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Abstract 

Current credit risk methodologies rely extensively on numerical methods to obtain the portfolio loss 
distribution, so that the determination of risk measures such as VaR, capital requirements and single 
obligor limits, is an empirical process that requires a considerable amount of information and 
computational effort. This makes them difficult to apply and implement by financial authorities for 
regulatory purposes in emerging markets where information is scarce and of poor quality, and where 
computational resources may be limited. The measurement of risk concentration in loan portfolios and 
the identification of segments that exhibit excessive concentration, is a problem that has remained 
elusive despite its recognized importance.  

Assuming default probabilities of the loans and their correlations are given exogenous parameters, a 
default model is developed which obtains a closed functional form for the loss distribution, under the 
premise that it can be characterized by its mean and its variance. The resulting explicit mean-variance 
representation of Value at Risk (VaR) provides a lower bound on the banks’ capitalization ratio and the 
resulting inequality establishes capital adequacy. The “Herfindahl-Hirshman” index emerges as a 
measure of numerical loan concentration, providing a precise quantification of how concentration 
contributes to overall credit risk of the portfolio. Two new properties of the index are obtained that 
relate single obligor limits to concentration along different segments of the portfolio so as to ensure 
capital adequacy. Furthermore, the effect of default correlation on concentration is analyzed and a 
measure of risk concentration is proposed.  

Throughout the paper, the implications for risk management and regulation are discussed. Numerical 
exercises performed to date on real portfolios provide results comparable to those obtained using 
other methodologies, at a considerable reduction in computational effort. This is specially attractive for 
application to emerging markets  where the type of information required by the more standard credit 
risk measurement methodologies is not available. In the final section, the results obtained from the 
model are illustrated through the analysis of credit risk in the Mexican Banking system. 

Keywords: Capital adequacy, loan concentration risk, Herfindahl-Hirshman concentration index, single 
obligor limit, value at risk, default models. 

1. Introduction2 

Currently, the mainstream methodologies that are most widely used to measure credit risk can be 
classified into two broad categories; namely: Mark to Market models and Default models. The 
differences between these paradigms rest first on the scope of the losses considered. Whereas in 
default models an obligor can be in only one of two states, default and non-default, so that losses are 
exclusively those resulting from debtor defaults, mark to market models also consider losses resulting 

                                                 
1  An earlier versión of this model was Published in English in Economia, Societa’ e Istituzioni. See Márquez 2002. The model 

presented here is an updated version with significant differences with the original and several new results. 
2  A good detailed review of the different approaches is presented by M. Crouhy et al., JBF (24) 2000. 
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from a change of value of the loans due to credit quality migration. Further differences arise from the 
functional forms assumed for the underlying probability distributions, and the way in which these are 
related to obtain the loan portfolios’ loss distribution. For example3, in CreditMetricsTM which is a mark 
to market methodology, the key component is the transition matrix related to a rating system, which 
provides the probabilistic mechanism that models the quality migration of loans. This determines the 
losses due to obligor defaults, and the changes in the market value of the loans in the portfolio due to 
quality migration through a Montecarlo simulation process, to finally obtain the loss distribution for the 
portfolio. Whereas the transition matrix, the changes of value and the loss given default of the loans, 
and the migration covariance’s are theoretically estimated from statistical data and market information, 
the simulation process relies heavily on a normality assumption around the transition probabilities and 
Merton’s4 asset value model to establish a relation between credit quality and asset value of the 
debtor firms, and to determine the joint migration behavior of the loans in the portfolio.  

KMV’s5 methodology is also based on Merton’s model6 by defining a “distance to default”, which is the 
difference between the value of a companies assets and a certain liability threshold, such that if this 
quantity is negative, the company is bankrupt and will therefore default on its obligations. For 
standardization purposes, this distance to default is measured as a multiple of the standard deviation 
of the value of the firms’ assets. KMV has accumulated a large database, which it uses to estimate 
default probabilities and correlation’s, as well as the loss distributions due to debtor default and quality 
migration. For a specific company, this probability is approximated by the “expected default 
frequencies”; i.e. the ratio of the number of companies with the same distance to default that actually 
defaulted, to the total number of companies with the same distance to default in the database. Being a 
mark to market methodology, it differs significantly from CreditMetricsTM in that it relies on “EDF’s” for 
each debtor rather than average transition rates as estimated from the historical data produced by the 
rating agencies. There are also considerable differences in the assumptions and the functional forms 
utilized. 

CreditRisk+ is a default model7 in which the cornerstone of the methodology is the set of individual 
default probabilities of the loans in the portfolio. A basic assumption  is that the default probabilities 
are always small, so that the number of defaults in the portfolio can be approximated according to a 
Poisson probability distribution. In its more general version, where default probabilities can change 
over time, it is further assumed that these probabilities are entirely driven by a weighted sum of  “K risk 
factors” each distributed according to an independent Gamma distribution. The weights of the risk 
factors differ depending on the individual rating of the obligor and, conditional on these risk factors, 
individual obligor defaults are assumed to be independent Bernoulli trials. In the general case, default 
correlation is implicit in the covariation behavior of the risk factors, and the Poisson assumption leads 
to a Negative Binomial for the distribution of the number of defaults. Having obtained the distribution of 
the number of defaults in the portfolio, proceeding in the typical actuarial fashion, by selecting a unit of 
loss and given the recovery rates for the individual loans, these are then grouped into buckets of equal 
loss given default, and the probability generating function of the loss distribution is obtained. From 
here it is necessary to resort to a numerical recursion procedure to obtain the loss distribution.  

Another popular default methodology is Credit Portfolio View8, which is a discrete multi-period 
model. Apart from the fact that it is conceived from the beginning as a dynamic model, the highlight of 
the methodology is the determination of default probabilities, which are logit functions of indices of 
macro-economic variables. The portfolio is segmented according to geographical location and 
economic activity of the debtors, and the indices for each segment are linear functions of the 
associated macro-economic variables for the segment. In turn, each macro-economic variable is 
assumed to obey a 2nd order univariate, autoregressive process, and due to cross correlation’s in the 

                                                 
3  CreditMetrics TM is a spin-off from the J.P. Morgan Risk Management systems development group. 
4  The reader unfamiliar with the methodology is referred to section 8 of the CreditMetrics TM technical document and Robert 

Merton, 1974. 
5  This is the proprietary methodology of KMV corporation. 
6  See Kealhoffer 1998 and 1999. 
7  CreditRisk+ is marketed by Credit Suisse Financial Products. 
8  This product is offered by McKinsey, the consulting firm. The classical reference is Wilson (I) & (II) 1997. 
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error terms of the linear models for the indices and the autoregressive expressions of the underlying 
macro-economic variables, the parameters of both are estimated simultaneously from a system of 
equations. Credit Portfolio View also resorts to simulation on transition matrices to obtain the loss 
distribution.  

All of the above methodologies have contributed greatly to the understanding of the key issues in 
credit risk modeling and it is now accepted that all models are converging to produce comparable 
results. Research by Crouhy et. al.  (2000), Finger (1998) and Gordy (2000) discuss how under certain 
parametric equivalents the mainstream methodologies such as CreditMetricsTM and CreditRisk+ can 
be mapped into each other. It is important to note that the emphasis in all of these methodologies is in 
producing a distribution of losses, which is as realistic as possible. Although one can hardly argue 
against this principle, the computational effort required can be impractical for certain users, such as 
regulators, who have to oversee the whole financial system, and not just one individual bank. 
Furthermore, the development of management tools such as obtaining simple rules for establishing 
capital adequacy, identifying segments of excessive credit risk concentration and setting single obligor 
limits to loans, that are explicitly related to the risk profile of the portfolio, is not directly addressed. 

The model presented here assumes that the default probabilities of the loans and their covariance’s 
are given. From here, a default model is developed which obtains an explicit functional form for the 
loss distribution, assuming that it can be characterized by two parameters: The mean and the 
variance. Given a specific mean-variance distribution of losses, not necessarily Normal, it is possible 
to obtain the Value at Risk (VaR) for the portfolio as the expected loss plus a certain multiple of the 
standard deviation of losses. This leads to a lower bound on the banks’ capitalization ratio and the 
resulting inequality establishes capital adequacy. The model is developed in a way, which explicitly 
measures the concentration of the loan portfolio. It is seen that the “Herfindahl-Hirshman” index 
emerges naturally as a measure of concentration, providing a precise quantification of how 
concentration contributes to the overall credit risk of the portfolio. Two new properties of the index are 
obtained that relate single obligor limits to concentration along different segments of the portfolio so as 
to ensure capital adequacy. Furthermore, the research shows how correlation affects concentration 
and this leads to the definition of a risk concentration measure.  Finally, it is shown that the model can 
be implemented with limited information on the actual composition of  bank loan portfolio’s, which is a 
crucial factor for regulators insomuch as their capacity to obtain up to date and timely information from 
banks is limited. 

