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Abstract 

Our web page gives techniques to assess the two sample problem (whether or not 
two different samples are generated by the same probability distribution or not). The web 
page computes normed and rank tests. All tests are distribution-free because they make 
no underlying distributional assumptions. The null hypothesis is that the two samples are 
generated by the same probability distribution. Investigators often make a trade-off 
between robustness and statistical power. Inasmuch as most investigations are about 
gathering evidence as opposed to making terminal decisions, it may make sense to run a 
battery of tests with different abilities as a sensitivity check. We endorse Meta statistics 
as an application of our techniques. We find our normed tests to be more powerful in 
detecting variance effects, while performing similarly for mean effects for pseudo-
randomly generated normal and uniform distributions. 
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Our web page gives techniques to assess the two sample problem (whether or not 

two different samples are generated by the same probability distribution or not). The web 

page computes both normed2 and rank tests. All tests are distribution-free because they 

make no underlying distributional assumptions (Maritz 1995). The null hypothesis is that 

the two samples are generated by the same probability distribution. Each test uses an 

operationalizing assumption under the null hypothesis called exchangeability (all possible 

arrangements of observations of two samples that preserve the original sample size are 

equally likely). Our tests statistics are used to compute the relative frequency of shuffled 

arrangements bigger than or half those equal (within error tolerance) to the valued 

computed from the actual arrangement of observations (Efron 1982). 

 Investigators often make a trade-off between robustness and statistical power. 

Inasmuch as most investigations are about gathering evidence as opposed to making 

terminal decisions, it may make sense to run a battery of tests with different abilities as a 

sensitivity check (Leamer and Leonard, 1983). 

 By assessing the statistical power of our tests, we illustrate some of their strengths 

of weaknesses.  Our non-parametric tests are more robust, because they do not employ all 

the data values in the computation of the test statistic.  If there are serious data integrity 

concerns, then non-parametric tests may yield better statistical inferences. We find our 

                                                 
2 Our norms define distance functions for empirical distributions functions when we 
specify right continuity. Please see Kane (1998) for details. A norm z is defined on a 

space Z, whenever for every z in Z, there is a non-negative number such that: (1) 0=z  

if and only if z=0. (2) zz || αα = For all real numbers, α . (3) yxyx +≤+  For all 

x and y in Z. Norms correspond to distance by zx − . 
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normed tests to be more powerful in detecting variance effects, while performing 

similarly for mean effects for pseudo-randomly generated normal and uniform 

distributions. 

 We have organized the paper as follows: We state the two-sample problem. We 

define our test statistics. We describe our test procedures. We discuss clustering 

concerns. We show how to use our web page and explain some of our programming 

decisions. We endorse Meta statistics as an application for our techniques. We illustrate 

the statistical power of our test procedures.  Finally, we conclude. 

Two-Sample Problem 

We suppose that there are two sets of observations. An investigator wants to make 

inferences about whether or not the different observations are drawn from the same 

underlying distribution or not.   Ideally the two distributions result from a controlled 

experiment where investigators place subjects into classifications by employing 

randomization. In finance, it often happens that the subjects themselves determine their 

classification based on their decisions.  That is, the subjects self-select their 

classification.3 Consequently, investigators do not know whether characteristics of their 

subjects led to their choices, and that this and not the classification per se, is the reason 

for differences observed between groups (Kane 2004). Even though financial 

investigators might not be able to isolate the effects of a single variable, they might be 

able to form “match pair” samples.  Investigators might use randomization to place one 

half of matched pair into a treatment group (to receive treatment) and the other half into a 

control group (to receive no treatment).  An advantage of “match pair” design over 

                                                 
3 For instance, marketing studies how consumers select products. 
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ordinary least-square regression techniques is that randomization design helps to filter out 

the effects of omitted variables that may affect the process under study because these 

variables are equally likely to appear in the treatment group or control group (Kane 

2004).  

