rating than the client in a process called wrapping. Without a good rating,
it would not be profitable for firms to insure themselves with a monoline.

15The fact that failure of the IFI corresponds to negative draws is not crucial. We could have f with mass only
on positive draws, and define a cutoff value that is strictly greater than zero to be interpreted as IFI default.

16If another bank acts as the IFI, it is obvious that many illiquid assets are on its the books. However, this is
also the very nature of many insurance companies and hedge funds businesses. In the case of insurance companies as
the IFI, substantial portions of their portfolios may be in assets which cannot be liquidated easily (see Plantin and
Rochet (2007)). In the case of hedge funds as the IFI, many of them specialize in trading in illiquid markets (see
Brunnermeier and Pederson (2005) for example).

17This assumption is relaxed in section 7.1 which is not intended for publication. In the extension, we allow the
bank to spread the contract among multiple IFIs.

18We can think of these as two assets that are in the IFI’s portfolio; however, we assume that the amount is small
so that the illiquid asset and the original portfolio are uncorrelated. Adding correlation would only complicate the
analysis and would not change the qualitative results.

19As well, the choice between the liquid and illiquid assets is not crucial. The choice can be between a risky and
riskless asset (both liquid) and the qualitative results of the paper will still hold.
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illiquid asset is only available at t = 2.20

For the remaining capital needed (net of the premium put in the liquid asset) if a claim is
made, we assume that the IFI can liquidate its portfolio. Recall that the IFI’s initial portfolio
contains assets of possibly varying degrees of liquidity with return governed by F . To capture
this, we assume that the IFI has a liquidation cost represented by the invertible function C(·) with
C ′() > 0, C ′′() ≥ 0, and C(0) = 0. The weak convexity of C(·) implies that the IFI will choose to
liquidate the least costly assets first, but as more capital is required, it will be forced to liquidate
illiquid assets at potentially fire sale prices.21 C(·) takes as its argument the amount of capital
needed from the portfolio, and returns a number that represents the actual amount that must be
liquidated to achieve that amount of capital. This implies that C(x) ≥ x ∀x ≥ 0 so that C ′(x) ≥ 1.
For example, if there is no cost of liquidation and if x is required to be accessed from the portfolio,
the IFI can liquidate x to satisfy its capital needs. However, because liquidation may be costly in
this model, the IFI must liquidate y ≥ x so that after the liquidation function C(·) shrinks the
value of the capital, the IFI is left with x. If C(·) is linear, our problem becomes a linear program,
and as will soon become apparent, this yields an extreme case of moral hazard.

At time t = 1, the IFI learns a valuation of its portfolio; however, the return is not realized until
t = 2. This could be relaxed so that the IFI receives a fuzzy signal about the return, however, this
would yield no further insight into the problem. Also at t = 1, a claim is made if the underlying
borrower defaults. If a claim is made, the IFI can liquidate its portfolio to fulfil its obligation
of γ.22 If the contract cannot be fulfilled, the IFI defaults. We assume for simplicity that if the
IFI defaults, the bank receives nothing.23 At time t = 2, the IFI and bank’s return are realized.
This setup implies that the uncertainty in the model is resolved at time t = 1; however, a costly
liquidation problem remains from t = 1 to t = 2. Figure 1 summarizes the timing of the model.

t = 0 t = 1 t = 2

If needed, IFI pays contract or

goes bankrupt

Bank endowed with (S)afe

or (R)isky loan

Bank insures proportion γ of loan

for premium Pγ

IFI choses liquid (β) and illiquid

(1 − β) investment
IFI and Bank receive

payoffs

IFI receives portfolio valuation

and

State of insurance contract

realized

Figure 1: Timing of the Model

20We could make this asset only partially illiquid, but the qualitative results of the model would remain the same.
21There is a growing literature on trading in illiquid markets and fire sales. See for example Subramanian and

Jarrow (2001), and Brunnermeier and Pedersen (2005).
22In reality, the insuring institution would typically pay the full protection value, but would receive the bond of

the underlying borrower in return, which may still have a recovery value. Inserting this recovery value into the model
would not change the qualitative results.

23We could a recovery value of a failed contract, however, the qualitative results would remain the same.
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The expected payoff of the IFI can be written as follows.

ΠIFI = (1− b)

[∫ Rf

−Pγ(β+(1−β)RI)
θf(θ)dθ +

∫ −Pγ(β+(1−β)RI)

Rf

(θ −G)f(θ)dθ

]

+ (b)

[∫ Rf

C(γ−βPγ)
(θ − C(γ − βPγ)− βPγ) f(θ)dθ +

∫ C(γ−βPγ)

Rf

(θ −G) f(θ)dθ

]

+Pγ(β + (1− β)RI) (2)

The first term is the expected payoff when a claim is not made, which happens with probability
1− b given the IFI’s beliefs. The −Pγ(β + (1− β)RI) term in the integrand represents the benefit
that engaging in these contracts can have: it reduces the probability of portfolio default when a
claim is not made. We assume that Rf is sufficiently negative so that Pγ (β + (1− β)RI) < |Rf |.
Since P and β are both bounded from above,24 it follows that this inequality is satisfied for a finite
Rf . This assumption ensures that the IFI cannot completely eliminate its probability of default
in this state. Recall that before the IFI engaged in the insurance contract, it would be forced into
insolvency when the portfolio draw was less than zero. However, if a claim is not made, it can
receive a portfolio draw that is less than zero and still remain solvent (so long as the IFI’s draw is
greater than −Pγ(β + (1− β)RI)).

The second term is the expected payoff when a claim is made, which happens with probability
b given by the IFI’s beliefs. The term C(γ − βPγ) represents the cost to the IFI of accessing
the needed capital to pay a claim. Notice that the loans placed in the illiquid asset are not
available if a claim is made. Furthermore, the probability of default for the IFI increases in this
case. To see this, notice that before engaging in the insurance contract, the IFI defaults if its
portfolio draw is θ̃ ∈ [Rf , 0]. After the insurance contract is sold, default occurs if the draw is
θ̃ ∈ [Rf , C(γ − βPγ) > 0]. To ensure that the IFI prefers to pay the insurance contract when
solvent, we assume G ≥ C(γ − βPγ) + βPγ.25 Intuitively, if this condition were not to hold, the
IFI would rather declare bankruptcy than fulfil the claim, regardless of its portfolio draw. The final
term in (2) (Pγ(β + (1− β)RI)) is the payoff of the insurance premium given how it was invested.

As stated previously, counterparty risk is defined as the risk that the IFI defaults, conditional on
a claim being made. Therefore, counterparty risk is represented in the model by

∫ C(γ−βPγ)
Rf

f(θ)dθ.

2.4 IFI Behavior

We now characterize the optimal investment choice of the IFI and the resulting market clearing
price. We begin by looking at the IFI’s optimal investment decision. The following lemma charac-
terizes the optimal behavior conditional on a belief (b) and a price (P ). The IFI is shown to invest
more in the liquid asset if it believes a claim is more likely to be made. Let β∗S (β∗R) be the optimal
choice of the IFI given it believes that the loan is safe (risky).

24This is true for β by construction and will be proven for P in Lemma 2.
25We can think of G as a justification of the assumption that the IFI pays nothing to the bank if it fails and a

claim is made.
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Lemma 1 The optimal investment in the liquid asset (β∗) is weakly increasing in the belief of the
probability of a claim (b). Consequently, β∗R ≥ β∗S.

Proof. See appendix.

It follows that the relationship in this proposition is strict when β∗ attains an interior solution.
Note that the implicit expression for β∗ is given by (12) found in the proof to this lemma. It is
easy to see that the optimal investment is conditional on a price P . We define P ∗ as the market
clearing price. To characterize it, we use the assumption that the IFI must earn zero profit from
engaging in the insurance contract.26 The following lemma yields both existence and uniqueness
of the market clearing price P ∗.

Lemma 2 The market clearing price is unique and in the open set (0, 1).

Proof. See appendix.