Examples of numerical exercises performed to date on real loan portfolios are shown, and are seen to 
provide results comparable to those obtained using other methodologies, at a considerable reduction 
in computational effort. Finally, since all the relevant elements for measuring default credit risk are 
explicitly parameterized, the shortcomings of available information can be compensated by a judicious 
use of assumptions on the values of the relevant parameters. The computational efficiency of the 
model results in rapid feedback on the implications and sensitivity of the risk profile of a loan portfolio 
to changes in the parameters.9 Since the measurement of concentration is at the heart of the model, 
we begin with a discussion of this topic. 

2. The concentration issue. 

Loan concentration has long been identified as an important source of risk for banks and loan 
portfolios. Judging from current technical literature on credit risk, as far as concentration goes, the 
establishment of a generally accepted paradigm has remained elusive in spite of the importance of the 
problem10. The more formal approaches which look to portfolio theory11, have been mainly concerned 
with optimal diversification of portfolios of traded fixed income assets where information compatible 
with traditional Markowitz (1959) type models can be obtained in a cost effective manner. It must be 
pointed out however, that traditional portfolio theory approaches deal with the concentration issue 

                                                 
9  Due to the closed form expression for value at risk, it is also possible to perform analytical exercises. 
10  See Caouette, Altman, y Narayanan  1998, chapters 17 and 18. See also Kealhofer 1998 . 
11  See for example Bennet 1984. 
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indirectly, since the preoccupation is the allocation of assets through the well known mean-variance 
tradeoff, but a clear measure of concentration and its relation to risk has never been made explicit. 
Kealhoffer (1998) has an interesting discussion of the issue from the point of view of diversification. 
First he states that “there has been no method for actually measuring the amount of diversification in a 
debt portfolio”, and that “ex-ante, no method has existed which could quantify concentrations”; 
concentrations have only been detected ex-post. He then argues that “measuring diversification 
means specifying the range and likelihood of possible losses associated with a portfolio”. He goes on 
to provide a definition that allows the comparison of diversification of two portfolios as: 

“Portfolio A is better diversified than portfolio B if the probability of loss exceeding 
a given percentage is smaller for A than for B, and both portfolios have the same 
expected loss”. 

Thus, when dealing with portfolios of traditional bank loans, no formal methodology for measuring 
concentration seems to have emerged. As pointed out by Altman and Saunders (1998), the 
concentration measurement issue has mainly been dealt with through subjective analysis. Typically, 
banks and other agents apply a scoring technique based on the opinion of a group of experts, about 
the degree of concentration observed along and across different segments of a portfolio, as regards to 
some classification criterion, in order to obtain an indicator of loan concentration. Generally, the 
number obtained is of more value in cardinal or hierarchical terms, than it is as a direct measure of risk 
that can quickly be translated into potential losses or value at risk12.  

The approach adopted in the following analysis does not solve all the aforementioned problems, but it 
does provide a theoretical framework that might allow ex-ante, the detection of risk concentration. The 
proposed risk concentration measure is consistent with Kealhoffers’ notion as previously stated. 
Example 6.2 illustrates how the risk concentration measure can be used to detect the more risky 
segments of a loan portfolio.  

3. Value at risk, Concentration and the “single obligor” limit: The simplest 
case. 

Traditionally, banks deal with concentration risk by placing a limit on the maximum amount that can be 
loaned to a single debtor, along the different dimensions where concentration can occur; that is: By 
industry, geographical region, product, country etc. Normally, the “single obligor limit” is expressed as 
a proportion “δ” of the capital “K” of the bank. However, when discussing loan concentration, one 
normally addresses the issue of how much of the total loans outstanding is concentrated in an 
individual or group. Thus, whatever the virtues of setting limits as a percentage of capital, this does not 
give much information as to the actual concentration of loans in the portfolio. To see this, note that at 
least theoretically, a bank could have only one loan that respects the limit but have a totally 
concentrated portfolio. On the other hand, the bank can have a million uncorrelated loans of exactly 
the same size, in which case the portfolio would be completely diversified, regardless of whether each 
loan respects the limit or not. Thus, one can have highly concentrated portfolios as well as highly 
diversified portfolios that respect the constraint in terms of capital.13 We will therefore part with 
tradition, since for the purpose at hand it is better to think of concentration in terms of proportions of 
the total value of the loan portfolio, and fix limits accordingly. Throughout this paper, individual limits 
on loans will be expressed as proportions  “θ” of the total value of the loan portfolio “V”. Furthermore, 
no generality is lost since δ andθ are linearly related, so the results are not altered. To see this, let  “fk” 
denote the value of the kth of “N” loans, and analyze the single obligor limit as represented by the 
following constraint: 

                                                 
12  See for example Moody’s Investor services 1991, and the 1993 Coopers and Lybrand report. 
13  For example, if loans are constrained not to exceed 12% of capital, this can be done with only one loan in the portfolio in 

which case concentration is maximum. On the other hand, if the portfolio has a thousand loans all representing 12% of 
capital, it would be a highly diversified portfolio. 
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as: 
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If all loans have the same default probability “p”, and assuming independence, one can define “N” 
binary random loss variables “xi” as: 
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14  Note that if there is only one loan in the portfolio, then it is necessarily true that fi = V so that ψδ = ? = 1 which in turn implies 

that the portfolio is totally concentrated in one loan. 
15  See for example DeGroot (1988), p. 263. 



Restricted 

A simplified credit risk model for supervisory purposes in emerging markets, that measures concentration risk and explicitly relates 
credit risk to capital adequacy and single obligor limits 6

 

Readers familiar with the literature of industrial organization will have recognized that the above 
measure is the “Herfindahl-Hirshman” concentration index.16 

 

4. Analysis of the Capital Adequacy Inequality. 

The first observation is that, with the obvious limitations, it seems that portfolio concentration risk can 
be managed using a very general measure of concentration, other than the single obligor limit. Next, it 
is interesting to note that capital adequacy as represented by the capitalization ratio ψ requires that 

( )FHppzp )1( −+≥ αψ  .....(4.1) 

This inequality relates capital adequacy to the probability of default, the confidence level used for 
value at risk, and the concentration index. It also shows that there is a direct relation between 
Herfindahls’ index and the variance of losses. Since the index takes on values between the reciprocal 
of the number of loans N, and one, where high concentration is present, the variance of losses will 

vary between Npp /)1( −  and )1( pp − , depending on H(F). Furthermore, note that the role 

played by H(F) in the above is totally consistent with Kealhoffers’ definition of concentration since it is 
obvious from (4.1) that the lower the value of H(F), the lower the probability of loss exceeding a 
specified level, for the same expected loss. 

In what follows, it is seen that everything behaves as it should. The following theorem summarizes the 
main implications for risk managers of the previous analysis. These results are introduced early 
because they remain basically unchanged throughout all future generalizations. 

Theorem 4.1. 

The bound Θ(p,ψ,α) on the concentration measure has the following properties: 

Θ(p,ψ,α) varies in direct proportion to the capitalization ratioψ and inversely to the default 
probability “p” and the value at risk confidence level “zα”. 

If the concentration measure exceeds the bound (i.e. H(F) > Θ(p,ψ,α)), then the capital of the bank is 
at risk, for the given confidence level. 

If the default probability “p” exceeds the capitalization ratio “ψ”, then the capital of the bank is at risk 
for any confidence level, regardless of the concentration of the loan portfolio. 

If Θ(p,ψ,α) > 1, no degree of concentration of the loan portfolio, places the capital of the bank at risk. 

Proof. 

Point one is obvious from the form of Θ(p,ψ,α). The second point is easily verified; that is: If H(F) > 
Θ(p,ψ,α) then, 
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16  See for example Shy (1995) or Tirol (1995) 
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Point three follows directly from 4.1: 

VARα  ≤ K ⇔ ( ) )(1 FHppzp −+≥ αψ   

Point three is also verified easily. If p > ψ, then 4.1 is violated: 

( )( ) ( )( ) KpqHVzKVpqFHzVpqHzpVAR >+=+>+= )(FF αααα ψ  

As for point four, it is well known that H(F) ≤ 1 for any arbitrary F17.g 

Capital adequacy Theorem 4.1 provides some useful rules for the risk manager and for the regulator. 
First, can be determined because one obtains precise measures of the adjustments in the 
capitalization ratio required by variations in the default rates and/or the concentration of the loan 
portfolio. Furthermore, depending on the amount of control that banks have on the default ratio and 
loan concentration, adjustments in the default probability and the concentration of the loan portfolio 
necessary to maintain capital adequacy can also be calculated. Thus, if the concentration of the loan 
portfolio exceeds the bound at the desired confidence level, inequality (3.2) provides a convenient 
means of fine tuning the adjustments required in ψ, p and H(F) so that credit risk does not place the 
capital of the bank in jeopardy. Also interesting, is that if the default rate of the portfolio exceeds the 
capitalization ratio, a signal of alarm is sent to the risk manager and the financial authorities, that the 
banks’ capital is at risk regardless of the concentration of the loan portfolio and the confidence level 
adopted. 

