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Abstract 
 

The question of whether or not inflation is non-stationary has serious implications for the 
empirical validity of many economic theories and, hence, for the effectiveness of policy tools 
that are based on these theories. However, the lack of a more powerful unit root test has hindered 
our ability to effectively analyze the inflation rate. In an attempt to exploit the power gains that 
naturally arise in the panel setting, researchers also have analyzed inflation using panel unit root 
tests. However, one important, but unresolved, issue is the inability of existing panel unit root 
tests to accurately assess the long-run properties of time series that tend to exhibit structural 
shifts in their mean and/or their trend. Since inflation rates across the globe are likely to exhibit 
changing means and/or trends over time, it is important to allow for this kind of behavior when 
testing for a unit root in this series. However, there currently is no panel unit root test that allows 
for heterogeneous breaks in both the level and trend of the series that also does not depend on the 
nuisance parameters indicating the locations of the breaks. We suggest a newly-devised panel 
unit root test that is the first of its kind to properly account for the possible existence of 
heterogeneous breaks in both the level and the trend of the series under investigation. In addition, 
our test corrects for the presence of cross-correlations in the innovations of the panel by applying 
the cross-sectionally augmented (CA) procedure of Pesaran (2007). We apply our test to the 
inflation rate series of 22 OECD countries and, unlike most previous studies that do not properly 
allow for breaks and do not consider the panel framework, our results provide strong evidence in 
favor of the notion that world-wide inflation rates are stationary. 
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1.  Introduction 
 

This paper investigates the stationarity of inflation using a newly-devised panel unit root 

test that is the first of its kind to properly account for the possible existence of heterogeneous 

breaks in both the level and the trend of the series under investigation. The inflation rate is a key 

variable in many macroeconomic theories that are widely used to direct policy analyses and to 

guide decision making on a number of real-world issues across the globe. In most cases, these 

theories only are valid if inflation contains a unit root. Thus, the question of whether or not 

inflation is non-stationary has serious implications for the empirical validity of many economic 

theories and, hence, for the effectiveness of policy tools that are based on these theories. The 

problem is that existing unit root tests have fallen short in their ability to accurately assess the 

long-run time series properties of variables such as inflation, which tend to exhibit structural 

shifts in either their mean and/or their trend. 

The lack of a more powerful unit root test that properly allows for breaks in both level 

and trend has hindered our ability to effectively analyze the inflation rate and, hence, many 

macroeconomic relationships that incorporate inflation. The earliest empirical research on 

inflation, which considered this issue without allowing for breaks, supported the notion that this 

series is non-stationary. This includes Nelson and Schwert (1977), Barsky (1987), Ball and 

Cecchetti (1990), and Kim (1993). With the publication of Perron's seminal paper in 1989, 

researchers began to recognize the importance of allowing for breaks when testing for unit roots. 

When allowing for breaks, some researchers began to conclude that inflation is stationary, 

although this finding may be called into question. Perron (1989), for example, concluded that the 

US CPI inflation rate is non-stationary, even when allowing for an exogenous level shift. Zivot 

and Adrews (1992) were the first to analyze inflation rates while allowing for an endogenously 
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determined break in the level of the series, and they were able to reject the null of a unit root in 

US CPI inflation. However, their test does not allow for a break under the null and, thus, their 

rejection of the null does not guarantee that the series is stationary. Similarly, Lumsdaine and 

Papell (1997), when allowing for breaks under only the alternative hypothesis, were able to reject 

the null of a unit root in inflation. Nunes, Newbold and Kuan (1997), however, were not able to 

reject the null of a unit root in inflation when allowing for breaks under both the null and 

alternative hypotheses. In addition, Culver and Papell (1997) applied both univariate and panel 

unit root tests to the inflation rate series of 13 OECD countries, but their panel tests did not allow 

for breaks. Until now, there has been no panel unit root test that can properly allow for breaks in 

both the level and trend of the series under investigation. The underlying problem is that panel 

unit root tests allowing for breaks are subject to the usual "nuisance parameter problem," which 

we discuss in more detail in the next section, and any panel test that ignores this problem can be 

invalid. To the best of our knowledge, there is no panel unit root test that allows for trend-breaks 

that also is invariant to the nuisance parameter.1 

To resolve this problem, we derive a Lagrange multiplier (LM) based panel unit root test 

that makes use of a simple transformation that renders the test statistic invariant to both the 

location and the magnitude of breaks in the level or trend of the series in the panel. Thus, our test 

depends only on the number of breaks in the series, not their size or location and, therefore, has 

dramatically greater power than all existing tests. In addition, our test can correct for the 

presence of cross-correlations in the innovations of the panel, although this is not the main focus 

of our analysis. Any of the popular methods to correct for this correlation can be used along with 

                                                 
1 Some practitioners' works have utilized panel unit root tests with trend-shifts but, unfortunately, the 
dependency on the nuisance parameter often is ignored in these papers. See, for example, Chan and 
Pauwels (2009), Breitung and Candelon (2005), Franscisco (2009), and Carrion-i Silvestre et al. (2005) 
among others. 
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our proposed test. In this regard, we demonstrate how to apply the cross-sectionally augmented 

CA) procedure of Pesaran (2007) to our tests as one possible means of correcting for cross-

correlations. 

The rest of the paper is organized as follows. Section 2 provides a discussion of the 

importance of testing for a unit root in inflation and discusses the shortcomings of existing unit 

root tests in this setting. Section 3 contains the derivation of our new panel unit root test. Section 

4 provides the empirical investigation wherein we use our panel LM test to analyze the inflation 

rate series of 22 OECD countries. Section 5 provides concluding remarks.  

2.  Issues in Testing for Stationarity of Inflation 

 The inflation rate (or the overall price index) is a key variable in many important 

macroeconomic theories and market relationships such as the traditional capital asset pricing 

model, the Phillips curve, the Fisher effect, and the law of one price. Applied economists who 

test these theories and analysts who use these relationships to direct policy have a strong interest 

in the time series properties of the inflation rate. For example, many governmental agencies, 

academic institutions and private-sector firms produce inflation rate forecasts that are used for a 

variety of economic analyses. In particular, the US Congressional Budget Office uses inflation 

forecasts to score bills proposed by congress in order to provide valuable information on the 

projected costs of such legislation. Furthermore, many central banks world wide rely on their 

knowledge of the time series properties of inflation when conducting monetary policy and 

inflation rate targeting. In addition, the empirical methodology used to test for convergence often 

is applied to new member states of the European Union (EU) to determine whether or not they 

have met the inflation criterion, as set out in the Maastricht Treaty (see, for example, Siklos 
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2010). Thus, a critical element in measuring the success of the EU and the euro relies on 

knowledge of the order of integration of inflation. 

Most of the theories and analyses mentioned above are based on the notion that inflation 

is non-stationary and, hence, the validity of these analyses hinges critically on empirical 

evidence of a unit root in inflation. This fact is reinforced by Juselius (2006, p. 365) who notes 

that "… [the] inflation rate being empirically I(1) and, hence, the price level I(2), has strong 

implications for how to empirically specify many important economic relationships." As a result, 

it is imperative that the correct inference be made when testing for a unit root in inflation. It is 

well known, however, that traditional unit root tests have very low power and so it might not be 

easy to come to the right conclusion regarding the order of integration of this series. 

Researchers have pursued two general avenues in an attempt to improve on the low 

power of unit root tests. One approach is to allow for structural breaks in unit root tests. Perron 

(1989) was the first to show that ignoring existing structural breaks when testing for a unit root 

in a single time series can lead to a significant loss of power. To that end, Perron developed a 

unit root test based on the Dickey-Fuller (DF) framework that allowed for a structural break in 

the data. Perron's work in this area is particularly relevant for applied researchers since many 

economic time series tend to display structural breaks. It is especially important to address the 

question of whether or not inflation is non-stationary while allowing for breaks since this series 

typically exhibits changing trends as it responds to various shocks in the economy. For example, 

many countries experienced periods of markedly increasing inflation rates in the postwar 

period—during the first oil shock, for example, while this trend reversed itself in more recent 

decades with much of the global economy experiencing relatively low rates of inflation—for 

example, during the "oil glut" of the early 1980s and the low global inflation rates of the 1990s. 
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The second approach in the quest to improve on the power of the unit root test has been 

to design tests in the panel framework. Levin, Lin and Chou (2002) and Im, Pesaran and Shin 

(2003, IPS hereafter) were among the first to consider the unit root test in the panel framework. 

This approach is especially advantageous when trying to improve on the power of the unit root 

test since it offers larger degrees of freedom and it allows the researcher to take advantage of 

information in cross-country relationships that possibly might exist in the data. This is most 

relevant when conducting country-level tests for a unit root in inflation since there are likely to 

be spill-over effects from one country to another with regard to inflation rate dynamics. It is 

important to keep in mind, however, that any panel unit root test that does not allow for breaks 

suffers from the same loss of power that is experienced in the univariate unit root test setting. 

Thus, the ideal approach is to devise a panel unit root test that allows for breaks. 

Until now, there has been no panel unit root test that can properly allow for breaks in 

both the level and trend of the series under investigation. It might seem natural to consider 

extending the univariate unit root test proposed by Perron (1989) to produce a counterpart panel 

unit root test that allows for breaks. For example, one may be tempted to modify the IPS test, or 

other such tests, to include dummy variables in the testing equation for each cross section unit in 

the panel in order to control for the effects of structural changes. However, this approach is 

problematic. In order to apply an IPS-type test in the situation with structural changes, one would 

need to compute the expected values and variances of the DF t-statistics for all possible different 

break locations in the sample. This task would be extremely cumbersome in practice. The source 

of the problem in this case is that the distribution of the individual test statistic, say, for instance, 

Perron's augmented DF type t-statistic, depends on the nuisance parameters indicating the 

location of the break(s). In the case of the univariate unit root test, Perron handled the location 
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parameter issue by simulating critical values for his test at various break-point locations. 

