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ABSTRACT 

A single factor migration-style credit risk model is extended to measure the market risks of the non-
defaulting credits in an asymptotic portfolio. Correlations among credit and default risks are modeled using 
a common Gaussian factor. Idiosyncratic default and rating migration risks are fully diversified in an 
asymptotic portfolio, but market risks on performing credits are not diversifiable. A closed-form 
representation of an asymptotic portfolio’s conditional future market value is derived and used to generate 
an estimate of the portfolio’s unconditional future value distribution using Monte Carlo methods for a 
sample portfolio. This integrated exposure distribution is used to construct economic capital allocations, 
and these capital allocations are compared to piecemeal approaches for measuring risks and estimating 
economic capital. The capital comparisons show that the issues of diversification and capital benefits are 
complex, and it is impossible to make general statements about potential for capital savings. The results 
show that capital allocations derived from an integrated market and credit risk measure can be larger or 
smaller than capital allocations that are estimated from piecemeal risk measures—the sign and magnitude 
of the difference depends on the piecemeal approaches used to measure market and credit risks and the 
method used to construct economic capital allocations.  Regarding specifically the Basel II AIRB approach, 
the results clearly show that no further diversification benefit should be considered for banking book 
positions as no market risk capital is required and Basel II AIRB capital requirements fall far short of the 
capital required by an integrated risk measure. For trading book positions subject to 10-day market risk 
requirements and incremental default capital requirements, the issues are unclear because of differences in 
measurement horizons and as well as allowed variation in bank market and credit risk measures in addition 
to shortcomings in the EL+UL capital allocation framework.  
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An Integrated Structural Model for Portfolio Market and 
Credit Risk 

 
I.   INTRODUCTION 

The Gaussian asymptotic single factor model (ASFM) of portfolio credit losses, 

developed by Vasicek (1987), Finger (1999),  Schönbucher (2000), Gordy (2003) and 

others, provides an approximation for the default rate distribution for a credit portfolio in 

which default dependence is driven by a single common factor.   In a large portfolio of 

credits, idiosyncratic risk is fully diversified and the only source of portfolio loss 

uncertainty is the default rate that is driven by the common latent Gaussian factor.1  

By construction, the ASFM model is a default-mode model meaning that all 

credits are assumed to either perform or default within the model’s risk measurement 

horizon. Defaulting credits’ losses are measured by the model. Income earned on non-

defaulting credits is not recognized in the Vasicek (and Basel II AIRB) loss distribution 

estimate.  

CreditMetrics2 popularized mark-to-market (MTM) credit-migration style risk 

measurement models. The credit-migration class of models generalizes the Vasicek 

(1987) default-mode model to include the potential for migration of non-defaulting 

credits among credit quality groups. When these migrating credits are re-priced at the end 

of the risk measurement horizon, they generate capital gains or losses.  The 

                                                 
1 The ASFM assumes the unconditional probability of default, exposure at default, and 
loss rates in default (LGD) are known non-stochastic quantities for all obligors. 

2 See, “CreditMeterics Technical Document,” JP Morgan, New York, April 2, 1997.  
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CreditMeterics model uses estimates of credit quality transition matrices and a single 

latent common factor to drive changes in an obligor’s credit quality and trigger default. 

The portfolio’s future value distribution includes interest income, MTM gains and losses 

on non-defaulting credits, and default losses on the portfolio’s positions.  

The CreditMetrics approach incorporates correlation among credit quality 

transitions and defaults, but it does not incorporate market risk. While credits may 

transition among credit-quality grades, the MTM value of a future cash flow is known 

and non-stochastic. The end-of-horizon values of performing credits are calculated using 

credit quality specific implied forward rates that are bootstrapped from the spot yield 

curves for each credit quality grade used in the model.  

When it was initially introduced, CreditMetrics estimated its MTM portfolio 

value distributions using Monte Carlo simulation. Subsequently, Finger (1999) and 

Gordy (2003) derived a closed-form expression for the conditional loss rate of an 

asymptotic portfolio of credits. These asymptotic portfolio models assume that the future 

market values of performing credits in each credit quality grade are known and 

deterministic.3  

This paper develops a model that generalizes the ratings-migration framework to 

incorporate the valuation effects of market risk on non-defaulting credits. It derives the 

MTM value distribution for an asymptotic credit portfolio. This MTM value distribution 

                                                 
33 In deriving his results, Gordy (2003) p. 211 notes, “In principal, however, we can allow 
(credit) spreads to be non-stochastic functions of X (the common factor).”  In contrast , 
the model for the conditional asymptotic portfolio’s future value developed in this paper 
(expression(33)) is a generalization that incorporates credit spreads that are stochastic 
functions conditional on the common factor.    
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can be used to estimate portfolio-invariant capital allocations.4  Non-defaulting portfolio 

credits may migrate among credit quality grades. The end-of-horizon MTM value of each 

credit quality is, however, stochastic. The distributions of the future market values of 

performing credits are modeled, and the model distributions are calibrated using 

historical data on the market yields of alternative credit quality instruments. The model 

incorporates correlations between portfolio default rates, credit migration probabilities 

and credit-quality specific market yields using a single common latent factor. The 

correlations among the yields on the alternative credit-quality classes are calibrated using 

historical data.      

Idiosyncratic default and rating migration risks are fully diversified in an 

asymptotic portfolio, but market risks on performing credits are not diversifiable in this 

model.5 As a consequence, the model produces a closed-form expression for the 

conditional distribution of the asymptotic portfolio’s MTM value that depends on the 

common latent factor and, in addition, on the idiosyncratic factors that drive the market-

wide yields on each credit-quality class. The conditional asymptotic distribution has low 

dimensionality so standard Monte Carlo techniques can be used to derive an accurate 

                                                 
4 A portfolio-invariant capital allocation is one in which the economic capital required on 
the marginal investment is independent of the composition of the portfolio to which the 
asset is added.  In a so-called asymptotic portfolio, all idiosyncratic risks are diversified, 
and the required capitalization rate on the marginal asset equals the overall portfolio 
capitalization rate. See Gordy (2003) for further discussion.   

5 The model developed herein does not explicitly include instrument-specific yield risks 
as all instruments in a credit-quality grade are assumed to have the same required yield. 
The model can be extended to include instrument-specific yield risks and it can be 
formally demonstrated that these risks will be completely diversified in an asymptotic 
portfolio. 
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estimate of the portfolio’s full MTM value distribution including correlated market, credit 

quality, and default sources of risk.     