5. A closer look at Herfindahls’ index. 

One of the main features of the approach taken is that a measure of loan concentration as it relates to 
risk arises naturally. The Herfindahl-Hirschman index has been extensively studied in relation to 
industrial concentration, and it is known to have several important properties. Thus, it is known that the 
index takes values between the reciprocal of “N” and one18, and that it behaves well in terms of “the 
five properties of inequality measures”. 19 We now investigate how Herfindahls’ index relates to the 
intuitive notion that concentration is related to the minimum number of obligors where credit is more 
concentrated. A better understanding of the relation between the single obligor limit and the 
concentration index has important risk management and regulatory implications. 

In order to examine how concentration relates to the notion that more credit in less hands means more 
concentration, it must be consistent with the notion that maximum concentration occurs when all credit 
is held by a single obligor and the minimum is when all debtors owe the same amount. Formally: 

a) The maximum concentration occurs when for some “i”, one has that: 

                                                              V for j = i 
fj =   
            0 for j≠ i;  j = 1,2,....,N 

i.e. Fmax  = Vei , where ei ∈ EN  is the ith unit vector. 

b) The minimum concentration occurs when 
N
V

f i =  for i = 1,2,....,N 

                                                 
17

  See Encaoua and Jacquemin 1980. 
18 A simple normalization is possible, where it is easily seen that φ(F) as defined below, satisfies 0  ≤  φ  ≤ 1 
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19  See Cowell 1995 and Encaoua and Jacquemin 1980. 
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Concentration has to do with numbers, and Herfindahls’ index has several interesting numbers related 
properties. The best known is Adelman’s “numbers-equivalent”20, which for loan concentration states 
that its inverse can be interpreted as “the minimum number of loans of equal size that would result in a 
specific value of the index”.  It is now shown that the value of the index is maximized under the single 
obligor limit, when all credit is concentrated in the minimum number of obligors, and each obligor holds 
credit up to the limit. The theorem establishes the relation between the single obligor limit and the 
Herfindahl-Hirshman measure of concentration, and in so doing, it shows that Adelman’s numbers-
equivalent is in fact the maximum concentration possible, when loans are constrained by a certain 
limit21. In what follows, we let F denote the vector of loans 0≥kf

  
for Nk ,,2,1 K= . Without loss of 

generality, we also assume that the elements of this vector have been sorted in decreasing order:  
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the index. 
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Then H(F’) > H(F). 

b) If fi > fj
  and  0 < ε = fi - fj

  , then the vector F’’ = (fk’’) defined as: 
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Has the property H(F’’) < H(F).   

Proof:   

To prove (a), simply note that: 
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20  See Adelman 1969 and Kelly Jr. 1981. For other interesting numbers related properties, see Weinstock 1984. 
21 Although the result conforms to intuition, no formal proof has been detected by the authors in the more frequent references, 

such as Sleuwaegen et. al. 1989, Weinstock or Encaoua and Jaquemin op. cit.. 
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(Note that ε > fi – fj  implies case (a)). ¦  

The proposition states that if some element fk is increased at the expense of  decreasing a smaller 
element fj, the concentration index will increase. If on the other hand, an element is increased at the 
expense of a larger element, then the concentration index will decrease. To continue with the analysis, 
it is now shown that if all credit is concentrated in the minimum number of debtors, while subject to the 
constraint  fk ≤ θ V, then H(F) ≤ θ. 

Proposition 5.2: 
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we have that H(F) = ?. 

Proof:  

Note that ∑ fk = n? + ε = 1  and therefore: 
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For H(F) = ? one must solve the quadratic equation,   
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It is simple to verify that (5.1) has the following two solutions: 
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( ) ( )1,0  0

1
1

21212n 
1

1

1
1

21
1

1

222

2

∈∀<
+
−

=+++−+−++
+

=+
+

+
+−








+

+
+

λ
λλ

λλλ

λλ

nn
nnnnnn

nn

nn
n

n
nn

n
nn

   

¦  

It is now shown that if all loans respect the single obligor limit fk ≤ θ V, then H(F) ≤  θ and the 
distribution of loans of the previous proposition maximizes the value of the index under the single 
obligor constraint. 
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Theorem 5.3:   

Let F = (fk)  be such that:  









+=
+=

=

=
Nnk

nk

nk

f k

,...,2  ;0
1  ;

  ,...,2,1 ;

ε

θ

 

with ?, ε ≥ 0; ε < ? and  
1=∑ kf

.   Then F maximizes H(F) for all F such that fk =?∀ k  and H(F) =?. 

Proof22:  

Proposition 5.2 states that H(F) = ? for this distribution. Necessarily 




=
θ
1

n
  and  0≥ε   is such that 

n
ε

θ
−

=
1

   in order to have 
1=∑ kf

.  Furthermore, any vector with 
0   ;' >+= δδθkf

  would 

violate the constraint 
kf k ∀≤ θ

. Therefore, the only possibility of altering the distribution of loans 
would be to decrease some element fk = ? or fn+1 = ε by some quantity δ > 0. But then proposition 

5.1(b) states that H(F’) < H(F) = ?. ¦  

This result has important implications for risk management and regulation since de facto, it states that 
by placing a limit on individual loans as a propotion of the value of the portfolio, one is also placing a 
limit on concentration as measured by Herfindahls’ index by the same amount θ. Therefore, it is simple 
to check for capital adequacy by  

( )
( )

( )αψ
ψ

θ
α

,,
12

2

p
ppz

p
Θ=

−
−

≤ ……(5.2) 

Alternatively, from (4.1), one can obtain the capital adequacy relation in terms of the single obligor limit 
(2.6); that is: 

θψ α )1( ppzp −+≥

 .......(5.3) 
Thus, (5.2) provides a very simple means to check for capital adequacy, without doing complicated 
calculations. Although crude, simply take θ to be the ratio of the largest loan to the total value of the 
loan portfolio and the observed default rate as an ex-post proxy of default probability and substitute 
these values in the right hand side of (5.1). Since Theorem (5.1) guarantees H(F) ≤ θ, if the inequality 
holds it is a good sign that the bank is adequately capitalized. 

It should be realized however, that this condition is sufficient but not necessary. As will be shown in 
the following theorem, if one chooses to explicitly constrain the portfolio to satisfy H(F) ≤ θ, it is 
possible to have specific loans that as a proportion of the total value of the portfolio represent a 
quantity larger than θ. Intuitively, granting a very large loan while satisfying the constraint on the index  
is only possible at the expense of the other loans in the portfolio so that in the optimum, the portfolio is 
composed only of one large loan and all others are small and of equal size. 

                                                 
22  This proof and the one for the next theorem are different from the original proofs in Márquez 2002. They are due to Fausto 

Membrillo and are more intuitive and elegant than the original. 
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Theorem 5.4: 

If H(F) ≤ θ  then: 

( )( )( ) θθ <−−+≤ 111
1

NN
N

f i    for i = 1,2,3,....,N 

Proof: 

The idea behind the proof is that under the constraint H(F) ≤ θ, a very large loan is only possible at the 
expense of all the other loans which must become progressively smaller and of equal size. So, given 
the constraint H(F) ≤ θ, let us maximize the largest element f1. Suppose f1 = a is the largest loan 
possible, then necessarily f2 = f3 = …. = fN = b; for some b > 0; b < a. To see this, consider any other 
distribution with  fi > fj and 1 < i < j. Then there exists ε > 0 such that fi’ = fi - ε >  fj’ = fj + ε > 0 . 
proposition 5.1 then states that H(F’) < H(F) = ?. Now, by continuity of the index on each fi and 

because of theorem 5.3, there exists ε’ > 0 such that  any loan distribution F’’ with  '1
''

1 ε+= ff  and 

0'''' ≥−= εjj ff
 satisfies θ≤< )''()'( FHFH , which contradicts the assumption that F is a 

distribution where  f1 is a maximum.  Therefore, if  f1 = a, for some a > 0, the loan distribution which 
maximizes  f1, subject to the constraint  H(F) ≤ θ, can be represented as 

           a ; k = 1 
fk = 

 b ; k = 2, 3, ....,N 

and a > b; therefore : 

θ≤−+= 22 )1()( bNaFH …….(5.4) 

Furthermore a + (N-1)b = V. solving for b: 

  1
1

−
−

=
N

a
b

 

Substituting b en (5.4) one obtains: 

( ) θ≤







−
−

−+
2

2

1
1

1
N
a

Na
 

This leads to the following quadratic equation: 

( )[ ] 01122 ≤−−+− NaNa θ …..(5.5) 
Equating to zero, the solution of (5.5), yields: 