Although this provides a good solution to handle the location parameter in the case of one break 

in the univariate setting, it would be extremely difficult, perhaps impossible, to simulate critical 

values in the panel framework for all possible combinations of break-point locations for each 

cross section unit. This difficulty has been one of the main reasons for the lack of development 

of panel unit root tests that allow for structural changes. 

Some researchers simply have ignored this "nuisance parameter" problem and use the 

same expected values and variances of the IPS tests, regardless of where the breaks are located. 

But this approach is invalid. Alternatively, in the case of the univariate unit root tests, some 

researchers circumvented the "nuisance parameter" problem by assuming that breaks can occur 

only under the alternative, not under the null. Under this scenario one may be tempted to 

conclude that the tests do not depend on the break location parameters under the null. But this 

conclusion is invalid, for two reasons. First, when not allowing for a break under the null, a 

rejection of the null does not guarantee that the series in question is stationary. Instead, it can 

imply a unit root with breaks under the null; see Nunes, Newbold and Kuan (1997) and Lee and 

Strazicich (2001). Second, the aforementioned authors also showed that not allowing for breaks 

under the null can lead to serious size distortions and spurious rejections under the null. In light 

of Perron (1989) and others, any valid unit root tests must not be affected by the presence or 

absence of breaks under the null. Otherwise, the tests will not be invariant to the magnitude of 

breaks and the critical values of the tests will be dependent upon these magnitudes. These 

findings extend, similarly, to unit root tests in the panel framework; any panel unit root test that 

depends on a nuisance parameter will be subject to the same spurious rejections of the unit root 

null. 
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Amsler and Lee (1995) proposed a reasonable solution to the nuisance parameter problem 

in the special case of a univariate unit root test with level shifts. They showed that the asymptotic 

distribution of the Lagrange Multiplier (LM) test does not depend on the size or location of any 

level shifts and, thus, is free of nuisance parameters. This is true even when a finite number of 

dummy variables for level shifts are included in the LM unit root testing regression. This so-

called "invariance property" of the LM test makes it unnecessary to simulate critical values for 

the test at all possible break-point locations, as must be done in any DF-based unit root test. Im, 

Lee and Tieslau (2005, ILT hereafter) further extended this work to derive a panel LM unit root 

test that allows for a finite number of level shifts. As with the univariate LM-based unit root 

tests, the panel LM-based unit root test of ILT offers an operating advantage over the DF-based 

panel unit root tests in that the test is free from the nuisance parameter problem. 

However, there is a problem of using this approach in the panel framework when 

allowing for breaks in the trend of a series: the "invariance property" of the LM test does not 

hold if the series under investigation exhibits breaks in its trend. Thus, there are no appropriate 

panel unit root tests that allow for breaks in both the intercept and slope of a series. This leaves a 

tremendous void for researchers using time series data since many such variables typically 

display breaks in both their level and trend. In the presence of trend shifts, the popular unit root 

tests are subject to the nuisance parameter problem—both the DF-type tests and the LM-type 

tests (although it is clear that the DF-type tests are known to be more sensitive to the nuisance 

parameters than the LM-type tests; see Nunes (2004) for example). 

It is important to note that, as of yet, no one has addressed the question of whether or not 

inflation contains a unit root while allowing for trend breaks under both the null and alternative 

while also using a test statistic that is invariant to the break-point location. This is a crucial 
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shortcoming of all previous analyses. We hope to improve on prior studies by applying our new 

test to this issue.  

3.  New Panel Unit Root Tests with Trend Shifts 

Since it is essential that our new panel unit root test allows for the possible presence of 

breaks in both the level and trend of the series, the crucial task in developing this test is to make 

it free of the nuisance parameter that indicates the location of breaks—especially in the presence 

of trend shifts. The approach that we have taken to accomplish this is to base our test on the 

univariate LM unit root test.2 While it is possible to consider a DF-type test in this setting, we 

employ the LM-based test because it is less sensitive to nuisance parameter problems. We 

describe the details of our test in the paragraphs that follow. 

When developing a unit root test, one may consider a time series using the unobserved 

components representation, yt = 'Zt + et, where et =  et-1 + t., and the unit root null 

hypothesis is  = 1. In this setting, Zt contains deterministic terms that include dummy variables 

to capture level and trend shifts. For example, if Zt = [1, t]', this produces the model upon which 

the no-break test can be derived. The model allowing for a break only in the mean of the series, 

or the "crash" model, as initially examined in Perron (1989), can be described by Zt = [1, t, Dt]', 

where Dt = 1 for t  TB+1 and zero otherwise, and TB denotes the time period of the break. The 

trend-break, or "changing growth" model, can be described by Zt = [1, t, DTt
*]', where DTt

* = 

t−TB for t  TB+1, and zero otherwise. When Zt = [1, t, Dt, DTt
*]' we have the most general 

model with both level and trend breaks. To allow for multiple breaks, we can employ additional 

dummy variables with Zt = [1, t, D1t,.., DRt, DT1t
*,.., DTRt

*] , where Djt = 1 for t  TBj+1, 

                                                 

2 Our approach also makes use of the transformation suggested by Park and Sung (1994). 
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j=1,..,R, and zero otherwise, and DTjt
* = t−TBj for t  TBj+1 and zero otherwise. This more 

general model is the most widely utilized in applied analyses, and will be the focus of our paper.   

 The Dickey-Fuller testing regression controls for the deterministic term Zt directly in the 

testing regression, yt  =  'Zt  + yt-1 + error, where  = [1, 2, 3j, 4j], j=1, ...,R. However, 

the LM testing regression utilizes a two step procedure. In the first step, we obtain the detrended 

series 

  y


t = y  − t    − Zt 


 .         (1) 
 

Here,  is the coefficient in the following regression using differences of y  and Z : t t

  yt = 'Zt + ut,        (2) 

and   is the restricted MLE of , where   = y – Z1 1


 . Subtracting   in (1) makes the initial 

value of the de-trended series begin at zero with y


 = 0, but letting 1  = 0 leads to the same result. 

It is important to note that in the de-trending procedure (1), the de-trending coefficient  was 

obtained in regression (2) using first differenced data. This two-step detrending method is also 

used in the DF-GLS type tests of Elliott, Rothenberg and Stock (1996), who suggested using a 

quasi-differences rather than first differences.  The remaining procedure is the same. In the 

second step, the unit root test statistics are then obtained from the following regression: 

3

                                                 
3  When (3) is replaced with yt

* = 'Zt
* + ut, where yt

* = yt – (1-c/T)yt-1, Zt
* = Zt – (1-c/T)Zt-1, and c takes 

on a small value, we can obtain the DF-GLS type tests. As a special case when c = 0, we have the LM 
type test. The DF-GLS type test also can be considered and it can be marginally more powerful than the 
corresponding LM test. However, note that both the LM and DF-GLS tests adopt the same detrending 
method using (3), which is the main source of power gains. One technical difficulty of the DF-GLS test in 
the panel setting is that we would need to obtain different values of c for different model specifications 
(different combinations of N and T, and different break locations) in order to obtain valid critical values in 
finite samples. This task is somewhat troublesome. Moreover, the value of c is often obtained 
asymptotically when T is 500 or 1,000. Therefore, the focus of our paper is on the LM-type test.  
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  yt = 'Zt + yt-1+ 

j=1 
k d  j y


+ e  ,     

 (3) 

t-j t

 
Also note that Zt is used in (3) rather than Zt, in which case the DF type test can be obtained. 

Then, the dummy variable Dt becomes Dt = Bt, which is a point dummy variable. The point 

dummy variable will not affect the asymptotic distribution of the test, but it should not be 

omitted in the testing regression.4 In the above regression, augmented lagged terms are included 

to allow for serially correlated and heterogeneously distributed innovations.  

 The LM unit root test statistic is defined by t-statistic for the null hypothesis  = 0. We 

denote the resulting test statistic as  . The asymptotic distribution of the test statistics is 

obtained from the following result.  

Proposition 1:  Suppose that the data generating process implies yt = 'Zt + et, where et =  et-1 

+ t. with Zt = [1, t, D1t,.., DRt, DT1t
*,.., DTRt

*] for the model with level and trend-breaks. We 

define Vi
*(r), which is the weak limit of the partial sum residual process S


t  

in (1), as follows: 

  

 
    

    




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
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



 1     1   
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211212
*
2

111
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rforrV

rforrV

rV

RRRR

i








.   (4) 

Then, we have 

     − 
 1 
 2   [ 

j=1 
R+1 i


0

1 V_ (r) dr]    ,     (5) i
2 –1/2

                                                 
4 The one point dummy variable Dt = Bt is asymptotically negligible. Thus, it is easy to ignore this 
variable. However, this term should not be omitted, even in the Dickey-Fuller type testing regression with 
break, as was done correctly in Perron (1989). Lee and Stzazicich (2001) showed that the tests ignoring 
this term tend to diverge and critically depend on the nuisance parameter.  
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where i
 denotes the fraction of sub-samples in each regime such that

=  /T, i
= Bi 

− TBi-1)/T, i = 2,..,R, and R+1
= (T − TBR)/T. Here, V_ i (r) is the projection of the process V (r) 

on the orthogonal complement of the space spanned by the trend break function dz( , r), as 

defined over the interval r  [0, 1]. V (r) = W (r) – rW (1) with a Wiener process W (r) for i = 

1,.., R.

i

 

i i i i

5 

Proof:  See the Appendix A. 

