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Part I. Introduction 
The Advanced Measurement Approach (AMA) of the new U.S. Rule implements Basel II initiatives.  The Rule 
requires large banks to calculate their total operational risk exposure (ORE) by aggregating individual loss 
exposures calculated for units of measure.  Each separate unit of measure must represent an appropriate level (e.g. 
business unit or operational loss event type) at which the bank’s quantification system generates a separate 
probability distribution for potential operational losses. Under the Rule, units of measure may not combine business 
activities or operational loss events with demonstrably different risk profiles within the same loss distribution.   
 
To calculate total ORE, qualifying U.S. banks must aggregate individual operational-risk loss exposures across 
units of measure.  Most bankers hope that increasing the number of units of measure will inevitably increase 
“diversification” and dramatically reduce the total ORE via a portfolio-type effect as in market-risk.  Under the 
Rule, ORE is measured in terms of a statistical measure known as operational-value-at-risk, OpVaR(L;α) which is 
a quantile function intuitively indicating the smallest operational-risk loss L at which the cumulative distribution 
function is greater or equal to the α-percentile.2  Alternatively, ORE is the smallest loss such that the survival 
function is less or equal to the (1-α)-percentile. 
 
Diversification clearly depends upon multivariate dependence which is rather vaguely defined in the Rule as  

a measure of the association among operational losses across and within units of measure3.   
Furthermore the Rule states that the agencies expect that a bank’s assumptions regarding dependence will be 
conservative given the uncertainties surrounding dependence modeling for operational risk.  If a bank does not 
satisfy the requirements surrounding dependence, the bank must sum operational risk exposure estimates across 
units of measure to calculate its total operational risk exposure.   
Finally, the Rule states that banks 

may use internal estimates of dependence among operational losses within and across business 
lines and operational loss events if the bank can demonstrate to the satisfaction of its primary 
federal regulator that its process for estimating dependence is sound, robust to a variety of 
scenarios, and implemented with integrity, and allows for the uncertainty surrounding the 
estimates.  If the bank has not made such a demonstration, it must sum operational risk 
exposure estimates across units of measure to calculate its total operational risk exposure.4 
 

The Rule’s requirement (in the absence of a sound, robust dependence model) to sum individual OpVaRα(Li) across 
units of measure probably indicated regulators’ initial hope that the sum on the right-hand side might provide an 
upper bound to aggregate annual losses at some high (α=0.999) percentile as shown on the RHS of equation (1a): 
                                                      
1 The opinions expressed in this paper are those of the authors and do not necessarily reflect the judgment of FDIC or OCC. 
Email the authors at SUlman@fdic.gov or hulusi.inanoglu@occ.treas.gov.  This is a preliminary version of the paper since it 
does not yet include tables of results analyzing LDCE2008 data for multiple banks which did not become available to the 
authors until mid-March 2009.  All empirical results in this paper were produced using R-language software written by the 
authors or taken from the R-language version of QRMLib which supports the risk-management textbook by McNeil, Frey, 
Embrechts (2005). 
2 Technically, this is written as })(:inf{)( αα ≥= iLFiLiLOpVar where α is a high percentile value like 0.999 (99.9%) and 

F(Li) is the cumulative distribution function of the losses. . Alternatively, }.1)(1:inf{)( αα −≤−= iLFiLiLOpVar  
3 A unit of measure means "the level (for example, organizational unit or operational loss event type) at which the [bank]’s 
operational risk quantification system generates a separate distribution of potential operational losses."  Under the U.S. Rule, a 
unit of measure can "not combine business activities or operational loss events with demonstrably different risk profiles within 
the same loss distribution".  Using a model with only a few units of measure increases the need to insure potential measurement 
of any loss associations within each single unit of measure. 
4 Taken from the Final Rule, section 22 (h)(3)(D)  
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Verbally, equation (1a) may be restated as 
(1b)  boundupperitysubadditivtotalOpVar ≤   
When considering only two units of measure (d=2) in (1a), the upper bound on the RHS is known as the case with 
perfect positive dependence or comonotonicity since the two risks then have maximal linear correlation.  The 
general case where the sum of OpVaRs across individual units of measure accurately determines the upper bound 
on aggregate losses is said to provide a subadditive measure.   
 
Subadditivity for portfolio VaR has been extensively investigated in market risk and is frequently interpreted as 
implying that "diversification effects" almost invariably reduce total VaR below the subadditivity-bound for 
aggregated returns or losses.5  In fact, a measure of diversification recently introduced by Embrechts, Lambrigger, 
and Wuthrich (2008) measures the difference between the left- and right-hand sides of equation (1): 
(2a) boundupperitysubadditivtotalOpVaRLOpVaRLOpVaRLLD i
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A negative value for Dα indicates the amount by which diversification reduces the total loss since the ORE across 
the summed losses is less than the subadditivity upper bound in (1)).   
 
An alternative measure shown later in tables of  this paper is the diversification ratio or capital reduction ratio 
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which measures the proportion by which the ratio of the subadditivity upper bound to the total OpVaR exceeds one.  
This effectively represents the proportion of capital reduction provided by "diversification" effects. In cases where 
the totalOpVaR exceeds the subadditivity upper bound, the diversification ratio (capital reduction) will be negative.  
This case is known as superadditivity (where diversification fails).  
 
Consequently, the study of diversification in risk management is integrally related to determining conditions where 
OpVaR fails to be subadditive. Furthermore, aggregation of losses, multivariate dependency, diversification, and 
subadditivity are interlinked in some way and, hopefully, various dependency measures can be derived or separated 
to explain diversification effects.   
 
Probably relying on the notion of subadditivity as an “upper risk bound”, several banks during the NPR period of 
the U.S. Basel II Rule commented that the Rule’s  requirement (in the absence of a validated model) to sum OpVaR 
across units of measure (effectively using the RHS of equation (1)) is excessively conservative since it assumes 
perfect positive dependence.  The complaints probably reflected bankers’ experiences with market risk analysis 
where log-returns on stocks and exchange rates are usually viewed as subadditive due to portfolio diversification 
benefits.   
 
Traditional dependency modeling in market-risk frequently utilizes symmetric elliptical6 return distributions with 
two-sided support in which case (Pearson's) linear correlation statistic provides the sole required dependence 
measure. McNeil, Frey, Embrechts (2005) have proved that portfolio  

                                                      
5 Although the elliptical model does well in a large majority of finance models, the literature does describe multiple situations 
where subadditivity fails.  These include situations like portfolios with very skewed loss distributions (possibly containing 
options or defaultable bonds), assets with infinite-mean marginal distributions, or loss distributions created from highly 
asymmetric copulas.  
6 Elliptical distributions are frequently used for log returns on stocks and exchange-rate returns, especially when observations 
are weekly or more frequent.  They provide significant improvement in fit over Gaussian returns. The elliptical family includes 
multivariate normal and multivariate normal-variance mixtures including the multivariate-t and the symmetric multivariate 
NIG distributions. The normal-variance mixtures thicken the tails and allow joint tail dependency if the mixing variable has a 
distribution with a power tail. Normal mean-variance mixtures are not elliptical since the mean-transform skews the 
distribution, creating possible asymmetries in the tails. For a thorough description of elliptical models, see McNeil, Frey, 
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"VaR is subadditive when all portfolios can be represented as linear combinations of the 
same set of underlying elliptically distributed risk factors....an elliptical model may be a 
reasonable approximation for various kinds of risk-factor data such as stock or exchange-
rate returns."  

 
In response to bankers’ NPR comments requesting a greater diversification benefit than provided by summing 
OpVaR across units of measure, the Final Rule stated 

"the agencies continue to believe that this treatment of operational risk exposure 
estimates across units of measure is prudent until the relationships among operational 
losses are better understood…. The agencies expect that a bank’s approach for 
developing explicit and objective dependence determinations will improve over time." 
 

The preceding statements and responses to comments in the Rule about conservative modeling, better  
understanding in the future, and improvement over time imply U.S. regulators believe that dependency modeling 
in operational risk is much more complicated and less well-developed than the successful and popular paradigms 
previously developed for market risk (and credit risk) and is not yet thoroughly understood.  Clearly scarcity of 
operational-risk loss-data due to the annual loss horizon is one factor which critically distinguishes operational-risk 
modeling from the market-risk world.  However, other major drivers distinguishing the operational-risk model from 
the market-risk model include vast differences between the support and the tail-behavior of operational-risk losses 
when compared to market-risk returns.   
 
Well before finalization of the Rule for operational risk, academic and regulatory investigators had published 
evidence using EVT (Extreme Value Theory) to estimate capital required to protect against losses associated with 
heavy-tailed distributions with one-sided support )),0(( ∞∈X  assumed to characterize operational-risk losses. 
Several investigators7 reported preliminary estimations for OpVaR greatly exceeding the subadditivity upper 
bound.  Such “superadditivity” violations are usually consistent with infinite-mean models associated with 
“extremely heavy-tailed models8”.  Furthermore, the risk-management textbook of McNeil, Frey, Embrechts (2005) 
had already proved that the comonotonic subadditivity bound in (1a) does not always hold for VaR and hence the 
maximum VaR for two assets can correspond to a smaller linear correlation than the attainable maximum of 1 
under perfect correlation.9  Hence the case of perfect positive dependence cannot accurately be described as 
excessively conservative. 

                                                                                                                                                                                           
Embrechts (2005) text, Sections 3.3.2 and 3.3.3.  Technically, an elliptical rv is a multivariate affine transformation of a 

spherically distributed variable Y such that AY
d

X += μ .  A spherical distribution is a multivariate distribution with uncorrelated 
components and identical, symmetric margins, e.g. Z ~ Nd(0,Id).  An example of an elliptical normal-variance mixture is the 

student-t where ZWY =  creates the mixture .AZW
d

X += μ  The student-t mixing variable W is distributed as an inverse-
gamma which has a heavy tail which in turn implies joint tail dependence. 
7 See especially studies by Moscadelli (2003), de Fontnouvelle et al (2004), Dutta and Perry (2006).  
8 In this document we divide loss distributional tails into five intuitive  types: "extremely-heavy" implying an infinite-mean 
model; "heavy-tailed" implying an infinite-variance model; "medium-tailed" implying a model with all moments finite and tail 
heavier than exponential; "light-tailed" models whose tails decrease at an exponential rate or faster; "right-truncated" indicating 
a model with a finite right endpoint. 
9 The McNeil, Frey, Embrecht’s (2005) textbook calls this Fallacy 3 regarding linear correlation.  The other two fallacies 
included 1) marginals and pairwise linear correlations determine the joint distribution in all cases; 2) for two different 
marginals and a selected linear correlation coefficient ]1,1[−∈ρ , it is always possible to construct a joint distribution. Linear 
correlations are invariant only under linear transformations.  Under nonlinear transformation, the ρ value may be extremely 
constrained to an interval like  

[-0.5, 0.5].  For example, consider two lognormal variables with distributions ).2,0(2ln)1,0(1ln σNXandNX ≈≈    Then 
ρ = 1 is possible only if σ = 1.  Otherwise for σ > 1, the maximum linear correlation value may become significantly less than 
1.  For example, the maximum linear correlation value is ρ = 0.5 if σ = 2.4.  As σ rises, feasible values of ρ will fall (even 
approach 0) even though the two lognormal variables are not independent. 
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Despite the knowledge that VaR may be superadditive, regulators adhered to the subadditivity upper bound to set 
the minimum capital requirement (MCR) representing ORE. Obviously regulators expect (hope) that violations 
inducing superadditivity discovered in early models were caused by inappropriate model assumptions or 
measurement error (like mixing data with different risk characteristics) which can be overcome by more careful 
modeling. 
 
Unfortunately, the Final Rule did not elucidate which factors in modeling operational-risk dependencies regulators 
believe to be “misunderstood”.  Part II of this paper will attempt to summarize several areas of operational-risk 
dependency modeling which seem to be realtively unresolved and hence require ongoing conservative treatment as 
suggested by regulators’ comments in the Rule.  Conservatism contrasts with many banks’ desires to assume that 
operational risk capital can be immediately and significantly reduced (by as much as 50%) through diversification 
by assuming that loss distributions have “thin-tails”.  In particular Part II will provide compelling and intuitive 
graphical evidence that the one-sided support provided by operational-risk loss distributions precludes much of the 
diversification benefit provided by two-sided returns in the capital markets.  Furthermore, it will show that 
interactions between characteristics of both marginal distributions and the copula (joint distribution) create 
unanticipated impacts on diversification.  Hence analysts should not expect operational-risk losses to attain large 
diversification benefits which significantly reduce the required capital level below the subadditivity upper bound. 
Furthermore, any scenario analysis implemented for operational-risk dependency cannot be based on logic derived 
from market- or credit-risk where underlying data has two-sided support 
 
Part III utilizes simulation via a distributional copula model to calculate the diversification ratio in equation (2b) 
and other pertinent measures like VaR and expected shortfall (ES).  A hybrid version of the two-step inference-for-
marginals (IFM) method will be utilized to separately estimate parameters for the marginals and the distributional 
copula.  Historical operational-risk losses will be aggregated across event-types (ET) proposed by Basel II.  We 
believe that aggregation across business lines is generally not conservative since it is highly susceptible to 
combining data with different risk profiles into a single distribution in violation of the U.S. Rule.   Furthermore, 
historical bank data will be aggregated on a weekly basis to avoid data synchronicity problems since data in some 
event loss types is relatively sparse.  The marginals in this study will be fitted by MLE as mixtures of a "medium-
tailed" lognormal distribution in the body and a "heavy-tailed" GPD in the tail.  Our study will show that some 
methods of initializing estimators and calculating an empirical threshold in the internal MLE process can cause 
significant underestimation of the vital shape parameter in the GPD tail.  The study also develops equations for the 
density functions of the Gumbel copula in up to five dimensions  The density equations are  needed to estimate 
parameters via loglikelihood methods for the conservative Gumbel copula with its positive tail dependence which 
may reduce diversification.  Once the estimations of marginal-distribution and copula-parameters are completed, 
joint annual losses over a 100,000 year horizon can be simulated from the distributional copula in an approach 
analogous to the Loss Distribution Approach (LDA).  Resulting VaR, Expected Shortfalls (ES), diversification 
ratios (see equation (2b)) and other statistics at high quantiles can then be inferred from the simulated data.  We 
show meta-distributional results estimated from Gaussian, t, and Gumbel copulas with the potentially heavy-tailed 
marginal mixture distributions.   
 
Part II. Dependency Relationships Under Scrutiny 
A.  General Copula and Marginal Characteristics 
The Final Rule calls for conservative treatment until relationships among operational losses are better 
understood.   In this section, we discuss dependency issues which may need further study and clarification. We 
also present clear graphic evidence that the absence of negative tail dependency in operational-risk losses (which 
necessarily have only one-sided support) means that diversification effects cannot be nearly as strong as in market 
risk.  This implies that conservative scenario analyses cannot mirror diversification effects in market or credit risk.  
 
Recent operational risk literature10  is replete with studies showing that VaR (and OpVaR) can be superadditive.  

                                                      
10 “Multivariate Extremes and the Aggregation of Dependent Risks: Examples and Counter-Examples”, Extremes 2008, 
Embrechts, Lambrigger, and Wuthrich references much of the relevant literature. 
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Specifically, superadditivity prevails whenever the VaR measure for the aggregate (across units of measure) annual 
loss exceeds the subadditivity upper bound as shown in equation (3).   
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Superadditivity implies a lack of diversification (in fact, negative diversification) and brands OpVaR as an 
incoherent risk measure according to Azner. 
 
Since U.S. regulators chose to support OpVaR even when they knew about violations of subadditivity, it is clear 
they must be very interested in determining what causes the superadditivity violations and finding adjustments to 
eliminate the underlying causes.  Recent research suggests three  important factors related to the marginal 
distributions and two important factors related to copulas may interact to reduce diversification results; they   
must be examined carefully to see if their interaction might lead to superadditivity. 
 

Marginal Distribution Factors 
• Tail behavior (variation) of the marginals. 

Researchers initially suspected that infinite-mean models (where the tail is so heavy that no constants for 
convergence can be found ) might be the primary cause of superadditivity.  Infinite-mean models were 
routinely empirically identified in operational-risk banking research and are known as “extremely heavy 
tailed” models.  Some researchers suggested that fittings of infinite means to data  were caused by data 
contamination (mixing data from distributions with different risk-characteristics) rather than  correctly 
categorizing a loss distribution.  A possible remedy is to  rationally filter outliers.  However, considerably 
more work needs to be done in this area.  