( )( )[ ]111
1

−−+= NN
N

a θ
 

Note that a → √? when N → ∞, and it is simple to obtain the last inequality:  

( ) 01 2 >−θ  ⇔ 0122 >+− θθ  ⇔ θθθ 4122 >++  ⇔ ( ) θθ 41 2 >+  ⇔ θθ 21 >+  ⇔  

NN θθ 2)1( −<+−  ⇔ 121)1( 22 +−<++− NNNN θθθθ  ⇔  

( )22 11 −<+−− NNNN θθθ  ⇔  ( )2
1)1)(1( −<−− NNN θθ  ⇔  

1)1)(1( −<−− NNN θθ
 ⇔ 

( ) θθ <−−+ )1)(1(1
1

NN
N   g 
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Having a good concentration index is desirable from the regulatory point of view, since it facilitates 
comparisons of loan concentration between different institutions, and it leads to an assessment of 
concentration risk for the financial system as a whole. For the risk manager of an individual bank, 
besides measuring his own risk, it provides benchmarks for setting business strategy and goals, and 
allows comparisons with the competition. Herfindahl’s index seems particularly well suited for the task, 
since besides measuring concentration it is directly related to risk, and provides a quick means to 
check capital adequacy. In the following section it will be seen that the concept is robust under much 
more general conditions. 

5.1. A numerical example. 

In order to illustrate the results obtained so far, consider the following example taken from the 
CreditRisk+ manual: 

Table 5.1. 

RATING No. of  
loans  A B C D E F G 

TOTAL 

1  $4,728  $5,528  $3,138  $5,320  $1,800 $1,933     $358  $22,805 

2  $7,728  $5,848  $3,204  $5,765  $5,042 $2,317  $1,090  $30,994 

3    $4,831 $20,239 $15,411 $2,411  $2,652  $45,544 

4    $4,912   $2,598  $4,929  $12,439 

5    $5,435     $6,467  $11,902 

6        $6,480    $6,480 

TOTAL $12,456 $11,376 $21,520 $31,324 $22,253 $9,259 $21,976 $130,164 

Default probabilities for the loans are taken from the following table:  

Table 5.2. 

Rating Default Prob. 

A  1.65 

B  3.00 

C  5.00 

D  7.50 

E 10.00 

F 15.00 

G 30.00 

For this first example let the default probability for the loans be the weighted average of the 
probabilities of table 2.5; that is 10.89%. The HHI index for the portfolio is 6.61%. Assuming normality 
and choosing a 5% confidence level, zα = 1.96 and one obtains: 

( ) 2658.00661.08911.1089.096.11089.0)(1 =××+=−+≥ FHppzp αψ  

Then the banks economic capital must be at least: 

VaR.05  = 0.2658× V = 0.2658×  $130,164.00 = $34,602.79 

Suppose economic capital is $35,000, then the capitalization ratio is: 
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2689.0
164,130
000,35

===
V
K

ψ
 

 
Since 0.2689 > 0.2658, the bank exhibits capital adequacy. Now, under 3.2, the maximum 
concentration that the port folio can assume is: 

( )
( )

( )
0687.0

8911.01089.096.1
1089.02689.0

1 2

2

2

2

=
××

−
=

−
−

ppz
p

α

ψ

 

Since H(F) = 6.61%, the portfolio is not excessively concentrated.  

Since the maximum value of the index is 6.87%, no loan in the portfolio should exceed: 

88.107,34164,1302621.00687.0* =×=×= Vf  

Table 5.1, shows that the largest loan is the $20,239 D-loan, which is smaller than the aforementioned 
quantity. It is interesting to note that the single obligor limit would be violated. According to 5.2, loans 
should not exceed: 

fi ≤ 0.0687× 130,164 = $8,942.27 

There are two loans in the portfolio that are greater than this amount; namely the $20,239 D-loan and 
the $15,411 E-loan, confirming that the condition is sufficient but not necessary. Finally, it is seen that 
the largest loan in the portfolio is within the bounds provided by Theorem 5.2; that is: $8,942.27 ≤ 
$20,239 ≤ $34,107.88. § 

6. Accounting for default correlation and different default probabilities. 

The results obtained so far rely on the following assumptions: 

a) The loss distribution can be characterized by its mean and variance. 

b) Default probabilities are homogenous and independent from each other, for all loans 
along the dimension where loan concentration can occur.  

c) There is only one dimension of possible loan concentration. 

d) Nothing is recovered from defaulting loans. 

In this section the model is generalized by relaxing the second and third assumptions. We first 
examine the case where default probabilities can be different and are correlated. 

6.1 A General Model. 

Assume that the portfolio loss distribution can be characterized by its mean and its variance and that 
the vector of default probabilities “π” and the Co-variance matrix “M” are given exogenously. 
Proceeding along the same lines of the previous analysis, the VaR to capital inequality is now: 

KzVAR T ≤+= FMFF T
αα π    ....(6.1) 

Since M is positive definite, it is well known that there exists a Matrix  “Q” such that, 

TQQM Λ=    ......(6.2) 
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where Λ is the diagonal matrix of characteristic values of M, and Q is an orthogonal matrix of the 

eigen-vectors of  M, with the property that Q-1 = QT.23 Let TQQS Λ= , where Λ  is the diagonal 

matrix of the square roots of the eigen-values of M, so that SSM T= . Now change the variable to G 
= SF so that FTMF = GTG. This change of variable effectively rescales “F” in terms of the matrix “S” 
which in turn is representative of the “square root” of the covariance matrix “M”. It is well known that 
this is equivalent to rescaling the loans in the portfolio according to the covariances of the default 
probabilities between the loans, so that loans with higher loss covariances will increase in size, while 
the opposite will happen to loans with smaller loss covariances. Although much credit in few hands is 
potentially dangerous, it is even more dangerous when too much risk is concentrated in a particular 
group of debtors, as suggested by the rescaling of the loan portfolio in terms of “S ”. Thus, in a given 
moment a numerically highly diversified portfolio of small loans that exhibit large variances and are 
highly correlated, may be riskier than a numerically small portfolio of large loans that are uncorrelated 
and have low default probabilities. In the next section, the discussion is taken a step further. 

To continue with the development of the model, multiplying and dividing FTMF by FTF, and dividing by 

F1T=V , the following capital adequacy relation, relative to the value of the loan portfolio is obtained: 

( ) ( )FHzpFH
FF

MFF
zp T

T

σψ αα +=+≥ .....(6.3) 

where 

),(2 MFR
FTF

MFTF
==σ  = Rayleigh’s Quotient .....(6.4) 

is a measure of the standard deviation of losses and 

V
p

T Fπ
= .......(6.5) 

is the expected loss of the portfolio relative to its value which is nothing more then the weighted 
average of default probabilities. Proceeding in the usual way, and applying theorem 5.1, one obtains a 
limit on concentration and single obligor limits as: 

( )
2








 −
≤≤

σ
ψ

θ
αz

p
FH .......(6.6) 

Note that relations (6.3) and (6.6) have the same structure as those obtained for the simple cases of 
equal default probabilities and independent loans. In this general case, Rayleigh’s quotient measures 
the variance of losses. One can verify that this reduces to the case of equal default probabilities for all 
loans and uncorrelated defaults, and that all the results of Theorem 4.1 are still true under this 
generalization.  

Note that the total variance of losses ( )FHσ , is decomposed into the variation-covariation effect, 

represented by σ, and concentration H(F). This emphasizes the fact that resizing the loan vector 
through the co-variance matrix “M”, implies that concentration in the number of loans is not necessarily 
a good measure of risk concentration.  

                                                 
23  Any intermediate text on matrix theory can be consulted. See for example Strang G. 1980, or Mirsky L. 1990. 
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6.2. A measure of risk concentration. 

In order to investigate how correlation affects concentration and increases risk, consider the special 
case when all loans have the same default probability “p” and each pair of loans is similarly correlated 
through “ρ”. Then, the covariance of defaults between any two loans (i,j) is: 

jipppppp ijjjiiijjiij ,)1()1()1( ∀−=−−== ρρρσσσ  .......(6.7) 

In this case the covariance matrix has the following structure: 



















−⋅=

1

1
1

)1(

ρρ
ρ

ρ
ρρ

L
OOM

MO
L

ppM  ......(6.8) 

It is convenient to represent this as: 

( ){ }I11M T ρρ −+−= 11 p)p(  .......(6.9) 

Thus, the variance of losses of the portfolio is: 

( ) ( ){ }FFF1MFF TTT ρρ −+−= 11
2

p)p(  

Proceeding in the usual way, and noting that V = 1TF, this leads to a VaR of: 

  { })()1()1( FHppzpVVaR ρρα −+−⋅+=  ......(6.10) 

In this expression, loss variance is decomposed into two distinct elements. The first is the Bernoulli 
variance p(1-p), while concentration is captured by: 

)()1(' FHH ρρ −+=   .... (6.11) 

Note that under positive correlation, H’ can be interpreted as a convex combination between the HHI 
of a totally concentrated portfolio (H(.) = 1)  and the HHI of the portfolio H(F). Clearly, H’ increases with 
“ρ” and for ρ = 0 we have H’ = H(F); whereas H’ =1 if ρ = 1. In other words, if all the loans of a portfolio 
are perfectly and positively correlated, in terms of risk they behave as a single loan. In general, one 
can say that the correlated portfolio behaves exactly the same as an uncorrelated portfolio, whose 
concentration index is H’, instead of H(F). Thus, H’ could be considered a correlation adjusted 
concentration index. 