A specific stylized sample asymptotic portfolio of BBB-quality credits is used to 

illustrate model calibration and estimation of the integrated MTM portfolio value 

distribution.  The estimated unconditional asymptotic portfolio loss distribution is used to 

construct estimates of the economic capital allocations needed to support a desired 

solvency standard and to measure the potential for realizing economic capital savings 

from integrated risk measurement.6   

Within the banking industry, it is common practice to use separate models to 

measure market and credit risk, and to estimate capital needs using either only one 

measure of risk or in some cases, the sum of the market and credit risk measures. An 

important issue related to integrated risk measurement is the magnitude of capital savings 

that might be achieved by jointly modeling market and credit risks. It is axiomatic that a 

well-constructed and well-executed integrated risk measurement and capital allocation 

framework will produce more accurate risk and capital estimates than can be produced by 

piecemeal approaches.  

The results of this study show that, relative to market and credit risk estimation 

methods commonly in use, the integrated modeling of market and credit risk will alter 

estimates of the minimum capital needed to achieve a given target solvency margin. 

Differences among capital estimates can be large.  Whether or not the adoption of an 

integrated risk measurement framework will reduce an institution’s estimated capital 
                                                 
6 Solvency standards are typically expressed as target survival rates, i.e. a target 
minimum probability that the firm will be able to payoff its debts at the end of the risk 
measurement horizon using revenues generated exclusively from the sale of investment 
portfolio.  
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allocation depends on how the institution determines its capital needs prior to applying 

the integrated approach.  The results show that piecemeal approaches for measuring 

market and credit risk can lead to under- or over-stated estimates of capital relative to the 

capital allocation estimated using an integrated model.   

Focusing specifically on the Basel II AIRB capital requirement, the results do not 

support arguments that recommend capital relief in the current framework on the premise 

that an integrated capital framework would generate capital savings that are not realized 

in the current Basel approach. The current Basel II AIRB paradigm significantly 

understates capital needs relative to the capital estimates produced by an accurate 

integrated market and credit risk capital allocation methodology.  

The following section explains the assumptions that underlie the integrated risk 

measurement model and formally derives a closed-form expression for the conditional 

value of an asymptotic portfolio of credits at the end of the selected risk measurement 

horizon. Section III illustrates the estimation of an asymptotic portfolio’s unconditional 

future value distribution using Monte Carlo simulation. Section IV discusses capital 

allocation and measures the capital savings (or shortfalls) that are identified by the 

integrated risk measurement model. A final section concludes the paper.        

 

II.   THE MODEL 

1. CHARACTERISTICS OF INDIVIDUAL CREDITS 

The individual credits analyzed in this structural model are  zero coupon credits 

that repay principal and accrued interest at maturity. We assume that the borrower 
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receives $1 at initiation of the loan contract and promises to repay mY )1( 0+  at loan 

maturity, where 0Y is the initial contract yield-to-maturity. 

2. Individual Credit Default Process  

Define a latent unobserved factor, iV~ , for credit i  whose value is realized at the end of 

the horizon of interest. The modeling time horizon is completely flexible. Time is not an 

independent factor in this structural model but is only implicitly recognized through the 

calibration of model’s parameters (e.g. probability of default or downgrade).  For 

expositional convenience we will develop the model using a one-year time horizon but 

shorter or longer periods can be substituted.7  As a consequence, the latent random factor 

value iV~  is realized at the end of a year and so the model abstracts away form defaults or 

downgrades that may occur prior to this date.   iV~ has the following properties, 
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iV~  is distributed standard normal,  ( ) ,0~ =iVE  and ( ) .1~ 2 =iVE  Me~  is a factor common to 

all credits’ associated latent factors, iV~ . The correlation between individual credits’ 

latent factors is .Vρ  iV~  is often interpreted as a proxy for the market value of the firm 

that issued credit .i  

                                                 
7 The example in Section III uses a 6-month risk measurement horizon. 
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Credit i is assumed to default when its latent factor takes on a value less than a 

credit-specific threshold, ii DV <~
. Since no cash payments are due until contract maturity, 

if the horizon of interest is less than maturity, default is interpreted as a violation of a 

contract covenant that causes the bank to call the loan balance. The unconditional 

probability that credit i defaults is, ( ),iDPD Φ=  where ( )⋅Φ  represents the cumulative 

standard normal density function. Define a default indicator function for credit i, 

( )
⎪⎩

⎪
⎨
⎧ <=

otherwise0

~if1~1 ii
i

DVV
i

D                                                      (2) 

In default, assume the bank recovers a fixed proportion of the initial loan balance, 

( ).1 LGD−  

3. End-of-Period Credit Quality 

We focus on the case when the portfolios’ credits maturity exceeds the risk 

measurement horizon. At the end of the measurement horizon, the credit will either 

default or continue to accrue interest. If the credit continues to accrue interest, it is still 

possible that its credit quality has changed over the risk measurement horizon. We 

assume that credit quality, while continuous, is measured and priced according to discrete 

credit quality classes or “ratings”.  

A credit’s rating at the end of the risk measurement horizon is assumed to be 

determined by the credit’s realized “distance to default, or .~
ii DV −  In other word, the 

realized distance to default determines the credit’s unconditional probability of default in 

the subsequent period. If the credit’s distance to default is large, then the credit is said to 

be “high quality” and its unconditional probability of default in the subsequent period is 

assumed to be small. When the realized distance to default is small, the credit is said to 
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be of low quality and the unconditional probability that it defaults in the subsequent 

period is assumed to be large.  

For expositional purposes, we assume there are three distinct credit qualities: 

high, medium and low. Associated with each of these credit qualities, we assume that 

there is an observable term-structure of yields at which new credits could be issued.  A 

credit will be of high quality (low probability of default) if at the end of the period, 

1
~ GVi > ;  the credit will be medium quality if,  12

~ GVG i << ; and the credit will be low 

quality (high probability of default) if, .2
~ GVD ii <<  The number of credit quality states 

can be expanded with no additional difficulty and indeed the example in Section III uses 

four credit quality grades.   