The criterion of robustness emphasizes the value of methods that show insensitivity in 

results to small changes in underlying assumptions. Statistical tests calculate the p-value, 

the probability of a test statistic realization assuming the null and the operationalizing 

subsidiary assumptions.  The p-value is a joint probability conditional on both the null 

and all subsidiary hypotheses (Kempthorne 1976; Kane 1995). Inferences with fewer and 

less stringent subsidiary assumptions are superior, because a small p-value may result 

from a combination of inappropriate subsidiary hypotheses with an appropriate null 

hypothesis (Kane 1995, 2004). 

Test Procedures 

To assess the robustness of a testing method, investigators might devise and perform 

an appropriate battery of sensitivity tests (Leamer and Leonard, 1983).  Inasmuch as most 

investigations are about gathering evidence as opposed to making terminal decisions, it 

may make sense to run a battery of tests with different abilities. For investigators 

concerned with the two sample problem, www.normeddistributionfree.org  provides 

seven different distribution free test statistics, namely: , , , , Min (W+, W-), W+, 

and W-. 

1L +
1L −

1L ∞L

By working with empirical distribution functions, the method makes no assumption 

about the underlying probability distribution from which the two samples are drawn.   
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The null hypothesis is that the two samples are generated by the same probability 

distribution. Each test uses an operationalizing assumption under the null hypothesis 

called exchangeability. Under the null hypothesis, all shuffled arrangements of 

observations of both samples into synthetic samples witch keep the same size as the 

original samples have an equal probability of occurring. The p-values are the relative 

frequency of shuffle test statistics bigger than or half of those tests that are equal (within 

the error tolerance) to the realized test statistic, the value of the test statistic that 

corresponds to the actual observations (Efron 1982). 

To make the statistical techniques visual and more intuitive for users, we provide 

graphs of the empirical distributions functions with the respective test statistics: , , 

, and . We have constructed our tables and graphs so that users may copy them and 

insert them into Microsoft word documents. 

1L +
1L

−
1L ∞L

1L  

The -norm test statistic uses all the parameter values in its computation. It 

assesses the overall agreement between the two empirical distribution functions by using 

the area between them. Two empirical distribution functions are close in the -norm 

sense when the area between them is small. Consequently, investigators might use this 

test statistic with the broadest alternative hypothesis:

1L

1L

)()( xGxF ≠ .  We choose to use 

the -norm test statistic over -norm test statistic, because it is superior numerically. 

For instance, the difference between two consecutive observations may be a small 

positive number less than one. By squaring a small difference, we make it smaller still.  

This exacerbates significant digit and round-off problems. With the absolute value 

1L 2L
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function, however, we cannot differentiate it in a neighborhood of zero. This may make 

estimating parameter values for other applications problematic. For example, in 

minimizing least squares in a regression, we take partial derivates with respect to 

variables and set them equal to zero and solve for parameter estimates.  

 

+L  1

The - norm test is parametric. The test statistic is the area where the first 

distribution function is above the second. Technically this test statistic is not a norm, 

since two empirical distribution functions could be distance zero apart, but not be equal 

when they differ where the second distribution is above the first. Nevertheless, it is a 

limit of a norm. We may multiply the area where the second distribution is above the first 

by an arbitrarily small positive number, 

+
1L

0>ε , and take the limit as 0→ε . Investigators 
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might use this to test with an alternative hypothesis such as the first distribution is smaller 

stochastically, F(x) << G(x). 

 

−
1L  

The -norm test is parametric. The test statistic is the area where the second 

distribution function is above the first. Technically this test statistic is not a norm, 

because the two empirical distribution functions could be distance zero apart, but not be 

equal when they differ where the first distribution is above the second. It is a limit of a 

norm, however. Investigators might use this test statistic with an alternative hypothesis 

such as the first distribution is bigger stochastically, F(x) >> G(x). 