 The result in (4) shows that, in contrast to the model with level shifts in Amsler and Lee 

(1995), the asymptotic distributions of the test statistics with trend breaks depend on the nuisance 

parameters, i
. However, we can adopt an approach similar to that in Park and Sung (1994) 

where the dependency of the test statistic on the nuisance parameter can be removed with the 

following transformation: 

  







1

1

1

2 1

*

               

     

      

       
R

R

Bt
B

Bt
B Bt

Bt
B

T
y for t T

T

T
2By for T t T

T Ty

T
y for T t T

T T

 



   




  



      (6) 

We then replace  with *
1ty 


1ty   in the testing regression and change (3) to: 

  yt = 'Zt +   1ty 
*+ 

j=1 
k d  j


t jy   + e  .     (7) t

Theorem 1:  Let * be the t-statistic for  = 0.  Then, the asymptotic distributions of these test 

statistics will be invariant to the nuisance parameter  

                                                 
5 In the above, the argument ri

* = (r−i)/(i−i−1) is defined over the range between i−1and i, which 
has been transformed into r defined over the range 0 to 1. 
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  *   − 
 1 
 2  [ 

j=1 
R+1 0

1 V_ (r) dr]  ,      (8) i
2 −1/2

where V_ i(r) is defined in Proposition 1. 

Proof:  See the Appendix A. 

 The above result shows that the transformed unit root test statistic * no longer depends 

on the nuisance parameter   in the trend-break model, although information on  is required to 

construct the test statistic. Following the transformation, the asymptotic distribution of 

j

* only 

depends on the number of trend breaks, since the distribution is given as the sum of R 

independent stochastic terms. With one trend-break (R = 1), the distribution of   is the same as 

that of the untransformed test 

*

 using  = 1/2, regardless of the actual location of the break(s). 

Similarly, with two trend-breaks (R = 2), the distribution of   is the same as that of the 

untransformed test 

*

 using   = 1/3 and   = 2/3. In general, for the case of R multiple breaks, 

the same analogy holds:  the distribution of 

 

  is the same as that of the untransformed test *  

using   = j/(R+1), j = 1,.., R. Therefore, we do not need to simulate new critical values at all 

possible break point combinations. Instead, we only need critical values that correspond to the 

number of breaks, R. In Table 1, we reproduced and provided the critical values of exogenous 

tests for R = 1,.., 4 and T = 50, 100, 200, 500 and 1,000, respectively, via Monte Carlo 

simulations. These critical values can be used when the break locations are known, or they are 

estimated consistently.

j

6 

                                                 
6  In this paper, as in ILT (2005), we do not consider using the critical values of the endogenous break 
tests. We maintain the assumption that the break location parameters can be estimated consistently. The 
usual method of minimizing the sum of squared residuals and the standard information criteria can be 
used in this context. Perron and Zhu (2005) show that break estimates are consistent both under the null 

  12



 As we will see, the above invariance results will prove helpful in constructing panel LM 

unit root tests with unknown trend breaks. However, the invariance result does not mean that one 

can adopt an incorrect number and/or placement of breaks, even under the null. In fact, it is 

essential to include both the correct number and location of breaks when performing unit root 

tests. This is true for two reasons. First, unit root tests lose power under the stationary alternative 

hypothesis if the number and/or placement of breaks is incorrect. Second, as noted by Perron 

(1989), the usual augmented DF tests will be biased against rejecting the null when the stationary 

alternative is true and a structural break is ignored. This also will hold for LM tests with trend 

breaks. 

We now develop our new panel LM test statistic with trend shifts. Our testing procedure 

is similar to that of ILT, but we utilize the transformed LM unit root statistic given in (11). Since 

our test is set in the panel framework, we add the subscript "i" to equation (11), highlighting the 

fact that we run the testing regression for each cross-section unit: 

  yi,t = 'Zi,t + i  , 1i ty 
*+ 

j=1 
k d  ij


,i t jy   + e  , i = 1,.., N   (7) it

In this expression,  , 1i ty 
* is as defined in (8). We then denote the resulting test statistic as i

*. The 

test statistic is based on the following null hypothesis, 

 H0:  i = 0   for all i 

against the alternative hypothesis 

 H1: i  < 0, for some i. 

                                                                                                                                                             
and alternative. Furthermore, it has been shown that univariate unit root tests assuming consistency of the 
estimated breaks perform better than endogenous tests; see Perron (2006), and Kim and Perron (2009) for 
example. Using the critical values of the endogenous tests in a panel setting would yield aggravated size 
distortions since small biases in the estimates of the break parameters in the univariate tests would add up 
in the panel setting as N increases, even if these biases are negligible in the univariate setting. 
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We can construct the t-bar statistic using the average of the test statistics. The panel LM statistic 

for the above hypothesis can be obtained as the standardized statistic of the following average 

test statistic: 

  = 
 1 
 N 

i=1 
N i .          (8) *

The distribution of  depends on T, but is free of other parameters under the null hypothesis. We 

denote the expected value and variance of  under the null hypothesis as E( ) and V( ). Note that 

the critical values of  do not vary much over N. In fact, our simulation results confirm that the 

critical values are almost invariant to different values of N in the data generating process. 

However, we note that the effect of the autocorrelation structure cannot be downplayed. As such, 

we compute the values of E( ) and V( ) for various combinations of N and T (sample size), p 

(truncation lag), and R (number of breaks), via stochastic simulations using 500,000 replications. 

These are reported in Table 2. 

 As noted above, our test statistics do not depend on the location of breaks. As such, it is 

not necessary to obtain different values of the means and variances at different break locations. 

This is the key feature of our proposed panel test statistic; under any other method, it is not easy 

to formulate a valid test statistic if the test depends on the location(s) of the break(s). 

 Formally, our panel test statistic follows a standard normal distribution: 

~  LM( * ) = 
 

 
    -   

 

N t E t

V t

 






       (9) 

where E


( t ) and V


( t ) are the estimated values of the average of the means and variances of t , say 

E( t ) and Var( t ), as reported in Table 2, which correspond to the estimated parameter values of p 

and R. That is, we compute these values as: 
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 E


( t ) = 
 1 
 N  

i=1 
N E( t (R


i, p


))        (10) i

and: 

 V


( t ) = 
 1 
 N  

i=1 
N Var( t (R


i, p


)), i

where (R


i, p


i) are the estimated values of the number of breaks and the number of truncation lags 

in the testing regression for the i-th cross-section unit. Thus, we allow for different numbers of 

breaks and truncation lags in different cross-section units. Note that we utilize the transformed 

test statistic i  using the estimated break locations and the number of breaks (* R


i) for each cross-

section unit. Therefore, our suggested panel statistic utilizes endogenously determined values of 

all parameters and it is free of nuisance parameters. In the Appendix B, we examine the 

performance of our suggested test to confirm that it is robust to different locations of trend-

breaks. Overall, we show evidence that our suggested test is robust to different locations of 

trend-shifts. No existing tests have this crucially important feature. 

On the Issue of Cross-Correlations 

The earliest panel unit root tests assumed zero correlations in the innovations across the 

panel. However, some degree of correlation is very likely to exist in cross-country studies and, 

therefore, an assumption of zero correlation is highly unrealistic. Several methods have been 

proposed as a means of dealing with such correlations. To begin with, IPS proposed cross-

section demeaning of each series in the panel as a way of partially dealing with cross correlations 

in the panel. However, this approach may not be effective in the presence of pair-wise 

correlations among cross-section units. As such, Choi (2006) generalized the de-meaning 

procedure and proposed a two-way error components model as a means of controlling for cross-

correlations in the panel. The method suggested by Choi (2006) easily can be adopted in our 
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framework. In the case of heterogeneous panels, however, the two-way error components model 

might be too restrictive. This led Bai and Ng (2002), Phillips and Sul (2003) and Moon and 

Perron (2004) to propose common factor models as a means of correcting for cross correlations. 

Others have suggested the use of seemingly unrelated regression to correct this problem. 

Alternatively, one may consider using the cross-sectionally augmented (CA) procedure 

suggested by Pesaran (2007). Each of the above-mentioned methods for dealing with cross 

correlations in the innovations of the panel has both merits and caveats, depending on the 

situation. Any one of these methods could be used in conjunction with our proposed test without 

affecting the properties and relative performance of the test. However, providing the details of 

each of these extensions (or comparing the performance of these tests in correcting for cross-

correlations) is beyond the scope of this paper.  

We do, however, wish to illustrate the application of the CA procedure of Pesaran (2007) 

to our testing framework. This procedure is simpler but most effective. Specifically, we assume 

that the error term in (7) has the single-factor structure given by 

  eit  =  i ft + uit         (11) 

where ft is the unobserved common effect. Then, we consider the following testing regression 

which is augmented by the cross-section averages of lagged levels and first-differences of the 

individual series 

 yi,t = i'Zi,t + i 
*

, 1i ty   + g y
_

*
t-1 + hy

_
t
* + 

j=1 

 p g ij y
_

*
t-j +  

j=1 

 p d ij y


i,t-j +  u  .  (12) it

We use the t-statistic on i, denoted as i
**, to construct the mean statistic  as in (8).  

 Finding critical values that do not depend on nuisance parameters is again the key issue. 

Note that Pesaran (2007) suggests using the mean statistic, as given in (8), for a formal panel test 

statistic, and provides its critical values for various combinations of N and T. Similarly, we 

  16



suggest using the critical values for various combinations of N and T, but we utilize both the 

means and variances of .7  Then, one can use the standardized statistic in (9), which follows a 

standard normal distribution. There is one more technical issue that will affect the performance 

of the test:  the means and variances of the test statistic vary significantly over different AR 

truncation orders (p). As such, it is important to use the means and variances of  for each 

different value of p, as in IPS (2003) and ILT (2005). Accordingly, we simulate new critical 

values for the means and variances for various combinations of N and T and for different 

numbers of beaks, R. These values are provided in Table 3 and were obtained via stochastic 

simulations using 50,000 replications. 