We now analyze the properties of the market clearing price P ∗. The following lemma shows
that as the IFI’s belief about the probability a claim increases, so too must the premium increase
to compensate them for the additional risk. Let P ∗

S (P ∗
R) be the market clearing price given the

IFI believes that the loan is safe (risky).

Lemma 3 The market clearing price P ∗ is increasing in the belief of the probability of a claim (b).
Consequently, P ∗

R > P ∗
S .

Proof. See appendix.

The lemma yields the intuitive result that our pricing function P (b) is increasing in b. We now
turn to the issue of bargaining power.

In the preceding analysis, we assumed Bertrand competition among the IFIs. This allowed for
a zero profit condition to pin down the market clearing price P ∗. The following lemma shows that
this is not a crucial assumption. This is done by showing that additional profit by the IFI will have
no effect on counterparty risk, unless the underlying loan is ‘very’ risky.

Lemma 4 Denote β∗ as the IFI’s optimal choice given the zero profit price P ∗. Consider the IFI
being able to make positive profit so that the market clearing price increases. Compared to the zero
profit case, counterparty risk remains unchanged when β∗ ∈ [0, 1) and decreases if β∗ = 1.

Proof. See appendix.

The intuition behind this result is that if we increase the amount given to the IFI without
changing the beliefs, this will have no effect on the marginal benefit of choosing the liquid asset. In

26Lemma 4 shows that this assumption can be relaxed to allow more market power to the IFI.
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its optimization problem, the IFI makes its choice by investing in the liquid asset until the marginal
benefit of doing so falls to the level of that of investing in the illiquid asset. Since increasing just
the premium will not change the IFI’s beliefs (b), this will not change the absolute amount of the
premium put in the liquid asset. Instead, all additional capital will be put into the illiquid asset
(which will have a higher marginal return at that point). The lemma shows that the only time
counterparty risk will decrease is when β∗ = 1, or in other words, when the loan is ‘very’ risky
(recall that Lemma 1 showed that β∗ is increasing in b). This case can only be obtained when both
before and after the price increase, the underlying loan is so risky that it is never optimal to put
any capital in the illiquid asset, so that all additional capital goes into the liquid asset.

3 Equilibrium Beliefs

Akerlof (1970) showed how insurance contracts can be plagued by the ‘lemons’ problem. One
underlying incentive in his model that generates this result is that the insured wishes only to
minimize the premium paid. It is for this reason that high risk agents would wish to conceal their
type. Subsequent literature showed how the presence of a signalling device can allow a separating
equilibrium to exist. What is new in our paper is that no signalling device is needed to justify the
existence of a separating equilibrium. We call the act of concealing one’s type for the benefit of
a lower insurance premium the premium effect. In this section we show that this effect may be
subdued in the presence of counterparty risk. This is done by demonstrating another effect that
works against the premium effect that we call the counterparty risk effect. The intuition of this new
effect is that if high risk (risky) agents attempt to be revealed as low risk (safe), a lower insurance
premium may be obtained, but the following lemma shows that counterparty risk will increase.

Lemma 5 If b decreases, but the actual probability of a claim does not, counterparty risk rises
whenever β ∈ (0, 1].

Proof. See appendix.

There are two factors that contribute to this result. First, Lemma 3 showed that as the per-
ceived probability of default decreases, the premium also decreases and therefore leaves less capital
available to be invested. Second, Lemma 1 showed that the IFI will put more in the illiquid asset as
b decreases. Combining these two factors, the counterparty risk increases. The only case in which
the counterparty risk will not rise is when the bank is already investing everything in the illiquid
asset, so that as b decreases, everything is still invested in the illiquid asset.

To analyze the resulting equilibria, we employ the concept of a Perfect Baysian Nash Equilibrium
(PBE). Define i ∈ {S,R} to represent the two possible bank types, and define the message M ∈
{S, R} to represent the report that bank type i sends to the IFI. Let the bank’s payoff be Π(i,M)
representing the profit that a type i bank receives from sending the message M. Formally, an
equilibrium in our model is defined as follows.

11



Definition 1 An equilibrium is defined as a portfolio choice β, a price P , and a belief b such that:

1. b is consistent with Bayes’ rule where possible.

2. Choosing P , the IFI earns zero profit with β derived according to the IFI’s problem.

3. The bank chooses its message so as to maximize its expected profit.

To proceed we ask: is there a separating equilibrium in which both types are revealed truthfully?
The answer without counterparty risk is no. The reason is that without counterparty risk, it
is costless for the bank with a risky loan to imitate a bank with a safe loan. However, with
counterparty risk, it is possible that both types credibly reveal themselves so that separation occurs.
To begin, assume that the IFI’s beliefs correspond to a separating equilibrium. Therefore, ifM = S

(M = R) then b = 1− pS (b = 1− pR). We now write the profit for a bank with a risky loan given
a truthful report (M = R).

Π(R, R) = pRRB + γ(1− pR)
∫ Rf

C(γ−β∗RP ∗Rγ)
dF (θ)− γ(1− pR)Z

∫ C(γ−β∗RP ∗Rγ)

Rf

dF (θ)− γP ∗
R (3)

The first term represents the expected payoff to the bank when the loan does not default. The
second term represents the expected payoff on the insured portion of the loan when the loan defaults
and the IFI is able to pay the claim. Notice that the IFI’s beliefs are such that the IFI is risky.
The third term represents the expected payoff when the loan defaults and the IFI fails and so is
unable to fulfil the insurance claim. The final term is the insurance premium that the bank pays
to the IFI. We now state the profit of a risky bank who reports that they are safe (M = S).

Π(R, S) = pRRB + γ(1− pR)
∫ Rf

C(γ−β∗SP ∗Sγ)
dF (θ)− γ(1− pR)Z

∫ C(γ−β∗SP ∗Sγ)

Rf

dF (θ)− γP ∗
S (4)

We now find the condition under which a risky bank wishes to truthfully reveal its type.

Π(R, R) ≥ Π(R,S) ⇒

(1− pR) (1 + Z)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗RP ∗Rγ)
dF (θ)

︸ ︷︷ ︸
expected saving in counterparty risk

≥ P ∗
R − P ∗

S︸ ︷︷ ︸
amount extra to be paid in insurance premia

(5)

From Lemmas 1 and 3 we know that C(γ − β∗RP ∗
Rγ) < C(γ − β∗SP ∗

Sγ) and therefore the left
hand side represents the counterparty risk that a risky bank saves by reporting truthfully. This is
the counterparty risk effect. The right hand side represents the savings in insurance premia that
the bank would receive by misrepresenting its type. This is the premium effect. The inequality (5)
represents the key condition for the separating equilibrium to exist. In a typical insurance problem
without counterparty risk, the left hand side must be equal zero. Consequently, in the absence of
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counterparty risk, the risky type will always want to misrepresent its type. We now turn to a bank
with a safe loan and repeat the same exercise.

Π(S, S) ≥ Π(S,R) ⇒

(1− pS) (1 + Z)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗RP ∗Rγ)
dF (θ)

︸ ︷︷ ︸
expected cost of the additional counterparty risk

≤ P ∗
R − P ∗

S︸ ︷︷ ︸
amount to be saved in insurance premia

(6)

The left hand side represents the amount of counterparty risk that the bank will save if it
conceals its type. The right hand side represents the amount of insurance premia that the bank
will save if it reports truthfully. Therefore, when (5) and (6) hold simultaneously, this equilibrium
exists. For an example of when this can hold, take the case in which the safe loan is “very” safe.
In particular, we let pS → 1 and obtain the following expressions.