Define three functions that indicate whether a credit is of high, medium, or low 

quality at the end of the period, 

( )
⎪⎩

⎪
⎨
⎧ >=

otherwise0

~if1~1 1GVV i
iH                                                                                     (3) 

( )
⎪⎩

⎪
⎨
⎧ <<=

otherwise0

~if1~1 12 GVGV i
iK                                                                             (4) 

( )
⎪⎩

⎪
⎨
⎧ <<=

otherwise0

~if1~1 2GVDV ii
iL                                                                              (5) 

Under these assumptions, the probability that a credit becomes high quality is, ( )1
11 G−Φ− ; 

the probability that a credit transitions to medium quality is, ( ) ( )2
1

1
1 GG −− Φ−Φ ; and 

( ) ( )iDG 1
2

1 −− Φ−Φ  is the probability that a credit becomes low quality.8  

                                                 
8 The extension to include additional credit grades is accomplished by introducing 
additional thresholds and indicator function between iD  and .1G  
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4. Individual Credit Capital Gain/Loss Process 

At the end of the risk measurement horizon, individual credits are assumed to 

have remaining maturities of m  years. We assume that there are historical time series or 

other techniques that can be used to estimate the distribution of the discount factors that 

may prevail at the end of the risk measurement horizon for high-, medium-, and low-

quality cash flows with −m periods remaining until maturity. How these distributions are 

constructed is not important for purposes of deriving the structural model.  The 

distributions could for example be determined from forwards rates and implied 

volatilities using a theoretical model or they could be constructed from historical time 

series data.  The sample risk-measurement calculation in Section III uses historical time 

series data on yields to construct distribution for future discount factor values.   

Let H
mB~  represent the market value of a promised cash payment of $1 to be 

received after lm + -periods at the end of an −l period risk measurement horizon.9   If   

HmY~  represents the distribution of the potential yield on high-quality -m period credits on 

date l, 

( )
( )m

Hm

lm
H
m

Y

Y
B ~1

1~ 0

+

+
=

+

                                                      (6) 

Similarly, define K
mB~  to be the discount factor for a promised cash payment of $1 to be 

received after lm + -periods if the credit is valued using the prevailing medium-quality 

yield on −m period credits (at time l ), KmY~ ,  

                                                 
9 Consistent with Section II.2, =l 1 year throughout Section II,  but the model can 
incorporate any horizon. 
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( )
( ) m

Km

lm
K
m

Y
Y

B ~1
1~ 0

+
+

=
+

                                                                       (7) 

L
mB~  is the corresponding discount factor for a low-quality credit when the low-quality  

spot yield is ,~
LmY  

( )
( ) m

Lm

lm
L
m

Y
Y

B ~1
1~ 0

+
+

=
+

                                                          (8) 

Using these quality-specific discount factors and the indicator functions defined in 

expression (3)-(5), the end-of-period value of a performing credit can be written, 

( ) ( ) ( ) L
miL

K
miK

H
miHm BVBVBVB ~~1~~1~~1~ ++=                                                        (9) 

The capital gain or loss on a performing credit over the first period is 1~ −mB . 

5. End-of-Period Conditional Valuation Distributions 

The end-of-period value of a performing credit is drawn from a different 

probability distribution depending on whether the credit ends the period as a high-, 

medium- or low-quality asset. Each of these distributions are determined by the credit’s 

promised cash flows at maturity and the probability distribution for the required spot  

market yields that will prevail at the end of the risk measurement horizon. As we may 

choose between modeling quality-dependent distributions for discount factors or yields, 

we elect to model the distributions for quality-dependent discount factors directly, 

( ) ( ) ( )L
mL

K
mK

H
mH BBB ~and,~,~ ΠΠΠ . 

Systematic dependence between defaults and ratings migrations are incorporated 

by assuming that the realizations from the discount factor distributions are driven by 

three latent Gaussian factors, LKH ZZZ ~and,~,~
 with the following properties, 
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We adopt the normalization convention that higher end-of-period contract valuations are 

associated with larger realizations of the latent variables, LKH ZZZ ~and,~,~
.  The 

correlations between the latent variables that drive the end-of-period discount factors for 

the high- and medium-quality, high- and-low quality, and medium- and low-quality are, 

respectively,  .,and,, ZLZKZLZHZKZH ρρρρρρ   

Correlations among realizations of the end-of-period discount factors for the 

alternative credit quality grades are introduced using the integral transformation,  