4.  Results on Stationarity of Inflation 

We now apply our panel LM unit root test to the CPI inflation rates of 22 OECD 

countries8 to address the question of whether or not the inflation rate is stationary. Our testing 

procedure begins by computing the transformed univariate LM unit root test statistics (allowing 

for trend breaks) for the inflation rate series of each country. We apply the two-step procedure 

suggested by Lee and Strazicich (2009) which begins by jointly determining from the data 

whether or not breaks exist and, if they do, their location, while also determining the optimal lag 

length "p" that is needed to correct for autocorrelation in the errors. We begin by allowing for 

two trend breaks9 and perform a grid search over all possible break point locations, while 

                                                 
7 We observe that the mean statistic  in (13) does not vary over different values of N in our case. On the 
other hand, we observe that the variance changes significantly over different combinations of N and T. 
Thus, we suggest using the critical values of both the means and variances of   for various combinations 
of N and T.  
8 The complete list of countries is given in Table 4. The data were taken from the OECD's Main 
Economic Indicators CD ROM, September 2007. Inflation rates were computed by first differencing the 
logged CPI series.  
9 A series with more than two breaks might best be modeled as a non-linear process and, thus, we restrict 
our analysis to consider only up to two breaks. 
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simultaneously determining the optimal lag length "p". We eliminate 10% of the end points of 

the sample for possible break locations. This procedure makes use of the "maximum F test," 

which is described in Lee and Strazicich (2009). In short, we first search for the optimal lag 

length for each of the model specifications using various combinations of break locations.  Then, 

the break locations are determined by maximizing the significance of the coefficients of dummy 

variables in the model specification utilizing the optimal lag length value. If two trend breaks are 

found to exist in the inflation series of a given country, we then move to step 2 of the testing 

procedure in which we test for a unit root in the series using the transformed two-break LM unit 

root test statistic.  

If we can reject the presence of two trend breaks in the inflation series of a given country, 

we repeat the entire 2-step procedure again where, now, step 1 determines whether or not a 

single trend break exists and, if so, where it is located. If one trend break is found to exist in the 

inflation series of a given country, we then move to step 2 and test for a unit root in this series 

using the transformed one-break LM unit root test statistic. 

If no trend breaks are found to exist in the inflation series of a given country, we then 

employ the procedure suggested by Lee and Strazicich (2003), which tests for a unit root while 

allowing for up to two breaks in the level of the series. Since the distribution of the LM unit root 

test is invariant to the location of any existing level shifts, there is no need to employ the 

transformation of Park and Sung (1994) in this instance. If no breaks of any kind are found to 

exist in the inflation series of a given country, we compute the no-break LM unit root test of 

Schmidt and Phillips (1992) for that country. 

After computing all of the univariate LM unit root tests allowing for the optimal number 

and type of breaks, we then use these statistics to compute the standardized panel LM unit root 
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test statistic, as described in equation (14). Since the asymptotic distribution of this test statistic 

is standard normal, the critical values of the test follow the usual z-scores of the standard normal 

distribution. 

We report the results of the univariate LM unit root tests in Table 4. We also report the 

optimal break point locations for each country and we note that all countries were found to have 

two trend breaks. The break dates identified by our procedure seem quite reasonable. For 

example, 17 of the 22 countries under investigation experienced their first break during the 

period from 1972 to 1977, a well-known period of high global inflation coinciding with the first 

oil crisis and the collapse of the Bretton Woods Accord. All of the remaining five countries 

experienced their first break during the period from 1981 to 1986, during the time of the so-

called "oil glut."  

Not surprisingly, seven of the countries under investigation here experienced their second 

break during this same period, while Greece experienced its second break during the 1979 

energy crisis—the beginning of a period of declining growth in Greece. Nine countries 

experienced their second break from 1990 to 1992. This is of interest since 1990 marked a high 

point of average global inflation rates over the postwar period and it was at this time when 

central banks across the globe began to embrace inflation targeting. World-wide average 

inflation rates declined significantly over the early 1990s. In particular, it is interesting to note 

that New Zealand experienced its second break in 1990, shortly after its central bank began its 

policy of inflation targeting. Similarly, Canada experienced its second break in 1991, which 

coincides with the period during which its central bank first adopted inflation targeting. 

Based on the univariate LM unit root tests, the inflation rates for 16 of 22 countries were 

found to be stationary at the 10% level of significance or better. We conjecture that the failure to 
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reject the null of a unit root in the remaining series may be due to the relatively low power of the 

univariate test, which may be improved by moving to the panel framework. To examine this 

issue, Table 5 reports the panel LM unit root test statistics. The first statistic does not correct for 

cross-correlations while the second one does by applying Pesaran's CA procedure to our panel 

LM test. The null of a unit root is strongly rejected in both cases, supporting the notion that these 

series are stationary with occasional trend breaks. Since the power of the unit root test greatly 

increases in the panel setting, it is not surprising that we find strong evidence of stationarity 

using the panel test statistic while we do not find this result uniformly in all series when testing 

in the univariate setting. This result supports the notion that inflation rates in these OECD 

countries are stationary with occasional trend breaks. 

5.  Conclusion 

This paper re-examines the question of whether or not inflation rates are stationary using 

a newly developed panel unit root test that allows for heterogeneous breaks, under both the null 

and the alternative, in both the level and trend of the series under investigation. Any unit root 

tests that do not allow for such breaks will be subject to serious size distortions and, hence, 

cannot be relied upon to give conclusive evidence as to whether or not a unit root exists. Our 

panel unit root test, which is based on the univariate LM unit root test in combination with the 

transformation suggested by Park and Sung (1994), is free of the usual nuisance parameter 

problem that plagues all existing DF-type unit root tests that allow for breaks in the trend of the 

series. As such, our analysis provides more reliable information on the issue of whether or not 

inflation rates contain a unit root. We find clear evidence in favor of the notion that world-wide 

inflation rates are stationary. 
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TABLE 1:  CRITICAL VALUES FOR THE TRANSFORMED UNIVARIATE 
LM UNIT ROOT TEST 

 
 sig. 
 level Sample Size 

 R (%) T=50 T=100 T=200 T=500 T=1000 
 
 1 1 −4.604 −4.363 −4.261 −4.206 −4.176 
  5 −3.950 −3.792 −3.716 −3.675 −3.662 
  10 −3.635 −3.501 −3.443 −3.410 −3.402 
 
 2 1 −5.365 −4.980 −4.799 −4.698 −4.687 
  5 −4.661 −4.379 −4.261 −4.191 −4.175 
  10 −4.338 −4.097 −3.997 −3.934 −3.921 
 
 3 1 −6.092 −5.510 −5.302 −5.140 −5.127 
  5 −5.362 −4.931 −4.752 −4.634 −4.620 
  10 −5.019 −4.635 −4.484 −4.382 −4.361 
 
 
Notes:  R = # of breaks. 
 



TABLE 2:  MEANS AND VARIANCES FOR THE PANEL LM UNIT ROOT TEST 
 
PANEL A:  R=0 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 25 −1.99 0.38 −1.99 0.39 −1.91 0.38 −1.90 0.41 −1.82 0.43 −1.80 0.47 −1.71 0.51 −1.69 0.58 −1.60 0.65 
 50 −1.98 0.36 −1.97 0.36 −1.93 0.35 −1.93 0.37 −1.89 0.37 −1.89 0.38 −1.84 0.38 −1.83 0.39 −1.78 0.40 
 100 −1.97 0.34 −1.97 0.34 −1.95 0.34 −1.95 0.34 −1.93 0.34 −1.93 0.34 −1.90 0.34 −1.90 0.35 −1.88 0.35 
 200 −1.98 0.34 −1.97 0.34 −1.96 0.34 −1.96 0.34 −1.95 0.34 −1.95 0.34 −1.94 0.34 −1.93 0.34 −1.93 0.34 

 
PANEL B:  R=1 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 25 −2.69 0.40 −2.73 0.40 −2.67 0.37 −2.68 0.42 −2.59 0.50 −2.57 0.62 −2.44 0.73 −2.35 0.89 −2.18 1.04 
 50 −2.67 0.37 −2.68 0.36 −2.65 0.34 −2.67 0.34 −2.63 0.34 −2.64 0.36 −2.59 0.37 −2.58 0.41 −2.52 0.44 
 100 −2.65 0.34 −2.66 0.34 −2.64 0.33 −2.65 0.32 −2.63 0.32 −2.64 0.32 −2.62 0.31 −2.62 0.32 −2.60 0.32 
 200 −2.64 0.33 −2.64 0.33 −2.63 0.32 −2.64 0.32 −2.63 0.31 −2.63 0.31 −2.63 0.31 −2.63 0.31 −2.62 0.31 

 
PANEL C:  R=2 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 50 −3.22 0.37 −3.27 0.35 −3.26 0.32 −3.30 0.33 −3.27 0.35 −3.28 0.40 −3.21 0.45 −3.18 0.53 −3.08 0.59 
 100 −3.19 0.34 −3.21 0.33 −3.21 0.31 −3.23 0.30 −3.23 0.30 −3.24 0.30 −3.23 0.29 −3.24 0.30 −3.22 0.31 
 200 −3.17 0.33 −3.18 0.32 −3.18 0.32 −3.19 0.31 −3.19 0.30 −3.20 0.30 −3.20 0.29 −3.21 0.29 −3.20 0.28 

 
PANEL D:  R=3 
 p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
 50 −3.72 0.39 −3.82 0.35 −3.84 0.31 −3.90 0.35 −3.87 0.43 −3.86 0.55 −3.73 0.64 −3.64 0.76 −3.47 0.86 
 100 −3.66 0.35 −3.71 0.33 −3.72 0.30 −3.76 0.29 −3.76 0.28 −3.79 0.29 −3.78 0.29 −3.80 0.32 −3.77 0.36 
 200 −3.63 0.33 −3.65 0.32 −3.66 0.31 −3.68 0.30 −3.68 0.29 −3.71 0.28 −3.71 0.27 −3.72 0.27 −3.72 0.26 