0︸︷︷︸
expected cost of the additional counterparty risk

≤ P ∗
R − P ∗

S︸ ︷︷ ︸
amount to be saved in insurance premia

(7)

(1− pR) (1 + Z)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗RP ∗Rγ)
dF (θ)

︸ ︷︷ ︸
expected saving in counterparty risk

≥ P ∗
R − P ∗

S︸ ︷︷ ︸
amount extra to be paid in insurance premia

(8)

Note here that PS → 0 since the probability of default of the safe loan is approaching zero.
Inequality (7) is satisfied trivially, while (8) is satisfied for Z sufficiently large. Recall that Z can
be interpreted as the cost of counterparty failure when a claim is made. Therefore separation can
be achieved when there is a high enough ‘penalty’ on the bank for taking on counterparty risk.
The intuition is that a larger penalty forces the bank to internalize the counterparty risk more. As
a result, more information is revealed in the market. This is a sense in which counterparty risk
may be beneficial to the market, since it can help alleviate the possible adverse selection problem
caused by asymmetric information. We now state the first major result of the paper.

Proposition 1 In the absence of counterparty risk, no separating equilibrium can exist. When
there is counterparty risk, the moral hazard problem allows a unique separating equilibrium to exist
in which each type of bank truthfully announces its loan risk. Sufficient conditions for this include
that the safe loan is relatively safe and the bankruptcy cost Z is large.

Proof. See appendix.

This proposition shows that a moral hazard problem on the part of the insurer can alleviate
a possible adverse selection problem on the part of the insured. The separating equilibrium cor-
responds to the case in which the premium effect dominates for the bank with a safe loan, while
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the counterparty risk effect dominates for the bank with a risky loan. Note that there can be no
separating equilibrium (different than the one above) in which the safe type reports that it is risky,
and the risky type reports that it is safe.

There are also two pooling equilibria that may exist. The first occurs when both the safe and
risky bank report that they are safe. In this case, the premium effect dominates for both types so
that the IFI does not update its prior beliefs. The second pooling equilibrium occurs when both the
safe and risky bank report that they are risky. In this case, the counterparty risk effect dominates
for both types.27 We formalize both of these pooling equilibria in the proof to Proposition 1.

We now remove a key contracting imperfection to highlight the inefficiency in the IFI’s invest-
ment choice and formally prove the existence of a moral hazard problem.

3.1 Contract Inefficiency

In this section, we imagine a planning problem wherein the planner can control the investment
decision of the IFI. However, we maintain the IFI’s beliefs and zero profit condition. We show that
regardless of the beliefs of the IFI, the planner can always do better than is done in equilibrium
by increasing the amount of capital put in the liquid asset. Therefore, this section will show that
we can get closer to a first best allocation by removing this contracting imperfection, thereby
highlighting the moral hazard problem. We denote the solution to the planner’s problem given
any belief b as βpl

b , with resulting price P pl
b . The following lemma shows that the equilibrium price

given the beliefs b, P ∗
b must be weakly less than the planning price P pl

b .

Lemma 6 There is no price P̃ < P ∗
b such that the IFI can earn zero profit. This implies that

P ∗
b ≤ P pl

b .

Proof. It is straight-forward to see that ΠIFI(β∗b , P ∗
b ) = 0 (where ΠIFI is defined by (2)) implies

that ΠIFI(β̃, P̃ ) 6= 0 ∀ β̃ ∈ [0, 1] and for P̃ < P ∗
b .

Since Lemmas 1 and 2 show that with (β∗b , P ∗
b ), zero profit is attained, it must be the case that

with β̃ ∈ [0, 1] 6= β∗b and P ∗
b , the IFI earns negative profits. It follows that if P̃ < P ∗

b , with β̃, the
IFI must earn negative profits. Since the IFI must earn zero profits, P̃ ≥ P ∗

b .

We now state the second major result of the paper. The following proposition shows that the IFI
chooses a β∗ that is too small as compared to that of the planner’s problem βpl for any belief of the
IFI. The proposition shows that the insurer moral hazard problem causes the level of counterparty
risk in equilibrium to be strictly too high (so long as β∗ ∈ [0, 1)).

Proposition 2 Given an equilibrium portfolio decision β∗ with β∗ < 1, a social planner would
choose βpl > β∗ so that the level of counterparty risk in equilibrium is too high.

27In the separating equilibrium case, the beliefs are fully defined by Bayes’ rule. In the first pooling equilibrium,
any off-the-equilibrium path belief with b > 1

2
(2− pS − pr) if risky is reported is consistent for the IFI with the

Cho-Kreps (1987) intuitive criterion. In the second pooling equilibrium, any off-the-equilibrium path belief with
b < 1

2
(2− pS − pr) if safe is reported is consistent with the Cho-Kreps (1987) intuitive criterion.
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Proof. See appendix.

The intuition behind this result comes from two sources. First, since the social planning problem
corresponds to maximizing the bank’s payoff while keeping the IFI at zero profit, the bank strictly
prefers to have the IFI invest more in the liquid asset. Second, the IFI must be compensated for
this individually sub-optimal choice of β by an increase in the premium. Since from Lemma 6, P

weakly increases (in the proof of Proposition 2, we show that in this case, the increase is strict),
counterparty risk falls (i.e.,

∫ C(γ−βPγ)
Rf

f(θ)dθ falls). In other words, the moral hazard problem on
the part of the IFI is characterized by an inefficiency in the investment choice. The key restriction
on the contracting space that yields this result is that the insurance premium is paid upfront and
so the bank cannot condition its payment on an observed outcome. In the competitive equilibrium
case, the bank knows that the IFI will invest too little into the liquid asset, and therefore lowers
its payment accordingly (as from Lemma 4, any additional payment beyond what would yield zero
profit to the IFI would be put into the illiquid asset and have no effect on counterparty risk).

We now generalize the base model to the case in which there are multiple insured parties.

4 Multiple Banks

In this section, we analyze the case of multiple banks and one insurer. We assume there are a
measure M < 1 of banks. This assumption is meant to approximate the case in which there are
many banks, and the size of each individual bank’s insurance contract is insignificant for the IFI’s
investment decision. Using an uncountably large number instead of a finite but large number of
banks helps simplify the analysis greatly.28 Each bank requests an insurance contract of size γ.
At time t = 0, each bank receives both an aggregate and idiosyncratic shock (both private to the
banks) which assigns them a probability of loan default. For simplicity, as in the case when there
was only one bank, the return on the loan is RB if it succeeds and 0 if it does not. We define the
idiosyncratic shock by the random variable X and let it be uniformly distributed over [0,M ]. The
CDF can then be written as follows.

Ψ(x) =





0 if x ≤ 0
x
M if x ∈ (0,M)
1 if x ≥ M

Next, denote the aggregate shock as qA and let it take the following form:

qA =

{
s with probability 1

2

r with probability 1
2 ,

28An advantage to using a finite number of banks is that we could avoid any measurability issue. In the proof to
Proposition 3 (which is stated at the end of this section), we detail this issue briefly and discuss how to handle it.
Since the results do not depend on the continuous setup, we opt to use it for its simplification of the problem.
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where 0 < s < r < 1−M . It follows that the probability of default of bank i is qi = qA +Xi.29 We
will refer to the aggregate shock as either (s)afe or (r)isky. We write the conditional distribution’s
of bank types as µ(qi : qi ≤ x|qA = s) = Ψ(x− s) and µ(qi : qi ≤ x|qA = r) = Ψ(x− r). It follows
that Ψ(x−s) first order stochastically dominates Ψ(x−r) since Ψ(x−s) ≥ Ψ(x−r) ∀ x. Note that
this is in contrast to the usual definition of first order stochastic dominance which entails higher
draws providing a ‘better’ outcome. In the case of this model, the opposite is true, since lower
draws refer to a lower probability of default; a ‘better’ outcome.

4.1 The IFI’s Problem

Because of the asymmetric information problem, the IFI does not know ex-ante whether the
aggregate shock was qA = s or qA = r. However, the IFI does know that the aggregate shock hits
all the banks in the same way.30 Therefore, if only a subset of the banks can successfully reveal
their types, this reveals the aggregate shock for the rest of them.