( )( )
( )( )
( )( )LL

L
m

KK
K
m

HH
H
m

ZB

ZB

ZB

~~~

~~~

~~~

1

1

1

ΦΠ

ΦΠ
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−

−

−

.                                                               (11) 

 
6. Holding Period Mark-to-Market Value for an Individual Credit 

 
At the end of the capital allocation horizon, a credit either performs or it defaults. 

If it performs, the bank continues to accrue interest and must value the contract on 

market-value basis if the contract is in the trading- or available-for-sale accounts. The 

mark-to-market process may generate a capital gain or loss in the mark-to-market value 

of the credit as risk-free interest rates, alternative quality credit spreads, and the credit 

quality of the borrower may change over the risk-measurement horizon. If the credit 

defaults, in this model the investor is assumed to receive a fixed recovery, i.e., the loss 
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given default rate (LGD) is a constant.10  The MTM value of a credit with a remaining 

maturity of m at the end of the measurement horizon, ib
~ , can be written,  

( ) ( ) ( ) ( ) L
miL

K
miK

H
miHii BVBVBVVLGDb

iD
~~1~~1~~1~1)1(

~
+++−≈  .                                  (12) 

7. Conditional Mark-to-Market Value of an Individual Credit 

It is useful to evaluate the indicator functions that are included in an individual 

credit’s mark-to-market value conditional on a specific realized value for the common 

Gaussian factor, .Me   Let ( )MMi eeV
iD =~|~1 represent the default indicator function 

conditional on a realized value of Me , 

( )
⎪
⎩

⎪
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⎧

−

−
<==

otherwise0
1

~if1~|~1
V

MVi
id

MMi

eD
eeeV

iD ρ
ρ

.                                       (13) 

The conditional indicator function is a binomial random variable with an expected value, 

( )( ) ⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

−

−
Φ==

V

MVi
MMi

eD
eeVE

iD
ρ

ρ

1
~|~1 .                                     (14) 

Conditional default indicator functions are independent across credits. 

Similarly, let  ( )MMi eeVH =~|~1 , ( )MMi eeVK =~|~1 , and ( )MMi eeVL =~|~1  

represent, respectively, the default indicator functions for  high-, medium- and low-

quality credit status at the end of the horizon conditional on a realized value of Me , 

                                                 
10 The results in Kupiec (2007) can be used to generalize the model to include correlated 
stochastic recovery rates.  
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These conditional indictor functions are independent across credits for high-, medium-, 

and low-quality credits. For example, for the indicator function for high-quality credits, 

( ) ( )( ) .0~|~1~|~1 jieeVeeVE MMjHMMiH ≠∀==⋅=  

A similar relationship holds true for medium- and low-quality credits.  The conditional 

expected values of these indicator functions are, 
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8. Mark-to-Market Value of an Asymptotic Portfolio of Credits 

Consider a portfolio of N credits that are identical in all respects except for the 

idiosyncratic sources of risk in their latent variables iV~ ’s. These risks are modeled as 

standard normal deviates which are distributed independently across credits, 
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( ) .0~,~ jieeE jdid ≠∀=   The credits are otherwise identical with par values of $1, 

default thresholds of iDD = , maturities of lm +  years, and identical initial yields, 

.00 YYi =   The mark-to-market value of a portfolio of N credits, at time l is, ,
~

pb   

 

         (21) 

 

The MTM value of an asymptotic portfolio of credits is the limit of expression (21) taken 

as ∞→N . 

9. The Conditional Distribution of the Market Value of Performing Credits 

 Before deriving the distribution function for an asymptotic portfolio of credits, it 

is necessary to consider the distribution function of the end-of-period discount factors for 

performing credits, conditional on a realized value of the common market factor, 

.~
MM ee =  The market value of a credit depends on its end-of-period credit quality as well 

as the realized values of the latent factors that determine the discount factors for the 

alternative ratings-quality categories. 

 Consider the conditional cumulative probability distributions of the latent factors 

that drive the cash flow discount factors. Conditional on a realized value of the common 

market factor, ,~
MM ee =  
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Using the integral transform, the conditional cumulative densities for the discount factors 

of the alternative credit qualities grades can be written as implicit functions, 
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Notice that the conditional discount factor distributions are independent of all individual 

credit idiosyncratic risk characteristics (i.e., they are independent of .ieid ∀ ).   

10. The Market-to-Market Value Distribution on an Asymptotic Portfolio of Credits 

 Consider the MTM value distribution for an asymptotic portfolio of credits 

conditional on a realization of the common factor, MM ee =~ , 
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Because the conditional indicator functions are independent and identically 

distributed across individual credits, the strong law of large numbers requires that the 

limiting terms converge almost surely to their expected values, 
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Substitution produces the following expression for the asymptotic portfolio’s future value 

per dollar invested, 
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 The terms ( ) ( ) ( ){ }MM
L
mMM

K
mMM

H
m eeBeeBeeB === ~|~,~|~,~|~  in expression (33), are 

stochastic, but they depend only on the idiosyncratic risk components that drive the 

discount factors used to estimate the mark-to-market valuations of the high-, medium-, 

and low-quality credits. The larger are the realizations of LKH eee ~and,~,~ , the higher are 

the market values of each credit quality group. The factors LKH eee ~and,~,~  are 

independent of one another, but they are identical for all credits of a given quality at any 

given time, and so their influence on the portfolio’s value is not diversified in an 

asymptotic portfolio.  

The unconditional distribution of the end-of-horizon MTM value of the 

asymptotic portfolio can be determined using Monte Carlo simulation, sampling over the 

distributions of the 4 latent factors { }LKHM eeee ~and,~,~,~ that determine the asymptotic 

portfolio’s MTM value.   The following section provides an explicit example. 

 

III.   MONTE CARLO SIMULATION OF A PORTFOLIO’S FUTURE MTM VALUE 
DISTRIBUTION 

1.  Overview  
In this section, the distribution of an asymptotic portfolio’s future MTM value is 

calculated using standard Monte Carlo techniques. The example uses a hypothetical 

portfolio of credits that have approximately BBB credit quality. The credits are assumed 

to have an original maturity of 18-months and the example will derive the distribution of 

the portfolio’s MTM value after 6 months, when the portfolio credits have 12 months 

remaining to maturity.  

To simplify the analysis, it is assumed that the portfolio is composed of individual 

credits that are zero-coupon instruments with an initial market value of $1. The example 
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uses four possible fully performing credit-quality states (instead of three) in addition to 

