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1 Introduction

The limiting distributions of the usual unit root tests are typically nonstan-
dard and expressed as functionals of Brownian motions. Since the pioneering
work by Dickey and Fuller (1979, DF henceforth), many authors have derived
and examined various nonstandard distributions whenever new model spec-
ifications are considered. Since the specific expressions of the nonstandard
asymptotic distributions vary over different models, different sets of critical
values are provided for each type of model using different deterministic com-
ponents and detrending methods. A fundamental issue is that the limiting
distributions often depend on various nuisance parameters and the depen-
dency on nuisance parameters can pose a problem in some extended models.
For example, consider the models with multiple breaks, stationary covari-
ates, endogenous breaks, or panel models with breaks. In these models, it
becomes cumbersome or infeasible to obtain the relevant asymptotic critical
values. Clearly, there are many cases where it is desirable or necessary to
utilize the tests that do not depend on nuisance parameters.
In this paper, we propose new unit root tests whose asymptotic distri-

butions are standard normal. Obviously, a standard normal distribution is
free of any nuisance parameters. Our goal is to develop convenient tests that
remain valid in more general models without sacrificing the power signif-
icantly, but maintaining desirable properties. To achieve this outcome, we
adopt new procedures based on instrumental variables (IV) estimation utiliz-
ing weighted moment conditions. Our departure differs from the traditional
testing scheme. Suppose for simplicity that we have data {yt: t = 0, 1, .., T},
which follows a pure AR(1) process with no deterministic components. It can
be shown that the usual unit root tests are essentially based on the moment
conditions E(yt−1∆yt) = 0, t = 1, .., T , under the null hypothesis, against
E(yt−1∆yt) < 0 which holds under the alternative hypothesis. The popular
tests advanced by Dickey and Fuller (1979) can be seen as utilizing these mo-
ment conditions. Various extensions of the DF tests using the least squares
method can be viewed as adopting similar moment conditions. Although the
moments E(yt−1∆yt) of such tests are very natural to implement, they re-
sult in non-standard distributions. This is so because the moment conditions
depend on the non-stationary term yt−1 under the null hypothesis.
In contrast, we suggest to use the moments E[(yt−1 − yt−1−m)∆yt]. As we

shall show in more detail in the next section, using these different moments
leads to the standard normal asymptotic result. The underlying intuition
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is clear. For a moment, suppose that m is a fixed finite number. Then,
yt−1−yt−1−m is a stationary process and we can see that the sample moment√
T
PT

t=1(yt−1−yt−1−m)∆yt converges to a normal distribution. Therefore, it
can be expected that the asymptotic distributions of the corresponding unit
root t-statistics will be standard normal. The point of this treatment can be
seen more intuitively when our moments are compared to those in the usual
unit root tests. Since E(yt−1∆yt) = E [(yt−1 − yt−1−m)∆yt] +E(yt−1−m∆yt),
using the moments E [(yt−1 − yt−1−m)∆yt] amounts to truncating the sec-
ond term which does not contribute to the ability to reject the null when
the alternative is true. It is easy to see that the correlation between ∆yt
and yt−1−m dies out exponentially as m gets larger under the alternative
hypothesis. Thus, it is sensible to construct new tests that utilize the mo-
ments E [(yt−1 − yt−1−m)∆yt] after truncating E(yt−1−m∆yt). Since these
tests can be undertaken with the usual t-tests in the unit root regression us-
ing yt−1 − yt−1−mT

as an instrumental variable, we call these as “IV tests”.1
2

1Hall (1989) provided an IV unit root test in the presence of moving average errors. He
suggested using yt−m, m > q, as an instrument for yt−1 when there exists anMA(q) errors
in the DF type regression. Lee and Schmidt (1994) adopted a similar procedure. The
motivation of these IV tests is to correct for moving average errors and their distribution
is nonstandard.