 
Notes:  R = # of breaks; p = order of autocorrelation; T = # of time periods 
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TABLE 3: MEANS AND VARIANCES FOR THE PANEL LM UNIT ROOT TEST 
USING PESARAN’S CROSS-SECTIONALLY AUGMENTED (CA) PROCEDURE 

 

PANEL A:  R = 0         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 30 -2.14 0.86 -2.10 1.04 -1.96 1.17 -1.90 1.40 -1.75 1.57 -1.66 1.81 -1.48 2.07   
10 50 -2.15 0.75 -2.12 0.83 -2.05 0.91 -2.02 1.00 -1.94 1.09 -1.90 1.21 -1.81 1.29 -1.76 1.39 -1.67 1.46 
10 100 -2.15 0.69 -2.14 0.72 -2.10 0.75 -2.09 0.80 -2.05 0.83 -2.03 0.87 -2.00 0.90 -1.98 0.94 -1.94 0.97 
10 200 -2.15 0.66 -2.15 0.67 -2.13 0.67 -2.12 0.69 -2.11 0.70 -2.10 0.71 -2.08 0.73 -2.08 0.75 -2.06 0.76 
20 30 -2.14 0.96 -2.09 1.23 -1.96 1.45 -1.89 1.75 -1.74 1.95 -1.65 2.20 -1.48 2.45   
20 50 -2.14 0.81 -2.12 0.93 -2.04 1.04 -2.01 1.19 -1.93 1.31 -1.89 1.47 -1.81 1.57 -1.76 1.70 -1.66 1.78 
20 100 -2.15 0.73 -2.14 0.79 -2.10 0.84 -2.09 0.90 -2.05 0.94 -2.04 1.00 -2.00 1.05 -1.99 1.12 -1.95 1.17 
20 200 -2.15 0.70 -2.15 0.71 -2.13 0.73 -2.12 0.74 -2.11 0.77 -2.10 0.79 -2.08 0.82 -2.08 0.85 -2.06 0.88 
30 30 -2.14 1.09 -2.09 1.43 -1.96 1.74 -1.89 2.16 -1.74 2.37 -1.65 2.61 -1.48 2.80   
30 50 -2.14 0.90 -2.12 1.08 -2.05 1.22 -2.01 1.46 -1.93 1.64 -1.89 1.85 -1.81 1.98 -1.76 2.17 -1.66 2.20 
30 100 -2.15 0.80 -2.14 0.87 -2.10 0.93 -2.09 1.01 -2.06 1.08 -2.04 1.17 -2.00 1.24 -1.99 1.33 -1.95 1.42 
30 200 -2.15 0.77 -2.15 0.79 -2.13 0.81 -2.12 0.84 -2.11 0.87 -2.10 0.91 -2.08 0.95 -2.08 0.99 -2.06 1.02 
50 30 -2.14 1.30 -2.09 1.85 -1.96 2.33 -1.89 2.95 -1.74 3.13 -1.65 3.50 -1.48 3.57   
50 50 -2.15 1.09 -2.12 1.34 -2.05 1.59 -2.02 1.92 -1.94 2.15 -1.90 2.44 -1.81 2.62 -1.76 2.86 -1.67 2.93 
50 100 -2.15 0.91 -2.14 1.00 -2.10 1.09 -2.09 1.21 -2.05 1.32 -2.04 1.44 -2.00 1.55 -1.98 1.70 -1.94 1.82 
50 200 -2.15 0.88 -2.15 0.93 -2.13 0.98 -2.12 1.03 -2.11 1.09 -2.10 1.14 -2.08 1.19 -2.08 1.25 -2.06 1.30 
70 30 -2.14 1.58 -2.09 2.34 -1.96 3.05 -1.89 3.80 -1.74 4.09 -1.65 4.49 -1.48 4.45   
70 50 -2.15 1.25 -2.12 1.59 -2.05 1.95 -2.02 2.37 -1.94 2.74 -1.90 3.18 -1.81 3.37 -1.76 3.59 -1.67 3.69 
70 100 -2.15 1.07 -2.14 1.20 -2.10 1.32 -2.09 1.48 -2.05 1.62 -2.04 1.81 -2.00 1.96 -1.98 2.14 -1.94 2.28 
70 200 -2.15 0.99 -2.15 1.06 -2.13 1.12 -2.12 1.18 -2.11 1.25 -2.10 1.32 -2.08 1.39 -2.08 1.47 -2.06 1.54 

100 30 -2.14 1.94 -2.09 3.00 -1.96 3.96 -1.89 5.13 -1.74 5.56 -1.65 5.87 -1.48 5.82   
100 50 -2.15 1.52 -2.12 1.99 -2.05 2.45 -2.01 3.05 -1.93 3.51 -1.90 4.02 -1.81 4.35 -1.76 4.79 -1.67 4.76 
100 100 -2.15 1.28 -2.14 1.47 -2.10 1.65 -2.09 1.90 -2.05 2.09 -2.04 2.35 -2.00 2.57 -1.99 2.85 -1.95 3.06 
100 200 -2.15 1.17 -2.15 1.25 -2.13 1.33 -2.12 1.42 -2.10 1.51 -2.10 1.61 -2.08 1.70 -2.07 1.80 -2.06 1.90 
200 30 -2.14 3.25 -2.09 5.33 -1.96 7.16 -1.89 9.26 -1.74 9.86 -1.65 10.5 -1.48 9.82   
200 50 -2.15 2.42 -2.12 3.37 -2.05 4.27 -2.02 5.37 -1.94 6.27 -1.90 7.33 -1.81 7.90 -1.77 8.52 -1.67 8.52 
200 100 -2.15 2.04 -2.14 2.40 -2.10 2.75 -2.09 3.18 -2.05 3.60 -2.04 4.07 -2.00 4.50 -1.98 4.97 -1.95 5.35 
200 200 -2.15 1.82 -2.15 1.98 -2.13 2.13 -2.12 2.30 -2.11 2.48 -2.10 2.68 -2.08 2.87 -2.07 3.08 -2.06 3.28 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL B:  R = 1         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 32 -2.76 0.69 -2.72 0.77 -2.55 0.79 -2.45 0.91 -2.24 1.09 -2.10 1.43 -1.86 1.93   
10 50 -2.76 0.60 -2.74 0.64 -2.65 0.66 -2.61 0.70 -2.50 0.73 -2.44 0.80 -2.31 0.86 -2.23 1.00 -2.09 1.14 
10 100 -2.76 0.54 -2.75 0.56 -2.71 0.57 -2.70 0.59 -2.65 0.60 -2.64 0.62 -2.59 0.62 -2.57 0.64 -2.52 0.65 
10 200 -2.75 0.53 -2.75 0.53 -2.73 0.53 -2.73 0.54 -2.71 0.54 -2.71 0.54 -2.69 0.55 -2.68 0.55 -2.66 0.55 
20 32 -2.76 0.70 -2.72 0.82 -2.55 0.87 -2.45 0.97 -2.24 1.16 -2.10 1.52 -1.85 2.08   
20 50 -2.76 0.61 -2.74 0.67 -2.65 0.70 -2.61 0.75 -2.50 0.78 -2.44 0.84 -2.31 0.91 -2.23 1.05 -2.09 1.23 
20 100 -2.76 0.54 -2.75 0.56 -2.71 0.57 -2.70 0.58 -2.66 0.60 -2.64 0.62 -2.59 0.63 -2.57 0.66 -2.52 0.69 
20 200 -2.76 0.51 -2.75 0.52 -2.74 0.52 -2.73 0.53 -2.71 0.54 -2.71 0.55 -2.69 0.56 -2.68 0.58 -2.66 0.59 
30 32 -2.76 0.74 -2.72 0.89 -2.55 0.93 -2.45 1.03 -2.24 1.21 -2.10 1.62 -1.86 2.24   
30 50 -2.76 0.61 -2.74 0.67 -2.65 0.72 -2.61 0.80 -2.50 0.83 -2.44 0.90 -2.31 0.97 -2.23 1.13 -2.09 1.29 
30 100 -2.76 0.55 -2.75 0.59 -2.71 0.60 -2.70 0.64 -2.66 0.66 -2.64 0.69 -2.59 0.70 -2.57 0.72 -2.52 0.75 
30 200 -2.76 0.52 -2.75 0.53 -2.74 0.54 -2.73 0.55 -2.71 0.57 -2.71 0.58 -2.69 0.59 -2.68 0.60 -2.66 0.61 
50 32 -2.76 0.85 -2.72 1.08 -2.55 1.11 -2.45 1.17 -2.24 1.37 -2.10 1.85 -1.85 2.56   
50 50 -2.76 0.70 -2.74 0.81 -2.65 0.88 -2.61 0.95 -2.50 0.98 -2.44 1.03 -2.31 1.10 -2.23 1.31 -2.10 1.48 
50 100 -2.76 0.59 -2.75 0.64 -2.71 0.67 -2.70 0.73 -2.66 0.76 -2.64 0.80 -2.59 0.83 -2.57 0.85 -2.52 0.85 
50 200 -2.76 0.53 -2.75 0.55 -2.73 0.56 -2.73 0.58 -2.71 0.59 -2.70 0.62 -2.69 0.64 -2.68 0.66 -2.66 0.67 
70 32 -2.76 0.94 -2.72 1.22 -2.55 1.26 -2.45 1.35 -2.24 1.53 -2.10 2.09 -1.86 2.98   
70 50 -2.76 0.75 -2.74 0.89 -2.65 0.99 -2.61 1.08 -2.50 1.12 -2.44 1.20 -2.31 1.27 -2.23 1.49 -2.09 1.71 
70 100 -2.76 0.62 -2.75 0.68 -2.71 0.74 -2.70 0.81 -2.66 0.85 -2.64 0.92 -2.59 0.95 -2.57 0.97 -2.52 0.98 
70 200 -2.76 0.58 -2.75 0.60 -2.73 0.62 -2.73 0.65 -2.71 0.66 -2.71 0.69 -2.69 0.72 -2.68 0.74 -2.66 0.76 