• Symmetry or asymmetry of the underlying marginals 
The symmetry factor interacts with the “extremely heavy tailed” factor, the two-sided support factor, and 
the tail-dependence factor for some copulas.  Embrechts, Lambrigger, and Wuthrich (2008) show that 
subadditivity prevails for elliptical (symmetric) marginals whose tail variation implies an infinite-mean 
model as long as the data support for the marginals is two-sided.  Hence, contrary to intuition, infinite-
mean models are not necessarily superadditive.  They write:   

"For the infinite mean multivariate t-distribution, subadditivity of VaR holds due to the 
dependence properties in the upper left and lower right corner11. High values of one risk 
are compensated by low values of the other risk, turning VaR into a coherent risk 
measure for such infinite mean models." 

• One-sided or two-sided support for the marginals12.  
With one-sided support (as in operational risk where losses cannot be negative) elliptical models with 
infinite means become superadditive even though they are subadditive with two-sided marginals.   One-
sided support precludes the negative tail dependencies (where large losses are offset by large positive 
gains) described in the previous quotation. 

 
Copula Dependence Factors 

• Dependence structure cannot be described solely by correlations (rank or linear) for most copulas. 
• Tail Dependency 

 Positive Tail Dependency 
 Negative Tail Dependency (precluded in distributions with one-sided support) 

Positive and negative tail dependence both depend on the copula (joint density) and not on the marginals. However, 
some copulas (like the Gaussian) have tail dependence coefficients asymptotically equal to 0.  A more detailed 
description of tail dependency and its impact on diversification is provided in the next section. 
 
B.  Impact of Tail Dependency on Diversification 

                                                      
11 Upper left refers to upper negative tail dependency; lower right refers to lower negative tail dependency. These concepts will 
become clear in the graphs which follow. 
12 Data are said to have one-sided support if their values lie on the interval ),0( ∞ like operational-risk losses or two-sided 
support if their values lie on the interval ),( ∞−∞  like stock returns.   
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It is vitally important to understand the concept of tail dependency now that regulatory capital has been restructured 
to protect against “one in a thousand year” cataclysms for operational risk. Clearly, tail dependence is also critical 
in explaining ordinary portfolio diversification for market risk on daily or more frequent samples. Tail dependence 
in operational risk measures the tendency of large outcomes (tail events) to occur “simultaneously, i.e. within the 
same year” in two (or more) loss ETs. Tail dependence measures do not depend on the underlying marginals and 
hence can be written in terms of the joint distribution's underlying distributional copula.  See Appendix 1 for 
technical definitions of tail dependence.  We will first provide an intuitive description of tail dependency and then 
provide graphics to give an intuitive explanation of its effects on diversification. 
 
In the following description, a “variable” refers to an annual operational-risk loss within a distinct unit of measure 
and "simultaneously" should be interpreted to mean “in the same time period as the risk-analysis horizon”. 

Positive tail dependency +λ :  
Positive tail dependency Is the probability that within the loss year, both variables will exhibit similar behavior in 
the tails. There are two separate types of positive tail dependency: 

• Positive upper tail dependence +
uλ : the probability that both random variables will produce similar large 

losses in the upper tail (largest quantiles: upper-right region) within the year.  This is extremely important 
in operational risk since it reflects the opposite of diversification. 

• Positive lower tail dependence +
lλ : the probability that both random variables will produce similar small 

losses  in the lower tail (smallest quantiles: lower left region) within the year. It is basically irrelevant for 
diversification in random variables with single-sided infinite support ),0( ∞=ℜ∈X like operational-risk 
losses since it describes only joint outcomes which are both close to zero. 

Negative tail dependency −λ :   
Is the probability that within the loss year both random variables will simultaneously exhibit opposite behavior in 
the tails.  This concept is a major driver of diversification in market risk since it implies that very large losses in one 
tail can be offset by very large gains in the opposite tail.  The concept is relatively meaningless in operational risk 
where single-sided infinite support ),0( ∞=ℜ∈L  for losses means that a large loss in one unit of measure is 
“offset” by a loss close to zero in another unit of measure since large negative losses cannot occur. 

• Negative upper tail dependence −
uλ : the probability that one random variable will produce an outcome in 

the upper tail (highest quantile: upper left region) and the other random variable will produce a 
simultaneous outcome in the lower tail (smallest quantile: upper left region) within the loss year 

• Negative lower tail dependence −
lλ : the probability that one random variable will produce an outcome in 

the lower tail (smallest quantile: lower right region) and the second random variable will produce a 
simultaneous outcome in the highest tail (largest quantile: lower right region) within the loss year 

 
A copula may have  

• both upper and lower tail dependence (t-copula, Generalized Clayton copula) 
• upper tail dependence only (Gumbel copula) 
• lower tail dependence only (Clayton copula) 
• no tail dependence (Gaussian copula, Frank copula) 

  
Effective negative tail dependency is reliant upon two-sided data support which is a typical description for variables 
which can take on both positive and negative values.  Infinite two-sided support describes the variables’ ranges as 
being ),( ∞−∞∈X . For example, stock-market log-returns exhibit two-sided support.  Contrarily, operational-risk 
losses have only one-sided support (their range is X ∈ (0,∞ )) since “negative” or “zero” operational-risk losses are 
undefined. 
 
Major diversification benefits are provided by copulas exhibiting negative tail dependencies when the pair of X 
variables has two-sided support: large positive values from one variable can offset large negative values from the 
other variable, a concept often recognized as portfolio diversification.   
 



 7

Figure 1 presents a pair of plots representing simulations from two bivariate t-copulas with identical underlying t-
marginals.  One bivariate copula has a positive correlation coefficient; the other copula has a negative correlation    

 

 
coefficient.  Changing the sign of the correlation coefficient rotates the bulk of points in the center of the plots.  It 
may also have reduced the number of outcomes with positive upper tail dependency +

uλ but did not totally eliminate 
such simultaneous extreme observations. 
 
Since t-distributions have two-sided support, the addition of q=.995 and 1-q = 0.005 percentile lines for both 

variables displays nine feasible regions for outcomes in the copula plot.  Negative tail dependency −λ  is associated 
with both the upper-left and lower-right of the nine regions.  Hence negative tail dependency has both upper and 
lower components. It is the basic explanatory power behind subadditivity prevailing even if the tail variation 
implies infinite-mean models as shown by Embrechts, Lambrigger, and Wuthrich (2008): 

"For the infinite mean multivariate t-distribution, subadditivity of VaR holds due to the dependence 
properties in the upper left [ −

uλ ] and lower right corner [ −
lλ ]. High values of one risk are compensated by 

low values of the other risk, turning VaR into a coherent risk measure for such infinite mean models." 
 

Figure 1.  With two-sided support, simultaneous large negative and positive values are possible) for both X1 and X2. 
The left-side graph shows the straight t-copula with small negative correlation versus the right-side graph with small 
positive correlation.  The horizontal and vertical lines represent .005 and .995 percentiles.  Note the nine separate 
regions where losses can occur with two-sided support for the marginals. 

In both graphs, the segments marked with negative tail-dependency (upper ( −
uλ ) or lower ( −

lλ ) ) clearly show that 
large positive values from X1 occur simultaneously with large negative values from X2 and vice versa when X has t-
marginals.  The simultaneous large positive values offset the large negative values, a phenomenon frequently driving 
diversification.  

Note the t-copula also contains a few cases of  positive upper ( +
uλ ) and lower ( +

lλ ) tail dependency in  the 
uppermost right and lowermost left regions which create the opposite effect of diversification. 
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In particular, Figure 1 clearly shows that the standard t-copula generates numerous data pairs with large negative 
outcomes being offset by simultaneous large positive outcomes in both upper left and lower right regions of the  
 
graph. These points play a crucial role in diversification since the variables have doubly infinite support.  The graph 
shows negative tail dependency only between two assets.  When hundreds of assets exhibiting similar negative tail 
dependencies are combined in a portfolio, the diversification impact may be greatly magnified. 
 
For infinite-mean models with two-sided support, negative tail dependency can be so strong that positive extreme 
values in one coordinate are sufficiently compensated by negative extreme values in the other coordinate to 
maintain subadditivity. In particular Embrechts, Lambrigger and Wuthrich (2008) have proved elliptical 
distributions maintain asymptotic subadditivity for infinite-mean models as long as they exhibit two-sided support.   
The absence of negative tail dependency induced by one-sided support of the marginals intuitively precludes large 
negative values from offsetting (diversifying) large positive losses.   
 
Despite the fact that two-sided support is necessary for negative tail dependencies with their remarkable 
diversification benefits, Figure 2 shows that such support is not sufficient.  The copula-type also plays a vital role.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Certain Archimedean copulas totally preclude negative tail dependencies even when the marginals have two-sided 
support.  The left-hand graph in Figure 2 shows values simulated from a Gumbel copula with student-t marginals (a 

Figure 2.   The graphs show simulated meta-gumbel and meta-Clayton copulas  with parameter θ=2 and 
underlying student-t-marginals with 1.5 degrees of freedom.  Neither  the  gumbel nor Clayton copula has any 
negative tail-dependency which is verified by the absence of any simulated points in the upper left or lower right 
regions in both graphs.   Hence large positive values from X1 never occur simultaneously with large negative 
values from X2 and vice versa which greatly reduces any “diversification effects”.  

In general, the gumbel copula is said to exhibit only positive upper  tail dependency +
uλ implying situations where 

large positive events  occur simultaneously.  Positive tail dependencies are clearly the opposite of diversification.  
Similarly, the Clayton copula is said to exhibit only positive lower dependence where large negative outcomes 
occur simultaneously for both variables but large positive outcomes do not occur simultaneously.   
 
Despite having two-sided support for the marginals, both copulas totally lack the negative tail dependency which 
is intuitively the driver of diversification in portfolio theory. 
 
The horizontal and vertical lines represent .005 and .995 percentiles 
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so-called meta-Gumbel distribution with t-marginals).  The right-hand graph shows values simulated from a 
Clayton copula with student-t marginals (a so-called meta-Clayton distribution with t-marginals).  Neither graph 
exhibits any negative tail dependencies (in the upper left or lower right regions where large negative values offset 
simultaneous large positive values) despite the marginals having two-sided support.  Additionally, the Clayton 
copula exhibits no positive upper tail dependence but does show positive lower tail dependence indicating a 
propensity for large simultaneous negative values.  Contrarily, the Gumbel copula exhibits positive upper tail 
dependence, indicating a propensity for simultaneous positive values.  This is beneficial if the "values" are stock 
returns but it is dangerous if the "values" are operational-risk losses. 
 
The existence and importance of tail dependencies change dramatically when considering operational-risk losses 
which exhibit one-sided support (are defined as ),0( ∞∈X ).  The absence of two-sided support totally precludes 
any meaningful negative tail dependencies and hence implies a serious decline in meaningful “diversification” 
benefits for large losses.  Furthermore, presence of positive tail dependency in the underlying copula would further 
reduce any potential diversification. 
 
Figure 3 shows losses simulated from a t-copula with lognormal marginals (a meta-t distribution with lognormal 

 

 

Figure 3.   Simulations of bivariate losses from a t-copula with identical lognormal marginals.  The horizontal 
and vertical lines represent .005 and .995 percentiles.   
 
Note the total absence of negative tail dependence which is a primary driver of diversification in market risk since 
it allows large negative and positive outcomes to offset one another.  Such diversification is impossible in loss 
distributions with one-sided support.  In fact, note that only four of the nine regions now contain potential 
outcomes due to the one-sided support of the lognormal marginals. 
 
Note that the negative correlation in the second figure may have reduced the number of loss pairs with upper tail 
dependency but did not eliminate them entirely. 
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marginals). Note that the best outcome for −
uλ is now a simultaneous loss of zero coupled with another positive loss 

since operational-risk losses cannot be negative.  The absence of negative support seriously curtails the potential for 
diversification when extreme losses occur.  In fact, Figures 3 and 4 demonstrate that one-sided support for the  

 
 
 
 
 
 
marginals effectively reduces the number of regions potentially containing  losses from the nine regions shown in 
Figures 1 and 2 to only four regions in Figures 3 and 4.  The five regions on the bottom and left-hand side of the 
plot can have no observations when the margins have one-sided support.  The omitted upper-left and bottom-right 
regions generally contain data pairs associated with negative dependency. 
 
Figure 4 shows graphs of four different meta-distributions with marginals all exhibiting one-sided support.  Each 
meta-distribution of course lacks any meaningful negative tail dependency.  The importance of the simulated 
distributions in Figure 4 is that some copulas also preclude positive tail dependence.  Neither the Gaussian nor 
Clayton copula exhibits any large simultaneous tail events.  Hence usage of these copulas guarantees a lower level 
of operational-risk losses from simultaneous tail events and may not be a conservative treatment.  Thus it becomes 
very important to validate a correct copula choice. 
 
To summarize the results of this section, it is important to emphasize that in terms of copula characteristics, rank 
correlation cannot entirely describe dependency in a risk model unless the underlying distributions exhibit elliptical 
symmetry.  Even in the absence of significant rank correlation, tail dependency in the copula may result in either 
increased or decreased diversification benefits since it may be either positive or negative, just like correlation.  
Negative tail dependency provides major explanatory power for “diversification” benefits while positive tail 
dependency reflects simultaneous large losses or gains which reduce "diversification".  The fact that operational-

Figure 4. Simulated losses from four different bivariate copulas each with identical lognormal 
marginals (characterized by one-sided support). 
Note that only four of the nine regions in the graph contain simulated values. 
The horizontal and vertical lines represent .005 and .995 percentiles
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risk losses are restricted to  positive one-sided support for the marginals can be considered as an implicit restriction 
on the dependency structure which precludes all negative tail dependency.  The absence of negative tail 
dependency due to one-sided support prevents large negative losses from offsetting (diversifying) large positive 
losses.  For example, a standard t-copula with t-marginals allows negative tail dependency with a potential 
improvement in diversification. However, if the propose marginals are switched to lognormal distributions with 
one-sided support (creating a meta-t copula), the possibility of "negative" losses is immediately eliminated along 
with any major "diversification" potential.  
 
Part III.  Measuring the Diversification Effect  
A. Choosing a methodology to measure the diversification ratio 
Over the past decade, researchers have proposed several methodologies to model dependencies in loss distributions. 
Models based on simulations of copulas have become predominant since the copula allows separation of 
dependency factors from the underlying loss distributions when trying to extract diversification effects.  There are 
currently two separate copula approaches to dependency modeling.13 

1) Model dependence by using distributional copulas where the aggregate loss distribution for each unit of 
measure is assumed to be a compound Poisson process. Distributional copulas were first popularized by 
Sklar in 1959.  A distributional copula14 is a joint distribution function ).,...( 1 duuC with standard uniform 
marginals.  Hence the distributional copula maps the unit hypercube into the unit interval as 

]1,0[]1,0[:)( →dC u .  The distributional copula is amenable to translation using both quantile transforms 
and probability transforms.  Sklar (1959) proved that for uniform marginal distributions representing 
probability transforms ( )(),...,( 111 ddd xFuxFu == ) of continuous marginals that the resulting joint 
distribution function is unique: 
 ).,...,())(),...,((),...( 1111 dddd xxFxFxFCuuC ==  
 
Hence the copula function separates modeling the dependency structure from the marginals.  Furthermore, 
changing marginal distributions implies changing the joint distribution even if the copula function remains 
unchanged.  Thus the converse of Sklar’s Theorem implies that arbitrary marginals may be applied with a 
copula specification to create alternative joint distributions with similar dependency traits.   
 
It is vital to understand that marginal densities associated with distributional copula models do not need to 
come from the same "family" as the joint distribution. The joint distribution created from a t-copula using 
univariate student-t marginals is indeed a multivariate student-t distribution.  However, the joint 
distribution created from a t-copula combined with lognormal marginals is known as a meta-t distribution 
(or a meta-t copula) with lognormal marginals.   It has dependency characteristics of the multivariate-t but 
marginal characteristics of the lognormal distribution. In general, a "meta-x-distribution" is a joint 
distribution created from an "x"-copula model using arbitrary margins. 
 
The diversification effect can then be measured by a procedure which estimates the marginal distributions, 
estimates the copula parameters, then simulates annual losses across units of measure (loss event-types) 
using parameters from the prior fittings over a very large time period.  The VaRs for the simulated annual 
losses may then be obtained from the empirical distribution function of the simulated losses for each unit of 
measure and equation (2b) can be applied to calculate a diversification benefit. 