2We wish to point out that there are other ways to obtain the normality result of
unit root tests. So and Shin (1999) suggest using a sign function as an instrumental
variable in the Dickey-Fuller type testing regression. Phillips, Park and Chang (2004)
have shown that an integrable function of the lagged dependent variable can be used as
an instrument. The resulting t-statistic for a unit root converges to a standard normal
distribution. These approaches are novel and have helped to motivate the present paper.
Our tests differ from these other tests in some important respects. First, it can be viewed
that these other approaches utilize E [f (yt−1)∆yt], which is a nonlinear function of an
integrated process (yt−1) under the null. Our moment conditions are different. Second,
in other IV type tests, a recursive demeaning procedure is often necessary to achieve the
normality result. The procedure works well and the standard normality result follows
in the basic models. In more general models that include a linear trend, level or trend
shifts, nonlinear trends or stochastic regressors, a similar recursive detrending procedure
could be possibly considered. However, the recursive detrending procedure can pose a
problem in some general models; Sul, Phillips, and Choi (2003) note that a recursive
detrending procedure entails a nuisance parameter even for the model with a linear trend.
In contrast, no recursive demeaning or detrending procedure is necessary for our IV tests.
The approach adopted by Harris, McCabe and Leybourne (2003) also differs from ours.
They examine the sample autocovariance function E(ytyt−k) and the standardized statistic
using the longrun variance of E(ytyt−k).
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The power of the IV tests will increase under the alternative as m in-
creases. In this regard, it is reasonable to make m grow as the sample
size increases. Thus, we consider tests where m depends on T such that
mT = T δ.3 We use the notation mT to signify that m is a function of T .
In the next section, we will show that the null distribution of tests based on
the moments E [(yt−1 − yt−1−mT

)∆yt] = 0 will converge to a standard normal
distribution. In addition, we derive the required condition for this asymptotic
result. It turns out that the required condition is shown to be rather mild.
As long as mT is given as mT = T δ, with 0 ≤ δ < 1, the standard normal
result follows. Therefore, by choosing δ reasonably close to 1, we are able to
construct new tests that are more powerful but still follow asymptotically a
standard normal distribution.
To improve further the power of our IV unit root tests, we suggest utilizing

weighted moments
PmT

j=1 ψjE(∆yt−j∆yt), where 0 < ψj ≤ 1 for j = 1, ...,mT .
As a matter of fact, when we adopt this strategy, the power of our tests is
comparable to the most powerful existing tests in small samples and moder-
ately large sample sizes that we examine. Thus, we focus on these tests that
utilize weighted moments. This strategy can be explained intuitively. Since
yt−1 − yt−1−m =

Pm
j=1∆yt−j, and the correlation between ∆yt and ∆yt−j

gets smaller for larger j under the alternative hypothesis, it is reasonable
to expect that the power of the tests will increase when heavier weights are
given to the terms with higher correlations.4 Using yt−1 − yt−1−mT

amounts
to setting ψj = 1 for all j, which is the case of using a uniform window.
Our simulation results demonstrate a non-trivial power gain when a Bartlett
window is adopted with ψj = 1 − j−1

mT
. The power gain comes with a small

3One limitation of using a finite small value of m is that the order of the test becomes
low. For instance, the order of the IV test using m = 1 is

√
T ; this result can be shown

later as a special case. The tests proposed by So and Shin (1999) and Harris et al. (2003)
have the same limitation since the order of these tests is also

√
T . The lower order can

result in loss of power. As such, we adopt a few ways to improve the power of our IV tests
and this task is the focus of the present paper. Clearly, the order of the test increases as m
increases and it will be shown that the order of the test is T (1+δ)/2 when mT = T δ. While
the order is still less than T when δ < 1, there is no significant loss of power as we will see
in section 3. Instead, our improved IV tests are more powerful than the Dickey-Fuller test
whose order is T . This outcome is possible when we utilize weighted moments for our IV
tests.