Furthermore, (6.11) can be used to compute such an index for any given portfolio by computing “p” 
and“ρ”, such that:  

 ( ) [ ] )(),()()1()1('1 FHFMRFHppHpp ⋅=−+⋅−⋅=⋅− ρρ ......(6.12) 

Letting 
V

p
T Fπ

= , solving for ρ gives:  

[ ]
[ ])(1)1(

)()1(),(

1
)(

1

1
)1(
),(

FHpp
FHppFMR

FH

pp
FMR

−−⋅
−⋅−

=









−









−

−⋅
=ρ ......(6.13) 

The expression provides an equivalent correlation measure which summarizes how loan defaults are 
pairwise correlated within the portfolio. 
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Example  6.1 

Consider the loan portfolio of the previous examples. The correlation matrix used in this exercise is as 
shown in appendix A, and is segmented into three groups: 

















=

32313

32212

31211

MCC
CMC
CCM

M

,,

,,

,,

 

Assuming normality and a 5% confidence level, VaR is: 

$55,683  6)1.96(21,1714,179
05.05. =+=+= MFTT FzFVaR π  

From previous examples we know that p = 0.1089, H(F) = 0.0661, and computation yields: 

 0.6329 0.4006 ===
FF

MFF
T

T

σ
 

Thus, capital adequacy requires: 

 0.4278)F(Hzp =σ+>ψ α  

Assume K = $60,000, so that 4610.0
164,130
000,60

==ψ . Relation (1.5), provides single obligor limits: 

0805.0
9)1.96(0.632

0.1089-0.4610
z

p
22

=







=








σ

−ψ
≤θ

α  
That is: 

482,10$164,130$0805.0f i =×≤  
From table (7.2) it is seen that there are only two loans that exceed the limit.  

Let us now examine the impact of correlation on concentration. From (6.13): 

[ ]
[ ] 2191.0

0661.010978.0
0661.00978.04006.0

=
−×

×−
=ρ

 
From (6.11), the risk concentration index is: 

H’ = 0.2191 + (1-0.2191)×0.0661 = 0.2707 

Beside the fact that the portfolio of this example is a pretty bad one, if one adds 22% correlation to the 

high default probability of 10.89% one obtains unexpected losses of 1627.0)F(H =σ , as opposed 

to 0801.0)()1( =− FHpp  if the loans were independent. Thus, the 22% equivalent correlation 

doubles the standard deviation of losses over the uncorrelated case.  It is also interesting to compare 
the risk concentration index of H’ = 27.07%, which is four times greater than H(F) = 6.61%. In terms of 
capital adequacy, the correlated portfolio requires a capitalization ratio  ψ ≥ 43% which is substantially 
greater than the 27% required if the loans were independent.§ 

6.3. Dealing with Different Dimensions of Concentration. 

Generally, banks partition loan portfolios into sub-portfolios or “buckets” according to some practical 
criterion which is somehow related to the way in which they do business. For the purpose of credit risk 
in general and concentration in particular, it may be desirable to adopt different criterion. As mentioned 
initially, one of the most difficult problems is to determine ex-ante, potentially dangerous dimensions of 
concentration, and these may have nothing to do with the organizational structure of the bank. The 
model permits a totally arbitrary segmentation of the portfolio, in order to determine the segments 
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where concentration is potentially riskier. This permits the differentiation of limits for each segment, as 
well as differentiation in the allocation of capital.  

6.3.1.  The analysis of individual segments.  

Suppose that F is arbitrarily partitioned into “h” segments, ( )h
T FFF ,...,1= , where Fi is a vector 

whose elements are the amounts outstanding of the loans in group “i”. Now partition the default 
probability vector and the associated covariance matrix accordingly:  

a) ( )iππ = ;  where “πi” is the vector of default probabilities of segment i; i 

= 1,2,3,....,h 

b) The covariance matrix is partitioned as: 



















=

hhh

nh

h

MCC

CMC
CCM

L
MOMM

L
L

21

2221

1121

M  

Each diagonal block Mi is the covariance matrix of defaults for the loans in segment “i” and has 
dimension (Ni×Ni); where Ni is the number of loans in the segment. Matrices “Cij” contain the 

covariances of the defaults between the loans of segments “i” and “j”. Let ∑
∈

=
iFj

ji fV , be the value of 

the portfolio of segment “i”, and VV
h

i
i =∑

=1

 . Let Ki = γiK, where “γi” is the proportion of capital 

allocated to segment “i”; [ ] ∑
=

=∀∈
h

i
ii i

1

1;1,0 γγ .  Note that when analyzing individual segments, 

only correlations between defaults of the loans in segment “i” with loans of the other groups should be 
considered, while correlations of other groups between themselves are irrelevant. Thus, from “M” 
construct matrices “Si” with the following structure: 

Si = 























00

2

00

2
1

1

1

LL
MLMLM

LL
MLMLM

LL

hi

ihii

i

C

CMC

C

…. (6.14) 

Note that MS
i i =∑ .  When integrating the analysis of individual segments into the overall portfolio, 

it is important that the relative weights of each segment in the overall portfolio do not distort the results 
for the portfolio as a whole. An additivity property is necessary so that addition of over individual 
segments is consistent for the portfolio. Let 

∑
=

= h

i 1

FSF

MFF

i
T

T

φ    …. (6.15) 

In what follows, we will se that this constant permits the summation of the individual VaRi. Proceeding 
in the usual way, the value at risk inequality for each segment is: 

 KKz iii
T

iii γφν α =≤+= FSFFpT  for i = 1,2,…,h (6.16) 
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Where γi ≥ 0 y 1=∑ i iγ . It is easily verified that FMFF T
αα πν zVaR T

i i +==∑ . 

Dividing by Vi, leads to capital adequacy for each individual segment: 

 ( ) ( )
( ) { }

∑
≠

++=≥
ijj

j
T
iiii

i

i
i HRzp

V /
2

1
, FCF

F1
FMF ij

i
Tiiφ

ν
ψ α  (6.17) 

Solving for H(Fi) one obtains, 

 ( )
( ) { }

∑
≠

−






 −
≤

ijj
jij

T
i

iii

ii
i

Vz
p

FH FCF2

2
1

σφσ
ψ

α

 (6.18) 

where 

 ( )ii
i MF

FF
FMF

,i
i

T
i

i
T
i

i R==σ  (6.19) 

Single obligor limits per segment are obtained applying theorem 5.3: 

 
( ) { }

∑
≠

−






 −
≤

ijj
jij

T
i

iii

ii
i

Vz
p

FCF2

2
1

σφσ
ψ

θ
α

 (6.20) 

It is interesting to note that the bound on concentration now includes a correction for default 
correlation with the loans in other groups; namely, the second term on the right hand side of 
the inequality. This conforms to intuition, since higher correlation of defaults with the loans 
in the other groups, means that less concentration can be tolerated in group “i”; namely:  

( ) { }
∑

≠ijj
jij

T
i

ii

FCF
V 2

1

σ
 .....(6.21) 

6.3.3. Overall Capital Adequacy in a segmented portfolio. 

Note that all of the above expressions, are obtained from “νi/Vi, so that the weight of the segments 
within the portfolio are not accounted for. Therefore, a simple summation of terms can be misleading 

as to the overall capital adequacy of the segmented portfolio. Letting 
V
Vi

i =γ , then if 6.17 is satisfied 

for all the segments, ∑
=

=
h

i
ii

1

ψγψ ensures capital adequacy for the portfolio.  

Example 6.2. 

Refer to the portfolio of the previous examples. The partition is shown in table 6.9.  24 The loans vector, 
is partitioned as: ( )

321

T FFFF = ,  

                                                 
24 A1 is the first A-rated loan, C2 is the second C-rated loan and so on. 
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Table 6.9 

Rating F1  Rating F2  Rating F3 

A1   $4,728  B1    $5,528  A2   $7,728 

C2   $3,204  C1    $3,138  B2   $5,848 

C4   $4,912  C3     $4,831  C5   $5,435 

D1   $5,320  E2     $5,042  D2   $5,765 

D3 $20,239  E3   $15,411  E1   $1,800 

F1   $1,933  F3     $2,411  F2   $2,317 

F4   $2,598  G1       $358  G3   $2,652 

G2   $1,090  G5   $6,467  G4   $4,929 

Total $44,024  Total $43,186  G6   $6,480 

      Total $42,954 

Next, the default probabilities vector and the covariance matrix are partitioned to be consistent with the 
partition of the loans vector as: 

( )
321

T πππ=π  and  
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 where: 

• M1, M2, and M3 are the idiosyncratic covariance matrices for the three groups 
respectively. 