                                                      
13 Three other methods do not use copulas.  They include i) modeling frequency dependency between loss-occurrence times 
using linear (Pearson's) correlation;  ii) modeling severity dependency for losses occurring simultaneously;  iii) modeling 
coincident loss events using a "common-shock" model.  Bock and Kluppelberg (2007) show that two factors severely limit the 
importance of modeling frequency correlations in compound Poisson models: 1) Since the loss-frequency dependency affects 
only the number of expected losses but not the size of the losses, it has a very limited impact on the size of total aggregate loss 
in units of measure when some losses are very large. 2) If two units of measure have mean frequencies with highly different 
levels, then the resulting frequency correlation value is limited to very low values. 
14 Most risk-management and statistics textbooks currently refer to "distributional" copulas as copulas.  However, in 2007-8, 
Bocker and Kluppelberg have developed the Levy-copula (and Pareto-Levy copula) as methods for extracting dependency 
information.  Hence we have chosen to use the distributional adjective to clarify the type of copula under discussion. 
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2) A second alternative would be to model dependence via Levy or Pareto-Levy copulas (which are not 

distributional copulas since they depend upon tail integrals).  A Levy copula is associated with multivariate 
compound Poisson distributions (finite jumps in a time interval) while the Pareto-Levy copula is associated 
with a process having infinite variation (an infinite number of jumps in the time interval).  In 2007-8, 
Bocker and Kluppelberg developed Levy- and Pareto-Levy copulas as methods for extracting dependency 
information for multivariate loss distributions.  The Levy copula separates marginal tail integrals and 
dependencies in  jump measures from the joint tail integral somewhat analogously to distributional copulas 
via the following definition: ))(,,),((),...( 111 dd

Levy
d xxCxx ΠΠ=Π  where ),...( 1 dxxΠ  represents the 

joint tail integral and )( ii xΠ represents the ith marginal tail integral.  Hence a Levy copula maps 

],0[],0( ∞→∞ d rather than mapping from the unit hypercube into the unit interval and hence is not a 
distributional copula. See Appendix 3 for further details. 
 

This paper chooses the distributional copula dependency models approach where distributional copulas measure 
dependency across severity distributions only (ignoring frequency dependencies).  We seek to measure and 
compare the “diversification effects” for several banks using LDCE 2008 data, i.e. their reduction in ORE implied 
by dependency factors from assumed distributional copula models.   
 
B. Resolving Data Synchronicity and Dependency Problem 
A major problem with measuring dependency using a distributional copula approach is the total scarcity of annual 
operational-risk loss data within individual units of measure for a single bank.  Hence data must be aggregated on a 
shorter time horizon (monthly, weekly, or daily).  The problem is further compounded because the marginal 
distributions for operational-risk losses are recognized to be heavy-tailed, frequently requiring application of 
Extreme Value Theory (EVT) for parametric estimation.  EVT estimation requires a relatively large number of data 
points above a large loss threshold, further increasing the demand for empirical data points.  The data scarcity may 
cause situations with the potential of having no losses in Event Type 4 (ET4) on a particular day while having 
multiple losses in ET7 on the same day.  El-Gamal, Inanoglu, Stengel (2007) have suggested a solution to this 
“asynchronicity of loss arrival” problem by aggregating daily losses collected into weekly15 losses (avoiding 
dependency problems for unmatched severity).   
 
[Weekly aggregated loss data (LDCE 2008 will give approximately 350 weekly data items; LDCE 2004 gave 196 
weekly observations).  Hopefully, the larger number of observations in LDC32008 will improve fittings.  Even for 
LDCE 2008, monthly data will probably provide too few observations for monthly estimation.] 
 
Daily losses will be aggregated to weekly losses across loss event-types (ET) and not across business lines.  Using 
business lines almost surely means combining data with demonstrably different risk profiles within the same loss 
distribution although the event-loss-types have very different characteristics and avoid the problem. 
 
It may be interesting to retest rank-correlation estimates for annual losses in each unit of measure against rank-
correlation estimates of observed weekly data. It may also be useful to implicitly test tail dependency measures by 
examining proportions of simulated losses in top 95% of each unit of measure occurring in simultaneous years and 
comparing the proportion in the original weekly data. 
 
C. Choosing the Distributional Copula and Marginals 
The copula chosen for the model determines the dependency properties of the joint distribution distinct from the 
choice of marginals.  We will examine three distributional copula structures to maintain conservatism. Two of the 
chosen copulas allow consideration of positive tail dependence in addition to rank correlations.  Positive tail 
dependence effectively results in reduced “diversification” since it implies large coincident losses occasionally 
occur in different units of measure.  (Recall that negative tail dependency is infeasible for operational-risk loss 
distributions with one-sided support.  Figures 3 and 4 have clearly shown that meta-t distributions with one-sided 

                                                      
15 Giacometti, Rachev, Chernobai, and Bertocci (2008) reached a similar conclusion about the need to use weekly aggregation. 
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marginals do not exhibit the negative tail dependency responsible for diversification of large values.)  Meta-t 
copulas do have multiple parameters to express correlation between different units of measure.  Alternatively we 
will examine the (Archimedean) Gumbel copula which also exhibits positive tail dependence (see Figures 2 and 4 
in Part II).  Finally, we will contrast results with the Gaussian copula which exhibits no asymptotic tail dependency.  
 
The choice of marginals to accompany the copula is vital for obtaining conservative results which do not 
inappropriately increase the measured impact of “diversification” and reduce required capital inappropriately.  In a 
recent study, Giacometti et al (2008) used an alpha-stable distribution to estimate losses in three business lines for a 
single European bank and used t-copulas (including skewed-t) to represent dependence.  Their results indicated an 
approximate 20-25% reduction in capital at the 99.9th percentile but strangely indicated superadditivity at some 
lower percentiles like the 98th.  They wrote, 

 “Our findings indicate a lower reduction in risk capital than those reported by Chapelle et al (2004) and Dalla 
Valle et al (2008). Chapelle et al (2004) showed that for a 99% VaR a bank can achieve reduction in capital 
estimates by 35% by using copulas, and Dalla Valle et al (2008) showed reduction in the range of 30% to 
50%. One explanation is that we used a much more heavy-tailed loss distribution than in the other two 
studies. This means that, if a thin-tailed loss distribution is used to model loss data, copula-based aggregation 
would result in a much more significant reduction in total capital. In essence, this implies that if a bank has 
mistakenly chosen to use a thin-tailed loss distribution when the data is in fact heavy-tailed, the resulting 
capital would be understated. The converse is also true. The choice of the loss distribution thus becomes of 
central concern and must be estimated with a high degree of accuracy.” 

 
In this paper, we acknowledge the potential heavy-tailed nature of operational-risk losses by attempting to fit an 
EVT-mixture distribution to bank data. The loss-distributional marginals for various loss event types will be 
modeled as mixtures of lognormals with GPD tails.  If the mixture fails to converge at a sufficiently low threshold 
to provide adequate data in the tail, a thin-tailed lognormal distribution will be assumed.  The marginals will be 
fitted by MLE.  Interestingly, even the application of MLE to estimate parameters of the marginal distributions 
requires conservative examination of an appropriate method to determine the threshold and to implement initial 
parameter-guesses for the underlying distributions.  See section III.E for a discussion of methodological problems.   
 
Since the mixture distribution (namely its tail) has the potential to provide an infinite mean model when considering 
excesses over a high threshold, the model provides the potential to create superadditive OpVaR for different units 
of measure as discussed in Part II.  In such cases, clear outliers may be visible in the data.  Potentially such outliers 
need to be cleared from the data used for MLE and modeled separately by scenario analysis. 
 
In order to maintain a conservative approach, it is imperative to hypothesize and test distributional copulas which 
induce positive tail dependency suggesting the potential for large simultaneous losses in some units of measure.  
The analysis in Part II indicated that copulas with positive tail dependencies describe non-diversifiable losses in 
operational risk.  Furthermore, the absence of negative tail dependence in one-sided operational-risk loss 
distributions may greatly reduce diversification among extreme operational-risk losses relative to losses observed in 
financial markets.   
 
D. Choosing a Method to Fit a Distributional Copula 
Three potential methods are currently used to fit a distributional copula to its marginals and determine the copula 
parameters.   

1. Method of maximum pseudolikelihood 
The method of maximum pseudolikelihood is championed by Genest and Favre, 2007.  It involves 
maximizing a rank-based, log-likelihood of the bivariate form by rescaled versions of their empirical 
distribution functions (dividing by n+1): 
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Genest and Favre acknowledge that their exclusive advocacy of ranks for copula parameter estimation does 
not have complete consensus in the statistical community. 
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2. Full MLE 
The copula and marginal parameters could be estimated simultaneously using full MLE. This is often 
extremely difficult and has been largely ignored.  However, McNeil. Frey, Embrechts (2005) suggest 

“One could envisage using the two-stage method [IFM] to decide on the most appropriate copula 
family and then estimating all parameters (marginal and copula) in a final fully parametric round of 
estimation.” 

 
3. IFM (Inference Functions for Marginals) Method 

The IFM is a two-step method first described in the textbook by Joe (1997).   
Step 1: Fitting the Marginals under IFM  
In the first step of IFM, parameters δi for each of the i marginal distributions may be estimated 
parametrically by MLE and a d-dimensional pseudo-sample of marginal probabilities can be built from the 
estimated marginals as 
(4) ));(ˆ),...;(ˆ(ˆ,...ˆ

,11,1,1, ddtdtdtt XFXFUU δδ= .   
Alternatively, the marginals may be estimated non-parametrically from the empirical distribution function 
(edf) although edfs “are known to be poor estimators of the underlying distribution in the tails”16.  
Furthermore, the pseudo-sample marginals generated by edf will have identical marginals in each column 
(but with different ordering), requiring not only independence but identical marginals across all loss types.  
Consequently, the non-parametric edf approach is not recommended for fitting marginals for operational-
risk data with potentially heavy tails and different distributions in each unit of measure.  As a third 
alternative, one could try to fit the tail parametrically17 and the body non-parametrically. 
 
In section III.E  we present details for implementing the first IFM step via MLE using a lognormal-GPD 
mixture distribution.  Note that dramatically different results can occur depending upon how initial guesses 
are implemented as inputs to MLE and how the threshold level is empirically determined when the data is 
heavy-tailed. 
 
Step 2: Fitting the Copula Parameters under IFM using MLE 
In the second step of IFM, copula parameters θ are estimated by MLE conditional upon the first-step 
estimators of the marginals-distribution parameters δi.  Note that for meta-copulas, each marginal may have 
a different set of parameters from the others.  The loglikelihood function is written in terms of the copula 
density cθ with respect to the copula parameter vector θ   

 (5)  );ˆ(ln),...;ˆ,...ˆ;(lnmax
1

1,,1
}{

δU t

n

t
dtdt cUUL ∑

=
= θ

θ
δδθ . 

Hence in order to fit copula parameters under Step 2 of IFM, the implementer must determine the copula’s 
density function which is not always a trivial task since implicit copulas have no closed-form solutions and 
explicit copulas may be very tedious.   
 
Obviously, the statistical quality of the copula parameter(s) fitted in step 2 of IFM is strongly impacted by 
the accuracy of the estimators for the marginal distributions in Step 1.  Nevertheless, IFM is strongly 
preferred over full MLE by most practitioners because it is easier to implement.  Xu (1996) and Joe (1997) 
both studied the relative efficiency of the IFM estimators versus the full MLE and concluded that the IFM 
method is highly efficient with mean-squared error ratio to the full MLE close to 1.18  
 
See Section III.F for details of implementing the second IFM step, including determining the copula density 
functions needed for likelihood estimation of the copula parameters.   

                                                      
16 See McNeil, Frey, Embrechts (2005) text,  p.233. 
17 For example, the tail could be fitted parametrically as a GPD.  There are numerous methods other than MLE to estimate the 
shape and scale parameters of the GPD.  For example, Juarez and Schucany developed the minimum density power divergence 
estimator (MDPDE) while Dupuis developed the optimally biased robust estimator (OBRE) for parameters in a GPD tail. 
18 See Bee (2005). For Joe, see section 10.1.2. 
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This project will simulate a large set of joint losses from three different distributional copulas (Gaussian, t, 
and Gumbel) using a hybrid of the two-step IFM method.  In the second step, copula parameters for a 
standard copula will be determined by non-parametric estimation using the empirical distribution function.  
Important statistics like VaR and the diversification (capital reduction) ratio will be determined from the 
empirical distribution of the simulated loss set. See Section III.G for this hybrid IFM approach useful when 
simulating data from meta-copulas. 

 
Details follow in the next three sections (E,F,G).  Note that in all cases, the underlying operational-risk loss 
marginals have one-sided support ( ),0( ∞∈X ) which precludes the major diversification benefits of negative tail 
dependency available from two-sided support available in the capital markets. 
 

 
E. Fitting the Marginals via MLE: Step 1 of IFM 
The first Inference Functions for Marginals (IFM) step estimates the marginal loss distributions for each unit of 
measure (here assumed to be event-types ET) in an individual bank.  We initially show diversification results for a 
single large U.S. bank whose operational-risk losses were provide in the LDCE2004 dataset. [We plan to extend 
results by separately fitting and comparing several banks with sufficient operational-risk loss data provided in the 
LDCE 2008 dataset.] In Part III.C we indicated that assumed marginals would be either lognormal or a mixture of 
lognormal with a GPD tail.  If data-fitting fails to support a lognormal-GPD mixture for an ET, then the marginal 
for that unit of measure will be fitted to a straight “medium-tailed” lognormal distribution.  We will fit the 
marginals using maximum likelihood by simultaneously estimating parameters for both the body and the tail.   
 
The appropriate mixture distribution (and corresponding density) can be derived from Extreme Value Theory 
(EVT). Given the Generalize Pareto Distribution, the basic formula to relate the tail probabilities (the “excess” 
conditional distribution function) to the full loss distribution is given by the conditional excess distribution Fu(x) 
in the following formula where X represents the actual value observed (an exceedance over the threshold) while x 
represents the “excess” value over the threshold (x = X-u).  Hence in the following notation, X is an exceedance and 
x is an excess.  The following equation describes the distribution of an excess value x where the “excess” measures 
the difference between the actual “exceedance” observation X and the threshold u.  

(6)
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Recognizing that F(X) is a lognormal distribution and changing notation so that the threshold becomes 

uT =λ where λ is the percentile associated with the level T = u and identifying 
that ),;()()( βξλλ TXFTXFxF GPDuu −=−= , we find that the aggregate loss distribution function may be 
rewritten as a mixture of a lognormal distribution λσμ TXifXFLN ≤),;( below a threshold and a GPD excess 
distribution function above the threshold where ξ is the shape parameter and β is the scale parameter of the GPD:  
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Differentiating the distribution function gives the mixture distribution’s density (likelihood function) which may be 
converted to logarithms and used to simultaneously estimate the parameters for both the lognormal and the GPD 
tail via MLE:  

(8)
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To maximize the log of the likelihood function in equation (8), we fix a set of threshold 
percentiles },...,2,,{ 0000 ελελελλλ n+++=  where ε is a very small number like 0.005.  For each percentile 
in the set, we evaluate the loglikelihood with respect to the other four parameters },,,{ βξσμ at the implied 
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threshold Tλ.  From the resulting collection of loglikelihood values at each threshold, we select the value which 
minimizes the negative loglikelihood function to define the optimal threshold. 
 
To promote conservatism, it is important to examine different modeling approaches and even different software 
implementations19 for MLE which may result in significant differences in parameter estimates for the marginal 
distributions.  We will show that at least three factors can significantly impact estimations for "heavy-tailed" data 
when fitting a mixture or GPD distribution to historical data.   

i. Judicious removal of outliers from loss event-type data when initial analysis indicates "extremely-heavy" 
tails (infinite-mean distributions). 

ii. The method chosen to initialize parameter guesses when applying MLE to heavy-tailed distributions (using 
either PWM or MOM20 statistics as starting values). 

iii. Choice of potential threshold percentile ranges within the MLE procedure and differences in the empirical 
quantile function used to obtain the actual threshold from a specified threshold percentile.  