4We note that the nonlinear IV test suggested by Phillips, Park and Chang (2004)
implicitly imposes different weights on highly correlated terms. This treatment leads to
increased power. This insight helped us develop our new tests.
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price of having to deal with some small sample bias. While our results re-
garding the normal distributions hold asymptotically, the lower order terms
in the asymptotic distributions are not negligible in small samples when mT

depends on T. This can lead to size distortions with a large value of mT .
Since we use the asymptotic critical value of the standard normal distrib-
ution, say −1.645 at the 5% significance level in all cases, it is important
to have the correct size under the null. As such, we suggest modifying the
test statistics to correct for small sample bias. We provide details of how
to correct for the small sample bias in Section 2. With this correction, and
when the Bartlett window is used, the size of our IV tests is fairly good and
the power is closely comparable to the most powerful existing unit root tests.
This is an encouraging property of our IV tests, since the desirable normality
result can be obtained without inducing any significant loss of power.
The most important advantage of using our proposed IV tests is that they

do not entail nuisance parameters. This benefit of our IV tests is not readily
available with existing tests using the least squares method. One popular
example of having nuisance parameters in unit root tests is when structural
changes are allowed. When structural breaks are considered, the distributions
of unit root test statistics typically depend on the number and location of
the breaks. Then, one needs to simulate critical values for different break
locations and different types of models. Finding the asymptotic distributions
for these models can be done, but the dependence on nuisance parameters
can pose a problem when testing is extended to more general models. For
example, consider panel models with breaks. When each cross-section unit
can have different numbers and different break points, it will be extremely
difficult to obtain proper critical values for panel version tests. Such panel
version tests are infeasible unless underlying univariate tests are invariant
to nuisance parameters.5 We demonstrate the invariance result of our IV
unit root tests with the structural change models with level and trend shifts.

5The dependency on nuisance parameters induces a significant problem in endogenous
unit root tests that employ estimated break points. Since the null distributions of the
so-called minimum or maximum tests depend on the break location and magnitudes, it is
often assumed that there are no breaks under the null; otherwise the tests diverge. Then,
these endogenous tests exhibit serious size distortions when there are breaks under the null.
The source of size distortions of these tests is their dependency on the nuisance parameters
of the corresponding exogenous version tests; see Nunes, Newbold and Kuan (1997) and
Lee and Strazicich (2001) for more details. In section 4, we discuss more examples and
possible extensions of our IV tests where nuisance parameters pose a problem.
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Note that no previous tests with trend-shifts are invariant to the nuisance
parameter. The distributions of our IV tests are invariant to the number of
breaks and break locations. This outcome makes a contrast with the property
of the Perron (1989) type tests whose asymptotic distributions depend on
these nuisance parameters. The desirable invariance property of our IV tests
appears quite general and is expected to be useful in other models where the
dependence on nuisance parameters is a problem. For instance, Saikkonen
and Lütkepohl (2002) utilize the invariance property of the LM test which
holds only with level-shifts (see Amsler and Lee, 1995) and extend the result
to general models with nonlinear deterministic terms.
When a time series contains a non-zero mean, a linear trend or other

deterministic terms, we need to control for these effects. This is the detrend-
ing method. There are a few different detrending methods available in the
literature. The DF type detrending method has been popular but the LM
detrending method advocated by Schmidt and Phillips (1992) yields more
powerful tests, as noted by Vougas (2003). Actually, it turns out that the
IV tests based on the LM detrending method are more powerful than the
IV tests using the DF type detrending method.6 In addition, although it is
feasible to consider the IV tests using the GLS detrending method, the IV
tests based on the LM and GLS detrending methods produce very similar
properties in terms of size and power. Thus, we focus on using the IV tests
based on the LM detrending method.
The remainder of the paper is organized as follows. In Section 2, we

provide the details of test statistics for each model. We also derive conditions
for the asymptotic results and provide expressions for the bias term that can
exist whenmT is big. In Section 3, we examine the small sample performance
of the tests via simulations. Section 4 provides summary and concluding
remarks.

2 IV Tests

Suppose that we have data yt, for t = 0, 1, 2, ..., T, which are generated as

yt = dt + xt. (1)

6The power comparison depends on the initial value in the data generating process.
We examine this issue in section 3.
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Here, xt is the stochastic component of the series following an autoregressive
process

xt = φxt−1 + εt, (2)

where εt is the innovation term and is assumed to satisfy the following con-
dition.

Assumption 1 {εt} is a martingale difference process with

E(εt|εt−1,εt−2,...) = 0 and E(ε2t |εt−1,εt−2,...) = σ2, for t = 1, 2, .., where
0 < σ2 <∞.