−
1L
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∞L  

The -norm, or Kolmogorov-Smirnov, test is non-parametric, because the test 

statistics is not an explicit function of the parameter values, since it only uses the relative 

rank of the observations. The test statistic is the maximum distance between the two 

empirical distribution functions.  It assesses with the point of worst agreement between 

the two empirical distribution functions. Consequently, investigators might use it to test 

with the broadest alternative hypothesis: 

∞L

)()( xGxF ≠ . 
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Min (W+, W-), W+, and W- 
 

All three rank order tests are non-parametric, because these test statistics are only 

functions of the relative ranks and not the actual parameter values of the observations. 

We rank all the observations in the two samples from 1 to j = (m + n) in the two samples 

by using < for the real numbers.  For tied observations, we use the following convention: 

If there are two tied observations, then we average the two integer ranks in question and 

assign the average to both values.  Similarly if there are k ties, then we average the k 

ranks in question, and assign the average rank to all k observations. We let W- equal the 

sum of the assigned ranks to the first data set, and W+ equal the sum of the assigned 

ranks to the second. Investigators might use Min (W+, W-) tests with an alternative such 

as , and the W+ test with an alternative hypothesis such as F(x) << G(x), )()( xGxF ≠
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stochastically. Since ,
2

)1(
+=−−

+ WWjj the p-value corresponding to W- is the 

complement of the p-value corresponding to W+.  Investigators might use W- in a tests 

with an alternative hypothesis such as F(x)  >> G(x), stochastically. 

Our previous graphs correspond to a first data set of {1,4,10}and a second data set 

of {7,13}.  We compute our p-values by exhaustively considering all ten possible 

arrangements of the observations in the second data set in the table below: 

 
L1 
 

L1
+ 

 
L1

- 

 
L∞ 

  
W+ Min  W- 

{1,4}  7.5 0 7.5 1 3 3 12 
{1,7}  5 0 5 0.67 4 4 11 
{1,10}  3.5 0.5 3 0.5 5 5 10 
{1,13}  4 2 2 0.5 6 6 9 
{4,7}  4.5 1 3.5 0.67 5 5 10 
{4,10}  3.5 3 0.5 0.5 6 6 9 
{4,13}  3.5 3 0.5 0.5 7 7 8 
{7,10}  4.5 3.5 1 0.67 7 7 8 
{7,13}  5 5 0 0.67 8 7 7 
{10,13}  7.5 7.5 0 1 9 6 6 
        
Greater  0.2 0.1 0.8 0.2 0.1 0 0.8 
Equal  0.2 0.1 0.2 0.4 0.1 0.3 0.1 
P-value  0.3 0.15 0.9 0.4 0.15 0.15 0.85 

 

Clustering 

 A weakness of our methods is clustering of test statistic shuffle values near the 

realized test statistic value. Such clustering prevents an accurate determination of a p-

value, because it is a relative frequency of shuffles.  Due to the discreteness of non-

parametric test statistics, clustering may be a bigger problem for: , Min (W+, W-), 

W+, and W-.  Nevertheless, the , , and  are not immune. A lack of significant 

digits and even computer round-off error may induce clustering.   

∞L

1L +
1L −

1L
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The web page allows users to select the fixed error tolerance, that is, the number 

significant digits after the decimal place to be used in computations: 0, 1, 2, 3, 4, and 5. 

We remind users that the number of significant digits is the lowest number of significant 

digits for any variable used in calculations.  Furthermore, a calculated variable that is a 

proxy for a desired variable may have even less significant digits than its measurements. 

For rounding purposes only, we carry an additional decimal digit in computing 

the , , and  test statistics. We count half of the shuffled test statistics within a fixed 

error tolerance of the value of the realized test statistic in the relative frequency counts 

when computing p-values.  For the above test statistics, we report the relative frequency 

of test statistic shuffles within the fixed error tolerance so that users may assess the 

severity of clustering.  ‘Error -’  is the relative frequency of shuffles with test statistics 

below the realized test statistic, but just outside the error tolerance.  ‘Error +’ is the 

relative frequency of shuffles with test statistics above realized test statistic, but just 

outside the error tolerance. ‘=’ is the relative frequency of shuffles with test statistics that 

are within the error tolerance of the realized test statistic   

1L +
1L −

1L

Error-: 0.0010 P-value: 0.3008 Error+: 0.0011 
 =: 0.0011  
 

For concreteness, we suppose that we are computing with one decimal place of 

accuracy for our fixed error tolerance and that our procedure has computed the realized 

-norm test statistic to be 34.59. We use the value 34.6. We count in the numerator all 

shuffled test statistics that lie in [34.55, 34.65) in ‘=.’ We count in the numerator all 

shuffled test statistics that lie in (34.45, 34.55) in ‘Error -.’ We count in the numerator all 

shuffled test statistics that lie in (34.65, 34.75) in ‘Error +.’  