• C12
T = C21, is the covariance matrix between the loans of groups one and 

two. Likewise, C13
T = C31 is the covariance matrix between the loans of the 

first and third groups and C23
T=C32 is the covariance matrix between the 

loans of the second and third. (See appendix A). 

Table 6.10 shows the value of the loans of each segment, the corresponding HHI, and the associated 
capital allocation γi.  

Table 6.10 

Segment i Vi H(Fi) γ i Ki 

1 $44,024 0.2613 0.3382 $20,293 

2 $43,186 0.2008 0.3318 $19,907 

3 $42,954 0.1293 0.33 $19,800 

Refer to appendix “A” for the variance co-variance matrix used for this example. The Si matrices for 
each segment have the form: 

S1 = 
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i
i

γ
ψ  for all segments, since γi = Vi /V. 

From 6.15, parameter φ, which allows summation of individual VaR’s is: 
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Calculation of νi with 6.16, using a 5% confidence limit and assuming normality, yields:  

 ν1 = $16,255 293,20$K1 =< , 
 ν2 = $19,368 907,19$K 2 =< , 
 ν3 = $20,060 800,19$K 3 => . 

First note that: 

683,55$
3

1

== ∑
=i

iVaR να  

Moreover, 

4278.0
164,130
684,55

4610.0
3

1

===≥= ∑
= V

VaR
Vi i

iν
ψ  

Thus, the portfolio as a whole exhibits capital adequacy, in spite of the fact that the third segment does 
not comply with its individual capital requirement. This means that the segment will not satisfy any 
of the other conditions. Using the data in tables 6.9 and 6.10, the equivalent correlation for 
each segment is calculated from equation (6.13) and the risk concentration measure from 
(6.11). The results are summarized in table 6.12: 

Table 6.12 

p RHO H(F) H’ H’/H(F) Loos Std. Dev. 

0.0774 0.1404 0.2613 0.365 1.3969 0.1614 

0.1162 0.1746 0.2008 0.3403 1.6947 0.1869 

0.1339 0.2792 0.1293 0.3724 2.8801 0.2078 

 
With these values, one can verify all the capital adequacy relations. As was to be expected, the third 
segment does not comply with the limit on concentration. 

( )
( ) { }
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Now single obligor limits can be obtained: 

7583.03895.01478.11 =−≤θ ;  f1 384,33$024,44$7583.0 =×≤  

2454.02860.05314.02 =−≤θ ;  f2 596,10$186,43$2454.0 =×≤  

1115.01377.02492.03 =−≤θ ;  f3 790,4$954,42$1115.0 =×≤  

In summary, no loan in the first group exceeds its limit, while the $15,411 loan exceeds its limit in the 
second group. As was to be expected, the third group is the most problematic, since only the three 
smallest loans in the segment comply with the limit.  

Note that although the third segment is the least numerically concentrated as measured by H(F), it has 
the highest level of risk concentration H’. Although the first segment also exhibits high risk 
concentration, since it has the lowest average default probability it is the less risky of the three. Note 
also that the first is the numerically more concentrated segment, but since its equivalent correlation is 
relatively low, its risk concentration relative to its HHI is the smallest of the three. These numbers also 
illustrate the interplay between default probabilities and concentration in the loss variance of each 
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segment, pointing to the third segment as the riskiest, because its equivalent correlation, risk 
concentration and average default probability are the largest of the three, providing the highest 
standard deviation of losses. §  

The example evidences the analytical power of the model. If one restricts the exercise to using the 
general model without analyzing individual segments, the risky third segment, would have passed 
undetected. It is also clear that the results depend on the segmentation criterion used, since one can 
classify the loans in such a way that all segments comply with the relevant relations, and risky groups 
of loans will remain undetected.   However, the example also indicates how one can obtain insight into 
the ex-ante concentration issue, in the worst case by trial and error.  

7. Accounting for Recovery Rates. 

It is simple to extend all the relations so far obtained, to include loan recovery rates. Doing so leads to 
less restrictive limits in terms of tolerable concentration along the different dimensions where 
concentration can occur. Basically, there are two ways to account for recovery rates. The first is to 
define F directly as the vector of “loss given default” (LGD), as opposed to the outstanding balance,  
where it is assumed that nothing is recovered if loans default. This would be very much in line with 
current practice.25 Thus if an estimation of the LGD vector is at hand, one can simply use this in the 
relations derived without any changes although they should be re-interpreted accordingly. 

Alternatively, assuming that the portfolio is segmented in a way in which recovery rates are the same 
for all loans in the group, let “ri ” be the recovery rate for defaulted loans in segment “i”, so that loss 
given default vector is simply ii FL )1( ir−= . Proceeding in the usual manner for each segment leads 

to: 
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and adding over all segments: 
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The expression shows that any change in recovery rates has a double impact. On the one hand the 
importance of each segments correlation with loans of other segments is increased or decreased, 
depending on the ratio of  loss rates between the loans in the segment with respect to that of the 
others. Additionally, its contribution to the expected loss also decreases (increases) in the numerator 
of the right-hand side, increasing (decreasing) the established bound on concentration. It is not difficult 
to show that the denominator of the right-hand side behaves accordingly; decreasing as the recovery 
rate increases and vice-versa. So, if recovery rate data is inadequate or non-existent, one can perform 
exercises using different recovery rates, or using some kind of reference. 

8. The Normality Assumption. 

Up to this point, it has been assumed that the loss distribution is Normal. In this section we discuss the 
approximation of the loss distribution using a Gamma distribution, which can also be characterized by 

                                                 
25 See the document on Credit Risk Modeling by the Basle Committee on Banking Supervision. April 1999.  
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its mean and variance and captures the asymmetry typically observed in credit loss distributions. The 
Gamma density function can be written as26:  

( ) ( )
β

α

α

αβ
βα

x

e
x

xf
−−

Γ
=

1

,  

The mean and the variance are, ( ) ( ) 2βαβα == xVARyxE  respectively and there is only one 

solution for any given pair of parameters (α,β). 

Several exercises have been done to date to compare the results of the model presented here and 
CreditRisk+, on random portfolios from the SENICREB27 database of the central bank. Without 
claiming to have conducted a rigorous and exhaustive study, the results obtained are encouraging. In 
the next example the results for the best and worst fits are shown. 

Example 8.1.  

The results for the first exercise, figure 8.1, compare the loss distributions obtained for a random 
portfolio of 3000 loans contained in the SENICREB database. Whereas the Normal approximation can 
differ with CreditRisk+ as much as 37.7% in VaR at the 99% confidence level, the difference using the 
Gamma approximation is only 0.45%.  

Figure 8.2 shows the results on a random portfolio of 1320 loans from the same source. The loss 
distribution obtained using CreditRisk+ has two “humps”. This is because this sample contained a very 
large loan in comparison with the other loans in the portfolio which, due to the bucketing procedure 
required by CreditRisk+, creates discontinuities and gaps in the possible losses. As shown in the table, 
the largest difference of VaR between the two methodologies using the Gamma approximation is 
12.34% at the 99% confidence level. The figures using the Normal approximation are worse.  

Figure 8.1: Comparison of loss distributions on a random sample of 3000 loans.  
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26  There are many ways in which the Gamma distribution can be written. The one adopted here follows the convention used in 

CreditRisk+. 
27  SENICREB (Servicio Nacional de Información de Créditos Bancarios), is a loan database of the Mexican Banking system, 

that is managed by the Bank of México. 
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Table 8.1: VaR comparative statistics for the sample. 

 

VaR Confidence Level 0.95 0.975 0.99 0.995 

CR+ 
1,878 2,212 2,623 2,932 

Normal 1,590 1,765 1,969 2,108 

Gamma 1,770 2,120 2,577 2,919 

 

Loss Distribution Statistics Mean Variance Std. Deviation alfa beta 

CR+ 
673 312,277 559 - - 

Normal 674 310,116 557 - - 

Gamma 674 310,116 557 1.46 460.27 
 
 

Figure 8.2: Comparison of loss distributions on a random sample of 1320 loans.  
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It should be pointed out that not all of the exercises produced VaR differences where the model 
underestimated the results of CreditRisk+. Some of the random portfolios provided results where the 
opposite occurred using the Gamma approximation. In all of these cases the differences were small. § 

It is not always the case that the VaR obtained by CyRCE is less than the corresponding VaR 
obtained using CreditRisk+. Although the preceding examples are interesting and serve to illustrate the 
kind of results obtained by both methods, they are far from being a rigorous comparative study. In 
particular, it is interesting to examine how the two methodologies behave, as the number of loans in 
the portfolio increases. In order to explore this behavior, a simulation experiment was done, taking 
random samples of portfolios of increasing numbers of loans, and their VaR  was calculated by both 
methods, for different confidence levels.28 The results of the exercise are summarized in figure 8.3. 