 
1. Outliers Factor 
Several analysts have suggested that outlier removal may be justified when the MLE estimators for a loss event-
type imply an infinite-mean distribution21.  For example Neslehova et al (2006) state 

"VAR may lead to ridiculously high capital charges in the infinite-mean case…. One could even argue 
that infinite-mean models ought to be banned from the operational risk modelers toolkit!"  

 
The removal of outliers from an event-type will clearly diminish parameter estimates for the shape (and possibly 
scale) parameters, resulting in a reduction in OpVaR and consequently required capital.   
 
El-Gamal, Inanoglu, Stengel (2007) suggest a strategy of judiciously re-estimating the data series after "separating 
clear outliers that need to be modeled via probabilistic scenario analysis".  When removing outliers and reducing 
OpVaR, there should be an offsetting procedure to adjust the OpVaR upward via scenario analysis to account for 
the removed outliers. The authors state that Bayesian analysis should be applied to the outliers and outlined an ad 
hoc procedure for adjusting the OpVar upward to account for omitted outliers.  However, they reiterate that the 
"full treatment of this procedure is subject to future research", echoing the necessary conservatism message of the 
NPR requiring future improvements to our understanding of the issue. 

Table 1. Impact of Excluding Outliers 
Loss 
Type 

Outliers 
Excluded 

Negloglik Threshold 
Value 

Initializer 
Type 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

ET4 0 3019.483 1,606,367 
(68.5%) 

PWM7 1.1885 
(0.3079) 

6.093835e+06 
(2.5925e+06) 

13.772 
(8.316e-02) 

1.0832 
(7.1109e-02) 

ET4 4 3005.077 1,609,515 
(70%) 

PMW7 0.7788 
(0.27179) 

4.278366e+06 
(1.3145e+06) 

13.741 
(8.2328e-02) 

1.0683 
(6.993e-02) 

ET2 0 3095.093 3,737,860 
(63.5%) 

PWM7 0.48568 
(0.14622) 

1.976857e+06 
(3.211684e+05) 

15.0172 
(0.02547) 

0.32377 
(0.0222) 

 
ET2 4 3030.369 NA PWM7 NA NA 15.1147 

(0.034074) 
0.47215 

(0.02409) 
 

 
Tables 1-3 report the impact of outliers on parameter estimations for the marginal distributions of data  from a 
single large U.S. bank as reported in LDCE 2004 data.  Table 1 shows the impact on shape and scale parameters for 

                                                      
19 By different implementations, we mean  using Matlab, R, S-Plus, or other packaged functions. 
20 Probability Weighted Moments are quantiles .]))(1()([ ., srp

srp MXFXFXE =−  For the GPD, we usually work 

with sM ,0,1 , i.e. setting p=1, r=0, s=s. MOM indicates method of moments. See Hosking and Wallace (1987), section 3.3 
especially equation (5). 
        
21 An extreme value distribution has an infinite variance if its shape parameter chi is greater or equal to  0.5 (ξ >= 0.5) and an 
infinite mean if its shape parameter is greater or equal to 1.0 (ξ >= 1.0). 
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two loss event-types when the four largest outcomes (outliers) are removed from ET422. The first row of Table 1 
shows the MLE estimators for ET4's parameters },,,{ σμβξ using the full data set with initial guesses calculated 
via probability-weighted-moments (PWM) and using the mode-type empirical quantile function (Type 7) for the 
entire data set of 196 aggregated weekly losses23.  The outliers were removed because the ξ-estimator of 1.1885 for 
ET4’s shape parameter with the full dataset indicates an infinite-mean model (“extremely-heavy-tailed” 
distribution) which could result in superadditivity.  Hence the outlier-reduced data set has 192 weekly observations. 
Obviously, the corresponding weekly observations must also be removed from all other loss types. 
 
The second row of Table 1 shows revised parameter estimates for ET4 after removing the four outliers.  Note the ξ-
estimator of 0.7788 now indicates an acceptable infinite-variance model (“heavy-tailed” distribution) no longer 
susceptible to superadditivity.  
 
It is obvious that the removal of four items from each dataset may at least marginally impact resulting parameter 
estimation for all other loss event types as well.  
 
In fact, examination of rows 3 and 4 of Table 1 indicates a decline in the shape parameter of ET2 which is so steep 
that ET2 can now be estimated as a straight lognormal distribution with a narrower tail than a mixture.  How do we 
explain this?  Ex-post scrutiny of the outliers shows that removal of the four largest values from ET4 also resulted 
in removal of  the largest, 21st largest, 23rd largest, and 128th largest items from ET2, basically destroying its tail. 
(Additionally, the 2nd largest loss was removed from ET1.)  Hence ET2 and ET4 clearly displayed strong positive 
tail dependence whose effect was diluted by removing the outliers.  This undesirable consequence must also 
somehow be modeled by scenario analysis and is an example of the need for future improvements in our modeling 
abilities. 
 
Table 2 shows the estimators for modeled event types ET1, ET2, ET3, ET4, ET7 for the full dataset of 196 
observations.  (The bank did not have sufficient data to properly aggregate ET5 and ET6 on a weekly basis.)  Table 
3 shows the corresponding adjusted parameter estimators after removal of the outliers.  The results in Tables 2 and  

Table 2: Parameter Estimates for All Loss Types With Full Data (PW7) 
Loss Type Negloglik Threshold 

Value 
 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

ET1 2719.886 397,560 
(76.5%) 

0.8822 
(0.2517) 

4.694734e+05 
(1.22301e+05) 

12.347 
(6.168e-02) 

0.8283 
(5.039e-02) 

ET2 3095.093 3,737,860 
(63.5%) 

0.48568 
(0.14622) 

1.976857e+06 
(3.211684e+05) 

15.0172 
(0.02547) 

0.32377 
(0.0222) 

 
ET3 

(fit as LN) 
2834.664 NA NA NA 13.1458 

(0.06448) 
 

0.90283 
(0.04560) 

ET4 3110.117 1,606,367 
(68.5%) 

1.18852 
(0.3079) 

6.093835e+06 
(2.592499e+06) 

13.7721 
(0.008316) 

1.08321 
(0.007111) 

ET7 2942.212 1,301,337 
(28%) 

0.40001 
(0.10322) 

5.65203e+05 
(7.289927e+04) 

14.5031 
(0.00932) 

0.71070 
(0.00786) 

3  will serve as input parameters for the quantile functions needed to invert probabilities simulated from copulas in 
Part III and obtain simulated losses for calculating the diversification ratios for various copulas. 
 
Further comparison of Tables 2 and 3 shows that the removal of outliers induced only minor differences for ET1, 
ET3, and ET7 parameters.  ET1 remained a "heavy-tailed" (infinite-variance) distribution (although the removal of 
the 2nd largest observation as an outlier undoubtedly explains the reduction in the shape parameter).  ET3 remained 
open to fitting a straight lognormal rather than a mixture, and ET7 remained a "medium-tailed" distribution with a 

                                                      
22 Each removed outcome exceeded seven standard deviations from the mean.  The seven event loss types defined by Basel II 
include ET1 (Internal Fraud), ET2 (External Fraud), ET3 (Employment Practices and Workplace Safety), ET4 (Clients, 
Products, and Business Practices), ET5 (Damage to Physical Assets), ET6 (Business Disruption and System Failures), ET7 
(Execution, Delivery, and Process Management). 
23 Review section III.B for an explanation of weekly aggregation. 
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fairly high (but finite) variance.  We have already discussed the major change for ET2 induced by the outlier 
removal.   

Table 3: Parameter Estimates for All Loss Types 
Outliers Removed (PW7) 

Loss Type Negloglik Threshold 
Value 

 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

ET1 2655.966 396,028 
(76.5%) 

0.75957 
(0.23883) 

4.193910e+05 
(1.020006e+05) 

12.34447 
(0.06172) 

0.82052 
(0.00504) 

 
ET2 

fit as LN 
3030.369 NA NA NA 15.1147 

(0.034074) 
0.47215 

(0.02409) 
 

ET3 
fit as LN 

2763.51 NA NA NA 13.1162 
(0.06262) 

 

0.8677 
(0.04428) 

ET4 3005.077 1,609,515 
(70%) 

0.78738 
(0.27179) 

4.278366e+06 
(1.3145e+06) 

13.741 
(8.2328e-02) 

1.0683 
(6.993e-02) 

ET7 2873.552 1,375,373 
(33.5%) 

0.45726 
(0.11516) 

4.901010e+05 
(6.763896e+04) 

14.307 
(0.007535) 

0.65199 
(0.006566) 

Our analysis has shown that to maintain conservatism, it is important to clearly note the impact of outlier removal 
on the other datasets as well.  Besides impacting ET4's marginal distribution, the removal of four outliers from 
event type ET4 also may have significantly reduced positive tail dependence among event types ET4 and ET2 
since the  removed weeks had several simultaneous extremely large losses.  Hence the outlier removal affects not 
only the marginal distributions for ET2 and ET4 in this section but also tail dependence reflected in ensuing copula 
estimation in part III.  There are no existing models to handle this change explicitly.  Possibly some increase in 
capital charge could be implemented through scenario-analysis.  The example accentuates the need for 
conservatism.   
 
2. Initial-Guess Factor for the MLE Algorithm 
Our study indicates a second somewhat unexpected factor also appears to significantly influence the size of the 
GPD shape and scale parameter estimates.  Existing software uses several different methods to input initial guesses 
into the loglikelihood function.  In an early study fitting the generalized Pareto distribution (GPD) via MLE, 
Hosking and Wallace24 (1987) described alternative methods to MLE including PWM (probability-weighted-
moment) and MOM (method-of-moment) estimators.  They also described a standard procedure of initializing 
guesses25 for the MLE estimation by using either PMW- or MOM-initializers. Their study analyzed only right- 
truncated, “thin-tailed”, or “medium-tailed” distributions with shape parameter less than one-half, implying that 
mean and variance are always finite.  They reported that MLE frequently failed to converge under all initializers 
when analyzing hydrological data unless the sample sizes were very large.  Today, other available computer code 
also initializes MLE parameters using either the Pickands estimators or the Coles estimators.26  However, much 
current MLE code seems to be gravitating toward MOM- and PWM-initializers. initialized via MOM.  
Nevertheless, 

                                                      
24 The Hosking-Wallace study largely dismissed cases which are now known as "heavy-tailed" by claiming that distributions 
with infinite variance are "unusual in statistical applications".  Since 1987, financial literature has become entirely accustomed 
to return data with havy tails implying infinite variance.  Unfortunately, the operational-risk literature today is also                                          
filled with examples of data fitting results (estimators) implying "extremely heavy-tailed" distributions characterized by infinite 
means.  Many statisticians believe that such estimators are generally the result of data contamination, i.e. inappropriately 
mixing data from distributions with different risk characteristics.    
 
25 Hosking and Wallace noted that their tests initialized the Newton-Raphson method “from a variety of starting values of a and 
k [scale and shape parameters], some based on the sample moment’s or PWMs, some chosen at random”.  Following Hosking 
and Wallace, we examine only the MOM and PWM approaches to initialization.  Less known (more esoteric) approaches to 
initialize guesses (like the Pickand's function and the Cole function) are also available in add-ons to the S-Plus software.  See  
the evanesce library for S-Plus. 
26 For example, Juarez and Schucany have published S-Plus software which use Pickands or Cole estimators as initializers in 
the gpd.mle() method 
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Table 4 shows contrasting R-language computer code for generating the initializers under both MOM and PWM 
methods.  The PWM code shown is consistent with Alexander McNeil’s newest implementation of QRMlib 
software (both S-Plus and R editions). The new fExtremes R-language package from RMetrics also initializes the 
MLE estimator using a PWM.  McNeil currently recommends using the PWM method in all cases where the fitted 
underlying distribution being might be either  “heavy-tailed” (having an infinite variance, i.e. a shape parameter 
exceeding 0.5) or “extremely-heavy-tailed” (having an infinite mean, i.e. a shape parameter exceeding 1.0).  He 
asserts that accurate MOM estimators for starting guesses cannot be obtained whenever the underlying distribution 
has any infinite moments since all MOM parameters are finite by assumption.  This contradiction clearly could  

Table 4.  R-language Computer Code for PWM and MOM Initializers 
MOM Initializers Code 
initialParameterGuessesMOM <- function(lData, threshPercentile, qType) 
{ 
     #R-default is type=7.  Matlab default is type=5 which always results in a threshold HIGHER than the 
     #default R case with type=7. 
     thresh <- quantile(lData, threshPercentile,type=qType); #(default is type=7; Matlab uses type=5);  
     #Divide the data set into two parts, body and tail and set the body as the data less or equal to the threshold 
     bodyData <- lData[lData <= thresh]; 
     #set the tail as the data greater than the threshold 
     tailData <- lData[lData > thresh]; 
     #Set the initial parameters using MOM methods:  
     #first two for LN: 
     d1 <- mean(log(bodyData)); 
     d2 <- abs(sd(log(bodyData))); 
     #Second two for GPD: 
     m3 <- mean(tailData-thresh); 
     s3 <- abs(sd(tailData-thresh)); 
     d3 <- -((m3^2)/(s3^2)-1.0)/2.0; 
     d4 <- m3*((m3^2)/(s3^2)+1.0)/2.0; 
     out <- c(d3,d4,d1,d2); 
     return(out); 
 } 
PWM Initializers Code 
initialParameterGuessesMOM <- function(lData, threshPercentile,qType) 
{ 
     thresh <- quantile(lData, threshPercentile,type=qType);  
     #Divide the data set into two parts, body and tail and set the body as the data less or equal to the threshold 
     bodyData <- lData[lData <= thresh]; 
     #set the tail as the data greater than the threshold 
     tailData <- lData[lData > thresh]; 
     #Set the initial parameters using MOM methods for LN:  
     #first two for LN: 
     d1 <- mean(log(bodyData)); 
     d2 <- abs(sd(log(bodyData))); 
     #Set second two for GPD according to PWM (probability-weighted moments) method described in 1987 paper by  
     #Hosking and Wallace: 
     #"Parameter and Quantile Estimation for the Generalized Pareto Distribution" 
     excesses <- tailData - thresh; 
     Nu <- length(excesses);  
     a0 <- mean(excesses);  #this is alphasub0 in Hosking and Wallace 
     gamma <- -0.35; #these constants (gamma, delta) were recommended by Landwehr according to Hosking and Wallace 
     delta <- 0; 
     pvec <- ((1:Nu) + delta)/(Nu + delta); 
     a1 <- mean(sort(excesses) * (1 - pvec)); 
     xi <- 2 - a0/(a0 - 2 * a1);   #note this is k in equation (5) from Hosking and Wallace 
     beta <- (2 * a0 * a1)/(a0 - 2 * a1);  #Note this is alpha in equation (5) from Hosking and Wallace 
     out <- c(xi,beta,d1,d2); 
     return(out); 
 } 

have a significant impact on any resulting MLE estimators initialized via MOM.  Nevertheless, other software 
versions still initialize MLE estimators using MOM.  For example, El Gamal, Inanoglu, Stengel (2007) used 
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software with MOM-initializers for the MLE process in their paper demonstrating the need for judicious use of 
outliers. 
 
Indeed, Table 5 shows large discrepancies between MLE estimators using PWM- and MOM-initializers.  The table 
also shows discrepancies induced by the use of alternative empirical quantile functions (type= 5 or type=7) to 
determine the threshold where the GPD tail starts. 
 

Table 5. 
MLE: Can PWM Initializers Properly Identify "Thin-Tailed" Distributions? 

Can MOM Initializers Properly Identify "Heavy-Tailed" Distributions? 
Using Full Data Set (No Outliers Excluded)  

Loss 
Type 

Negloglik Threshold 
Value 

 

Initializer 
Type 

xi 
(GPD 
shape) 

xi 
initial 
guess  

beta 
(GPD scale) 

logmu logsd 

ET3 2822.579 1,806,880 
(96%) 

PWM7 0 -0.2213 5.842719e+06  13.112 
 

0.8188 
 

ET3 2823.526 1,806,880 
(96%) 

MOM7 0 -0.7746 8.489172e+06 13.112 
 

0.8188 
 

ET3 2824.033 1,734,360 
(95.5%) 

MOM5 0 -0.3898 5.999949e+06 13.112 
 

0.8196 

ET1 2719.886 397,560 
(76.5%) 

PWM7 0.8822 
(0.2517) 

0.8158 4.694734e+05 
(1.22301e+05) 

12.347 
(6.168e-02) 

0.8283 
(5.039e-02 

ET1 2723.295 2,057,329 
(97.5%) 

MOM7 0 0.02957 1.699802e+07 12.434 0.9698 

ET1 2725.168 1,893,601 
(97%) 

MOM5 0.2485 0.1526 1.249005e+07 12.437 0.9673 

Specifically, Table 5 shows MLE estimators for all four parameters },,,{ σμβξ of the lognormal-GPD mixture 
distribution in (7) for two event loss types (ET1 and ET3) from a single bank as reported in LDCE 2004 data.  
Parameters are derived by using the entire data set of 196 aggregated weekly losses27 .  The optimal threshold value 
Tλ is obtained from one of two different empirical quantile functions {Threshold Type5, Threshold Type7}. Initial 
parameter guesses are calculated from one of two methods {PWM, MOM}.  Hence the “Initializer-Type” column 
reflects a combination of parameter initializer method with empirical quantile method.  For example, PWM7 
indicates a choice of PWM initializers combined with a Type 7 (R-language default) selection for the empirical 
quantile function whereas MOM5 indicates method-of-moments initializers and a Type 5 (Matlab default) 
empirical quantile function.  
 