1L
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When computing with our non-parametric test statistics, we use the exact number of 

decimal places of accuracy after rounding by employing the convention that we round all 

digit 5s to the corresponding leftmost even digit. For instance, we consider 8.55 and 8.65 

with one decimal place of accuracy to be both 8.6. This is one reason our procedure 

computes the , , and  test statistics separately from the , Min (W+, W-), W+, 

and W- test statistics. The test statistics for the rank order tests are integers, but not for 

L

1L +
1L −

1L ∞L

∞. Consequently, we multiply it by 105 and truncate it by setting it equal to an integer. 

We then use integers to perform relative frequency counts as in the rank order tests.  

Data Input 
 

We choose a data upload for our web page. Our upload works with many internet 

browsers, and hopefully with future changes, because data uploading is a relatively 

crude technique.  For our data files, we chose the *.csv (comma separated value).  

Many spreadsheet programs, for instance, the ubiquitous Microsoft Excel program, 

support this format. 

 

 

We note that the two data sets do not have to be the same size.  Users may create 

a file by opening a new spreadsheet, entering the two sets with header values Set 1 and 

Set 2, and saving the spreadsheet as MS-DOS CSV file. 
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Users may use the Browse bottom and locate on their hard drive where the file was 

saved. Then by using the Compute Test button, users can upload the file to the web page. 

Alternatively, users may download a sample input file to their local hard drive by right 

clicking the link at the bottom of the web page and edit this file in Notepad or Excel. 

We dynamically define the dimensions of our arrays, since Java is an object oriented 

programming language. This allows us to accommodate a large number of observations 

in each sample without unnecessarily increasing the memory and central process unit 

demands for smaller samples. Unfortunately, we need to alert users that our server may 

not initially handle large data sets and generate an error message.  Fortunately, upon 

resubmission of the data set, the server seems to allocate sufficient resources and perform 

properly. 
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We also provide users with the ability to download uniform and normal deviates, 

because users might want to use these distributions as benchmark distributions to test 

against other distributions. After clicking the button, an html page will appear with the 

iteration number and random deviate as columns.  Users may copy these columns insert 

them into spreadsheet programs.  To parse the columns in some Excel programs, users 

may use the paste special (Unicode) option.     

From and evidentiary perspective, an investigator only needs a p-value computed 

with a few decimal places of accuracy.  This only requires a reasonably representative 

sample of shuffled arrangements. Demanding the convergence of the pseudo-random p-

value to the exhaustive p-value is misguided. We say a series of pseudo-random 

generated p-value converges to an exhaustive p-value if for every 0>ε , there exists an N 

such that if thenNn > ε<− exhaustivepseudo pp
n

.  We may observe exhaustivepseudo pp
n

−  

decreasing with n increasing on small samples. But, any finite sequence of an infinite 

sequence is irrelevant with respect to its limit. Nevertheless, such observations on small 

samples lend assurance regarding the representativeness of our pseudo-random samples 

in the set of shuffled arrangements, and hence, assurance concerning our estimated p-

values on larger samples. 