                                                 
28  Thus, for each of the 23 sizes of portfolio, between 2,000 and 64,000 loans, 500 simulation runs were performed. Due to the 

characteristics of the SENICREB database, sampling was done with replacement for the larger sizes. 
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The number of loans in the portfolios shown on the x-axis, while the y-axis shows the average of the 
following statistic: 

carteraladeValor

CaRVaR
CreditRiskCyRCE +−

=∆
 

The curves in the graph represent the average differences in VaR relative to the value of the portfolio, 
for different confidence levels. The Gamma distribution was used for approximating the loss 
distribution obtained  by CyRCE. 

Figure 8.3.  Comparison between CreditRisk + and CyRCE as the number of loans increases in 
the portfolio, for different confidence levels.  
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First, it is interesting to note that the average difference of VaR’s relative to the size of the portfolio 
decreases as the number of loans increases. This provides some empirical  evidence that there is 
some sort of large numbers effect. Next, the graph shows that on average, the VaR obtained by 
CyRCE overestimates that obtained by CreditRisk+ for confidence levels below 98%, and 
underestimates them for higher confidence levels. Undoubtedly, this is due to the heavier tales of the 
loss distribution generated by CreditRisk+.§ 

9. Application of the model with limited portfolio information.  

Any credit risk model requires two types of information; namely: A description of the loans in the 
portfolio, and the default behavior of the loans it contains. (i.e. default probabilities and correlations). 
The model presented here allows several options for performing calculations with limited information.  
Regardless of the quality of information available on default rates of loans in a portfolio, it is the 
authors’ experience that in the worse case, bankers have some idea of what these are, even if it is not 
available in some sort of systematized database. The estimation of default probabilities and 
correlations from default rates, is a topic in itself and will not be dealt with here. On the other hand, the 
difficulties of obtaining portfolio information is of particular relevance to regulators, and probably 
constitutes the largest stumbling block for effective credit risk supervision. Banks are reluctant to 
provide regulators with this information on an ongoing basis simply because of the huge quantities of 
data involved. Even if the data could be obtained in an appropriate and systematic way, it would be 
difficult to handle. Private banks with large portfolios would also benefit from reducing information 
requirements to run their models. We now address this issue. 
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As seen in the derivation of the model, it is not strictly necessary to know the credit portfolios in detail. 
Given an adequate segmentation of the portfolio, the only information required by the model is: 

a) The total value of the loans in each segment Vi. 

b) Enough information about the loan distribution within each segment, which allows an 
estimate of its HHI. 

c) Estimates of “pi”, “ρ i” and “ρ ij”. 

In what follows, we will discuss how estimates of HHI can be obtained from some very basic statistics. 
Thus, suppose that the portfolio has been segmented into “h” segments. If for each segment one 

knows the value of the segment Vi , and the value of the largest loan in each segment, "" *
if , then 

theorem 5.3 states that:  
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)( =≤ θF ….(9.1) 

Therefore, iiH θ=)(F , is an estimate of HHI for each segment, although perhaps a bit crude. In fact, 

theorem 5.3 can be used to obtain a slightly tighter bound. To see this, remember that the largest 
concentration occurs when the portfolio has the following distribution as a proportion of its value “V”: 
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For this distribution,  

H(F) = n?2 + ε2 = n?•θ  + ε2 = (1-ε)? + ε2. 

This expression is minimum when ε = 0.5?. Since it is practically imposible to have Duch a distribution 
in practice, if only the largest loan in each segment is known, one could argue that a good bound on 
HHI is:  

H(F) < θ(1-0.5θ) ……………(9.2) 

If the number of loans per segment Ni is known, as well as the average size loan if  and the variante 
2
iσ , then HHI can be obtained. To see this, first note that iii fNV =  is the value of each segment 
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 is the value of the portfolio. Then, by the definition of variance: 
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Solving for HHI one obtains: 
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Now, having estimates of HHI for each segment, one can obtain the HHI of the whole portfolio as 
follows: 
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Note that (9.3) and (9.4) are exact values for the concentration indices, and that they can be obtained 
with very limited information.  

9. Systemic Credit Risk Analysis of the Mexican Banking System. 

Using the SENICREB database, the model is currently being used to analyze the credit risk profile, 
and capital adequacy of the 20 banks of the Mexican financial system. The results are presented to 
the board of governors of the Central Bank on a monthly basis. In the exercise presented here for 
illustrative purposes, we assume that the underlying loss distribution is normal and VaR computations 
are for a monthly horizon at the 2.5% confidence level. Due to the centralization that characterizes the 
Mexican economy, it is difficult to segment by geographical region. As a starting point, the loan 
portfolio of the system has been segmented by bank and economic activity. Loans rated by one or 
more of the major rating agencies form a separate segment, because there are relatively few rated 
loans so the observed history of their default behavior is insufficient for default probability and 
correlation estimation. Fortunately, the rating agencies themselves provide good estimates of these 
parameters. 

Figure 7.1 shows how the loan market was distributed among the major banks in Mexico at the end of 
March 2002. Two banks have 48% of the market, and 91% of all loans are held by seven banks. 

Figure 7.1: Distribution of the loan portfolio by major banks.   March 2002. 
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Figure 7.2 shows the distribution of the loan portfolio of the banking system segmented by economic 
activity. In the graph we see that  the largest segment is represented by mortgage and consumer 
loans, followed by financial services and so on.  

Figure 7.2: Distribution of the loan portfolio by economic activity.    March 2002. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.3, shows the variation over time of VaR, default probabilities, HHI concentration index, 
covariation index and VaR relative to economic capital for the Banking system.  

Figure 7.3: Evolution of the Risk Profile of the Mexican Banking System. 
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This graph summarizes how systemic VaR responds to the main risk drivers, and provides a first 
indication on how well the banking system is capitalized relative to the level of risk taken.  

Figure 7.4 shows the concentration of risk in the system. Banks are sorted out by their contribution to 
the overall VaR of the system, and arranged from largest to smallest. A Lorenz curve is constructed so 
that the amount of risk concentrated in a specific number of banks can be seen. The bars in the graph 
represent the ratio of each banks’ VaR relative to its Net Capital. The horizontal line is the average 
VaR to net capital ratio for the system, so that one can see the relative position of each bank with 
respect to the system. Thus, 80% of the risk is concentrated in five banks and the third of these has 
VaR to net capital ratio of 64% which is a relatively high when compared to 23% average of the 
system. 

Figure 7.4: Individual Banks Contribution to Systemic Risk: March 2002 

 
Figure 7.5: Contribution to System Risk by Economic Activity: Marzo de 2002  

 

 

Figure 7.5, shows the contribution of the individual segments of economic activity. Most of the risk is in 
consumer and mortgage loans, followed by financial services. Note that construction and 
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communications & transportation have moved up to third and fourth place respectively, from the fifth 
and sixth position they occupy in terms of loan value. This is due to relatively high concentration and 
default probabilities within these sectors. Note also how the food industry, which is in the eight position 
in terms of loan value, occupies the thirteenth slot in terms of risk.  

Figures 7.6 through 7.8 provide some statistical results on the behavior of the credit risk driver; 
namely: Default probabilities, concentration and loss variation-covariation indices, for all banks and 
segments considered.   

Figure 7.6: Default Probability Histogram. 
 

 
Figure 7.7: Herfindahl Hirschman Index Histogram.  
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Figure 7.8: Loss Variance-Covariance Index Histogram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 is a histogram of how well banks are capitalized as measured by the capital adequacy 
relationship.  On average, the excess of net capital over VaR as a proportion of the value of the 
portfolios  is around 25%, and in the past two years, no negative quantities have been observed. 