100 32 -2.76 1.07 -2.72 1.46 -2.55 1.50 -2.45 1.60 -2.24 1.82 -2.10 2.46 -1.86 3.47   
100 50 -2.76 0.83 -2.74 1.04 -2.65 1.19 -2.61 1.29 -2.50 1.31 -2.44 1.39 -2.31 1.51 -2.23 1.77 -2.09 2.01 
100 100 -2.76 0.68 -2.75 0.76 -2.71 0.82 -2.70 0.91 -2.66 0.97 -2.64 1.03 -2.59 1.06 -2.57 1.10 -2.52 1.11 
100 200 -2.76 0.62 -2.75 0.65 -2.73 0.68 -2.73 0.73 -2.71 0.76 -2.70 0.80 -2.68 0.84 -2.68 0.87 -2.66 0.90 
200 32 -2.76 1.55 -2.72 2.27 -2.55 2.35 -2.45 2.38 -2.24 2.73 -2.10 3.73 -1.86 5.28   
200 50 -2.76 1.14 -2.74 1.57 -2.65 1.85 -2.61 2.03 -2.50 2.01 -2.44 2.09 -2.31 2.24 -2.23 2.66 -2.10 3.08 
200 100 -2.76 0.88 -2.75 1.04 -2.71 1.18 -2.70 1.35 -2.66 1.49 -2.64 1.63 -2.59 1.69 -2.57 1.75 -2.52 1.76 
200 200 -2.76 0.78 -2.75 0.85 -2.73 0.92 -2.73 0.99 -2.71 1.06 -2.71 1.13 -2.69 1.20 -2.68 1.28 -2.66 1.33 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL C:  R = 2         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 35 -3.30 0.63 -3.29 0.66 -3.12 0.66 -3.02 0.86 -2.79 1.12 -2.56 1.51 -2.22 2.03   
10 50 -3.29 0.57 -3.29 0.58 -3.20 0.56 -3.15 0.59 -3.02 0.67 -2.95 0.82 -2.78 0.96 -2.64 1.15 -2.42 1.36 
10 100 -3.27 0.50 -3.28 0.50 -3.24 0.50 -3.23 0.50 -3.19 0.50 -3.17 0.51 -3.12 0.51 -3.10 0.53 -3.04 0.56 
10 200 -3.25 0.49 -3.26 0.48 -3.24 0.47 -3.24 0.47 -3.23 0.46 -3.23 0.46 -3.21 0.46 -3.21 0.47 -3.19 0.46 
20 35 -3.30 0.65 -3.29 0.68 -3.12 0.67 -3.02 0.86 -2.79 1.21 -2.56 1.70 -2.22 2.25   
20 50 -3.28 0.55 -3.29 0.57 -3.19 0.55 -3.15 0.59 -3.03 0.66 -2.95 0.81 -2.78 1.00 -2.64 1.25 -2.41 1.49 
20 100 -3.26 0.48 -3.27 0.49 -3.24 0.49 -3.23 0.49 -3.19 0.50 -3.17 0.51 -3.12 0.50 -3.10 0.54 -3.04 0.58 
20 200 -3.26 0.46 -3.26 0.46 -3.25 0.46 -3.25 0.45 -3.23 0.46 -3.23 0.46 -3.21 0.46 -3.21 0.47 -3.19 0.47 
30 35 -3.30 0.65 -3.29 0.67 -3.13 0.68 -3.03 0.91 -2.79 1.26 -2.56 1.81 -2.22 2.40   
30 50 -3.28 0.57 -3.29 0.60 -3.20 0.59 -3.15 0.62 -3.03 0.69 -2.95 0.88 -2.79 1.09 -2.64 1.40 -2.42 1.66 
30 100 -3.27 0.48 -3.27 0.49 -3.24 0.49 -3.23 0.51 -3.19 0.50 -3.18 0.52 -3.12 0.53 -3.10 0.56 -3.04 0.59 
30 200 -3.26 0.45 -3.26 0.45 -3.25 0.45 -3.25 0.45 -3.23 0.45 -3.23 0.45 -3.21 0.46 -3.21 0.46 -3.19 0.46 
50 35 -3.30 0.71 -3.29 0.77 -3.13 0.74 -3.03 1.02 -2.79 1.44 -2.56 2.10 -2.22 2.75   
50 50 -3.28 0.61 -3.29 0.66 -3.19 0.64 -3.15 0.64 -3.03 0.74 -2.95 0.93 -2.78 1.19 -2.64 1.54 -2.42 1.95 
50 100 -3.27 0.50 -3.27 0.52 -3.24 0.53 -3.23 0.55 -3.19 0.54 -3.17 0.56 -3.12 0.57 -3.10 0.60 -3.04 0.63 
50 200 -3.26 0.47 -3.26 0.48 -3.25 0.49 -3.25 0.49 -3.23 0.48 -3.23 0.49 -3.21 0.50 -3.21 0.51 -3.19 0.51 
70 35 -3.30 0.76 -3.29 0.83 -3.12 0.78 -3.02 1.07 -2.79 1.59 -2.56 2.37 -2.22 3.30   
70 50 -3.28 0.64 -3.29 0.70 -3.20 0.69 -3.15 0.70 -3.03 0.78 -2.95 1.01 -2.78 1.34 -2.64 1.82 -2.42 2.34 
70 100 -3.27 0.52 -3.27 0.55 -3.24 0.56 -3.23 0.58 -3.19 0.59 -3.17 0.60 -3.12 0.61 -3.10 0.63 -3.04 0.67 
70 200 -3.26 0.49 -3.26 0.50 -3.25 0.51 -3.25 0.51 -3.23 0.52 -3.23 0.54 -3.21 0.55 -3.21 0.55 -3.19 0.55 

100 35 -3.30 0.86 -3.29 0.96 -3.12 0.86 -3.03 1.19 -2.79 1.84 -2.56 2.85 -2.22 3.98   
100 50 -3.28 0.68 -3.29 0.78 -3.20 0.78 -3.15 0.79 -3.03 0.90 -2.95 1.19 -2.78 1.63 -2.64 2.21 -2.42 2.78 
100 100 -3.27 0.54 -3.27 0.58 -3.24 0.62 -3.23 0.66 -3.19 0.68 -3.18 0.69 -3.12 0.69 -3.10 0.72 -3.04 0.77 
100 200 -3.26 0.49 -3.26 0.51 -3.25 0.52 -3.25 0.54 -3.23 0.55 -3.23 0.58 -3.21 0.59 -3.21 0.60 -3.19 0.60 
200 35 -3.30 1.12 -3.29 1.33 -3.12 1.18 -3.02 1.64 -2.79 2.60 -2.56 4.26 -2.22 6.22   
200 50 -3.28 0.84 -3.29 1.07 -3.19 1.06 -3.15 1.05 -3.03 1.17 -2.95 1.64 -2.78 2.30 -2.64 3.27 -2.42 4.36 
200 100 -3.27 0.64 -3.27 0.74 -3.24 0.80 -3.23 0.85 -3.19 0.87 -3.17 0.90 -3.12 0.91 -3.10 0.95 -3.04 1.02 
200 200 -3.26 0.56 -3.26 0.61 -3.25 0.65 -3.25 0.69 -3.23 0.73 -3.23 0.76 -3.21 0.78 -3.21 0.80 -3.19 0.80 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 
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PANEL D:  R = 3         
  p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

 
N T Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. 
10 38 -3.79 0.61 -3.84 0.61 -3.69 0.66 -3.60 1.03 -3.27 1.35 -2.95 1.77 -2.50 2.16   
10 50 -3.76 0.56 -3.80 0.54 -3.72 0.52 -3.68 0.61 -3.53 0.82 -3.40 1.05 -3.13 1.24 -2.90 1.53 -2.59 1.73 
10 100 -3.72 0.48 -3.75 0.47 -3.72 0.45 -3.73 0.44 -3.69 0.44 -3.67 0.46 -3.62 0.49 -3.59 0.53 -3.52 0.60 
10 200 -3.70 0.46 -3.71 0.45 -3.70 0.43 -3.71 0.43 -3.70 0.42 -3.70 0.42 -3.69 0.42 -3.69 0.41 -3.67 0.40 
20 38 -3.79 0.61 -3.84 0.59 -3.69 0.66 -3.60 1.03 -3.27 1.44 -2.95 1.93 -2.51 2.38   
20 50 -3.76 0.55 -3.80 0.53 -3.72 0.50 -3.68 0.60 -3.53 0.81 -3.39 1.10 -3.13 1.34 -2.90 1.62 -2.59 1.87 
20 100 -3.72 0.46 -3.74 0.45 -3.72 0.43 -3.73 0.42 -3.69 0.42 -3.68 0.44 -3.62 0.48 -3.59 0.54 -3.52 0.61 
20 200 -3.70 0.44 -3.71 0.43 -3.70 0.42 -3.71 0.41 -3.70 0.41 -3.70 0.40 -3.69 0.40 -3.69 0.39 -3.67 0.40 
30 38 -3.79 0.63 -3.83 0.60 -3.69 0.67 -3.60 1.07 -3.27 1.46 -2.95 2.05 -2.51 2.61   
30 50 -3.76 0.55 -3.80 0.54 -3.72 0.49 -3.68 0.62 -3.53 0.83 -3.39 1.14 -3.13 1.43 -2.90 1.78 -2.59 2.08 
30 100 -3.72 0.46 -3.74 0.46 -3.72 0.44 -3.72 0.45 -3.69 0.44 -3.68 0.46 -3.62 0.47 -3.59 0.53 -3.52 0.60 
30 200 -3.70 0.42 -3.71 0.42 -3.70 0.41 -3.71 0.40 -3.70 0.40 -3.70 0.40 -3.69 0.40 -3.69 0.40 -3.67 0.40 
50 38 -3.79 0.66 -3.84 0.64 -3.69 0.66 -3.60 1.16 -3.27 1.64 -2.95 2.36 -2.51 2.98   
50 50 -3.76 0.58 -3.80 0.57 -3.72 0.54 -3.68 0.65 -3.53 0.88 -3.39 1.25 -3.12 1.60 -2.89 2.01 -2.58 2.41 
50 100 -3.72 0.47 -3.74 0.47 -3.72 0.46 -3.73 0.46 -3.69 0.46 -3.68 0.48 -3.62 0.51 -3.59 0.58 -3.52 0.67 
50 200 -3.70 0.43 -3.71 0.43 -3.70 0.43 -3.71 0.43 -3.70 0.42 -3.70 0.42 -3.69 0.42 -3.69 0.43 -3.67 0.43 
70 38 -3.79 0.68 -3.84 0.66 -3.69 0.70 -3.60 1.24 -3.27 1.85 -2.95 2.73 -2.51 3.54   
70 50 -3.76 0.59 -3.80 0.60 -3.72 0.56 -3.68 0.68 -3.53 0.96 -3.39 1.41 -3.12 1.83 -2.89 2.34 -2.58 2.80 
70 100 -3.72 0.49 -3.74 0.49 -3.72 0.48 -3.73 0.47 -3.69 0.47 -3.67 0.50 -3.62 0.55 -3.59 0.62 -3.52 0.71 
70 200 -3.70 0.43 -3.71 0.44 -3.70 0.44 -3.71 0.44 -3.70 0.44 -3.70 0.44 -3.69 0.44 -3.69 0.43 -3.67 0.43 