Note that for ET3 losses, both the PWM- and MOM-initializers imply a similar  "medium-tailed” distribution since 
the shape parameter is approximately zero regardless of the quantile method or initializer-method selected.   
 
However, the PWM and MOM methods provide drastically different results for losses in ET1.  The PWM7 method 
for ET1 implies a "heavy-tailed" distribution with infinite variance (since the estimator ξ = 0.8822 > 0.5).  
However, the MOM7 and MOM5-initializer methods both imply a finite variance model with the MOM7 method 
suggesting a shape parameter approximately zero )0≅ξ while the MOM5 method suggests a shape parameter of 

5.0 248≅ξ .  Hence MOM again induces a discrepancy consistent with requiring finite variances even in cases 
where the underlying distribution may actually have infinite variance as suggested by the PWM7 estimator.  
 
Table 6 shows how the initial guesses for the shape (ξ) parameter vary as threshold-percentiles increase for both 
event types ET1 and ET3. The second column shows that PW7  initial guesses for ET1’s shape parameter never 
approach zero at any percentile, indicating at least a “heavy-tailed” distribution.   In contrast, the fourth column 
shows that  the PWM7-initial guesses (calculated by the formulas shown in Table 4) will finally approach zero as 
the specified threshold percentile approaches 97.5%.   Hence the PWM7 method is able to handle all types of 
distributions: those whose initial-guesses never approach zero (implying "heavy-tailed" or “extremely-heavy-tailed” 

                                                      
27 Review section III.B for an explanation of weekly aggregation. 
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distributions) and those whose initial-guesses approach zero (implying “medium-tailed” or “thin-tailed” 
distributions).  
 
Note that the MOM initializers are dramatically smaller than the PWM initializers for the ET1 distribution.  Since 
the MOM initializers by definition have finite moments, it is difficult for MOM to provide large enough initial 
guesses to describe either a “heavy-tailed” (infinite-variance) or “extremely-heavy-tailed”(infinite-mean) 
underlying distributions like ET1.  

Table 6.  MLE: PWM vs MOM Initial-ξ Guesses at Various Percentiles 
Using Full Data Set (No Outliers Excluded)  

Percentile ET1 
Initial ξ-Guess 

PWM7 
Implies 

"heavy tailed" 
Optimal ξ =0.8822 

ET1 
Initial ξ-Guess 

MOM7 
Implies 

"medium/thin tailed" 
Optimal ξ =0 

ET3 
Initial ξ-Guess 

PWM7 
Implies 

"medium/thin tailed" 
Optimal ξ =0 

ET3 
Initial ξ-Guess 

MOM7 
implies 

"medium/thin tailed" 
Optimal ξ =0 

0.2 0.8157 0.4789 0.4311 0.3736 
0.205 0.8183 0.4790 0.4311 0.3736 
0.21 0.8186 0.4789 0.4338 0.3740 
…     
0.445 0.8438 0.4742 0.5395 0.3831 
0.45 0.8436 0.4740 0.5340 0.3819 
0.455 0.8432 0.4738 0.5345 0.3816 
…     
0.695 0.8370 0.4594 0.6539 0.3743 
0.7 0.8391 0.4590 0.6521 0.3743 
…     
0.76 0.8176 0.4498 0.6295 0.3521 
0.765 0.8158** 0.4488 0.6262 0.3498 
…     
0.9 0.8519 0.4098 0.6069 0.2478 
0.905 0.8509 0.4057 0.5952 0.2347 
…     
0.955 0.7741 0.2963 0.0253 -0.3917 
0.96 0.7409 0.2617 -0.2213** -0.7746** 
0.965 0.7035 0.2162 -0.4828 -1.3822 
0.97 0.6563 0.1502 -0.6812 -2.2716 
0.975 0.5732 0.0295** -0.3139 -1.3569 
0.98 0.4915 -0.1642 -0.9761 -14.0563 
0.985 0.3796 -0.6751 -0.0377 -2.7572 
0.99 0.3309 -5.8606 0.9139 0.1469 
** Indicates Initial Guess at Optimal Percentile 

 
Table 7 shows that a MOM-initializer actually can imply an infinite-variance distribution.  Row 2 shows results  

Table 7.  Implied Infinite-Mean Model 
Fit Via PWM/ MOM Initializers 

Using Full Data Set from Existing Bank (No Outliers Excluded) 
Loss 
Type 

Negloglik Empirical 
Threshold 

Type 

Threshold 
Value 

Initializer 
Type 

xi 
(GPD 
shape) 

xi 
initial 
guess  

beta 
(GPD scale) 

logmu logsd 

ET4 3110.117 Mode 
(type7) 

1,606,367 
(68.5%) 

PWM 1.1885 
(0.3079) 

0.8545 6.093835e+06 
(2.5925e+06) 

13.772 
(8.316e-02) 

1.0832 
(7.1109e-02) 

ET4 3120.011 Mode 
(type7) 

4,222,013 
(83.5) 

MOM 0.72720 0.39249 4.562920e+07 13.892 1.248 

from MOM7 initial guesses which imply a shape parameter of ξ = 0.7272 for ET4.  However, row 1 in Table 7 
show that the PWM7-initializer indicates an infinite-mean (“extremely heavy-tailed”) distribution with a shape 
parameter estimator of ξ = 1.1885.  Hence the MOM-initialized MLE estimator for the shape parameter value is 
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substantially below the value suggested from PWM-initializers while the opposite holds for the scale parameter 
where the MOM initializer is substantially higher than that forecast by PWM.  
 
The results in Tables 5-7 fitting unknown distributions cast doubt on the MOM-initializer method, implying that it 
may significantly underestimate the shape parameter (and over-estimate the scale parameter) in all “heavy-tailed” 
distributions, although it performs satisfactorily for underlying “medium-tailed” or “thin-tailed” distributions which 
have finite variances.   
 
Further evidence that MOM-initializers routinely cause a significant underestimation of the shape parameter can be 
found by applying MLE to simulated data with known parameter values. Results differ slightly with the number of 
simulated values.  In one case, suppose we simulate 1000 values from a lognormal-GPD mixture using equation (7) 
with an infinite-mean ("extremely heavy") tail (ξ > 1); in a second case, we simulate only 196 points.  Specifically 
we utilize the parameters shown in the following table (consistent with the first row of Table 7): 

paramMatrix for simET4 
threshold xi beta meanlog sdlog 

1.606367e+06 1.188518 6.093835e+06 13.7721 1.083211 
We then fit the simulated data via MLE.  Table 8 contrasts the resulting fits obtained via the PWM7 and MOM7 
methods for choosing initializers and empirical quantile functions with both simulations. 

Table 8.  Simulated Infinite-Mean Model  
Simulated Distribution with  ξ = 1.1885 

Loss Type #Simulated 
Data Points 

Negloglik Threshold 
Value 

Initializer 
Type 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

SimET4 196 3130.477 1,603,709 
(68.5%) 

PMW7 0.88075 
(0.25879) 

9.308351e+06 
(2.77808e+06) 

13.744 
(0.0889) 

1.1597 
(0.07608) 

SimET4 196 3136.409 1,603,709 
(68.5%) 

MOM7 0.580296 1.771175e+07 13.751 1.1592 

SimET4 1000 15866.63 1,543,857 
(69.5%) 

PWM7 1.015509 
(0.1183) 

8.473832e+06 
(1.16553e+06) 

13.6844 
(0.0361) 

1.0678 
(0.03074) 

SimET4 1000 15939.87 1,594,633 
(70%) 

MOM7 0.651099 2.507295e+07 13.6907 1.0756 

Note that when fitting data from the large-sample simulation (1000 points), the PWM initializer attains a shape 
estimator of 1.0155 implying an infinite mean distribution whereas the MOM initializer implies only an infinite 
variance model via its shape-estimator of 0.65.  When fitting the small simulation sample (196 points), neither 
initializer achieves infinite-mean estimator but the PWM estimator is much larger (closer) than the MOM estimator.  
This suggests that in small samples, even MLE with PWM7-initializers may slightly underestimate the shape 
parameter. The results in Table 8 are parallel to those in Table 7 where the MOM estimator significantly 
underestimated the shape parameter and produced an estimator consistent with an infinite-variance model rather 
than the appropriate infinite-mean model. 
 
Alternatively, suppose we simulate values from a lognormal-mixture using equation (7) with an infinite-variance 
("heavy") tail; we utilize the parameters shown in the following table (consistent with the first row of Table 2): 

paramMatrix for SimET1 
threshold xi beta meanlog sdlog 

3.975600e+05 0.8822184 4.694734e+05 12.3472 0.82835 
 

Once again we fit the simulated data via MLE.  Table 9 contrasts the resulting fits obtained via the PWM7 and 
MOM7 methods for choosing initializers and empirical quantile functions in the infinite variance model.  Note the 
results in Table 9 are parallel to those in Table 8.  Here the MOM estimator significantly underestimates the shape 
parameter and falls significantly below the PWM estimator but does produce a value consistent with an infinite-
variance model with ξ > 0.5 for the large simulation sample.  However, for the small simulation sample, the MOM 
estimator is not even consistent with a "heavy" tail since the estimator is 0.268. 
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Table 9.  Simulated Infinite-Variance Model  
Fit Via PWM/ MOM Initializers 

Loss 
Type 

#Simulated 
Data Points 

Negloglik Threshold 
Value 

Initializer 
Type 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

SimET1 196 2727.098 379,271 
(73%) 

PWM7 0.64253 
(0.25681) 

 

5.668518e+05 
(1.6337e+05) 

12.3265 
(0.06625) 

0.87918 
(0.0552) 

SimET1 196 2727.729 599,347 
(83.5%) 

MOM7 0.26878 
(0.2611) 

1.292559e+06 
(4.30335e+05) 

12.4641 
(0.06809) 

0.93252 
(0.0539) 

SimET1 1000 13832.74 430,384 
(78%) 

PWM7 0.71041 
(0.1158) 

6.068967e+05 
(7.8709e+04) 

12.3000 
(0.02763) 

0.8436 
(0.0225) 

SimET1 1000 13842.36 430,384 
(78%) 

MOM7 0.51127 
(0.10891) 

9.592441e+05 
(1.60233e+05) 

12.3005 
(0.02763) 

0.8436 
(0.0225) 

 
Due to the consistent pattern of MOM estimators just described, we recommend for conservatism the use of PWM 
initializers for the MLE procedure in all cases where heavy-tailed distributions are suspected.   
 
Finally, comparing Table 10A to 10C (or comparing Table 10B to 10D) shows that in all cases the MLE estimators 
of the GPD tail shape and scale parameters are substantially higher whenever the PWM method is used to initialize 
parameter guesses rather than when the MOM method is used.  
 
3. Threshold Factor: Identifying Threshold Via Empirical Quantile Function 
Numerous papers have specified that identifying the threshold (where the tail function begins) is one of the most 
important and yet frequently unresolved issues in applying extreme value theory to operational risk loses .  In 
estimating a mixture distribution, we have chosen to specify a set of threshold percentiles {λ}, evaluate the negative 
loglikelihood function over the parameter set },,,{ σμβξ at each potential threshold Tλ in the set, and then select 
the threshold corresponding to the parameter set which minimizes the resulting set of  negative loglikelihood 
functions.   
 
In our methodology, the selected percentile λ must be converted to a threshold value Tλ  via an empirical quantile 
function.  Different software packages like R, S-Plus, Matlab offer numerous versions of the empirical quantile 
function.  For example, R and S-Plus have nine different choices set by one of the function's input parameters.  The 
choice of the "type" parameter for the standard empirical quantile function28 influences the threshold value and 
hence the resulting MLE estimators.  Not all languages use the same default mode for the empirical quantile 
function so it is important to determine which method your software is using.  For example, the default mode in the 
R-language basically represents the mode of the distribution function.  (It is specified as Type=7 in R-language 
code).  A popular alternative among hydrologists is a piecewise linear function where the knots are the values 
midway through the steps of the empirical cdf; this is the default in Matlab and may be used by specifying Type=5 
in R-language code.  The alternative hydrologic empirical quantile function always gives a higher threshold than 
does the default "mode" function, potentially resulting in too few observations above the threshold for convergence.   
 
A comparison of combinations of PWM initializers with (Type5, Type7) is shown in Tables 10C and 10D for three 
different event loss types (ET2, ET4, ET7) on the data set with 192 weekly observations created by excluding four 
outlier weeks from all data sets.  A similar comparison of MOM initializers is shown in Tables 10A and 10B.  Note 
once again that regardless of the threshold method, the shape parameter determined from PWM initializers exceeds 
the corresponding shape parameter from MOM initializers while the scale parameter follows the opposite pattern.  
However, the difference in scale parameters appears to be relatively small for medium-tailed datasets (with finite 
variances, ξ < 0.5) but appears to be substantial for heavy-tailed datasets (with infinite variances ξ > 0.5).  This is 
consistent with the notion that MOM estimators are inapplicable when variances are infinite.  
 
By comparing tables 10C and 10D, it appears that the threshold is always higher for PWM initial guesses when 
using the Type=5 empirical quantile function rather than the Type = 7  function.  However, the same conclusion  

                                                      
28 The S-Plus or R function is quantile(x, probs, type,…). 
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Table 10.  
Differences in MLE Induced by Alternative Initialization Methods or Empirical Quantile Functions 

Data with Outliers Removed 
 

Table 10A.  Using MOM initial guesses in MLE with Type 7 empirical quantile functions to set threshold.  
In this case  p(k) = (k - 1) / (n - 1) =  mode[F(x[k])]. 

Asset Negloglik Threshold 
(mode 

Type=7) 

xi 
Estimator 

xi initial 
guess 

(MOM7) 

beta 
Estimator 

logmu 
Estimator 

logsd 
Estimator 

ET2 3020.103 2,559,642 
(20%) 

0.1572393 
(1.151216e-01) 

0.122677 1.847599e+06 
(2.688922e+05) 

1.520446e+01 
(1.657602e-01) 

5.000000e-01 
(1.51185e-01) 

ET4 3006.611 2,438,308 
(77.5%) 

0.4135227 
(2.530596e-01) 

0.28837 9.821287e+06 
(3.448313e+06) 

1.379072e+01 
(8.466759e-02) 

1.131640 
(6.933977e-

02) 
ET7 2874.064 1,375,373 

(33.5%) 
0.3928220 

(1.088510e-01) 
0.380642 5.766151e+05 

(8.437442e+04) 
1.443065e+01 
(7.534158e-02) 

6.520020e-01 
(6.56618e-02) 

 
Table 10B.  Using MOM initial guesses in MLE with Type 5 empirical quantile functions to set  threshold. 

Here p(k) = (k - 0.5) / n is a piecewise linear function popular among  
hydrologists where the knots are the values  midway through the steps of the empirical cdf. 