We allow the users to select the number of random shuffles: 100,000, and 500,000, 

and 1,000,000.  When we increased the number of iterations from 100,000 to 1,000,000 

the difference in p-values for the same data sets varied less than 0.001 for 100 versus 100 

pseudo-random normal and uniform distribution tests. We use the algorithm of Wilf 

(1989) to generate the pseudo-random subsets. We employ Knuth’s pseudo-random 
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number generator (Flannery, Press, Teukolsky, and Vetterling, 2002), because we found 

other generators repeated after a small number of iterations. Knuth’s generator gave the 

best estimates the p-values from exhaustive sampling. For interested researchers, our web 

page performs both pseudo-random and exhaustive sampling when the total number of 

shuffled arrangements, 
)!()!(
)!(

nm
nmC nm

m
+

=+  is less than 100,000.   

Meta Statistics 

Meta Statistics is a natural application of our techniques. We acknowledge a 1996 

discussion with George Papanicolau for this fine suggestion. Subsequent computer 

processing advances have made this idea practical. 

We let  denote a particular test of the equality of two distributions and  

denote the null hypothesis. When the number of shuffled test statistics tied with the 

realized test statistic is negligible, the p-value of  is approximately distributed 

uniform (0,1). Thus, we may make the operationalizing subsidiary assumption that the p-

value of  is distributed uniform (0,1). We let the main hypothesis be , 

that k-pairs of observations are drawn the same underlying distribution.  The alternative 

hypothesis is that at least one of the k-pairs has observations that are not drawn from the 

same distribution.  Thus, we run tests of the p-values against a pseudo-randomly drawn 

uniform distribution to assess . 

itest iH 0

itest

itest i
k
i HH 010 =∩=

0H
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Statistical Power 

 Statistical power is the probability of rejecting a false null hypothesis given that a 

specific alternative hypothesis is true.  The choice of which alternative hypotheses to 

examine depends on the applications in question. We examine the statistical power of our 

testing methods for mean and variance effects of the normal distribution. Then, we 

perform analogous assessments for our test for the uniform distribution. Relative to the 

ranked tests, our normed tests have more statistical power for variance effects while 

generally exhibiting similar power for mean effects. We use the pseudo-random number 

generators provided by the web page to generate our data sets. 
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We consider a N(0,1) versus a N(0.1,1) with data set sizes of 1,000 versus 1,000 

using four decimal places of accuracy. 

 P-value Equal  Error-  Error+ 
 
L1 0.0018  0.0000  0.0000  0.0000 
L1+ 0.9905  0.0021  0.0023  0.0026 
W+ 0.9982  0.0000 
L1- 0.0009  0.0000  0.0000  0.0000 
W- 0.0018  0.0000 
L∞ 0.0274  0.0034 
Min 0.9967  0.0000 
 
 

 

 Here, both the normed and rank tests exhibit a lot of statistical power.  
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When we drop the data set sizes to 100 versus 100, the statistical power lessens 

substantially.  

 P-value Equal  Error-  Error+ 
 
L1 0.9491  0.0004  0.0003  0.0005 
L1+ 0.7569  0.0007  0.0010  0.0010 
W+ 0.5921  0.0008 
L1- 0.4726  0.0005  0.0006  0.0004 
W- 0.4079  0.0008 
L∞ 0.8603  0.0896 
Min 0.1876  0.0018 
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We examine a N(0,1.1) versus N(0,1) with 100,000 iterations, four decimal places of 

accuracy and a data set sizes of 1,000 versus 1,000. 

 P-value Equal  Error-  Error+ 
 
L1 0.0170  0.0001  0.0001  0.0001 
L1+ 0.3008  0.0011  0.0010  0.0011 
W+ 0.8425  0.0000 
L1- 0.0528  0.0003  0.0003  0.0002 
W- 0.1575  0.0000 
L∞ 0.2083  0.0181 
Min 0.6832  0.0000 
 

 

 
The -norm test statistic test exhibits good statistical power, but the rank tests do 

not.  This is no surprise, because the ranks are affected symmetrically.  

1L
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The statistical power diminishes substantially when we reduce the data set sizes to 

100 versus 100.  Consequently, we present N(0,1.3) versus N(0,1). We note that the 

Min(W+,W-) has a low p-value, because the values of W+ and W-  are close due to the 

symmetrical affect on the ranks for this pseudo-random realization. 