Here, dt is the deterministic component of yt in which we can consider
general models with various types of deterministic functions. We assume
that the initial value y0 is finite such that y0 = Op(1). Combining (1) and
(2), we have

(1− φL)yt = (1− φL)dt + εt (3)

and the testing regression model

∆yt = βyt−1 + (1− φ)dt + φ∆dt + εt, (4)

where β = φ−1. Interest centers on testing the null hypothesis β = 0 against
the alternative hypothesis β < 0. Note that the term ∆dt drops out from
the regression when dt is a function of a polynomial of t, but it does not
disappear when dt contains dummy variables to capture structural breaks.
In this case, omitting ∆dt can drive the resulting test statistic to diverge.
We examine four different models.

2.1 Results in the Basic Model

In the simplest case, we consider an AR(1) model with zero mean and no
trend such that dt = 0

∆yt = βyt−1 + εt, t = 1, 2, ..., T, (5)

where {εt : t = 1, 2, ..., T} is a differenced martingale sequence. Then, one
may construct an instrumental variable for yt−1 as wt−1 = yt−1 − yt−1−m,
where m is a finite number. By applying IV estimation, we can obtain a
t-statistic for β. It is a valid IV statistic that follows a standard normal
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distribution.7 We can show that the t-statistic utilizes the moment condition
E[(yt−1 − yt−1−m)∆yt]. As noted in the previous section, we can improve the
power of the IV tests by increasingm so that we can utilize all possible useful
information. To do so, we utilize the weighted average of stationary moments
in such a way to put more weight on the terms that are highly correlated with
∆yt, and less or no weight on the terms that are less important. Accordingly,
letting mT = T δ, we define the instrumental variable for yt−1 in (5) as

wt−1 =

½ Pt−1
j=1 ψt−j∆yj, for t = 2, ...,mT ,PmT

j=1 ψmT+1−j∆yt−(mT+1)+j, for t = mT + 1,mT + 2, ..., T,
(6)

with 0 < ψj ≤ 1, for j = 1, 2, ...,mT . Here, ψj is used as a weight for
each term. From 2SLS using wt−1 as an instrument for yt−1, we obtain the
t-statistic

tIV =

PT
t=1wt−1∆yt

σ̂
qPT

t=1w
2
t−1

, (7)

where σ̂ is a consistent estimator of σ.8 Then, we have the following result.

Theorem 1 Under Assumption 1 and the null hypothesis of β = 0 in (5),
the t-statistic in (7) follows

tIV
d→ N(0, 1) (8)

if mT = T δ, 0 ≤ δ < 1.
Proof. See the Appendix.
7The result continues to hold in the presence of autocorrelations, under which we can

construct the IV as wt−1 = yt−1 − yt−1−p−m where p is an AR term in the augmented
regression. The usual arguments and findings regarding the selection of p in the augmented
version tests would apply; see Ng and Perron (1995).

8One interesting observation emerges since the IV statistic in (7) may look similar to the
usual t-statistic on β in the regression, ∆yt = βwt−1+et. This regression amounts to using
the instrument wt−1 as a regressor. For instance, in a special case with wt−1 = ∆yt−1,
this regression becomes ∆yt = β∆yt−1 + et. However, this regression does not yield any
meaningful inference. The difference between the t-statistic from this regression and our
IV statistic lies in the estimate of the error variance. The error variance estimate obtained
from this invalid regression is not a consistent estimator for σ2. Standard econometrics
wisdom indicates the peril of using an instrument as a regressor and using incorrect error
variance for the IV or 2SLS estimator.
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Thus, the t-statistic defined in (7) converges in distribution to a standard
normal distribution under the very mild condition that 0 ≤ δ < 1. This is the
required condition to obtain the asymptotic standard normality result when
we use stationary moments. As such, there are many possible choices for δ.
In finite samples, choosing a proper value of δ that ensures an appropriate
size and high power is needed. In the next section, we suggest proper values
of δ for each of different models9.
There are many options for ψj, j = 1, 2, ...,mT . A uniform window im-

poses equal weights. To make ψj decline in j so that we provide higher
weights for more highly correlated pairs under the alternative hypothesis, we
consider the Bartlett window. We use these two weighting schemes through-
out the paper.