If solvent, the IFI must pay γ to each bank whose loan defaults. In Lemma 8 we will show
that there can be no separation of types within the idiosyncratic shock. Therefore, given a fixed
realization of the aggregate shock, each bank pays the same premium P .31 We assume that the IFI
has the same choice as in section 2.3, so that it invests β in the liquid storage asset and (1 − β)
in the illiquid asset with return RI . To represent the IFI’s beliefs, let Y denote the measure of
defaults. Furthermore, let b(y) = prob(Y ≤ y) be the beliefs over the measure of defaults defined
over [0,M ]. It follows that Ψ(x− s) ≥ Ψ(x− r) ∀ x implies b(y|qA = s) ≥ b(y|qA = r) ∀ y. In other
words, first order stochastic dominance is preserved. Since each bank insures γ, the total size of
contracts insured by the IFI is:

∫ M
0 γdΨ(x) = Mγ. The IFI’s payoff can now be written as follows.

ΠMB
IFI =

∫ βPM

0

[∫ Rf

−PMγ(β+(1−β)RI)+yγ

θdF (θ) +
∫ −PMγ(β+(1−β)RI)+yγ

Rf

(θ −G) dF (θ)

]
db(y)

︸ ︷︷ ︸
Term 1

+
∫ M

βPM

[∫ Rf

C(yγ−βPMγ)

(θ − C (yγ − βPMγ)− βPMγ) dF (θ) +
∫ C(yγ−βPMγ)

Rf

(θ −G) dF (θ)

]
db(y)

︸ ︷︷ ︸
Term 2

+ (β + (1− β) RI)PMγ︸ ︷︷ ︸
Term 3

(9)

Where ‘MB’ denotes ‘Multiple Banks’. The first term represents the case in which the IFI puts
sufficient capital in the liquid asset so that there is no need to liquidate its portfolio to pay claims.
This happens if a sufficiently small measure of banks make claims. Since the IFI receives PMγ in

29Note that in the base model we referred to p as a probability of success, whereas here we refer to q as a probability
of failure. We make this notational change because it is more intuitive in this section to have probabilities of failure
when we introduce the IFI’s beliefs over the measure of defaults. Of course, the simple relationship p = 1− q holds.

30We assume this for simplicity. We can relax the assumption that all the banks receive the same aggregate shock
and allow them to receive correlated draws from a distribution.

31We assume the IFI must earn a fixed profit in equilibrium so that a market clearing price can be determined.
We are not concerned with pinning down that price in this section. As in the base model, we can assume that the
IFI has market power; however, it is not crucial.
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insurance premia, it puts βPMγ into the liquid asset. It follows that if less than βPMγ is needed to
pay claims (i.e. less than βPM banks fail), portfolio liquidation is not necessary. The second term
represents the case in which the IFI must liquidate its portfolio if a claim is made. This happens if
the amount they need to pay in claims is greater than βPMγ. C (yγ − βPMγ)+βPMγ represents
the total cost of claims, where yγ−βPMγ is the total amount of capital the IFI needs to liquidate
from its portfolio. The final term represents the direct proceeds from the insurance premium. We
make the usual assumption that G ≥ C (yγ − βPMγ) + βPMγ so that the IFI wishes to fulfil the
contract when they are solvent. Note that for simplicity, as in the base model, we assume that if a
claim is made and the IFI defaults, the banks receive nothing from the IFI.

The following lemma both derives the optimal β∗ and proves that counterparty risk is less when
the IFI believes that the loans are more risky.

Lemma 7 For a given aggregate shock, there is less counterparty risk when the IFI’s beliefs put
more weight on the aggregate shock being risky (qA = r) as opposed to it being safe (qA = s).

Proof. See appendix.

The intuition for this result is similar to that of Lemma 5. If the IFI believes that the pool of
loans is risky, it is optimal to invest more in the liquid asset. This happens because the expected
number of claims is higher in the risky case so that the IFI wishes to prevent costly liquidation by
investing more in assets that will be readily available if a claim is made.

We now give the conditions under which the IFI’s beliefs (b(y)) are formed.

4.2 Equilibrium Beliefs

4.2.1 No Aggregate Shock

To analyze how the beliefs of the IFI are formed, consider the case where there is no aggregate
shock. Since there is no aggregate uncertainty, the IFI’s optimal investment choice remains the
same regardless of whether it offers a pooling price or individual separating prices.32 It follows that
since an individual bank’s choice will have no effect on counterparty risk, only the premium effect

is active. It is for this reason that a separating equilibrium in the idiosyncratic shock cannot exist.
To see this, assume that each bank reveals its type truthfully. Now consider the bank with the
highest probability of default, call it bank M . Since it is paying the highest insurance premium, it
can lie about its type without any effect on counterparty risk, and obtain a better premium, and
consequently, a better payoff. The following lemma formalizes.

Lemma 8 There can be no separating equilibrium in which the idiosyncratic shock is revealed.

We now introduce the aggregate shock and show that separation of aggregate types can occur.
32To see this, note that with no aggregate risk, the IFI knows the average quality of banks and will use that to

make its investment decision. Any bank claiming that they received the lowest idiosyncratic shock will not change
the IFI’s beliefs about the average quality.
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4.2.2 Aggregate and Idiosyncratic Shock

Each individual bank now receives both an aggregate and an idiosyncratic shock. We can think
of this procedure as putting the banks in one of two intervals, either [s, s + M ] or [r, r + M ]. We
know that if one bank is able to successfully reveal its aggregate shock, then the aggregate shock is
revealed for all other banks. The following proposition shows that a unique separating equilibrium
can exist in this setting.

Proposition 3 There exists a parameter range in which a unique separating equilibrium in the
aggregate shock can be supported.

Proof. See appendix.

This insight follows from an individual banks ability to affect the IFI’s investment choice
(through the IFI’s beliefs). If a bank could only reveal its own shock, its premium would be
insignificant to the IFI’s investment decision. However, since by successfully revealing itself, a
bank also reveals the other banks, an individual’s problem can have a significant effect on the IFI’s
investment choice. The parameter range that can support this equilibrium is similar to the case
in which there was only one bank. Conditions that can support this equilibrium as unique are: Z

sufficiently high, and the safe aggregate shock sufficiently low.

5 Conclusion

In a setting in which insurers can fail, we construct a model to show that a new moral hazard
problem can arise in insurance contracts. If the insurer suspects that the contract is safe, it puts
capital into less liquid assets which earn higher returns. However, the downside of this is that
when a claim is made, the insurer is less likely to be able to fulfil the contract. We show that the
insurer’s investment choice is inefficiently illiquid. The presence of this moral hazard is shown to
allow a unique separating equilibrium to exist wherein the insured freely and credibly relays its
superior information. In other words, the new moral hazard problem can alleviate the possible
adverse selection problem.

The results of the base model require the contract to be large enough to affect the insurer’s
investment decision. We relax this assumption and allow there to be a collection of insured parties,
each with a contract size that is insignificant to the insurer’s investment decision. We show that
our moral hazard problem still exists, and can obtain the separating equilibrium result when there
is private aggregate risk.
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6 Appendix

Proof Lemma 1. Using the assumption that f(θ) is distributed uniform over the interval
[Rf , Rf ], we solve for the optimal choice of β for the IFI, given b and P .

max
β∈[0,1]

ΠIFI

Using Leibniz rule to differentiate the choice variable in the integrands, we obtain the following
first order equation:

0 =
bPγ

Rf −Rf

[
C ′(γ − βPγ) (G− C(γ − βPγ)− βPγ) +

(
Rf − C(γ − βPγ)

) (
C ′(γ − βPγ)− 1

)]

+(1− b)
G

Rf −Rf

[−RIγP + γP ] + Pγ(1−RI) (10)

Where G−C(γ−βPγ)−βPγ ≥ 0 by assumption, and C ′(γ−βPγ)−1 ≥ 0 since C(x) ≥ x ∀ x ≥ 0.
To ensure a maximum, we take the second order condition and show the inequality that must hold.