 P-value Equal  Error-  Error+ 
 
L1 0.0402  0.0001  0.0001  0.0001 
L1+ 0.1615  0.0002  0.0002  0.0003 
W+ 0.4738  0.0010 
L1- 0.2044  0.0002  0.0002  0.0002 
W- 0.5267  0.0010 
L∞ 0.2463  0.0705 
Min 0.0540  0.0020 
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 We consider 100,000 iterates, 1,000 versus 1,000, four decimal places of accuracy 

with a U(0,1) + 0.0398  versus U(0,1). We use 0.0398 because it is the area under a 

N(0,1) density between 0 and 0.1 with four decimal places of accuracy. 

 P-value Equal  Error-  Error+ 
 
L1 0.0004  0.0000  0.0000  0.0000 
L1+ 0.0002  0.0000  0.0000  0.0000 
W+ 0.0002  0.0000 
L1- 0.9896  0.0208  0.0000  0.0288 
W- 0.9998  0.0000 
L∞ 0.0340  0.0043 
Min 0.9996  0.0000 
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We next examine two different data sets of size 100 versus 100. We see that the 

two pseudo random sample realizations are quite different. This may make our resulting 

p-values dependent on the “luck of the draw.” Consequently, it is difficult to assess the 

statistical power of our test procedures for 100 versus 100.  Thus, we recommend using a 

larger number of pseudo random deviates when performing benchmark testing.  

 
 P-value Equal  Error-  Error+ 
 
L1 0.0053  0.0000  0.0000  0.0000 
L1+ 0.0028  0.0000  0.0000  0.0000 
W+ 0.0035  0.0000 
L1- 0.9917  0.0166  0.0000  0.0137 
W- 0.9930  0.0001 
L∞ 0.0446  0.0174 
Min 0.9930  0.0001 
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We give the second realization. 
 
 P-value Equal  Error-  Error+ 
 
L1 0.4747  0.0023  0.0024  0.0025 
L1+ 0.3591  0.0016  0.0018  0.0018 
W+ 0.4614  0.0010 
L1- 0.4571  0.0016  0.0014  0.0014 
W- 0.5380  0.0011 
L∞ 0.5252  0.1142 
Min 0.0809  0.0021 
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 For 100,000 iterates, four decimal places of accuracy, and 1000 versus 1000, we 

investigate U(-1.1,1.1) versus U(-1.0,1.0). 

 
 P-value Equal  Error-  Error+ 
 
L1 0.0085  0.0001  0.0001  0.0001 
L1+ 0.1045  0.0008  0.0006  0.0007 
W+ 0.5195  0.0000 
L1- 0.0970  0.0009  0.0008  0.0007 
W- 0.4805  0.0000 
L∞ 0.0503  0.0060 
Min 0.0426  0.0000 
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 Finally, we consider a data set of 100 versus 100. Again, we lack statistical power 

and our p-values may depend on the “luck of the draw.” 

 P-value Equal  Error-  Error+ 
 
L1 0.7065  0.0012  0.0014  0.0013 
L1+ 0.8347  0.0023  0.0023  0.0022 
W+ 0.7562  0.0007 
L1- 0.2875  0.0005  0.0005  0.0005 
W- 0.2442  0.0009 
L∞ 0.4171  0.1005 
Min 0.5106  0.0014 
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Conclusions 
 

The two sample problem is broad and across many disciplines. We look forward 

to the surge of other minds in finding and implementing other applications for their 

research problems. Thus, we made our techniques easy to use and available on the World 

Wide Web. 

We argued the importance of robustness. We explained our statistical procedures 

and some of our programming choices. We discussed some of the strengths and 

weaknesses of our different test statistics. We endorsed Meta statistics as a natural 

application of our techniques. We recommended using a large number of pseudo-random 

deviates to generate benchmark distributions used for testing, to reduce the likelihood 

that a low p-value being the result of the “luck of the draw.” We found our normed tests 

to be more powerful in detecting variance effects, while performing similarly to rank tests 

for mean effects for pseudo-randomly generated normal and uniform distributions. 
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