Uniform window: ψj = 1, for j = 1, 2, ...,mT

Bartlett window: ψj = 1−
j − 1
mT

, for j = 1, 2, ...,mT .

When the uniform window is used, the instrumental variable is simplified as

wt−1 =

½
yt−1, for t = 1, 2, ...,mT ,
yt−1 − yt−1−mT

, for t = mT + 1,mT + 2, ..., T.

Although the uniform window is the easiest to implement, the resulting tests
are typically less powerful than using the Bartlett window. Through exten-
sive simulations, we have examined several other possible windows, such as
the Pazen, Quadratic, and other exponential type windows. It turns out that
the results are not too sensitive to the choice of these windows, but we found
that the Bartlett window works slightly better.

9The order of our IV test is T (1+δ)/2 with 0 ≤ δ < 1. This result can be easily obtained
from (i) and (ii) of Lemma 1 in the Appendix. In the extreme case when δ = 0 (with
m = 1), the order of the test is

√
T . However, we recommend using δ = 0.7 to 0.9,

depending on specific models. Then, the order of the test will be T 0.85 ~ T 0.95. In these
cases, the improvement in power is significant. The question is how the power of the IV
tests is compared with the power of the OLS based tests whose order is T . As we will see
in the next section, the power of the IV tests is comparable to the most powerful tests (say,
GLS tests) in small samples as well as moderately large sample sizes, say T = 1, 000, which
should be reasonably large to see some influence of the large sample property of the tests.
Note that our IV tests will have power against the local alternative of φ = 1− c/T (1+δ)/2.
We will examine the power issue in more details in section 3.

9



2.2 Detrending and Bias Correction

In practice, a time series typically contains some deterministic components.
In this paper, we consider the following three popular cases, but the IV tests
can be utilized in other general models.

Drift: dt = γ0,

Linear trend: dt = γ0 + γ1t, (9)

Structural break: dt = γ0 + γ1t+ γ2Dt + γ3(t×Dt),

where Dt is the dummy variable that captures a break point. When a break
occurs between t = TB and TB + 1, we define

Dt =

½
0, t < TB + 1,

1, t ≥ TB + 1.
(10)

The interaction term t×Dt allows for a possible slope change in the linear
trend after the break; see Perron (1989). If we omit the interaction term
t×Dt we obtain the model with level shift, which is a special case. Let zt be
the vector of the deterministic terms and γ be the corresponding coefficient
vector. Therefore, we let zt = [1], [1, t], and [1, t,Dt,∆Dt, tDt] for each of
three deterministic trends in (9).
There are a few different detrending methods suggested in the literature.

One popular method has been to utilize a regression in levels to estimate
the coefficients of deterministic terms and use these coefficients to detrend
the series. This is the detrending procedure adopted in the DF type tests.
Alternatively, one may estimate the coefficients of deterministic terms from
the regression with differenced data and use these coefficients to detrend
the data. This detrending method was advocated by Bhargava (1986), and
Schmidt and Phillips (1992). We call this the LM detrending method since
we first impose the null restriction. Hwang and Schmidt (1996) and Elliott,
Rothenberg and Stock (1996) adopted a method that is similar to the LM
detrending, but allows for a local alternative. Specifically, we first rewrite
equation (3) as

(1− φL)yt = (1− φL)ztγ + εt, (11)

where ztγ = dt. Then, one can consider the following detrending methods
(i) DF detrending (φ = 0)
(ii) LM detrending (φ = 1)
(iii) GLS detrending (φ = a, close to 1)

10



(iv) GLS detrending (φ = φT = 1− c/T ).
The difference among these methods lies in how we estimate γ. The DF