the default state.  

2. Model Calibration 

Distributions for the discount factors and their latent factor correlations are 

calibrated using historical yield data on Standard & Poor’s credit-quality indices for 

AAA, A, BBB, and B credits as reported by Bloomberg.  Associated with each credit 

quality is a latent Gaussian factor, ,~,and,~,~,~
BBBBAAAA ZZZZ which in turn have correlation 

parameters (respectively), . and,,,, Bρρρρ BBBAAAA  Following Basel II conventions for 

wholesale credits, the example uses 20 percent as the correlation for the latent default 

factors, 20.0=Vρ .  

The yields on 1-year AAA, A, BBB, and B bonds are transformed into discount 

factor series that represent the current value of $1 to be received after 1-year on contracts 

with credit risks equivalent to those of AAA-, A-, BBB-, and B-quality instruments.  

Figure 1 plots data on the discount factors for 1-year maturity cash flows. The discount 

factors are sampled at 6-months intervals beginning January 1, 1997 and ending January 

1, 2007.  The fist-differences of these respective series are used to estimate the 

probability distribution for 6-month changes in each quality-dependent discount factor 

series.  Figure 2 plots histograms of the 6-month changes in the AAA-, A-, BBB- and B-

discount factors series. 
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Figure 1: 1-Year Credit Quality-Specific Discount Factors
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Figure 2: Histograms of 6-Month Changes in  AAA, A, 
BBB, and B Discount Factors (1997-2007)
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The histograms in Figure 2 have characteristics that are similar to random 

variables drawn from individual Beta distributions. End-of-horizon contract price 

uncertainty on performing credits will be modeled using individual quality-specific beta 
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distributions. There are 4 parameters that determine the shape and location of a beta 

distribution; two shape parameters: p, and q; and the minimum ( a ) and maximum ( b ) 

values of the distribution. The probability density associated with an individual 

observation, ,iy  from a beta distribution is given by, 

( )
( ) ( )

( ) ( )
( ) 1

11

)( −+

−−

−
−−

ΓΓ
+Γ= qp

q
i

p
i

i
ab

ybay
qp
qpyp ,                                             (34) 

The parameters of the individual beta distributions are estimated using maximum 

likelihood. The log likelihood associated with a sample of Q  independent observations 

from the same beta distribution is, ( ) ( )( )∑
=

=
Q

i
iQ ypyyyL

1
21 ln,,,ln K . The maximum 

likelihood estimates for the parameters of individual discount factor beta distributions are 

reported in Table 1.   The parameter estimates are nearly identical for the A- and BBB- 

quality discount factors. Compared to the other distributions, the AAA-quality 

distribution shows more downside risk whereas the B-quality distribution shows a higher 

potential for significant price appreciation.  Plots of the estimated factor-change 

distributions appear in Figure 3.   

AAA      A      BBB      B
sample min -0.012 -0.010 -0.010 -0.018
sample max 0.020 0.019 0.019 0.030

ML "a" estimate -0.033 -0.019 -0.019 -0.020
ML "b" estimate 0.025 0.022 0.024 0.039
ML "p" estimate 4.809 2.888 2.917 1.803
ML "q" estimate 3.427 3.175 3.353 3.377

Table 1:  Beta Distribution ML Parameter Estimates
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Figure 3: Maximum Liklihood Estimates of Discount 
Factor Change Densities
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Each discount factor change is converted into a cumulative probability using its 

associated estimated Beta distribution. The estimated realization of the latent Gaussian 

driving factor is recovered from these cumulative densities by inverting the integral 

transformation. For example, the first-difference of the discount factor on the AAA-

quality on date ,t  ,1
AAA
tBΔ  has an associated latent Gaussian factor value, tAAAZ , , given 

by ( )( )025.,033.,427.3,809.4,1
1

, −ΔΦ= − AAA
ttAAA BBetaZ , where ( )025.,033.,427.3,809.4, −xBeta  

represents the cumulative distribution function for the AAA-Beta distribution evaluated 

at x using the maximum likelihood parameter estimates, ,809.4=p ,427.3=q 033.0−=a , 

and .025.0=b  Analogous transformations are used to recover the latent factor series 

realizations for ,~,and,~,~
BBBBA ZZZ and the resulting Gaussian latent factor estimates are 

plotted in Figure 4. 
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Figure 4: ML Estimates of Implied Discount Function Latent 
Factor Realizations 
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 The sample correlations between the latent Gaussian factors are calculated and 

the estimates appear in Table 2.  As the correlation estimates indicate, changes in the 

discount factors for investment quality credits are highly correlated, while changes in the 

discount factors for the sub-investment grade credits do not move in lock-step with the 

investment grade market.  The correlation estimates in Table 2 are used to solve for the 

implied values of the correlation parameters, BBBAAAAV ρρρρ ,,, ; these parameter estimates 

appear in Table 3.  

AAA A BBB B
AAA 1.000 0.939 0.927 0.483

A 1.000 0.938 0.489
BBB 1.000 0.528

B 1.000

Table 2: Correlations Among 6-Month Changes 
in Discount Factors
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AAA
    A   
BBB

B  0.295

Table 3: Common Latent Factor 
Coefficient Estimates

0.792
0.811
0.944

 

The individual portfolio credits will be modeled as if they are initially 

underwritten as BBB-quality credits. The assumed transition probabilities and 

corresponding boundaries for the individual credit latent Gaussian factor iV~  are reported 

in Table 4. Note that these transition probabilities are assumed to be transitions over the 

6-month capital measurement horizon. Should a credit default, the assumed recovery 

value is nonrandom and equal to 80 percent of the initial credit extended.  

credit lower upper 
quality probability threshold threshold
AAA 0.005 2.57583

A 0.015 2.05375 2.57583
BBB 0.96 -2.05375 2.05375

B 0.015 -2.57583 -2.05375
D 0.005 -2.57583 -2.57583

Table 4: Transition Probabilities and 
Associated Latent Factor Threshold Values

 

The remaining set of information that underlies the example are the current yields 

associated with the alternative credit qualities at the time the credits were underwritten. 

For these data, we assume that the term structure is flat between 12 and 18 months, with 

yields to maturity and discount factors as reported in Table 5.  The yields used in the 

example correspond to those that prevailed in early January 2007. 
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1-year 18-month
credit  discount discount
quality yield factor factor
AAA 0.0526 0.95 0.926

A 0.0537 0.949 0.924
BBB 0.0560 0.947 0.922

B 0.0650 0.939 0.910

Table 5: Term Structure of Alternative 
Credit Quality Grades at Issuance

 

3. Monte Carlo Density Estimation 

The portfolio’s future value density can be estimated using standard Monte Carlo 

techniques. The distribution of the end-of-horizon MTM value of the portfolio can be 

estimated by repeatedly sampling over the distributions of the 5 independent latent 

factors that determine the asymptotic portfolio’s MTM value, ( )BBBBAAAAM eeeee ~,~,~,~,~ , and 

calculating the implied MTM value of the asymptotic portfolio.  