C ′′(γ − βPγ) (G− C(γ − βPγ)− βPγ) +
(
Rf − C(γ − βPγ)

)
C ′′(γ − βPγ)

≥ 2C ′(γ − βPγ)
(
C ′(γ − βPγ)− 1

)
(11)

Note that this holds with equality when C(x) = x ∀x ≥ 0 so that C ′(x) = 1 ∀x ≥ 0 and C ′′(x) =
0 ∀x ≥ 0. Plugging in the boundary conditions for β into the FOC, we now derive the optimal
proportion of capital put in the liquid asset as an implicit function.





β∗ = 0 if b ≤ b∗

−(1− b)(RI − 1)G + b[C ′(γ − β∗Pγ) (G− C(γ − β∗Pγ)− β∗Pγ)
+

(
Rf − C(γ − β∗Pγ)

)
(C ′(γ − β∗Pγ)− 1)] = (RI − 1)(Rf −Rf ) if b ∈ (b∗, b∗∗)

β∗ = 1 if b ≥ b∗∗

(12)

where b∗ =
(RI−1)(G+Rf−Rf )

G(RI−1)+C′(γ)(G−C(γ))−(Rf−C(γ))(C′(γ)−1)
,

and b∗∗ =
(RI−1)(G+Rf−Rf )

G(RI−1)+C′(γ−Pγ)(G−C(γ−Pγ)−Pγ)−(Rf−C(γ−Pγ)))(C′(γ−Pγ))−1)
.

We now show that the optimal proportion of capital put in the liquid asset is increasing in b by
finding ∂β

∂b from the FOC.
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0 = A + b[(−C ′(γ − βPγ)(−∂β

∂b
Pγ)(C ′(γ − βPγ)− 1)

+(Rf − C(γ − βPγ))(C ′′(γ − βPγ)(−∂β

∂b
Pγ)

+C ′′(γ − βPγ)(−∂β

∂b
Pγ)(G− C(γ − βPγ)− βPγ) + C ′(γ − βPγ)(−C ′(γ − βPγ)(−∂β

∂b
Pγ)

−(−∂β

∂b
Pγ))] + G(RI − 1)Pγ (13)

Where we define:

A = C ′(γ − βPγ)Pγ (G− C(γ − βPγ)− βPγ) +
(
Rf − C(γ − βPγ)

)
Pγ

(
C ′(γ − βPγ)− 1

) ≥ 0.(14)

Assuming an interior solution and rearranging for ∂β
∂b yields to following.

∂β

∂b
=

−C′(γ − βPγ) (G− C(γ − βPγ)− βPγ)− (
Rf − C(γ − βPγ)

)
(C′(γ − βPγ)− 1)−G(RI − 1)

−C′′(γ − βPγ) (G− C(γ − βPγ)− βPγ)− (
Rf − C(γ − βPγ)

)
C′′(

(
Rf − C(γ − βPγ)

)
) + 2C′(γ − βPγ) (C′(γ − βPγ)− 1)

> 0 (15)

Where the numerator is trivially negative while the denominator is negative because of condition
(11) imposed by the SOC to achieve a maximum.

Proof of Lemma 2.

Step 1: Existence

We prove that there exists a P ∗ that satisfies the following:

0 = (1− b)

[∫ 0

−P ∗γ(β+(1−β)RI)
Gf(θ)dθ

]
− b

[∫ Rf

C(γ−βP ∗γ)
(C(γ − βP ∗γ) + βP ∗γ) f(θ)dθ

]

−b

[∫ C(γ−βP ∗γ)

0
Gf(θ)dθ

]
+ P ∗γ(β + (1− β)RI). (16)

Consider P ∗ ≤ 0. In this case, the IFI earns negative profits. To see this, notice all terms on
the right hand side of (16) are weakly negative, with the second and third terms strict (since
C(γ − βP ∗γ) > βP ∗γ when P ∗ ≤ 0). Therefore, it must be that ΠIFI(β∗, P ∗ ≤ 0) < 0. This
contradicts the fact that ΠIFI(β∗, P ∗) = 0 in equilibrium.
Next, consider P ∗ ≥ 1, and β = 1 (not necessarily the optimal value). In this case, the first term
on the right hand side of (16) is strictly positive and the third term is zero. The second plus the
fourth term is positive since P ∗γ > b

∫ Rf

0 P ∗γf(θ)dθ. Since β∗ can yield no less profit than β = 1
by definition of it being an optimum, it must be that ΠIFI(β∗, P ∗ ≥ 0) > 0. This contradicts the
fact that ΠIFI(β∗, P ∗) = 0 in equilibrium. Therefore, if it exists, P ∗ ∈ (0, 1).
To show that P ∗ exists in the interval (0, 1), we differentiate the right hand side of (16) to show
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that profit is strictly increasing in P .

∂ΠIFI

∂P
= bβP

[
C ′(γ − βPγ) (G− C(γ − βPγ)− βPγ) +

(
Rf − C(γ − βPγ)

)
βγ

(
C ′(γ − βPγ)− 1

)]

+(1− b) [Gγ (β + (1− β)RI)] + γ (β + (1− β)RI) (17)

> 0 (18)

Where the inequality follows from the assumption that G ≥ C(γ − βPγ) − βPγ and the as-
sumption that C(x) ≥ x ∀x ≥ 0 (which implies C ′(x) ≥ 1). Therefore, since profit is negative when
P ∗ ≤ 0 and positive when P ∗ ≥ 1, and since profit is a (monotonically) increasing function of P ∗,
profit must equate to zero within P ∗ ∈ (0, 1).

Step 2: Uniqueness

Assume the following holds: ΠIFI(β∗, P ∗
1 ) = 0. Since we have already shown that profit is a

strictly increasing function of P ∗, then if P ∗
2 > P ∗

1 (P ∗
2 < P ∗

1 ) this implies ΠIFI(β∗, P ∗
2 ) > 0

(ΠIFI(β∗, P ∗
2 ) < 0). Therefore, ΠIFI(β∗, P ∗

2 ) = 0 implies P ∗
1 = P ∗

2 must hold, so our price is
unique.

Proof of Lemma 3.
From the envelop theorem, we can ignore the effect that changes in b have on β when we evaluate
the payoff at β∗. Plugging β = β∗ into (2) and taking the partial derivative with respect to b yields:

∂ΠIFI

∂b

∣∣∣∣
β=β∗

= −
(
Rf − C(γ − β∗Pγ)

)
(C(γ − β∗Pγ) + β∗Pγ) + C(γ − β∗Pγ)G + PγG(β∗ + (1− β∗)RI)

Rf −Rf

< 0 (19)

The inequality follows because C(·) > 0 by assumption. Since the envelop theorem is a local
condition and does not hold for large changes in b, it serves as an upper bound on the decrease in
profits. It follows that an increase in b must be met with an increase in P otherwise the IFI would
earn negative profit and would not participate in the market.

Proof of Lemma 4. Since counterparty risk is defined as
∫ C(γ−βPγ)
Rf

f(θ)dθ, we find the effect
that a change in P has on C(γ − β∗Pγ). Since C(·) is monotonic, we focus on (γ − β∗Pγ). It
should be immediately apparent that when β∗ = 0, changes in P have no effect. Intuitively, if the
IFI is already putting everything into the illiquid asset, any additional capital will also be put into
the illiquid asset.
We now take the following partial derivative and show that it equates to zero.
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∂ (γ − β∗Pγ)
∂P

= −γ

(
∂β∗

∂P
P + β∗

)
(20)

We find ∂β∗
∂P ≡ ∂β

∂P

∣∣∣
β=β∗

(where β∗ is defined implicitly in the FOC).