Asset Negloglik Threshold 
(Piecewise 

Linear) 
Type=5 

xi 
Estimator 

xi initial 
guess 

(MOM5)

beta 
Estimator 

logmu 
Estimator 

logsd 
Estimator 

ET2 3019.483 2,555,575 
(20%) 

0.1610495 
(1.153478e-01) 

0.12550 1.833252e+06 
(2.674535e+05) 

1.521024e+01 
(1.622711e-01) 

5.000000e-01 
(1.452744e-01) 

ET4 3006.478 2,704,661 
(79%) 

0.3883572 
(2.500694e-01) 

0.28837 1.055308e+07 
(3.601370e+06) 

1.380182e+01 
(8.543694e-02) 

1.147253e+00 
(6.939737e-02) 

ET7 2874.628 1,371,869 
(33.5%) 

0.3899542 
(1.081437e-01) 

0.37974 5.796267e+05 
(8.409905e+04) 

1.442739e+01 
(7.504737e-02) 

6.498523e-01 
(6.543504e-02) 

 
Table 10C.  Using PWM initial guesses in MLE with Type 7 empirical quantile functions  

In this case  p(k) = (k - 1) / (n - 1) =  mode[F(x[k])]. 
Asset Negloglik Threshold 

(mode) 
Type=7 

xi 
Estimator 

xi initial 
guess 

(PWM7)

beta 
Estimator 

logmu 
Estimator 

logsd 
Estimator 

ET2 3019.895 2,559,642 
(20%) 

0.2440805 
(1.196974e-01) 

0.241255 1.597878e+06 
2.250094e+05) 

1.520498e+01 
(1.660845e-01) 

5.000000e-01 
(1.511915e-01) 

ET4 3005.077 1,609,515 
(70%) 

0.7873854 
(2.717887e-01) 

0.616407 4.278366e+06 
(1.314527e+06) 

1.374089e+01 
(8.232837e-02) 

1.068265e+00 
(6.992791e-02) 

ET7 2873.552 1,375,373 
(33.5%) 

0.4572607 
(1.151643e-01) 

0.473569 4.901010e+05 
(6.763896e+04) 

1.443070e+01 
(7.534806e-02) 

6.519983e-01 
(6.566100e-02) 

 
Table 10D.  Using PWM initial guesses in MLE with Type 5 empirical quantile functions  

Here p(k) = (k - 0.5) / n is a piecewise linear function popular among  
hydrologists where the knots are the values  midway through the steps of the empirical cdf. 

Asset Negloglik Threshold 
(Piecewise 

Linear: 
Type=5) 

xi 
Estimator 

xi initial 
guess 

(PWM5)

beta 
Estimator 

logmu 
Estimator 

logsd 
Estimator 

ET2 3019.245 2,555,575 
(20%) 

0.2507767 
(1.201940e-01) 

0.246515 1.579561e+06 
(2.228914e+05) 

1.521016e+01 
(1.622271e-01) 

5.000000e-01 

ET4 3005.195 1,614,552 
(70%) 

0.7893457 
(2.727390e-01) 

0.6170176 4.269634e+06 
(1.317037e+06) 

1.374201e+01 
(8.242733e-02) 

1.069579e+00 
(7.001950e-

02) 
ET7 2874.000 1,448,153 

(39%) 
0.5168960 

(1.289096e-01) 
0.517495 4.551080e+05 

(6.821365e+04) 
1.437869e+01 
(6.331044e-02) 

6.120706e-01 
(5.61599e-02) 
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does not hold for MOM initial guesses shown in tables 10A and 10B.  Hence, it is not patently clear from the 
analysis whether using Type 7 or Type 5 empirical quantile function provides better results.  For conservatism, be 
sure to specify which type your software is using. 
 
For conservatism, we also recommend choosing an upper threshold of at least 0.975 (97.5%) based on an example 
from our current dataset with outliers removed.  Table 11 shows that running an MLE analysis on ET3 with outliers 
removed and an upper threshold-percentile set at 95% seems to indicate a heavy-tailed distribution with infinite 
variance since the shape parameter is estimated at ξ = 0.648.  However, if the threshold is raised to 97.5%, the 
initial guesses begin to drop precipitously as higher percentiles are considered.  Table 12 shows that as estimations 
are made at higher thresholds, the initial guess for the shape parameter begins to plummet until the minimum 
negative loglikelihood is found with a shape-parameter estimate ξ = 0.0 implying that a lognormal distribution is 
perfectly adequate.  Hence in Table 3, we have already shown ET3 as a loss event-type represented by a lognormal 
distribution.  This fact would have been missed without setting a sufficiently high threshold. 

Table 11: ET3 Parameters at Different Potential Maximum Thresholds (PW7) 
Loss 
Type 

Negloglik Optimal 
Threshold 

Value 

Maximum 
Upper 

Threshold 
Percentile 

Initializer 
Type 

xi 
(GPD 
shape) 

beta 
(GPD scale) 

logmu logsd 

ET3 2757.721 710,950 
(65.5%) 

0.95 
(95%) 

PWM7 0.64828 
(0.1967) 

3.219386e+05 
(7.01975e+04) 

13.1396 
(0.06851) 

0.870543 
(0.05915) 

ET3 2755.138 1,831,161 
(97%) 

0.975 
(97.5%) 

PWM7 0 3.857993e+06 13.1007 0.8117 

 
Table 12.  Contrasting ET3-Estimation with Maximum Threshold 95% vs 97.5% 

percentile negloglik Initial- ξ Guess Optimal- ξ Estimator 
95% Maximum 

Threshold 

Optimal- ξ Estimator 
97.5% Maximum 

Threshold 
0.650 2757.9714 0.602268   
0.655 2757.7206 0.609336 0.64827  

…     
0.940 2758.6183 0.64235   
0.945 2758.6751 0.60828   
0.950 2758.6247 0.56836   

Additional Rows from Increasing Threshold to 97.5% from 95% 
0.955 2758.4637 0.52068   
0.960 2757.8797 0.44046   
0.965 2756.5050 0.30652   
0.970 2755.4006 0.1161  0.0 
0.975 2756.4860 -0.10242   

 
F. Fitting Copula Parameters: Step 2 under IFM  
The second step in fitting a distributional copula under IFM is to estimate the copula parameters by loglikelihood 
(contingent upon the marginal parameters δi estimated in Step 1).  The MLE method for estimating the copula 
parameters utilizes the copula density function.  We will use the density function described in the subsection titled 
"Explicit Copulas:  Determining the Density for the Gumbel Copula" to determine fitting for the Gumbel copula.  
Otherwise, we will use a hybrid version of IFM described in III.G to fit the parameters of standard Gaussian and t 
copulas by non-parametric methods. 
 
There are two different approaches to deriving copula density functions depending upon whether the copula is 
implicit or explicit.   

Implicit Copulas 
For implicit copulas like the t-copula or Gaussian copula which lack explicit solutions, the chain rule of 
calculus may be applied directly to Sklar’s theorem for the copula joint distribution. See equation (10) below.   

Explicit Copulas 
For explicit copulas (e.g. Archimedean copulas), we differentiate the copula function directly although the 
result may be complicated.  See equations (18a)-(18d) below where we have derived the densities of the 
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Gumbel copula with dimensions 2 through 5. The resulting density functions serve as likelihood functions to 
determine (fit) the copula parameters.  See equation (16) below for a bivariate example of the Gumbel copula's 
loglikelihood function. 

 
Understanding the derivation of densities for implicit copulas greatly clarifies understanding meta-distributions (or 
meta-copulas) which were first discussed in III.A.1.  Recollect that a meta-distribution (or meta-copula) combines 
the specified copula with arbitrary marginals.  Therefore a software routine written in R, S-Plus, or Matlab to fit a 
standard copula may very well be inappropriate for fitting a meta-distribution (meta-copula).  It is vital to 
understand the process of determining the density so the appropriate equations can be compared against 
prepackaged software routines for validity.  In many cases, the analyst will need to write a modified software 
routine to capture correct results. 
 
Implicit Copulas: Determining Density and Loglikelihood 
Implicit standard copulas like the t-copula and the Gaussian copula are based on existing underlying distributions 
and do not have closed-form solutions. Because the marginals are chosen from the same family as the joint 
distributional family (e.g. the t-distribution or the Gaussian distribution), the standard copula may be written in 
terms of a simplification of Sklar’s Theorem which states that a copula with marginal probabilities u1 = F(x1) and u2 
= F(x2) equals the underlying joint distribution function F(x1, x2):  
(9a) ),())(),((),( 212121 xxFxFxFCuuC == . 
 
Alternatively, implicit meta-copulas may also be written using the generalized Sklar's Theorem where the 
marginals may be chosen arbitrarily as u1 = G1(y1) and u2 = G2(y2) from a family distinctly different from the joint 
distributional function F(y1, y2):  
(9b) ),())(),((),( 21221121 yyFyGyGCuuC == . 
Note in (9b) that arbitrary marginals ui=Gi(yi ) have been substituted for the standard uniform random variables ui= 
F(xi) usually serving as copula parameters due to the probability transform rule.  For example, a joint distribution 
formed from a t-copula with arbitrary margins is known as a meta-t distribution which is characterized by a t-
copula with arbitrary (e.g. lognormal) marginals.  Similarly, a meta-Gaussian distribution is characterized by a 
Gaussian copula with arbitrary marginals.  
 
To obtain the density c(u1, u2) of an implicit bivariate meta-copula with arbitrary marginals (i.e. the density of a 
meta-copula), merely apply the chain rule from calculus to Sklar’s equation in (9b)  
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 is the marginal density function associated with the ith arbitrarily selected marginal 

distribution function Gi(yi) and f(y1,y2) is the joint density of the distribution function F.  
 
Hence the implicit copula density (10) represents the ratio of the multivariate density function ),( 21 yyf derived 
from joint distribution function ),( 21 yyF implied by the copula family to the product of the selected (arbitrary) 
marginal densities )()( 2211 ygyg where all densities are evaluated using the quantile transforms of the selected 
marginals applied to the copula's standard uniform variable arguments.   
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Note that a standard implicit copula has margins from the same family as the copula itself. For example, the t-
copula has a multivariate student-t distribution with student-t marginals.  However, a meta-t copula is a t-copula 
with marginals from some family other than student-t distribution (like the lognormal or Gaussian distributions). 
 
Recalling the basic loglikelihood function of the copula from (5), we see that the bivariate version (i=1,2) may be 
rewritten in terms of (10) as  

(11) 
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where f( ) is the joint density associated with the copula family's joint distribution F(X1,X2), Gi( ) are the arbitrary 
marginal distributions selected for the meta-copula model, gi( ) are the marginal density functions associated with 
arbitrary marginal distributions Gi( ), and δ is the set of parameters associated with the marginal distributions 
estimated in step 1 of the IFM .  It is important to distinguish that the second summation in (11) will be independent 
of the copula parameters θ  if the marginal densities gi( )  are not from the same family as the joint density f().  The 
differences in notation can be made clearer by examining a standard-t copula and a meta-t copula. 

 
Implicit Copula Examples. 

A standard t-copula example 
Suppose we have a standard t-copula.  Then the marginals are not arbitrary but are themselves univariate 
student-t distributions.   Hence the t-copula combines a joint-t density and univariate-t marginal densities 
so the parameters are ),( Pνθ ≡ where P is a d-dimensional correlation matrix among the d units of measure 
and ν is the degrees of freedom identical for each t-marginal. In this case the arbitrary marginal distributions 
Gi may be represented as standard-t marginals so the )()(ˆ ,,, ititiit xtxGU ν== which implies that 

ititiit xUGUt ,,
1

,
1 )ˆ()ˆ( == −−

ν .  Similarly, the multivariate distribution may be written as ),0,( Ptd ν which 

implies the joint multivariate t density function is 
d
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Finally write the density for the univariate student-t as 
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∂
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ν .  Substituting these values gives 

the loglikelihood function for a t-copula: 
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Note that both sets of summands (across the joint density (),Pvg and across the univariate densities ()vg  (all 
assumed identical)) impact the estimator of the degrees of freedom parameter ν since both the joint and 
marginal densities are distributed as student-t which is dependent on ν. 
 
A meta-t with Gaussian marginals example:  
In a meta-t distribution, we have a t-copula with marginals belonging to some family other than student-t.  
Assume we want Gaussian marginals.  The loglikelihood equation for the meta-t copula will change 
significantly since the marginal distributions will no longer be student-t. In this case the arbitrary marginal 
distributions Gi may be represented as )()(ˆ ,,, ititiit xxGU Φ== which implies that 

ititiit xUGU ,,
1

,
1 )ˆ()ˆ( ==Φ −− where Φ () is the univariate standard normal distribution function.  In this 

case, the density of the univariate standard normal is 
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))((
() ,φ so the loglikelihood equation for a 

meta-t distribution with IID Gaussian marginals may be written: 
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In (13), ))ˆ(),...,ˆ(( ,
1

1,
1

, dttP UUg −− ΦΦν still denotes the joint density ))(),...,(( 2
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1
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1 uGuGf d
−− of a 

random vector with multivariate ),0,( Ptd ν distribution where P is a linear correlation matrix and 
ν represents the degrees of freedom.  However, in the meta-t case, the IID standard Gaussian marginal 
distributions replace the student-t marginal distributions and the Gaussian density replaces the student-t 
density.  Hence the second summand in (13) (the double sum) does not depend upon ν, the degrees of freedom 
parameter. 
 
Comparison of the student-t and meta-t copula cases 
The first summands on the RHS of loglikelihood functions (12) and (13) are basically similar since each sums 
logarithms of a joint student-t distribution (although the joint distributions are evaluated at different 
arguments).  However, a very significant difference occurs in the second term of the loglikelihood function.   
 
When fitting a standard t-copula via (12), the second term of the loglikelihood function also influences the 
copula parameter estimation for ν, the degrees of freedom parameter, since the marginals are assumed to 
follow identical univariate-t distributions each with ν degrees of freedom.  Contrarily, the second term in the 
meta-t distribution (13) has no influence on the ν-estimator since it contains only terms associated with 
Gaussian (or other arbitrary) marginals.  Consequently, for analysts using the IFM method where the marginal 
parameters δ have been separately estimated in a first step, the general loglikelihood function in (11) may 
effectively be modified whenever fitting a meta-distribution by dropping the second summation.   
 
Thus the same software functions cannot be employed to fit a standard t-copula and to fit a meta-t distribution 
(copula).  The loglikelihood function for the t-copula contains summands across both multivariate and 
univariate-t densities which both depend upon ν, the degrees of freedom parameter, while only the first 
summand in the meta-t copula depends upon ν.  It is absolutely vital not to call up canned computer routines 
to fit copulas without understanding what the underlying code does.  This follows because most canned 
routines were built to handle straightforward copulas like the t-copula or Gaussian copula but not copulas for 
meta-distributions (like the meta-t which has a t-copula and arbitrary marginals). 
 
Shortcuts to MLE in Implicit Copulas 
Some implicit copulas allow shortcuts to the application of MLE.  In other words, an easier mechanism can be 

substituted.  For example the Gauss Copula )(uCGa
P has a single parameter for calibration, the correlation 

matrix containing the linear (Pearson’s) correlation coefficients on the off-diagonals.  It has been proved that a 
good estimator of the linear correlation matrix parameter is the Spearman's rho matrix (untransformed). 
 
 The t-Copula )(, uC t

Pν
has multiple parameters, ν (the degrees of freedom), and P (the correlation matrix) 

which must be calibrated to data.  For the t-copula, a transformation of the Kendall's tau matrix may provide 
a good estimator of the linear correlation matrix parameter.  Each element rij of the correlation matrix P may 
be estimated as ]2),(sin[ jiij xxr τρπ=  where ),( ji xxτρ is Kendall’s tau for rank-correlations. 

 
Explicit Copulas:  Determining the Density for the Gumbel Copula  
The Gumbel copula (sometimes referred to as the Gumbel-Hougaard copula) is a function of a single parameter θ 
and has a closed-form solution. It exhibits positive upper tail dependency and hence is a conservative candidate for 
operational-risk copulas.  Its major drawback is the single parameter describing all units of measure (event loss 
types).  Perhaps due to the complicated formula, existing software programs generally contain code to evaluate only 
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the two-dimensional Gumbel copula.29  Expansion to five or seven dimensions is desirable to cover all event types 
in operational risk. In the following equations, we derive the density function for the Gumbel copula in higher 
dimensions.  The resulting Gumbel copula densities may be readily coded in a statistical software language like R, 
S-Plus, or Matlab to serve as the basis for loglikelihood functions needed to fit the copula to data.  We have coded 
an algorithm for the Gumbel loglikelihood function in the R-language to identify the parameter θ and fit the 
Gumbel copula.  Results from fitting the Gumbel copula to actual data appear in Part III, section I. 
 
The n-dimensional Gumbel copula may be defined as:  
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Differentiation of the copula function yields the copula density ),...,( 1 nuuc .  Consider the two-dimensional case 
where n=2. 
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Therefore the density for the two-dimensional Gumbel copula may be written as: 
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1

2
21

22121 −+=
−

θθθ uzuzydduuc . 
 