Given a single random draw from the four independent standard Gaussian 

distributions, ( )iBiBBBiAiAAAiM eeeee ,,,, , calculate the proportion of the asymptotic 

portfolio that migrates to each of the credit quality grades or the default state.  The 

calculations needed to define these proportions are reported in Table 6.  

Next calculate the latent factor realizations that determine each credit quality 

discount factor, 

iBiMiB

iBBBiMiBBB

iAiMiA

iAAAiMiAAA

eeZ

eeZ

eeZ

eeZ

295.1295.

944.1944.

811.1811.

792.1792.

−+=

−+=

−+=

−+=

                                  (35) 

Use the latent factor realizations to calculate the realizations of the discount factor change 

distributions, 
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where ( )03.0,02.0,3.3,8.1,1 −− yBeta  represents the inverse of the Beta distribution with 

parameter values, 03.0and,02.0,3.3,8.1 =−=== baqp  evaluated at [ ].1,0∈y  

 

Table 6: Portfolio Composition Conditional on a Realization of 

the Common Market Factor, Me~  

Credit Quality Proportion of an Asymptotic Portfolio in State 
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For a single realization of the latent factors, ( )iBiBBBiAiAAAiM eeeee ,,,, , the end-

of-period MTM value of the portfolio is, 
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The only element in expression (37) that remains to be explained is the multiplication factor, 

085.1)056.1( 2
3

≈ , which is the payoff on these zero-coupon instruments should they perform at 

maturity. This term must be included because the fitted discount function distributions were 

specified for the receipt of a single future dollar. 

Figure 5: Estimated Portfolio Value Probability Density 
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The end-of-period MTM portfolio value was estimated using a random sample of 

sixty-five thousand latent factor realizations, ( ){ }65000,....,1,,,,, =ieeeee iBiBBBiAiAAAiM , 
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and for each one we repeat the calculations in expression (37).11  This procedure 

simulates a random sample of size sixty-five thousand drawn from the asymptotic 

portfolio’s end-of-period MTM value distribution. A histogram of the Monte Carlo 

generated sample is plotted in Figure 5.  

Figure 6: Estimated Left Tail of the Portfolio Value 
Distribution 
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IV.   CAPITAL ALLOCATION AND DIVERSIFICATION BENEFITS 

1.  Asymptotic Portfolio Loss Distribution Function 

Figure 6 plots the left-hand tail of the portfolio’s cumulative MTM future value 

distribution. Highlighted in green is the sample estimate (0.9888) of the probability 

density’s 0.1 percent critical value. If potential portfolio losses are calculated relative to 

the portfolio’s initial value (taken as $1 or 100 percent), the 99.9 percent quantile of the 

portfolio’s loss distribution is 1-0.9888, or 1.12 percent.  This value represents the sum of 

expected and unexpected loss (EL+UL).  

Before considering capital allocation and measuring the potential capital savings 

that might be derived from the diversification benefits recognized in an integrated model, 

                                                 
11 The Monte Carlo sampling used antithetic variates to improve estimation efficiency  
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it is important to consider alternative approaches for measuring credit and market risk 

that might serve as basis of comparison.  

2. Alternative Models of an Asymptotic Portfolio’s Credit Loss Distribution 

The are at least three alternative models of an as asymptotic portfolio’s credit loss 

distribution that should be considered when analyzing the issue of potential capital 

savings that might be gained using and integrated risk measure. The first model is the 

well-known Vasicek model.  This model is used to measure risk in the Basel II AIRB 

approach for setting regulatory capital for credit risk. The expression for an asymptotic 

portfolio’s loss rate conditional on a realization of the common factor ( Me ) is ( )M
V eLR , 
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Because low value realizations of Me are associated with a high probability of default, the 

99.9 percent quantile of the Vasicek portfolio loss distribution is given by, 

( )( ).001.01−ΦVLR  

The Vasicek model does not include recognition of any interest earning generated 

by the non-defaulting credits in the portfolio.  Kupiec (2004b) modifies the Vasiciek 

model so that it includes interest earnings on the non-defaulting credits, and these earning 

offset losses on defaulting credits. The Kupiec model is an accounting model and 

measures only accrued interest earnings on non-defaulting credits—it does not consider 

the capital gains and losses that might be generated by credit quality migration. If 0y is 

the promised annual yield to maturity on the portfolio’s individual credits, the future 

value of an asymptotic portfolio (per dollar invested) conditional on a realization of the 

common market factor ( )M
K
p eb  is,   
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Low value realizations of Me are associated with a high probability of default, and so the 

99.9 percent quantile of the loss rate distribution is given by ( )( ).001.01 1−Φ− K
pb . 

The final credit risk model considered is the asymptotic portfolio formulation of a 

credit migration model similar to CreditMetrics. This framework develops a mark-to-

market model without market risk. Interest income is recognized and non-defaulting 

portfolio credits may migrate among credit quality classes and generate capital gains or 

losses as they are market-to-market using non-stochastic discount functions. Under this 

approach, for the portfolio parameterization in Section III, an asymptotic portfolio’s 

future value, conditional on the common market factor Me , is identical to expression (37) 

after substituting non-stochastic discount factors for the stochastic discount factor terms 

in the expression,    
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The 99.9 percent critical value of the migration model asymptotic portfolio loss 

distribution is ( )( ).001.01 1−Φ− CM
pb . 

3. Alternative Approaches for Measuring Portfolio Market Risk 
 

Typically, banks measure the market risk of credit instruments using a value-at- 

risk (VaR) model to estimate the distribution of potential mark-to-market value changes 

that might be experienced by a credit instrument over the risk-measurement horizon. 

Most VaR models in use are short-horizon (1-day to 10 days) measures, and most assume 

that the instrument’s credit quality is unchanged over the horizon. In addition to 

excluding credit-quality migration, these VaR models also often ignore valuation changes 

that are associated with accruing interest in part because, on many fixed income 

instruments, the market convention is for dealer quotes (and trade prices) to be reported 

net of the accrued interest because the buyer pays the seller accrued interest at settlement.  

 If a bank were to extend their market risk VaR models to a longer horizons, it is 

unclear how they might parameterize and calibrate these models. In some extended-

horizon market risk applications, banks might simply scale up 1-day value at risk 

exposure estimates.12 

In this analysis, we will consider two alternative market risk measures. Both are 

VaR measures estimated for 6-month horizons. Both measures will assume that the credit 