0 =
[
−C ′(γ − β∗Pγ)

(
−∂β∗

∂P
Pγ − β∗γ

)]
[C ′(γ − β∗Pγ)− 1]

+
[
Rf − C(γ − β∗Pγ)

] [
C ′′(γ − β∗Pγ)

(
−∂β∗

∂P
Pγ − β∗γ

)]

+
[
C ′′(γ − β∗Pγ)

(
−∂β∗

∂P
Pγ − β∗γ

)]
[G− C(γ − β∗Pγ)− β∗Pγ]

+C ′(γ − β∗Pγ)
[
−C ′(γ − β∗Pγ)

(
−∂β∗

∂P
Pγ − β∗γ

)
− β∗γ − ∂β∗

∂P
Pγ

]
(21)

Rearranging for ∂β∗
∂P yields the following.

∂β∗

∂P
PγA = −β∗γA

⇒ ∂β∗

∂P
= −β∗

P
(22)

Where we define:

A = C ′′(γ − β∗Pγ) (G− C(γ − β∗Pγ)− β∗Pγ) +
(
Rf − C(γ − β∗Pγ)

)
C ′′(γ − β∗Pγ)

−2C ′(γ − β∗Pγ)
(
C ′(γ − β∗Pγ)− 1

)
. (23)

Note that A < 0 from the assumption on the SOC (11) to ensure a maximum (recall that we are
interested in interior solutions so that A 6= 0). Substituting (22) into (20) yields the desired result:

∂ (γ − β∗Pγ)
∂P

= 0. (24)

Therefore changes in P have no effect on counterparty risk when β attains an interior solution.
The final situation is where β∗ = 1. We obtain:

∂(γ − γP )
∂P

= −γ < 0. (25)

In this case, the IFI puts all additional premia in the liquid asset and thus reduces the counterparty
risk.

Proof of Lemma 5. Since counterparty risk is defined as
∫ C(γ−βPγ)
Rf

f(θ)dθ, we are interested in
what happens to C(γ − β∗P ∗γ) as b changes.
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We first focus on the case in which β∗ ∈ (0, 1). We take following partial derivative where we define
∂β∗
∂b ≡ ∂β

∂b

∣∣∣
β=β∗

and ∂P ∗
∂b ≡ ∂P

∂b

∣∣
P=P ∗ .

∂ (γ − β∗P ∗γ)
∂b

= −γ

(
∂β∗

∂b
P ∗ + β∗

∂P ∗

∂b

)
(26)

From Lemma 1 we know ∂β∗
∂b ≥ 0. As well, from Lemma 3 we know ∂P ∗

∂b > 0. Since β∗ ∈ (0, 1) and
P ∗ > 0 (from Lemma 2), it follows that:

∂ (γ − β∗P ∗γ)
∂b

< 0 (27)

Therefore, as b increases, counterparty risk decreases when β ∈ (0, 1). Next, consider the case of
β∗ = 1. Again, from Lemma 3 we know ∂P ∗

∂b > 0. Therefore, ∂(γ−β∗P ∗γ)
∂b < 0 regardless of whether

∂β∗
∂b = 0 or ∂β∗

∂b > 0. Thus, counterparty risk decreases when b decreases if β∗ = 1.
It is obvious that if β∗ = 0 there will be no change in counterparty risk by noting that β∗Pγ will
be independent of b.

Proof of Proposition 1. We begin by ruling out a separating equilibrium when there is no
counterparty risk, regardless of the IFI’s choice. This implies

∫ C(γ−β∗SP ∗Sγ)
Rf

dF (θ) = 0. It follows
that the left hand side of (5) and (6) are both zero. Since P ∗

R − P ∗
S > 0, (5) and (6) cannot be

simultaneously satisfied so that this separating equilibrium cannot exist.
We proceed by showing the conditions for which the two pooling equilibria can exist. We begin with
the case in which both types wish to be revealed as safe. We define β∗1/2 and P ∗

1/2 as the equilibrium
result from the IFI’s problem when the belief of the probability of a claim cannot be updated fur-
ther: b = 1

2 (2− pS − pr). Finally, we let β∗OE and P ∗
OE be the result from the IFI’s problem when a

bank gives an off the equilibrium path report of R. The following two conditions formalize this case:

Π(S, S) ≥ Π(S,R) ⇒

(1− pS)(1 + Z)
∫ C(γ−β∗

1/2
P ∗

1/2
γ)

C(γ−β∗OEP ∗OEγ)
dF (θ)

︸ ︷︷ ︸
expected cost of the additional counterparty risk

≤ P ∗
OE − P ∗

1/2︸ ︷︷ ︸
amount to be saved in insurance premia

(28)

Π(R, S) ≥ Π(R,R) ⇒

(1− pR)(1 + Z)
∫ C(γ−β∗

1/2
P ∗

1/2
γ)

C(γ−β∗OEP ∗OEγ)
dF (θ)

︸ ︷︷ ︸
expected cost of the additional counterparty risk

≤ P ∗
OE − P ∗

1/2︸ ︷︷ ︸
amount to be saved in insurance premia

(29)

The binding condition (29) is satisfied for Z sufficiently small. The intuition is that if counter-
party risk is not too costly, the bank would wish to obtain lowest insurance premium. In other
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words, the premium effect dominates for both types. It follows that for this equilibrium to exist,
b > 1

2 (2− pS − pR). Next, consider the case in which both types report that they are risky. In this
case, we use the notation β∗OE2 and P ∗

OE2 to indicate the off the equilibrium path beliefs if a bank
reports that it is safe. The conditions can be characterized as follows:

Π(S,R) ≥ Π(S, S) ⇒

(1− pS)(1 + Z)
∫ C(γ−β∗OE2P ∗OE2γ)

C(γ−β∗
1/2

P ∗
1/2

γ)
dF (θ)

︸ ︷︷ ︸
expected saving in counterparty risk

≥ P ∗
1/2 − P ∗

OE2︸ ︷︷ ︸
amount extra to be paid in insurance premia

(30)

Π(R, R) ≥ Π(R,S) ⇒

(1− pR)(1 + Z)
∫ C(γ−β∗OE2P ∗OE2γ)

C(γ−β∗
1/2

P ∗
1/2

)
dF (θ)

︸ ︷︷ ︸
expected saving in counterparty risk

≥ P ∗
1/2 − P ∗

OE2︸ ︷︷ ︸
amount extra to be paid in insurance premia

(31)

The binding condition (30) is satisfied for Z sufficiently high. Intuitively, the bank is so averse to
counterparty risk, that the counterparty risk effect dominates for both types. It follows that for
this equilibrium to exist, b < 1

2 (2− pS − pR).
We now show that the separating equilibrium defined by (5) and (6) can be unique. Combining
(5) and (6) we obtain the following condition for when the separating equilibrium exists:

PR − PS

(1− pR)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗RP ∗Rγ) dF (θ)
≤ 1 + Z ≤ P ∗

R − P ∗
S

(1− pS)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗RP ∗Rγ) dF (θ)
(32)

Turning to the pooling equilibria, we use extreme off the equilibrium path beliefs to illuminate the
result (which is valid for the general belief as well). Let OE = R and OE2 = S. The condition
under which the pooling equilibrium cannot exist (i.e., when (30) and (31) are not satisfied) can
be written as:

P ∗
R − P ∗

1/2

(1− pR)
∫ C(γ−β∗

1/2
P ∗

1/2
γ)

C(γ−β∗RP ∗Rγ) dF (θ)
< 1 + Z <

P ∗
1/2 − P ∗

S

(1− pS)
∫ C(γ−β∗SP ∗Sγ)

C(γ−β∗
1/2

P ∗
1/2

γ) dF (θ)
(33)

It follows that if (32) and (33) are satisfied, the separating equilibrium exists and is unique.33 To
see that these conditions can be simultaneously satisfied, let pS → 1 so that the right hand side of
both (32) and (33) are satisfied. It follows that if Z is sufficiently large, the left hand side of these
two inequalities can be satisfied yielding a unique separating equilibrium.