The corresponding loglikelihood function sums the log of the density across all n observations in each of the pairs 
(u1, u2): 
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Define the constants ai as in (17). 
 
(17) 1)1(,...13,12,1 210 −+=−=−=−= θθθθ jaaaa j . 

 
Applying similar analysis to higher dimensional copulas provides appropriate representations for Gumbel copula 
density functions for dimensions 2-5. 
 
Two-dimensional Gumbel copula density: 

                                                      
29 E.g. the QRMlib software accompanying the text by McNeil, Frey, Embrechts (2005) can fit only a two-dimensional Gumbel 
copula since that is the maximum density available.  Another library by Aas and Frigessi is also limited to two dimensions.  A 
new R-language library called Gumbel now has a routine gumbel::dgumbel() which can do three-dimensional densities. 
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Three-dimensional Gumbel copula density: 
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Four-dimensional Gumbel copula density: 
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Five-dimensional Gumbel copula density: 
 
(18d)
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G. Fitting Copula Parameters: a Hybrid IFM Step 2 for Simulated Losses 
This paper proposes to empirically measure diversification benefits to capital by simulating 100,000 joint annual 
loss-observations where dependency characteristics are described alternatively by a Gaussian, student-t, or Gumbel 
copula and the marginal distributions for loss event types are lognormal-GPD mixtures. Empirical quantiles of the 
simulated annual losses for all event types will then be used to infer the diversification ratio in equation (2b) along 
with VaR and other important statistics.   
 
Currently available software routines for copula simulations generate realizations U of marginal probabilities (not 
losses) from standard (rather than meta) copulas.  U is known as a matrix of pseudo-sample probabilities. Existing 
algorithms generally proceed in a two-step methodology and require parameters of the standard copula as inputs30: 

• simulate a multivariate set of losses (Xi,t ) from the joint distribution function associated with the standard 
copula; 

• determine the marginal probabilities ui t associated with the generated losses by applying the standard 
copula’s marginal distribution functions as )()( 2211 tttt XFuandXFu ==  

Hence current simulation algorithms require knowledge of parameters for the standard copula rather than the meta-
copula.   
 
As can be readily seen by comparing Sklar's Theorem for standard-copulas (equation 9a) versus the theorem for  
meta-copulas (equation 9b), losses from a meta-copula can be generated by applying the quantile transforms of a 
meta-copula's arbitrary margins to the probabilities ui simulated from a standard copula.31  For a bivariate copula, 

                                                      
30 For specific descriptions of simulations from standard Gaussian and t copulas, see Algorithms 5.9 and 5.10  (p. 193) in 
McNeil, Frey, Embrechts (2005).  For a description of simulation from a Gumbel copula,  see Algorithm 5.48 on p. 224 of the 
same text.. 
31 Nelsen's text (2006) provides an argument for the quantile transform in Exercise 2.15, p. 29 which states the following.  Let 
X1 and Y1 be random variables with continuous distribution functions F1 and G1, respectively, and copula C.  Let F2 and G2 be 



 31

note that for every loss pair (X1,t, X2,t ) generated by the first step in a standard copula simulation algorithm and 
every corresponding probability pair (u1t, u2 t ) generated in the second step of the algorithm,  a corresponding pair 
of outcomes (Y1t, Y2 t) could be generated from the meta-distribution's arbitrary marginals (G1t, G2t) to create the 
same set of marginals probabilities:  

)()()()( 22221111 tttttt XFYGuandXFYGu ==== . 
Hence to determine the losses (Y1 t, Y2t) from a meta-copula associated with pseudo-probabilities generated by an 
associated standard copula, merely apply the appropriate quantile transforms of the meta-marginals to each of the 
simulated standard copula probabilities (u1t,u2t): 
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Hence, a vector of simulated losses for each time period is produced by applying appropriate quantile transforms 
(using parameters for the marginals previously estimated in step 1 of the IFM) to the simulated probabilities:  
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McNeil, Frey, Embrechts (2005) provide a description of the preceding argument in their QRM textbook (p. 193): 

“Assume that the problem of  generating realizations U from a particular copula has been solved.  
The converse of Sklar’s Theorem shows us how we can sample from interesting meta distributions 
that combine this copula with an arbitrary choice of marginal distributions.  If U has df C, then we 
use quantile transformation to obtain  ))'(),...,(( 11 dd UFUFX ←←≡  which is a random vector with 
margins F1,…Fd and multivariate df )(),...,(( 11 dd xFxFC .  This technique is extremely useful in 
Monte Carlo studies of risk...”. 

   
Thus a procedure to simulate losses from a meta-copula requires fitting sample loss data to a standard copula rather 
than a meta-copula in the second-step of a hybrid IFM.  The probabilities from the simulated standard copula for all 
units of measure are then transformed to simulated losses by applying the quantile transforms for the associated 
marginals whose parameters were determined in Step 1 of the IFM (section III.E.)  
 
Hence in this hybrid step, we choose to fit parameters to a standard copula by using a non-parametric approach 
where the pseudo-sample probabilities input to the fitting function are identified from the empirical distribution 
function.  
 
Assume we are trying to fit a standard t-copula which requires estimating parameters of a copula with identical 
student-t marginals for each unit of measure (ET).  One way to emulate this case using sample data is with non-
parametric estimation, merely applying the empirical distribution function (edf) to each sample loss vector Xi,t 
representing event-type i to form a pseudo-sample matrix of probabilities. Each edf vector within the resulting 
matrix contains a  set of identical probabilities but with different ordering in the respective column.  Hence the non-
parametric edf-matrix emulates drawings from a set of identical t-marginals as required.  Thus passing the non-
parametric pseudo-sample to a standard-t copula fitting routine which solves equation (12) for the degrees of 
freedom and correlation parameters should provide appropriate standard t-copula estimators.32 
 
Simulated losses from the corresponding meta-copula may then be obtained from the simulated probabilities of the 
standard copula by applying the appropriate quantile transform for each marginal distribution as previously 
described in this section.   For the lognormal-GPD mixture, the quantile function will be the inverse of equation (7) 
if the first stage of IFM identified the marginal as "heavy-tailed"; otherwise it will be the inverse of a regular 

                                                                                                                                                                                           

another pair of continuous distribution functions and set )).1(1(1
22))1(1(1

22 YGGYandXFFX −=−=  Then (a) the distribution 
functions of X2 and Y2 are F2 and G2 respectively; and (b) the copula of X2 and Y2 is C.   
32 Creating a pseudo-sample by applying t-marginals to observed losses from a lognormal cannot work because the one-sided 
lognormal loss distribution can reflect losses only on the right-hand side of a t-distribution. 
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lognormal. The parameters associated with each quantile function and estimated in the first IFM step have already 
been recorded in Table 2 (for the full-data case) and in Table 3 (for the case with outliers removed). 
 
H. Simulating the Losses Via a Distributional Copula Function 
Section III.E described the separate estimation of marginal distribution parameters for each unit of measure (ET) 
under the first step of the IFM.  Section III.G described fitting the proposed copula parameters to probability-data in 
the second-step of a hybrid IFM method contingent upon the empirical distribution function of the observed losses.  
Given knowledge of both sets of fitted parameters, we can simulate sequences of 52 weekly losses from the 
proposed copula for each ET which can then be summed as an annual loss.  We repeat the simulation 100,000 times 
using the following steps. 

1) Select a standard-copula and corresponding marginal distribution functions for all ETs.   
We propose two sets of separate generator models:  

• non-conservative models with straight lognormal marginals for each ET 
 meta-Gaussian copula 
 meta-t copula 
 meta-Gumbel copula 

• conservative models with lognormal-GPD mixtures (heavy tails) for each ET 
 meta-Gaussian copula 
 meta-t copula 
 meta-Gumbel copula 

Note we must create meta-distributions even in the lognormal case since operational-loss distributions have 
one-sided support and hence are inconsistent with the two-sided student-t or Gaussian marginals associated 
with the standard copulas. 
 
The first set of lognormal (non-conservative) generator models should serve as a radical lower limit on the 
dependency structure since lognormality implies none of the ETs is assumed to have a heavy tail.  As 
pointed out by Giacometti et al (2008), such a model will overestimate the degree of diversification provided 
by dependency since it lacks any extreme losses from heavy-tailed distributions.  Hence "choice of the loss 
distribution thus becomes of central concern and must be estimated with a high degree of accuracy".   
 
The second set of  copulas will provide conservative estimates of the dependency reduction when compared 
to the medium-tailed lognormal marginals. The t- and Gumbel-copulas provide additional conservatism since 
they reflect positive tail dependency (absent from the Gaussian copula) which may potentially increase the 
required capital by reflecting large simultaneous losses in pairs of loss event types.  Each ET will reflect a 
separate set of parameter estimators for its corresponding marginal distribution.  The number of ETs for any 
bank will depend on the size of the individual bank’s data and whether synchronicity of weekly data allowed 
sufficient observations for estimation in each ET.   

2) Fit each column of historical weekly loss data (associated with a separate ET) against the lognormal-gpd 
mixture in equation (8) using MLE, identifying five parameters for each ET.  If the estimated threshold is 
too high to achieve convergence, re-estimate the ET as a straight lognormal distribution. 

3) Fit the historical weekly loss data to the chosen standard-copula by non-parametrically calculating the 
pseudo-sample probability matrix using the empirical distribution function and passing the edf to an 
MLE/optimization fitting routine as an argument.  This is like a hybrid IFM step 2. Review the discussion 
in III.G.  This step generates the parameters for a standard-copula rather than a meta-copula. 

4) Simulate 100,000 years of weekly loss data for each copula generator model.   
 For each year, simulate a matrix of 52 weeks of losses from each loss event type, creating a matrix with 

52 rows and up to 7 columns of event loss types depending upon whether sufficient historical data was 
available to estimate parameters for the marginal loss distributions. The loss simulation consists of two 
steps previously described in Part III.G.  

 First simulate a marginal loss probability matrix from a standard copula (not a meta-copula) 
using copula parameters previously fitted in step 3.  Estimated parameters for the various 
copulas are presented in Tables 14A and 14B in Appendix 3.   

 Secondly, apply a quantile function from the appropriate lognormal-GPD mixture (or straight 
lognormal) loss distribution to each column of probabilities in the matrix from the previous 
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step to create simulated losses.  The parameters associated with the marginal's loss distribution 
must have been previously estimated by applying MLE to the weekly historical loss data in 
step 2.  This step creates a matrix of simulated weekly losses for 52 weeks.  Estimated 
parameters appropriate for quantile functions of the mixture distributions are contained in 
Table 2 for the full dataset and in Table 3 for the dataset with outliers removed.  Parameters for 
straight lognormal cases are contained in Tables 13A and 13B in Appendix 3. 

 Aggregate the simulated weekly losses for each ET in a year to get a single annual loss in each ET for 
the 52 weeks in year 

 Aggregate the sum of the annual losses across event types to get an aggregate annual bank loss 
each year 

5) Calculate the empirical quantiles {0.95, 0.99, 0.999} for aggregate annual bank losses from the 100,000 
year sample (this is the term totalOpVaR in equation (2b)) 

6) Calculate empirical quantiles {0.95, 0.99, 0.999} for each ET’s annual simulated loss in each year of the 
100,000 year sample and sum the ET quantiles (this is the term subadditivity upper bound in equation (2b)) 

7) Divide the subadditivity upper bound from step 4 by the totalOpVaR from step 3 and subtract 1 to get the 
diversification ratio defined in equation (2b). 

 
I. Empirical Diversification Results 

Table 15. 
Diversification Ratios, OpVaR, and Expected Shortfall  

Comparing Heavy- and Thin-Tailed Marginals 
Comparing Full Data Set to Data with Outliers Removed 

Loss 
Distri-
bution & 
Initializer 
Method 

 
Copula 
Type 

 

∑
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∑
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Subadditivity 
upper bound 
at 99th 
percentile 

Diversi-
fication  
Ratio33 
 
(99th per-
centile) 

 

∑
=

5

1
)(999

i
iETVaR

  
VaR at 99.9th 
percentile 

 

∑
=

5

1
)(999

i
iETVaR

 Subadditivity 
upper bound 
at 99.9th 
percentile 

Diversi- 
fication  
Ratio 
 
(99.9th 

 per-
centile) 

 
ES99.9 
Expected 
shortfall  
at 99.9th 
percentile 

 
pES99. 9 
Subadditive 
upper 
bound for 
expected 
shortfall 

 
Full Data ($Billions) 

Gauss 0.2088835 0.2265731 8.4687% 0.334323 0.3570227  6.7896% 0.44038 0.46987 

T 0.2116417  0.2292060 8.2991% 0.340682 0.3665826 7.6026% 0.44377 0.47532 
Gumbel 0.2093754 0.2246699 7.3048% 0.342613 0.3639409 6.2252% 0.49341 0.51976 

Outliers Removed ($Billions) 
Gauss 0.1362306   0.1504573  10.4431% 0.1751789 0.1955252 11.615%  0.20129 0.22599 

T 0.1358662  0.1500447 10.4356% 0.1749272 0.1970870 7.6026% 0.20717 0.23176 

 
 
 
 
All LN Fit 

Gumbel 0.2076021 0.2255529 8.6467% 0.3315575 0.3589521 8.2624% 0.47723 0.50725 

 
Full Data ($Billions) 

Gauss 6.516076 6.601120 1.305%  84.78458 85.3146 0.6252% 483.99 485.48 
T  6.558567 6.612461 0.8217% 82.92779 83.51742 0.7110% 2693.3 2695.5 

Gumbel 6.494234 6.509054 0.2282% 107.02168 107.59066 0.5317% 5985.4 5987.18 

Outliers Removed ($Billions) 
Gauss 0.465092 0.498738 7.2342% 1.942176 2.108336 8.5553% 1.2286 1.3193 
T  0.457959 0.488307 6.6227% 2.096548 2.236126 6.6574% 4.8944 5.3158 

4 Mixtures + 
1 LN 
 
LN-GPD 
Mixtures 
PWM7 
Initializers 
 
3 Mixtures + 
2 LN  Gumbel 0.462863 0.492723 6.4513% 2.268555 2.372386 4.5770% 13.4611 13.8741 

Empirical results for fitting the marginal distributions of ET1, ET2, ET3, ET4, ET7 as lognormal-GPD mixtures for 
a single bank have already been shown in Tables 2 and 3 (see Part III.E). 
 

                                                      
33 This column represents the diversification ratio from equation (2b) multiplied by 100 to give the diversification benefit as a 
percentage at the 99th percentile.  The third column further to the right represents the diversification ratio as a percentage for 
the 99.9th percentile. 
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Empirical results for fitting the marginal distributions of ET1, ET2, ET3, ET4, ET7 as straight lognormal 
distributions appear as Tables 13A and 13B in Appendix 3. 
 
The results of fitting copulas to pseudo-sample probabilities generated by edf representations of weekly loss data 
for the single bank appear as Tables 14A and 14B in Appendix 3. 
 
Table 15 presents the results of the diversification ratios (capital reductions) at the 99th and 99.9th  percentiles 
simulated from Gauss, t, and Gumbel distributional copulas (using the method described in III.H) for the full 
dataset and for the dataset with four outliers removed from ET4. When using all data points, four of the five loss 
event types are well-fitted by lognormal-GPD mixtures.  When four outliers are removed from the dataset, only 
three of the five loss event types are still well-fitted by the heavy-tailed mixtures.  
 
The table also presents results under the extremely non-conservative assumption that marginal distributions for all 
loss event types are lognormally distributed (i.e. are medium-tailed distributions) even though the more 
conservative heavy-tailed assumption is empirically supported by the data.    
 
It also  contrasts results using a fitted Gaussian copula with no tail dependence versus more conservative meta-t and 
Gumbel copulas which may exhibit positive (upper) tail dependence increasing the likelihood of simultaneous large 
losses in pairs of ETs and hence reducing “diversification”. 
 
We draw the following conclusions from data for this single bank from results in Tables 14 and 15. 

• The VaR results show no subadditivity violations (not even at lower percentiles like the 95th which is not 
shown in the table). 

• The levels of required capital without removing outliers seems prohibitively high when some (four of five) 
ETs have “heavy-tailed” distributions. 

• The diversification (capital-reduction) ratios of 7%-11% are substantially higher for all copula types when 
every marginal is artificially fit to a “medium-tailed” (lognormal) distribution. 