100 38 -3.79 0.74 -3.84 0.70 -3.69 0.75 -3.60 1.42 -3.27 2.18 -2.95 3.22 -2.51 4.15   
100 50 -3.76 0.64 -3.80 0.65 -3.72 0.61 -3.68 0.72 -3.53 1.07 -3.39 1.60 -3.12 2.16 -2.89 2.79 -2.59 3.34 
100 100 -3.72 0.50 -3.74 0.51 -3.72 0.51 -3.73 0.52 -3.69 0.51 -3.68 0.53 -3.62 0.56 -3.59 0.66 -3.52 0.78 
100 200 -3.70 0.44 -3.71 0.44 -3.70 0.44 -3.71 0.45 -3.70 0.45 -3.70 0.46 -3.69 0.46 -3.69 0.46 -3.67 0.46 
200 38 -3.79 0.93 -3.84 0.90 -3.69 0.93 -3.60 1.85 -3.27 3.08 -2.95 4.86 -2.51 6.40   
200 50 -3.76 0.76 -3.80 0.83 -3.72 0.73 -3.68 0.92 -3.53 1.45 -3.39 2.31 -3.13 3.15 -2.89 4.21 -2.59 5.27 
200 100 -3.72 0.56 -3.74 0.63 -3.72 0.64 -3.72 0.64 -3.69 0.62 -3.68 0.64 -3.62 0.71 -3.59 0.84 -3.52 1.04 
200 200 -3.70 0.49 -3.71 0.51 -3.70 0.53 -3.71 0.56 -3.70 0.57 -3.70 0.57 -3.69 0.57 -3.69 0.58 -3.67 0.57 

 
Notes:  R = # of breaks; p = order of autocorrelation; N = # of cross-section units;  T = # of time periods 



TABLE 4:  UNIVARIATE LM UNIT ROOT TESTS ON INFLATION 

 Country: Univariate LM Stat Optimal Lag Break Locations 

 Australia 6.371*** 7 1972, 1991 
 Austria 6.738*** 8 1972, 1982 
 Belgium 7.084*** 1 1972, 1988 
 Canada 4.680** 7 1982, 1991 
 Finland 9.007*** 8 1976, 1992 
 France 0.972 8 1973, 1985 
 Germany 5.655*** 5 1981, 1990 
 Greece 4.399* 7 1974, 1979 
 Italy 8.119*** 8 1972, 1984 
 Japan 4.278 8 1973, 1977 
 Korea 4.213 7 1981, 1987 
 Luxembourg 7.082*** 7 1972, 1984 
 Netherlands 4.306 3 1973, 1988 
 New Zealand 5.881*** 8 1977, 1990 
 Norway 7.202*** 7 1983, 1990 
 Portugal 5.778*** 2 1976, 1992 
 South Africa 5.999*** 8 1972, 1992 
 Spain 3.162 2 1975, 1986 
 Sweden 7.370*** 8 1985, 1990 
 Switzerland 4.158 7 1975, 1996 
 United Kingdom 6.889*** 2 1973, 1984 
 United States 7.531*** 1 1976, 1983 
 

 
 
 
 

TABLE 5:  PANEL LM UNIT ROOT TESTS ON INFLATION 
 
 

1.  Panel LM Test Statistic  =  10.679*** 
2.  Panel LM Test CA Statistic =  -5.156*** 

 
 
Notes:  *Significant at 10%; **Significant at 5%; ***Significant at 1% 
 



APPENDIX A 

Proof of Proposition 1   

  For the proof of the asymptotic distribution of the test statistic, we first consider 

the case with R = 1 and then extend the result to multiple breaks.   We define: D1t = 1 for t  

and 0 otherwise; and D2t = 1 for t +1 and 0 otherwise.  Similarly, we let DT1t* = t for t 

 and 0 otherwise; and DT1t* = t-TB for t +1 and 0 otherwise.  Then, the first step 

testing regression (3) can be alternatively written as: 

  yt = B1t + B2t+ D1t + D2t+ ut .     (A.1) 

Since Bjt are asymptotically negligible, we may drop these variables without a loss of generality: 

  yt = D1t + D2t+ ut .        

For t ,we obtain

  3 = 
 1 

 TB-1  

i=2 
TB y  = t

 1 
 TB-1  

i=2 
TB ( D  +  D + u ) =  +  1t  2t t 

 1 
 TB-1 

i=2 
TB  u , t 

and 

  T (3- )    W() / .       (A.2) 3

Further, for r  , by defining r* = r/, r*  [0, 1], we have: 

  W(r) – r W() /= W(r*) – r*W() /=  [W(r ) – r W(1)] , * *

where we define  

  V1(r*)  W(r/) – (r/)W(1) = W(r*) – r*W(1).    (A.3) 

Similarly, we can obtain 

  4 = 
 1 

 T-TB  

i=TB+1 
T  y  = t

 1 
 T-TB 

i= TB+1 

T   ( D  +  D + u ) =  +  1t  2t t 
 1 

 T-TB 

i=TB+1 
T    u , t 

and 
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  T (4- )    W(1-) /(1- =  4 1- W(1).     

Further, for r  , by defining r+ = (r-), r+ [0,1],  we have 

  W(r) – (r-)W(1-)/(1-= W(r+(1-) – r+(1-W(1-)/(1-

  = 1- [W(r ) – r  W(1)], + +

where we define  

  V2(r+)  W((r-)) – ((r-))W(1) = W(r+) – r+W(1).     (A.4) 

Combining (A.3) and (A.4), we obtain 

  V*(r) =  V (r/)     for r  ,     1

   1- V ((r-)   for r >  2

Then, it is easy to see that  

  T 
-2



i=2 
T  S


t
2  

0

1  V(r) dr  = [2   

0

 V(r/) dr + (1-2 



 V((r-)) dr] 2 

   [ 0

1  V (r ) dr  +  (1-)1
* 2 * 2

0

1  V (r ) dr ].    2
+ 2 +

In the case of multiple breaks, we consider 
 as defined in Proposition 1 and can easily show 

the expression for Vi(r) as: 

  

*
1 1 1 1

*
* 2 2 1 2 1 1 2

*
1 1 R

( / )                                  

[( ) /( )]        
( )

......                                                          

[( ) /(1 )]    1

i

R R R R

V r for r

V r for r
V r

V r for r

  

     

    



   


  







 

 .  (A.5) 

Thus, using a common argument r we get: 

  T 
-2



i=2 
T  S


t
2    

0

1  V(r) dr   2  
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   = [
*

0

 V(r/ ) dr + 
* 2 


*



 V((r- )/( - ) dr   
*


*


* 2 

    +  ….  +  R
*

R

  V((r- )/(- ) dr] R
*

R
* 2 

   =  

i=1 
R+1   


0

1  V (r) dr .      i
2 

For the distribution of the test statistic, we examine regression (4) and obtain: 

   = (S


1  Z S


) (1
-1 S


1  y) ,      (A.6) Z

where S


1S


1..S
 , Z=(Z ,..,Z ), y=(y ,..,y ), and  = I - Z(ZZ) Z.   T-1 2 T 2 T Z 

-1

It can be shown that: 

  T -2 S


1  Z S


1    

i=1 
R+1   


0

1  V_  (r) dr .     (A.7)  i
2 

Here, V_  i(r) is the projection of the process V  (r) on the orthogonal complement of the space 

spanned by the trend break function dz( , r) as defined over the interval r[0,1].   That is,  

i

 

  V_  i(r) = V (r) – dz(, r)i   ,       

with 

    = argmin
 

 
0

1 (V (r) – dz(, r) ) dr.     i
2

We can show that for the second term in (A.6): 

  T 
-1

 S


1  y = T Z
-1 

S


1   = T Z
-1 

S
  1 _   – 0.5 ,   (A.8) 

2

where _ =   .   Combining this result with (A.7) we obtain Z

   = T     - 0.5( / ) [
2 2



i=1 
R+1   


0

1  V_ (r) dr]  .     *
i

2 -1

Accordingly, the limiting distribution of  is obtained as: 
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      - 
 1 
 2   [ 

i=1 
R+1 


0

1 V_ (r) dr]  .      *
i

2 -1/2

Proof of Theorem 1   

  When S


t
  is divided by the fraction of each sub-sample, it is easy to see that: 

  T 
-2



i=2 
T  St

*2    [ (1/ ) 


* 2


*

0

 V(r/ ) dr  
* 2 

    + (1/
*)2

*



 V((r- )/( - ) dr   
*


*


* 2 

    +  ….  +  (1/R
*)2R

*

R

  V((r- )/(- ) dr] R
*

R
* 2 

   =  

i=1 
R+1 0

1  V (r) dr ,        i
2 

where S


1
*S1

*..S  is used.  Accordingly, we get: T-1
*

  T -2 S


1
*  Z S


1

*    

i=1 
R+1 0

1  V_ (r) dr.     (A.9) i
 2 

Then, it can be shown that the asymptotic distributions of * become invariant to the nuisance 

parameter as follows: 

   *   - 
 1 
 2  [ 

i=1 
R+1 0

1 V_ (r) dr]   .     (A.10) i
2 -1/2
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APPENDIX B.   
 

We provide finite sample Monte Carlo simulation results on the panel LM unit root tests 

with trend breaks. Our goal is to verify the theoretical results presented in the main text, and to 

examine the general performance of the tests. To perform our simulations, pseudo-iid N(0,1) 

random numbers were generated using the Gauss procedure RNDNS and all calculations were 

conducted using the Gauss software version 8.0. For simplicity, we let Zt = [1, t, Dt, DTt
*] and 

[1, 2, 3, 4] so that 3 is the level shift coefficient and 4 is the trend break coefficient. 