33Note that the separating equilibrium is unique since any other possible separating equilibrium would only differ
in terms of off the equilibrium path beliefs.
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Proof of Proposition 2. The proof proceeds in 3 steps. Step 1 derives the first order condition
for the planning problem. Step 2 assumes the equilibrium solution and derives an expression for
∂P
∂β from the IFI’s zero profit condition. Step 3 shows that βpl and P pl must be greater than in the
equilibrium case when β∗ < 1. Since we need not specify a belief for this proof, it follows that the
result holds regardless if there is separation or pooling of banks.
Step 1

The profit for the bank (bk) can written as follows (note here we leave the bank’s loan type as
j ∈ {S, R} as the proof is valid for both the safe and risky type).

Πbk = pjRBγ + γ(1− pj)
∫ Rf

C(γ−βPγ)
dF (θ)− γ(1− pj)Z

∫ C(γ−βPγ)

Rf

dF (θ)− γP

In the planners case, P pl is now endogenous and determined by ΠIFI(βpl, P pl) = 0 (where ΠIFI is
defined by (2)). Using the uniform assumption on F yields the following first order condition.

∂P

∂β
= γC ′(γ − βPγ)

(
P +

∂P

∂β
β

)
(1− pj)(1 + Z) (34)

The left hand side represents the marginal cost of increasing β, while the right hand side represents
the marginal benefit of doing so.
Step 2
We show that if βpl = β∗, then (34) cannot hold. We know from the IFI’s problem, the following
must hold (see the proof to Lemma 1 for its derivation):

0 =
b

Rf −Rf

[
C ′(γ − β∗P ∗γ) (G− C(γ − β∗P ∗γ)− β∗P ∗γ) +

(
Rf − C(γ − β∗P ∗γ)

)
(C ′(γ − β∗P ∗γ)− 1)

]

+(1− b)
G

Rf −Rf

[−RIγP ∗ + γP ∗] + P ∗γ(1−RI) (35)

We now find an expression for ∂P
∂β

∣∣∣
β=β∗,P=P ∗

by implicitly differentiating the equation ΠIFI(β∗, P ∗) =
0.

0 = (1− b)

[∫ 0

−Pγ(β+(1−β)RI)
Gf(θ)dθ

]
− b

[∫ Rf

C(γ−βPγ)
(C(γ − βPγ) + βPγ)

]

−b

[∫ C(γ−βPγ)

0
Gf(θ)dθ

]
+ Pγ(β + (1− β)RI) (36)

Implicitly differentiating this equation to find ∂P
∂β yields the following.
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A
∂P

∂β

∣∣∣∣
β=β∗,P=P ∗

= (1− b)
G

Rf −Rf

[−RIγP ∗ + γP ∗] + P ∗(γ(1−RI)

+
bP ∗γ

Rf −Rf

[C ′(γ − β∗P ∗γ) (G− C(γ − β∗P ∗γ)− β∗P ∗γ)

+
(
Rf − C(γ − β∗P ∗γ)

) (
C ′(γ − β∗P ∗γ)− 1

)
] (37)

Where we define:

A = bβ∗γ[C ′(γ − β∗P ∗γ)(C(γ − β∗P ∗γ) + β∗P ∗γ)− (
Rf − C(γ − β∗P ∗γ)

) (
C ′(γ − β∗P ∗γ)− 1

)

+C ′(γ − β∗P ∗γ)G]. (38)

It follows that ∂P
∂β

∣∣∣
β=β∗,P=P ∗

= 0 since the right hand side of (37) is the FOC derived in Lemma 1

and must equate to 0 at the optimum, β∗.
Step 3

Substituting ∂P
∂β

∣∣∣
β=β∗,P=P ∗

= 0 into (34) yields:

0 = γC ′(γ − β∗P ∗γ) (P ∗) (1− pj)(1 + Z), (39)

which cannot hold since γ > 0, (1 − pj) > 0 and Z > 0. Therefore, βpl 6= β∗ and P pl 6= P ∗.
To satisfy (34), it must be the case that βpl > β∗, and from Lemma 6 it follows that P pl ≥ P ∗.
However, if βpl > β∗, then P pl > P ∗. It follows that

∫ C(γ−βplP plγ)
0 f(θ)dθ <

∫ C(γ−β∗P ∗γ)
0 f(θ)dθ,

i.e., counterparty risk is strictly smaller in the planners case as compared to the equilibrium case.
It is obvious that if β∗ = 1, it is not possible for the planner to invest any more in the liquid asset.
This is the case in which the IFI is already investing everything in the liquid asset.

Proof of Lemma 7. Optimizing ΠMB
IFI choosing β yields the following first order condition (recall

F is assumed to be uniformly distributed):

0 =
1

Rf −Rf

∫ β∗PM

0
(−PMγ(1−RI))Gdb(y)

+
1

Rf −Rf

[−PMγ(β∗ + (1− β∗)RI) + β∗PMγ −Rf

]
GPM

+
1

Rf −Rf

∫ M

β∗PM
[−C ′(yγ − β∗PMγ)(−PMγ) (−C(yγ − β∗PMγ)− β∗PMγ)

+
(
Rf − C(yγ − β∗PMγ)

) (−C ′(yγ − β∗PMγ)(−PMγ)− PMγ
)

+C ′(yγ − β∗PMγ)(−PMγ)(−G)]db(y)

− 1
Rf −Rf

[(
Rf − C(0)

)
(−C(0)− β∗PMγ) +

(
C(0)−Rf

)
(−G)

]
PM

+(1−RI)PMγ (40)
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Recalling C(0) = 0 we simplify the above.

0 = −
∫ β∗PM

0
γ(RI − 1)Gdb(y)− PMγ(1− β∗)RIG

+γ

∫ M

β∗PM
[C ′(yγ − β∗PMγ) (G− C(yγ − β∗PMγ)− β∗PMγ)

+
(
Rf − C(yγ − β∗PMγ)

) (
C ′(yγ − β∗PMγ)− 1

)
]db(y)

+Rfβ∗γ −RfG− γ(RI − 1)(Rf −Rf ) (41)

The SOC implies that the right hand side of (41) is decreasing in β∗ so that our problem achieves
a maximum. Define two belief distributions b1(y) and b2(y) such that b1(y) ≥ b2(y) ∀y. As well, let
(β∗1 , b1(y)) solve the first order condition (40). Intuitively, moving from b1(y) to b2(y), mass shifts
from the interval [0, β∗PM ] to [β∗PM,M ]. Formally:

∫ β∗PM

0
db1(y) >

∫ β∗PM

0
db2(y) (42)

∫ M

β∗PM
db1(y) <

∫ M

β∗PM
db2(y). (43)

Given (42) and (43) and since the FOC holds with (β∗1 , b1(y)), then with (β∗1 , b2(y)), it follows that
β∗1 must increase for (41) to hold. In other words, the riskier the distribution of loans that the IFI
insures, the more that it invests in the liquid asset.
To proceed, we use a similar result to that of Lemma 3. It is straight forward to see that when
the belief of defaults is higher (as in the risky case), so must the price of the contracts be higher
(this can be shown in the same way that Lemma 3 was proved by showing that the profit function
is decreasing in the amount of risk in the loans). Next we find what happens to counterparty risk.
What is different about the case of multiple banks is that counterparty risk is defined relative to
the number of banks that default:

∫ M
βPM

∫ C(yγ−βPMγ)
Rf

dF (θ)db(y).
In the case in which the IFI puts more weight on the loans being risky (qA = r), β∗ and P ∗

increase, so that C(γ − βPγ) decreases. Furthermore, since from the point of view of the banks,
the probability of a claim does not change, counterparty risk decreases as compared to the case in
which the IFI puts more weight on the loans being safe (qA = s).

Proof of Proposition 3. The proof proceeds in 3 steps. Steps 1 and 2 determine when the
pooling equilibria cannot exist. In particular, we use beliefs of the IFI for which banks have the
greatest incentive to pool. In step 1 we assume that all banks report that they received the ag-
gregate shock qA = s and find a condition wherein some bank (or measure of banks) that received
the aggregate shock qA = r wish to reveal it truthfully.34 In the second step we repeat a similar

34Note that there are other ways of arriving at a pooling equilibrium, for example, some banks of the same type
report differently than others. These can arise when the IFI’s beliefs are such that no new information is gleaned
from the reports. Since these yield the same outcome, we will focus only on the cases described.
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exercise to determine when a risky pooling equilibrium does not exist. Step 3 determines when a
unique separating equilibrium can exist. We use beliefs such that the banks have the least incentive
to separate. In this step we assume separating beliefs for the IFI and find the condition wherein
both bank types do not wish to misrepresent their aggregate type.