• The diversification (capital-reduction) ratios are 4.5%-8.5% with outliers removed and three of five 
marginal distributions reflecting “heavy-tails”.  This range is substantially lower than the 20-25% found for 
a single European bank by Giacometti et al (2008) (and the 30-50% reductions found in previous studies 
using thin-tailed distributions by other authors like Dalla Valle (2008) and Chapelle (2004)). It is clearly 
important to investigate data from additional banks. 

• When using the sample with outliers removed, the diversification ratios produced by the t-copula and 
Gumbel-copula are substantially lower than that provided by the Gauss-copula 

• The Gumbel copula seems to fit the data well and provides consistent results even though it is a single-
parameter model. 

• The Gumbel copula results in the highest capital requirement in all cases at the 99.9th percentile. 
• The Gumbel copula results in substantially higher Expected Shortfalls for all cases where some marginals 

have “heavy tails”. 
• The positive upper tail dependence property of the Gumbel copula seems to have its strongest effects at 

very high quantiles like the 99.9th where it induces a higher capital requirement.  The removal of outliers 
apparently dropped the Gumbel’s estimated positive upper tail dependency coefficient from 0.09129 to 
0.07169 which may partially explain why the 99.9% VaR from the Gumbel copula is proportionally much 
larger than the VaR from the t-copula with all data included relative to when outliers are removed.  The 
decline in tail dependency may reflect the simultaneous removal of four large values (largest, 21st largest, 
23rd largest, and 128th largest of 196 observations) from ET2 when the four ET4 outliers were removed. 

 
 
J. Summary 
This paper has presented strong graphical evidence that one-sided support for operational-risk losses eliminates one 
of the primary sources of diversification, negative tail dependency, from large simultaneous losses.  Hence 
operational-risk losses should exhibit substantially lower diversification benefits than returns with two-sided 
support in market risk.  Consequently, analysts should continue to practice conservatism required by the U.S. Rule 
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until the factors driving diversification in operational-risk losses can be more thoroughly understood.  Any scenario 
analysis cannot be based on logic derived from market- or credit-risk where underlying data has two-sided support. 
 
This paper attempts to measure the diversification (capital-reduction) ratio implied by historical LDCE2004 loss 
data from a single large U.S. bank.  To measure the diversification effect, the paper attempts to simulate annual 
losses using a distributional copula and use the empirical distribution function of the simulated data to measure 
VaR and other related statistics.  
 
Simulation from a distributional copula requires identification of parameter for both the copula and corresponding 
marginal distributions.  This paper utilizes a hybrid of the two-stage Inference Functions for Marginals (IFM 
approach) popularized by Joe for parameter identification. Using aggregated weekly loss data to avoid 
synchronicity problems with sparse data, the first stage estimates marginal distribution parameters for historical 
(LDCE2004) loss data using MLE under the assumption of  lognormal-GPD mixture distributions for loss data 
which reflect “heavy tails”.  The second stage of the hybrid approach applies non-parametric estimation to the 
sample losses using the empirical distribution function to build a pseudo-sample matrix of probabilities which 
emulate drawings from identical marginals required to fit a standard copula.  Using the edf matrix as input, we fit 
standard Gaussian, t, and Gumbel copulas via MLE.  To fit the Gumbel copula, we derived mathematical 
formulations (see equations 18a-18d) for the Gumbel copula density and corresponding likelihood function for 
dimensions up to five (the number of ET with sufficient data) and coded a corresponding optimization algorithm 
since existing computer code provided densities of maximum dimension two or three.  A sample of 100,000 annual 
losses was constructed by simulating and summing consecutive sets of 52 weekly losses.  Each weekly loss was 
calculated by simulating a set of probabilities (52 x 5) from the previously fitted standard (Gaussian, t, or Gumbel) 
copula and then applying quantile transforms for the lognormal-GPD mixtures to the simulated probabilities in each 
column of the matrix. Annual losses in each ET and across the firm are then readily attainable by summation.  The 
diversification (capital reduction) ratio and other VaR measures can be easily extracted from the empirical 
distribution function of the 100,000 simulated annual losses. 
 
The simulation results suggest diversification ratios of only 4.5%-8.5% from all copula models at the 99.9th 
percentile which is substantially lower than results found in other studies.   
 
Future Extensions 
Distributional Copula Approaches with larger numbers of parameters than the Gumbel: 

• Pair copula cascade (Bedford and Cooke) Model selection may be critical and challenging (Aas) 
• Nested Archimedean Copulas (McNeil) Requires constraints on copula parameters 

Testing data from many additional banks to determine if the capital reduction is consistent or is highly affected by 
the historical loss data.  
Testing banks with sufficient data for all seven event-loss types. 
Developing a Bayesian strategy  
 
Appendix 1. Tail dependency 
Joe (1997) initially defined two types of asymptotic positive tail dependence indicating whether a pair of random 
variables exhibit similar extreme (tail) behavior. Hence positive tail dependence implies that a bivariate pair of 
extreme tail results are either both very large or very small.  Tail dependence measures do not depend on the 
underlying marginals and hence can be written in terms of the joint distribution's underlying distributional copula. 

• Positive upper tail dependence is measured as 
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It measures the propensity for X2 to exceed a very high quantile (fall into the upper tail) given that X1 also 
exceeds the same high quantile (upper tail) value.  Hence +

uλ  measures joint outcomes in the upper right 
corner of a graph of bivariate outcomes. It is applicable to random variables defined with either two-sided 
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infinite support ),( ∞−∞=ℜ∈X  as in market or credit-risk and variables with single-sided infinite 
support ),0( ∞=ℜ∈X like operational-risk losses since simultaneous large values are not precluded by 
either type of support. 

• Positive lower tail dependence is measured as: 
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It measures the propensity for X2 to fall below a very small quantile in the lower tail given that X1 lies 
below the same small quantile.  Hence +

lλ  measures joint outcomes in the lower left corner of a graph of 
bivariate outcomes.  It is basically irrelevant for diversification in random variables with single-sided 
infinite support ),0( ∞=ℜ∈X like operational-risk losses since it describes only joint outcomes which are 
both close to zero. 

 
Zhang (2008) introduced measures of negative (asymptotic) tail dependence indicating whether a pair of random 
variables exhibits opposite extreme (tail) behavior. The existence of negative tail dependence is vital to 
understanding diversification of portfolio stock returns with two-sided infinite support whereas it is relatively 
unimportant in describing diversification of operational risk losses which have one-sided positive support.   
 

• Negative upper tail dependence is measured as 
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It measures the propensity for X2 to exceed a very high quantile (fall into the upper tail) given that X1 falls 
below the corresponding (1-q) percentile in the opposite tail.  Hence −

uλ  measures joint outcomes in the 
upper left corner of a graph of bivariate outcomes. However, for variables with one-sided support, the 
upper left corner displays a pair of outcomes with a large positive value and a value close to zero and hence 
no diversification benefit.. 

• Negative lower tail dependence is measured as: 
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It measures the propensity for X2 to fall below a very small quantile in the lower tail given that X1 lies 
above the corresponding large (1-q) quantile in the upper tail.  Hence −

lλ  measures joint outcomes in the 
lower right corner of a graph of bivariate outcomes.  However, for variables with one-sided support, the 
lower right corner displays a pair of outcomes with a large positive value and a value close to zero and 
hence no diversification benefit. 

 
 
Operational-risk loss distributions exhibit purely positive support ),0[ ∞=ℜ∈iX rather than two-sided support.  
The one-sided support drastically limits the impact of negative (or opposite) movements in the variable pair.  With 
two-sided support,  a large positive value can offset a large negative value, creating “diversification” effects. 
 

Furthermore, strict Archimedean copulas with continuous marginals have no negative tail dependence (i.e. −
uλ = 0 = 

+
uλ ).  Hence Gumbel and Clayton copulas are appropriate for modeling marginals with one-sided support like 

operational-risk loss distributions.  Alternatively, copulas associated with elliptical distributions (e.g. the t-copula 
with t-marginals) have positive values for negative tail dependence and hence are pertinent for modeling marginals 
with two-sided support where large losses may be offset by large gains, providing "diversification". 
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The Gauss copula precludes tail dependencies. The Gumbel copula has positive upper tail dependency in a bivariate 
setting which implies a positive conditional probability that if one risk factor exceeds a large quantile, the second 
risk factor also exceeds the same quantile value.  Hence upper tail dependency represents the opposite of 
diversification. 
“The essential determinant or whether the copula of a normal variance mixture has tail dependence or not is the tail 
of the distribution of the mixing variable W….If W has a distribution with a power tail, then we get tail 
dependence; otherwise we get asymptotic independence….a consequence of a general result for elliptical 
distributions given in section 7.3.3.” QRM, p. 212 
 
See Example 5.33 (eqn. 5.31) which shows that the t-distribution’s  positive tail dependence measure can be stated 
as 

)
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where ρ is the linear correlation coefficient.  ρ may be replaced by the estimate of Kendall's tau to give a simple 
measure of the tail dependence for the t-copula 

)
2

sin(12 τρπρ =  

where τρ is estimated from data in the R-language by the function Kendall() in QRMlib or the function cor() in the 
stats package to obtain Kendall's τρ  = tauK = cor(data.t.2d, method="kendall") where ρ12 will be an off-diagonal 
element of the resulting tauK matrix 

 
Appendix 2 
Levy Copula Model 
In the Levy model, individual aggregate loss distributions for each unit of measure and the sum of aggregate losses 
across all units of measure must be compound Poisson processes.34  Furthermore, the Levy measure 

)()),0([ iiii xFx λ=Π for each operational-risk loss cell i is totally determined by the expected Poisson frequency 
of loss occurrences and the severity distribution of the cell (unit of measure).  Note the Levy measure has total mass 
equal to the expected number of loss arrivals λ since as 1)(, →∞→ xFx i  so .)),0([ ii λ=∞Π The Levy 
marginal tail integral is the product of the ith cell’s Poisson frequency and the tail of the ith severity distribution: 

)()),([ iiii xFx λ=∞Π  and is therefore a transform of the Levy measure. Consequently, the Levy copula (for 
compound Poisson processes with finite positive jumps) defines the joint tail integral of the d-dimensional 
compound-Poisson aggregate loss process across the d units of measure. Specifically, the Levy copula separates the 
marginal tail integrals and dependencies in the jump measures from the joint tail integral: 

))(,,),((),...( 111 dd
Levy

d xxCxx ΠΠ=Π .   

Since the Levy copula maps tail integrals into the non-negative real line (i.e. it maps ],0[],0( ∞→∞ d ), it is not a 
distributional copula.35  
 
The primary importance of the Levy copula model is its amenability to investigating dependence between 
frequency and severity at the same time because the Levy measures Π and corresponding tail integrals Π are 
independent of time and depend upon the frequency of losses only through its expected value.  Hence modeling of 
dependence between coincident losses in different units of measure (e.g. losses in the same week in different cells) 
can be readily accomplished.  
 
Pareto-Levy Copula Model 

                                                      
34 This behavior implies the multivariate LDA model is invariant to the structure of the units of measure.   
35 Instead, it might be described as a tail-integral copula.  Note the Levy copula’s domain is sometimes described as the 
punctured positive cone because it excludes 0 as a loss value. 
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The Pareto-Levy copula modifies the Levy copula model by transforming the tail integral to be the tail function of a 
standard Pareto distribution:  .0,)()),([)),([ 1 >==∞Γ≡∞Π − xxxFxx ii

Pareto
iiiii  Hence the tail integral 

depends only upon a continuous tail (severity) distribution. This transformation introduces an infinite number of 
jumps (infinite variation) over the time period, meaning the summed aggregate loss distribution is no longer 
compound-Poisson. Hence the Pareto-Levy copula is specified as  
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=∞∞Γ .  The Pareto-Levy copula is also not a 

distributional copula since it maps ],0[],0( ∞→∞ d . It may be described as a tail-integral copula where the tail 
integral is precisely the tail function of a standard Pareto distribution.  The Pareto-Levy copula separates the joint 
Levy tail measure into a dependency structure and marginal Levy tail measures.   
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Appendix 3: Fitting Results 
The results for fitting straight lognormals to the full dataset appear in Table 13A: 

Table 13A 
Loss Type Negloglik logmu logsd 

ET1 2739.905 12.47165 
(0.078039) 

1.0925560 
(0.055182) 

ET2 3135.761 15.14338 
(0.040656) 

0.5691939 
(0.02874) 

ET3 
 

2834.664 13.14586 
(0.064487) 

0.9028297 
(0.045599) 

ET4 3134.278 14.07424 
(0.117535) 

1.6454956 
(0.08311) 

ET7 2963.164 14.26903 
(0.040403) 

0.5656492 
(0.028569) 

Results for fitting straight lognormals to the dataset with outliers removed appears in Table 13B. 
Table 13B 

Loss Type Negloglik logmu logsd 
ET1 2670.743 12.45337 

(0.074949) 
1.038532 
(0.05299) 

ET2 3030.369 15.11470 
(0.034074) 

0.472146 
(0.024094) 

ET3 
 

2763.510 13.116233 
(0.062621) 

0.867714 
(0.044280) 

ET4 3018.616 13.95119 
(0.102599) 

1.42166 
(0.072548) 

ET7 2895.868 14.259808 
(0.039761) 

0.550956 
(0.028116) 

 
Results for fitting the lognormal-GPD mixtures to the full dataset were shown in Table 2 in the main body of the 
paper. 
 
RResults for fitting the lognormal-GPD mixtures to the dataset with outliers removed were shown in Table 3 in the 
main body of the paper. 
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Table 14A.  Fitting Standard Copulas to Full Data Using Non-parametric EDFs for Pseudo-sample 

Full data, LN-GPD mixture 

copula negloglik nu (df) Correlation matrix 
t-copula -28.54851 8.027427 $P 

        [,1]       [,2]      [,3]       [,4]       [,5] 

[1,] 1.00000000 0.07647740 0.1672030 0.03528907 0.04773063 

[2,] 0.07647740 1.00000000 0.2030429 0.19457791 0.02837321 

[3,] 0.16720300 0.20304290 1.0000000 0.17757638 0.19195029 

[4,] 0.03528907 0.19457791 0.1775764 1.00000000 0.16252182 

[5,] 0.04773063 0.02837321 0.1919503 0.16252182 1.00000000 

 

Gaussian-
copula 

-23.15775 NA $P 

      [,1]       [,2]      [,3]       [,4]       [,5] 

[1,] 1.00000000 0.08978377 0.2188185 0.06109352 0.09640038 

[2,] 0.08978377 1.00000000 0.2104894 0.23468559 0.07661365 

[3,] 0.21881848 0.21048945 1.0000000 0.21098863 0.22380747 

[4,] 0.06109352 0.23468559 0.2109886 1.00000000 0.19622207 

[5,] 0.09640038 0.07661365 0.2238075 0.19622207 1.00000000 

copula negloglik theta positive upper tail dependency +
uλ  

Gumbel 
copula 

-11.91119 1.072273 

(0.02334683) 

0.09129 

 
Table 14B.  Fitting Standard Copulas to Data with Outliers Removed Using Non-parametric EDFs  

Outliers Removed, LN-GPD mixture 

copula negloglik nu (df) Correlation matrix 
t-copula -19.62375 11.51919 $P 

           [,1]       [,2]      [,3]       [,4]       [,5] 

[1,] 1.00000000 0.06197525 0.1700540 0.02900597 0.05739806 

[2,] 0.06197525 1.00000000 0.1743880 0.16839145 0.01895638 

[3,] 0.17005405 0.17438799 1.0000000 0.13747018 0.17014580 

[4,] 0.02900597 0.16839145 0.1374702 1.00000000 0.16064263 

[5,] 0.05739806 0.01895638 0.1701458 0.16064263 1.00000000 

Gaussian-
copula 

-18.21555 NA $P 

           [,1]       [,2]      [,3]       [,4]       [,5] 

[1,] 1.00000000 0.06886389 0.2184339 0.07032646 0.15314437 

[2,] 0.06886389 1.00000000 0.1268797 0.17762663 0.03093256 

[3,] 0.21843386 0.12687973 1.0000000 0.15322317 0.17606315 

[4,] 0.07032646 0.17762663 0.1532232 1.00000000 0.18756119 

[5,] 0.15314437 0.03093256 0.1760632 0.18756119 1.00000000 

copula negloglik theta positive upper tail dependency +
uλ  

Gumbel 
copula 

-3.770828 1.055587 
(0.02392866) 

0.07169 
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