 
Figure 7.9: Capital Adequacy Histogram (EC – VaR95)/Loan Portfolio Value > 0    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.10 shows the analysis of compliance with the theoretical single obligor limits. Among the five 
banks that account for 80% of the risk of the system, only the three shown in the graph have loans that 
excede the limit. Bank number two of this graph which is the same as bank number three of figure 7.5, 
has many such loans. Analysis of the banks risk revealed that the large VaR/EC ratio is due to some 
extent to concentration. However, it should be emphasized that the limit is only a sufficient condition 
for capital adequacy but not necessary. So even if it helps to know how many and which loans are in 
violation of the condition, further analysis is necessary in order to asses the gravity of the situation. 
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Figure 7.10: Loans that exceed single obligor limits in 5 major Banks. March 2002 

These graphs give a good idea of the type of analysis that is possible using the model. The same 
amount of detail is obtained for every bank in the system, permitting deeper analysis of  their 
situation.§ 

9. Concluding remarks. 

The results obtained are very appealing for managing credit risk, since they provide explicit formulas 
to measure risk and permit a precise quantification of the policy actions that should be adopted in 
order to maintain capital adequacy. If default or recovery rates change, or concentration along a 
particular segment is excessive, the relations can be used to determine the adjustments to the 
capitalization ratio and/or concentration composition of the portfolio that would reestablish capital 
adequacy. If banks have control over default or recovery rates to some degree, these can be part of 
the management instruments that can be used to maintain capital adequacy. 

Since single obligor limits and HHI are related to concentration, and the measures are subject to the 
same bound, either one can be used as a policy instrument. In fact, both measures can be used in 
conjunction. Whereas the single obligor limit is easy to implement and supervise, it may lead to overly 
constrained loan distributions. On the other hand, although Herfindahls index allows more flexibility in 
the configuration of the portfolio, it is difficult to implement throughout the organization. For example, if 
a greedy bank manager decides to grant a loan exceeding his limit, the gravity of the transgression 
may be assessed using HHI. It may be that apart from misbehavior, the infraction is not serious in 
terms of risk. 

It is clear that default probability distributions as well as recovery rates exhibit random behaviors 
through time, depending economic and financial factors. As opposed to market risk, where risk factors 
can be modeled using continuous processes, because loan defaults are discrete events in time, 
default behavior in a certain group can also change in pronounced discrete jumps. This is one reason 
why it is difficult to establish ex-ante concentration. Under different economic conditions, default 
probabilities and correlations can increase for a certain group of debtors, which otherwise appeared to 
be unrelated. For example a group of mortgage loans to employees of a large company that goes 
bankrupt. Since the model can handle arbitrary segmentations of the portfolio, and it is relatively 
simple to stress particular segments and analyze the consequences, it provides a means for detecting 
ex-ante concentration. 
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There is no reason why default probabilities cannot be made to depend on risk factors and credit 
drivers through logit models as in Credit Portfolio View, or as linear combinations of these factors as 
proposed by Kreinin and Rosen. Since these are determined exogenously, the results can be 
imbedded in simulation models which generate scenarios of trajectories of these variables through 
time that exhibit the discontinuities typical of default related events. From these, one can obtain 
stressed loss distributions and all the related statistics for each segment and the portfolio. This type of 
experiment may be what is needed to set the proper policy on the capitalization ratio and single 
obligor limits. Notice that since the simulation process in this case is for only a few variables, it can be 
done very efficiently.  

Whatever the dynamics, it is always possible to make the necessary adjustments through time by 
monitoring only a few variables.  
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APENDIX A 

 

Variance-Covariance Matrix 

Example 6.1. 

Table B.2: M1 
  

 
 

     Table B.3: 21
T

12 CC =  

 

 
 

Table B.4: 31
T

13 CC =  

 

 

1 2 3 4 5 6 7 8
1 0.0162 0.0050 0.0050 0.0060 0.0060 0.0082 0.0082 0.0105
2 0.0050 0.0475 0.0086 0.0103 0.0103 0.0140 0.0140 0.0180
3 0.0050 0.0086 0.0475 0.0103 0.0103 0.0140 0.0140 0.0180
4 0.0060 0.0103 0.0103 0.0694 0.0125 0.0169 0.0169 0.0217
5 0.0060 0.0103 0.0103 0.0125 0.0694 0.0169 0.0169 0.0217
6 0.0082 0.0140 0.0140 0.0169 0.0169 0.1275 0.0230 0.0295
7 0.0082 0.0140 0.0140 0.0169 0.0169 0.0230 0.1275 0.0295
8 0.0105 0.0180 0.0180 0.0217 0.0217 0.0295 0.0295 0.2100

1 2 3 4 5 6 7 8
9 0.0063 0.0108 0.0108 0.0130 0.0130 0.0177 0.0177 0.0227
10 0.0081 0.0138 0.0138 0.0166 0.0166 0.0226 0.0226 0.0290
11 0.0081 0.0138 0.0138 0.0166 0.0166 0.0226 0.0226 0.0290
12 0.0111 0.0190 0.0190 0.0229 0.0229 0.0311 0.0311 0.0399
13 0.0111 0.0190 0.0190 0.0229 0.0229 0.0311 0.0311 0.0399
14 0.0132 0.0226 0.0226 0.0273 0.0273 0.0370 0.0370 0.0475
15 0.0169 0.0290 0.0290 0.0350 0.0350 0.0475 0.0475 0.0609
16 0.0169 0.0290 0.0290 0.0350 0.0350 0.0475 0.0475 0.0609

1 2 3 4 5 6 7 8
17 0.0039 0.0067 0.0067 0.0081 0.0081 0.0109 0.0109 0.0140
18 0.0052 0.0089 0.0089 0.0108 0.0108 0.0146 0.0146 0.0188
19 0.0067 0.0114 0.0114 0.0138 0.0138 0.0187 0.0187 0.0240
20 0.0081 0.0138 0.0138 0.0167 0.0167 0.0226 0.0226 0.0290
21 0.0092 0.0157 0.0157 0.0190 0.0190 0.0257 0.0257 0.0330
22 0.0109 0.0187 0.0187 0.0226 0.0226 0.0306 0.0306 0.0393
23 0.0140 0.0240 0.0240 0.0290 0.0290 0.0393 0.0393 0.0504
24 0.0140 0.0240 0.0240 0.0290 0.0290 0.0393 0.0393 0.0504
25 0.0140 0.0240 0.0240 0.0290 0.0290 0.0393 0.0393 0.0504
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Table B.5: M2 
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Table B.7: M3 

 

 
 
 
 

9 10 11 12 13 14 15 16
9 0.0291 0.0086 0.0086 0.0118 0.0118 0.0140 0.0180 0.0180

10 0.0086 0.0475 0.0109 0.0150 0.0150 0.0179 0.0230 0.0230
11 0.0086 0.0109 0.0475 0.0150 0.0150 0.0179 0.0230 0.0230
12 0.0118 0.0150 0.0150 0.0900 0.0207 0.0246 0.0316 0.0316
13 0.0118 0.0150 0.0150 0.0207 0.0900 0.0246 0.0316 0.0316
14 0.0140 0.0179 0.0179 0.0246 0.0246 0.1275 0.0376 0.0376
15 0.0180 0.0230 0.0230 0.0316 0.0316 0.0376 0.2100 0.0483
16 0.0180 0.0230 0.0230 0.0316 0.0316 0.0376 0.0483 0.2100

17 18 19 20 21 22 23 24 25
9 0.0070 0.0093 0.0119 0.0144 0.0164 0.0195 0.0250 0.0250 0.0250
10 0.0089 0.0119 0.0152 0.0184 0.0209 0.0249 0.0320 0.0320 0.0320
11 0.0089 0.0119 0.0152 0.0184 0.0209 0.0249 0.0320 0.0320 0.0320
12 0.0122 0.0164 0.0209 0.0253 0.0288 0.0343 0.0440 0.0440 0.0440
13 0.0122 0.0164 0.0209 0.0253 0.0288 0.0343 0.0440 0.0440 0.0440
14 0.0146 0.0195 0.0249 0.0301 0.0343 0.0408 0.0524 0.0524 0.0524
15 0.0187 0.0250 0.0320 0.0386 0.0440 0.0524 0.0672 0.0672 0.0672
16 0.0187 0.0250 0.0320 0.0386 0.0440 0.0524 0.0672 0.0672 0.0672

17 18 19 20 21 22 23 24 25
17 0.0162 0.0093 0.0119 0.0144 0.0164 0.0196 0.0251 0.0251 0.0251
18 0.0093 0.0291 0.0160 0.0193 0.0220 0.0262 0.0336 0.0336 0.0336
19 0.0119 0.0160 0.0475 0.0247 0.0281 0.0335 0.0429 0.0429 0.0429
20 0.0144 0.0193 0.0247 0.0694 0.0340 0.0404 0.0519 0.0519 0.0519
21 0.0164 0.0220 0.0281 0.0340 0.0900 0.0461 0.0591 0.0591 0.0591
22 0.0196 0.0262 0.0335 0.0404 0.0461 0.1275 0.0704 0.0704 0.0704
23 0.0251 0.0336 0.0429 0.0519 0.0591 0.0704 0.2100 0.0903 0.0903
24 0.0251 0.0336 0.0429 0.0519 0.0591 0.0704 0.0903 0.2100 0.0903
25 0.0251 0.0336 0.0429 0.0519 0.0591 0.0704 0.0903 0.0903 0.2100
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