Step 1
Consider all banks reporting qA = s, regardless of the aggregate shock. Now consider the incentive of
banks that receive the aggregate shock qA = r. Given that all banks report that they are safe, we see
if there is any incentive for deviation (i.e., some bank to send the message qA = r). If every bank re-
ports that it received the safe aggregate shock, the IFI does not update its beliefs. However, if some
bank or measure of banks35 deviate and send the message qA = r, then the IFI employs off the equi-
librium path beliefs (OE) about the aggregate shock. We assume that the deviating bank(s) are be-
lieved to have received the highest idiosyncratic shock(s).36 It is easy to show that the bank with the
greatest incentive to be revealed as risky is the one with the highest idiosyncratic shock, which we
denote as bank M . Denote the probability of default of the loan of this bank as qr

M . If this bank does
not deviate, it pays P

1
2 , alongside all other banks. If this bank does deviate, it pays POE

M , while the
rest of the banks pay POE , corresponding to the average quality of a risky bank. Next, we denote the
optimal investment choice of the IFI in the pooling (deviating) case by β1/2 (βOE). Finally, we let
D1/2 (DOE) represent the probability that upon a claim being made in the pooling (deviating) case,

the IFI fails and so cannot pay. It follows that D1/2 =
∫ M
β1/2P 1/2M

∫ C(yγ−β1/2P 1/2Mγ)
Rf

dF (θ)db(y)

and DOE =
∫ M
βOEP OEM

∫ C(yγ−βOEP OEMγ)
Rf

dF (θ)db(y). The condition under which this pooling
equilibrium cannot exist is given as follows.

(1− qr
M )RB + qr

Mγ(1−DOE)− qr
MγDOEZ − γPOE

M ≥ (1− qr
M )RB + qr

Mγ(1−D1/2)− qr
MγD1/2Z − γP 1/2

⇒ qr
M

(
D1/2 −DOE

)
(1 + Z) ≥ POE

M − P 1/2 (44)

Step 2
Consider all banks reporting qA = r, regardless of the aggregate shock. Now consider the incentive
of banks that receive the aggregate shock qA = s. We find the condition under which a bank
would like to reveal that it is safe (qA = s). Let the beliefs of the IFI be that if one (or some
positive measure) of banks report that they are safe, then there are off the equilibrium path beliefs
(OE2) about the aggregate shock. Furthermore, those reporting that they are safe are believed to
have received the lowest idiosyncratic shock. We know that the bank with the greatest incentive
to be revealed as safe is the one with the lowest idiosyncratic shock, call it bank 0. Denote the
probability of default for the loan of this bank as qs

0 and the individual price if they reveal themselves
as safe as POE2

M . In this case, let the price paid by there other banks be POE2 and βOE2 be the
optimal investment choice of the IFI. It follows that counterparty risk in this case can be defined
by: DOE2 =

∫ M
βOE2P OE2M

∫ C(yγ−βOE2P OE2Mγ)
Rf

dF (θ)db(y). The condition under which this pooling

35There is a technical issue that would not arise if there was a finite number of banks. In the traditional Riemann
sense of measurability using the concept of point-wise convergence almost everywhere, a bank of measure zero cannot
change the IFI’s beliefs. There are two ways to rectify this. The first way is to employ the pettis-integral as in Uhlig
(1994). The second way is to imagine a small but positive measure of banks deviating.

36This belief about the idiosyncratic shock gives the banks the greatest incentive to pool. In this way, we can rule
out pooling if, under these conditions, there is still a bank that wishes to deviate.
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equilibrium cannot exist is given as follows.

(1− qs
0)RB + qs

0γ(1−DOE2)− qs
0γDsZ − γPOE2

M ≥ (1− qs
0)RB + qs

0γ(1−D1/2)− qs
0γD1/2Z − γP 1/2

⇒ qs
0

(
DOE2 −D1/2

)
(1 + Z) ≤ P 1/2 − POE2

M

(45)

Therefore (44) and (45) are simultaneously satisfied when:

P 1/2 − POE2
M

qs
0(DOE2 −D1/2)

≥ 1 + Z ≥ POE
M − P 1/2

qr
M (D1/2 −DOE)

. (46)

Where qs
0 < qr

M . To see that (46) can hold, consider the limit as qs
0 approaches zero with Z suffi-

ciently large.

Step 3
We now find the conditions under which the separating equilibrium exists. Consider the following
beliefs of the IFI: if all banks report that they are safe, then they are believed to be safe, if all
report risky, then they are believed to be risky. Imagine the aggregate shock was pA = s and all
banks report truthfully. Consider the bank with the highest idiosyncratic shock, bank M (we use
this bank because they have the greatest incentive to deviate). If it reports pA = s then the price
it receives is P s and the counterparty risk it is exposed to is Ds (alongside the other banks). If it
deviates and reports pA = r then the counterparty risk is DOE3 and the price is POE3

0 , where OE3
represents the off the equilibrium path beliefs of the IFI. Since we are trying to determine conditions
under which a separating equilibrium exists, a deviating bank is believed to have received the best
idiosyncratic shock. The condition under which the bank would report truthfully is given by the
following.

(1− qs
M )RB + qs

Mγ(1−Ds)− qs
MγDsZ − γP s ≥ (1− qs

M )RB + qs
Mγ(1−DOE3)− qs

MγDOE3Z − γPOE3
0

⇒ POE3
0 − P s ≥ qs

M

(
Ds −DOE3

)
(1 + Z)

(47)

Next, imagine the aggregate shock was pA = r and all banks report that pA = r. Consider the
bank with the lowest idiosyncratic shock, bank 0. If it reports pA = r then the price it receives
is P r and the counterparty risk it is exposed to is Dr (alongside the other banks). If it deviates
and reports pA = s then the counterparty risk is DOE4 and the price is POE4

0 , where OE4 are
the off the equilibrium path beliefs in this case. The condition under which the bank would reveal
truthfully is given by the following.

(1− qr
0)RB + qr

0γ(1−Dr)− qr
0γDrZ − γP r ≥ (1− qr

0)RB + qr
0γ(1−DOE4)− qr

0γDOE4Z − γPOE4
0

⇒ qr
0

(
DOE4 −Dr

)
(1 + Z) ≥ P r − POE4

0 (48)

It follows that (47) and (48) are simultaneously satisfied when:

POE3
0 − P s

qs
M (Ds −DOE3)

≥ 1 + Z ≥ P r − POE4
0

qr
0 (DOE4 −Dr)

(49)
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To show that there can exist a unique separating equilibrium we first need to establish that if
there is a separating equilibrium, it must be the one outlined by (49). Given that any separating
equilibrium must have the same prices and same level of counterparty risk,37 they will only differ
by off the equilibrium path beliefs. Therefore, the separating equilibrium above represents the only
possible separating equilibrium. It follows that the separating equilibrium exists and is unique
when both (46) and (49) are satisfied. To see that this is possible, we can define specific off the
equilibrium path beliefs. Let OE = r, OE2 = s, OE3 = r and OE4 = s. Now consider qs

M and
qs
0 sufficiently small so that the left hand sides of (46) and (49) are satisfied. It follows that for Z

sufficiently large, the right hand sides of (46) and (49) can be satisfied.

37To see this, notice that in any separating equilibrium, the safe and risky types are revealed, so that the risk the
IFI faces is known. Therefore, given the fixed profit assumption on the IFI, they must charge the same price and
make the same investment decision (conditional on a type) regardless of the off the equilibrium path beliefs (provided
these beliefs sustain the equilibrium).
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