quality is unchanged.  One measure will include accrued interest and be based on full 

revaluation of the position, while the other method will rely on the Taylor series 

expansion or so-called delta-gamma method.  The delta-gamma method ignores 

                                                 
12 The support for the statements in this and the prior paragraph is the author’s bank 
supervision model review experience. 
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accumulating interest and so, on instruments that accrue interest, it understates potential 

market values over longer horizons when accrued interest value can be important.13  

Both VaR measures considered will be calibrated using data 6-month changes in 

market discount factors—they will not be time-scaled short horizon measures.  The 

biases that might be introduced by the scaling of 1-day market risk measures are not 

considered in this draft of the paper (but they may well be important).  The two portfolio 

market risk measures are, VaRFR −  for-full revaluation VaR and, VaRDG −  which is 

based on a Taylor series approximation for changes in the asset’s value. The 99.9 percent 

coverage rates for these VaR measures are, 

( ) ( )( ) 1024.0,019.0,353.3,917.2,001.947.0056.1)999(. 1
2
3

−−+×=− −BetaVaRFR ,        (41)             

and, 

( ) ( )024.0,019.0,353.3,917.2,001.056.1)999(. 1
2
3

−×=− −BetaVaRDG .                     (42) 

In expression (42), 2
3

056.1  is the weight on the linear term on the Taylor series expansion 

with respected to changes in the BBB-quality discount factor.  The credit’s MTM value is 

a linear function of the discount factor so there are no higher order terms in the 

expansion.  

4. Risk Measurement and the Potential for Economic Capital Savings 
 

The top panel in Table 7 reports the 99.9 percent loss coverage EL+UL estimates 

produced by the three alternative asymptotic credit risk models. The Kupiec model 

produces the smallest loss estimate (a gain) because it recognizes the full accrued interest 

income on non-defaulting credits without any MTM losses from credit quality migration. 

The 0.001 critical value of the portfolio future value distribution estimate also produces a 
                                                 
13 This effect is often called the pull-to-par effect on discount instruments. This positive 
underlying time drift is ignored in the delta-gamma approach. 
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gain for the credit migration model, but the gain is slightly smaller than the Kupiec model 

estimate because accrued interest earnings are (on balance) offset by MTM losses on 

downgraded credits. Of these estimates, the only the Vasicek estimate overstates the 

integrated model 99.9 percent loss coverage estimate of 1.12 percent of the portfolio’s 

initial value.  

If the object of capital allocation is to ensure a 99.9 percent solvency standard14, it 

has been shown elsewhere (Kupiec 2004a, 2004b, 2006) that capital must be set equal to 

the bank’s estimate of EL + UL, plus in addition, the bank must allocate additional 

capital to ensure that it can service its own debt should the 99.9 percent loss be realized.15 

A simple EL+UL rule understates capital significantly on a high quality credit portfolio. 

On a high quality credit portfolio, estimates of EL+UL are small, in some cases 1 percent 

or less, and so a very high share of the credit portfolio is funded with debt.  In such an 

instance, the interest component of the capital allocation is by far the largest component.  

  

                                                 
14 The Basel II solvency standard is a 99.9 percent probability that the bank survives over 
a one-year the risk measurement horizon. 

15 Reserves would be included in this equity capital measure. 
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No Supplemental Market Risk Measure
Portfolio Distribution 0.001 Critical Value MTM Value Estimate 0.9818 1.0069 1.0057
Estimated Portfolio Credit Model  99.9 Percent Loss Rate (EL+UL) 0.0182 -0.0069 -0.0057

Amount Financed Under Piecemeal Risk Estimates 0.9818 1 1
Interest Capital at AAA rate (5.26%) 0.0255 0.0260 0.0260
Estimated Economic Capital Required 0.0437 0.0191 0.0202
Economic Capital Required Under Integrated Approach @ 5.26% 0.0369 0.0369 0.0369
Estimated Capital Surplus (Shortall) 0.0068 (0.0178)    (0.0166)    

Amount Financed Under Piecemeal Risk Estimates 0.9932 1 1
Interest Capital at A rate (5.37%) 0.0263 0.0265 0.0265
Estimated Economic Capital Required 0.0445 0.0196 0.0208
Economic Capital Required Under Integrated Approach @ 5.37% 0.0374 0.0374 0.0374
Estimated Capital Surplus (Shortall) 0.0071 (0.0178)    (0.0166)    

Amount Financed Under Piecemeal Risk Estimates 0.9929 1 1
Interest Capital at BBB rate (5.60%) 0.0274 0.0276 0.0276
Estimated Economic Capital Required 0.0456 0.0207 0.0219
Economic Capital Required Under Integrated Approach @ 5.60% 0.0385 0.0385 0.0385
Estimated Capital Surplus (Shortall) 0.0071 (0.0178)    (0.0166)    

Economic Capital Calculation @ 5.26% (AAA) Funding Cost

Economic Capital Calculation @ 5.37% (A) Funding Cost

Economic Capital Calculation @ 5.60% (BBB) Funding Cost

Credit Risk Models

Table 7: Economic Capital Estimates Under Alternative Credit Risk Models 

Vasicek Kupiec Credit 
Migration

 

 

The lower panels of Table 7 show alternative capital allocation estimates for 

different funding cost estimates when the capital allocation is based on measured credit 

risk alone. If the portfolio is 100 percent financed with debt, then the via Modigliani-

Miller arguments, the cost of bank debt would be the yield on the portfolio (5.60 

percent).16 The greater the share of equity used to fund the portfolio, the lower the 

interest rate the bank should receive on its funding debt. While formal pricing models can 

be derived to price the bank’s debt (see Kupiec 2006), in this context we simply consider 

three alternative funding costs. In all cases, use of the Vasicek model credit loss estimates 

and a capital allocation equal to ‘EL+UL+bank interest expense’ leads to an 

                                                 
16 If there were explicit or implicit guarantees on the bank’s funding debt, the banks 
funding rate would be reduced toward the risk free rate. 
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overstatement of economic capital needs relative to estimates derived using the integrated 

risk measurement model. 

 

Table 8: Comparison of Capital Estimates for Alternative Credit Risk Models 
when Market Risk is Measured Using the Delta-Gama Approach 

 Credit Risk Models 
    Credit 

Delta-Gamma Market Risk VaR Estimate Vasicek Kupiec Migration 
Portfolio Distribution 0.001 Critical Value MTM Value Estimate 0.9818 1.0069 1.0057 

Estimated Portfolio Credit Loss Rate 0.0182 
-

0.0069 -0.0057 
Estimated DG VaR Market Risk Loss Rate 0.0187 0.0187 0.0187 
Estimate Market + Credit Loss @ 99.9% Coverage Rate (EL+UL) 0.0369 0.0118 0.0130 
     
Integrated Model Estimated Total Loss Rate EL+UL 0.0112 0.0112 0.0112 
    
Economic Capital Calculation @ 5.26% (AAA) Funding Rate       

Amount Financed Under Piecemeal Risk Estimates 0.9631 0.9882 0.9870 
Interest Capital at AAA rate (5.26%) 0.0250 0.0257 0.0256 
Estimated Economic Capital Required 0.0619 0.0375 0.0386 
Economic Capital Required Under Integrated Approach (5.26%) 0.0369 0.0369 0.0369 
Estimated Capital Surplus (Shortall) 0.0251 0.0006 0.0018 
    