We also let  = TB/T denote the fraction of the series before the break occurs at t = TB + 1. The 

initial values y0 and 0 are assumed to be random, and we assume that 
2 = 1. All simulation 

results are calculated using 20,000 replications. The size (frequency of rejections under the null 

when  = 1) and power (frequency of rejections under the alternative when 0.9) of the tests 

are evaluated using 5% critical values. 

In Appendix Table 1, we report the size and power properties of the univariate unit root 

tests for different break magnitudes and locations. In each case, we wish to examine how the 

transformed test (*) and untransformed test () behave under the null and alternative hypotheses. 

In particular, we wish to examine if the transformed test ( ) is invariant to the size and location 

of breaks. The results reported in Appendix Table 1 show that both tests have reasonably good 

size under the null. While they show mild size distortions in some cases, there is no clear pattern 

of significant size distortions. This is an encouraging finding and supports our proposition that 

the size properties are fairly invariant to different locations and magnitudes of level and trend 

breaks. Comparing the size properties of the transformed test with the untransformed test we see 

little difference, although the transformed test has marginally more accurate size than the 

untransformed test. Thus, the (untransformed) LM test is fairly less sensitive to the location of 

*
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In Appendix Table 2, we report the size and power properties of the panel unit root tests 

for different break magnitudes and locations. The motivation for this simulation is the same as 

that of the univariate tests. We wish to confirm that the transformed panel tests LM(*), which 

are based on the transformed univariate tests, i
*, are robust to different break locations. To show 

this, we set the break location parameter  = 0.3. We also consider the untransformed tests LM(

), which are based on the untransformed test statistics .  Since LM() depends on the break 

location, we will need to use the mean and variances that correspond to correct break locations. 

However, we still use the same mean and variances of the transformed test statistics to see how 

they behave under the null and alternative hypotheses. Moreover, we also examine the panel LM 

unit root tests without breaks under the heading of "LM no break" as well as the IPS tests 

without breaks under the heading of "DF no break," respectively. The results reported in 

Appendix Table 2 show that the transformed test LM(*) has reasonably good size under the null. 

In addition, the power property seems reasonable. While the test shows mild size distortions in 

some cases, there is no clear pattern of significant size distortions. These results are gratifying 
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The results in Appendix Table 3 are based on the case where the break location is given 

randomly at any location. We use the uniform distribution for the break location (between 

0.15 and 0.85The pattern of the results is not much different from that in Appendix Table 2. 

The transformed panel LM tests are mostly robust to different break locations and the 

untransformed tests show size distortions and loss of power. The panel tests without breaks 

exhibit a considerable loss of power. 

 

 

 



APPENDIX TABLE 1:  SIZE & POWER OF UNIVARIATE LM UNIT ROOT TEST 
5% REJECTION RATES 

 
 T=100 T=500 
 DGP Size (β=1.0) Power (β=1.0) Size (β=1.0) Power (β=1.0) 

 3 4 λ *    *  *    *  

 2 0.5 0.3 0.043 0.039 0.138 0.137 0.045 0.044 0.973 0.991 
   0.5 0.054 0.054 0.149 0.149 0.048 0.048 0.995 0.995 
   0.8 0.040 0.034 0.120 0.120 0.050 0.038 0.874 0.996 

 5 0.5 0.3 0.049 0.042 0.131 0.128 0.041 0.036 0.976 0.991 
   0.5 0.053 0.053 0.149 0.149 0.050 0.050 0.996 0.996 
   0.8 0.039 0.031 0.130 0.134 0.044 0.028 0.872 0.996 

 2 1 0.3 0.042 0.041 0.134 0.132 0.049 0.041 0.970 0.990 
   0.5 0.048 0.048 0.147 0.147 0.053 0.053 0.994 0.994 
   0.8 0.043 0.030 0.125 0.128 0.048 0.029 0.880 0.994 

 5 1 0.3 0.046 0.040 0.129 0.133 0.044 0.040 0.975 0.993 
   0.5 0.047 0.047 0.148 0.148 0.048 0.048 0.994 0.994 
   0.8 0.040 0.031 0.122 0.125 0.048 0.033 0.870 0.997 

 5 1.5 0.3 0.043 0.038 0.137 0.127 0.051 0.042 0.972 0.992 
   0.5 0.052 0.052 0.148 0.148 0.045 0.045 0.995 0.995 
   0.8 0.043 0.033 0.120 0.132 0.050 0.031 0.873 0.998 

 10 1.5 0.3 0.048 0.038 0.136 0.132 0.050 0.045 0.972 0.990 
   0.5 0.051 0.051 0.144 0.144 0.048 0.048 0.995 0.995 
   0.8 0.044 0.034 0.121 0.122 0.051 0.033 0.870 0.994 

 5 3 0.3 0.046 0.040 0.137 0.134 0.050 0.041 0.974 0.992 
   0.5 0.048 0.048 0.149 0.149 0.048 0.048 0.994 0.994 
   0.8 0.041 0.029 0.131 0.126 0.054 0.034 0.876 0.997 

 
Notes:  T = # of time periods; 3 = intercept coefficient; 4 = break coefficient (magnitude of the 

break); λ = break location; * = transformed univariate test statistic;  = untransformed univariate test 
statistic. 
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APPENDIX TABLE 2:  SIZE & POWER OF PANEL LM UNIT ROOT TEST 
5% REJECTION RATES, 4 = 0.5, λ = 0.3 

 
 T=25 T=50 T=100 T=250 
 N Test size power size power size power size power 

  LM(*) 0.047 0.068 0.036 0.148 0.044 0.659 0.051 1.000 

 10 LM() 0.035 0.059 0.025 0.109 0.015 0.613 0.018 1.000 

  LM no break 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.005 0.000 0.024 0.001 

  LM(*) 0.032 0.059 0.029 0.240 0.048 0.950 0.042 1.000 

 25 LM() 0.019 0.035 0.008 0.132 0.011 0.927 0.008 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.006 0.001 0.131 0.468 

  LM(*) 0.017 0.051 0.026 0.370 0.035 0.999 0.041 1.000 

 50 LM() 0.008 0.027 0.003 0.169 0.003 0.997 0.003 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.005 0.004 0.492 1.000 

  LM(*) 0.014 0.063 0.015 0.607 0.025 1.000 0.036 1.000 

 100 LM() 0.002 0.018 0.000 0.228 0.000 1.000 0.000 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.017 0.039 0.904 1.000 
 
Notes:  4 = break coefficient (magnitude of the break); λ = break location; T = # of time periods; N = 

# of cross sections; LM(*) = transformed panel LM test statistic allowing for level and trend breaks; 

LM() = untransformed panel LM test statistic allowing for level and trend breaks; "LM no break" = a 
conventional LM-type panel unit root test without allowing for breaks; "DF no break" = a conventional 
Dickey-Fuller-type panel unit root test without allowing for breaks. 
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APPENDIX TABLE 3:  SIZE & POWER OF PANEL LM UNIT ROOT TEST 
5% REJECTION RATES, 4 = 0.5; λ = RANDOMLY DETERMINED 

 
 T=25 T=50 T=100 T=250 
 N Test size power size power size power size power 

  LM(*) 0.034 0.047 0.050 0.165 0.043 0.676 0.054 1.000 

 10 LM() 0.024 0.035 0.026 0.127 0.020 0.640 0.026 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.001 0.000 0.005 0.000 0.024 0.001 

  LM(*) 0.017 0.036 0.030 0.228 0.038 0.945 0.050 1.000 

 25 LM() 0.008 0.021 0.009 0.140 0.007 0.924 0.007 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  LM(*) 0.016 0.037 0.020 0.353 0.039 0.999 0.036 1.000 

 50 LM() 0.004 0.017 0.005 0.161 0.002 0.998 0.002 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  LM(*) 0.006 0.029 0.016 0.579 0.025 1.000 0.043 1.000 

 100 LM() 0.001 0.005 0.000 0.239 0.000 1.000 0.000 1.000 

  LM no break 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

  DF no break 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
Notes:  4 = break coefficient (magnitude of the break); λ = break location; T = # of time periods; N = 

# of cross sections; LM(*) = transformed panel LM test statistic allowing for level and trend breaks; 

LM() = untransformed panel LM test statistic allowing for level and trend breaks; "LM no break" = a 
conventional LM-type panel unit root test without allowing for breaks; "DF no break" = a conventional 
Dickey-Fuller-type panel unit root test without allowing for breaks. 
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