Economic Capital Calculation @ 5.60% (BBB) Funding Rate       

Amount Financed Under Piecemeal Risk Estimates 0.9631 0.9882 0.9870 
Interest Capital at BBB rate (5.60%) 0.0266 0.0273 0.0273 
Estimated Economic Capital Required 0.0635 0.0391 0.0403 
Economic Capital Required Under Integrated Approach (5.60%) 0.0385 0.0385 0.0385 
Estimated Capital Surplus (Shortall) 0.0250 0.0006 0.0017 

 
 

Table 8 compares the integrated model capital estimates to estimate produced by a 

piecemeal approach, where a credit risk model’s EL+UL estimate is added to a Delta-

Gamma VaR market risk (99.9 percent coverage) estimate (0.187). Capital allocation 

estimates are presented for two alternative rates on the bank’s funding debt, 5.26 percent 

(AAA rate), and 5.60 percent (BBB rate).  For the three asymptotic credit risk models 

considered, economic capital is overstated when capital is estimated by the sum of 
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estimated EL+UL and estimates of market risk VaR from a delta-gamma approach. The 

overstatement is largest for the Vasicek model as both the Vasicek model and the delta-

gamma VaR model exclude recognition of all interest earnings on the portfolio. 

  

Table 9: Comparison of Capital Estimates for Alternative Credit Risk Models 
when Market Risk is Measured Using the Full Revaluation Approach 

 Credit Risk Models 
    Credit 

Future Value Market Risk VaR Vasicek Kupiec Migration 
Portfolio Distribution 0.001 Critical Value MTM Value 
Estimate 0.9818 1.0069 1.0057 
Estimated Portfolio Credit Loss Rate 0.0182 -0.0069 -0.0057 
Estimated FV VaR Market Risk Loss Rate -0.0089 -0.0089 -0.0089 
Estimate Market + Credit Loss @ 99.9% Coverage Rate 
(EL+UL) 0.0093 -0.0158 -0.0147 
    
Integrated Model Estimated Total Loss Rate EL+UL 0.0112 0.0112 0.0112 
    

Economic Capital Calculation @ 5.26% Fundingg Rate       
Amount Financed Under Piecemeal Risk Estimates 0.9907 1.0000 1.0000 
Interest Capital at AAA rate (5.26%) 0.0257 0.0260 0.0260 
Estimated Economic Capital Required 0.0350 0.0101 0.0113 
Economic Capital Required Under Integrated Approach 
(5.26%) 0.0369 0.0369 0.0369 

Estimated Capital Surplus (Shortfall) 
      

(0.0019) 
      

(0.0267) 
      

(0.0256) 
    

Economic Capital Calculation @ 5.60% Funding Rate       
Amount Financed Under Piecemeal Risk Estimates 0.9907 1.0000 1.0000 
Interest Capital at AAA rate (5.26%) 0.0257 0.0260 0.0260 
Estimated Economic Capital Required 0.0350 0.0101 0.0113 
Economic Capital Required Under Integrated Approach 
(5.26%) 0.0385 0.0385 0.0385 

Estimated Capital Surplus (Shortfall) 
      
(0.0035) 

      
(0.0284) 

      
(0.0272) 
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Table 9 reports the results of a comparison of an alternative method for 

capitalizing portfolio market and credit risk.  In this comparison, market risks are 

measured using a full-revaluation VaR model with 99.9 percent VaR coverage rates. This 

loss rate estimate is added to the 99.9 percent coverage estimates of EL+UL produced by 

the three alternative credit portfolio models. When full revaluation is used to measure 

market risk, 6-months of accrued interest in this example are large enough to ensure that 

the 0.001 cumulative value of the market risk future value distribution is positive. Thus, 

the market risk VaR estimate provides an offset for credit risk estimates of EL+UL.     

Table 9 provides economic capital estimates for two different funding rate 

assumptions (5.26 percent (AAA) and 5.60 percent (BBB)). In all cases, economic capital 

allocations constructed from piecemeal market and credit risk estimates understate the 

economic capital allocation that is estimated using the integrated risk measure of 

portfolio losses.   

4. Potential Capital Savings the Under Basel II AIRB Model 
 
 The Basel II capital allocation framework sets capital equal to a 99.9 percent 

coverage estimate of EL+UL.  The Basel II AIRB estimates EL+UL using a modified 

version of the Vasicek credit risk model. For positions held in the banking book, there is 

no requirement to hold market risk capital. In this instance, the results in Table 7 show 

that the Vasicek estimate of EL+UL at the 99.9 percent coverage rate is 1.82 percent.  

This estimate of economic capital is only about half of the capital required by the 

integrated risk measurement approach.17 

                                                 
17 Integrated capital estimates range between 3.69 and 3.85 percent depending on the 
funding cost used in the analysis. 
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 For positions held in a bank’s trading book, the market risk amendment in the US 

implementation of Basel II propose an incremental default risk capital charge in addition 

to the 10-day capital requirement market risk. Complicating any analysis of trading book 

capital levels are differences in risk measurement horizons between Basel measures of 

market and credit risk. In contrast with the market risk measurement horizon, the default 

risk add-on may be measured over a different horizon that may be as long as a year.18  

If market and credit risks were measured on the same horizon, the results in 

Tables 8 and 9 show that a piecemeal approach for estimating market and credit risk may 

lead to capital allocation estimates that overstate or understate actual integrated capital 

needs depending on the method used to measure market risk.  The picture would 

undoubtedly become even more clouded if market and credit risk measures were based 

on different horizons. 

 

V.   CONCLUSIONS 

This paper has developed a single common factor migration-style credit risk 

model that includes market risks on the non-defaulting credits in an asymptotic portfolio.  

A closed-form representation of an asymptotic portfolio’s conditional future market value 

was derived and used to generate an estimate of the portfolio’s unconditional future value 

distribution using Monte Carlo methods for a sample portfolio. This integrated exposure 

distribution was used to construct economic capital allocations, and these capital 

allocations were compared to piecemeal approaches for measuring risks and estimating 

                                                 
18 It has been proposed that the default risk measurement horizon may be shortened based 
on the market liquidity of an instrument, but modalities of how this might work in 
practice have yet to be determined. 
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economic capital. The capital comparisons show that the issues of diversification and 

capital benefits are complex, and it is impossible to make general statements about 

potential for capital savings. Capital allocations derived from an integrated market and 

credit risk measure can be larger or smaller than capital allocations that are estimated 

from piecemeal risk measures. The results show that no further diversification benefit 

should be considered in the Basel II AIRB approach as no market risk capital is required 

for banking book positions and Basel II AIRB capital requirements fall far short of the 

capital required by an integrated risk measure. For trading book positions subject to 10-

day market risk requirements and incremental default capital requirements, the issues are 

unclear because of differences in measurement horizons and as well as allowed variation 

in bank market and credit risk measures and capital allocation framework.   
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