detrending procedure amounts to detrending the data assuming that φ = 0
in equation (11). On the other hand, the testing procedures for the LM
test and the GLS tests are different. For these tests, γ is estimated using
the differenced or quasi-differenced data and we detrend the data using the
estimate of γ. Then, we run the AR(1) regression of ∆ỹt on ỹt−1, where
ỹt is the detrended series; ỹt = yt − ztγ̂. If we detrend the data using the
estimate of γ assuming φ = 1, we have the LM tests developed by Bhargava
(1986) and Schmidt and Phillips (1992). That is, γ is estimated from the
regression of ∆yt on ∆zt, and we use this estimate of γ to detrend the series;
ỹt = yt− ztγ̂LM . Note that γ is estimated from using ∆zt, but the detrended
series is driven from using zt. The LM test statistic is obtained from the
regression of ∆ỹt on ỹt−1. If we take some constant close to 1, say 0.98, for
φ, we have the tests proposed by Hwang and Schmidt (1996). Thus, γ is
estimated from the regression of (yt− φyt−1) on (zt− φzt−1), and we use this
estimate of γ to detrend the series; ỹt = yt − ztγ̂GLS. Very similarly, using
φT = 1− c/T with some constant c, leads to the local alternative GLS test
of Elliott, Rothenberg and Stock (1996). In this case, γ is estimated from
the regression of (yt− φTyt−1) on (zt− φTzt−1), and the detrended series is
accordingly obtained as ỹt = yt − ztγ̂GLS∗. As in the LM testing procedure,
we obtain the GLS test statistics from the regression of ∆ỹt on ỹt−1.
Any of these four detrending methods can be used for our IV tests. The

resulting IV tests have the asymptotic standard normal distribution, while
the OLS based tests have different nonstandard distributions. We conducted
simulations to compare performance of the tests using different detrending
methods. We found that the LM and any of the GLS detrending methods
(either Hwang and Schmidt or Elliott, Rothenberg and Stock) produce vir-
tually similar results with almost the same size and power properties. But
the power is somewhat lower when the DF detrending method is adopted.
In the following analysis we will focus on the LM detrending method.
In using the LM detrending method, γ0 is not identified from the regres-

sion of ∆yt on ∆zt. To remove γ0, we subtract y0 from yt, t = 1, 2, ..., T .
In the conditional maximum likelihood approach, where y0 is fixed, y0 is the
maximum likelihood estimator of γ0; see, for example, Pantula, Gonzalez-
Farias and Fuller (1994). Define γ∗ as γ excluding γ0, and z∗t is zt excluding
[1]. In the cases of “linear trend” and “structural break”, γ∗ is estimated
from the regression ∆yt = ∆z∗t γ

∗ + error, t = 1, ..., T . We then have the
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detrended series using the estimated coefficient γ̂∗ from the regression in dif-
ference: ỹt = yt−z∗tγ̂∗−y0, for t = 1, ..., T. The IV unit root test is conducted
from the AR(1) regression using the detrended series

∆ỹt = βỹt−1 + error (12)

using the instrument

w̃t−1 =

½ Pt−1
j=1 ψt−j+1∆ỹj, for t = 2, ...,mT ,PmT

j=1 ψmT+1−j∆ỹt−(mT+1)+j, for t = mT + 1,mT + 2, ..., T.
(13)

Note that when errors are serially correlated, we add the lagged augmented
terms of ∆ỹt in the testing regression, as in the ADF test. When mT takes a
relatively big number and a time trend exists, E

³PT
t=1 w̃t−1∆ỹt

´
is typically

O (mT ). Thus, we will need to fix the bias in practice in order to have the
correct size. Accounting for the bias correction, we have the test statistic

t∗IV =

PT
t=2 w̃t−1∆ỹt − bias

σ̂
qPT

t=2 w̃
2
t−1

, (14)

where bias is the consistent estimate of E
³PT

t=1 w̃t−1∆ỹt
´
under the null

hypothesis.

Theorem 2 Under Assumption 1 and the null hypothesis of β = 0 in equa-
tion (12), the t-statistic defined in (14) converges in distribution to the stan-
dard normal distribution

tIV ∗
d→ N(0, 1) (15)

if mT = T δ, 0 ≤ δ < 1.

Proof. See the Appendix.

Thus, we obtain the same asymptotic normal result when deterministic
terms are controlled for. The required condition for δ remains the same as
in the case with no deterministic term. The only difference is the presence of
the bias term in calculating the t-statistic. The bias correction is not needed
in the basic model. We provide details of the bias term for each model in the
following. Note that the bias correction is made on the score term, rather
than on the coefficient estimators or the entire t-statistic.
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2.2.1 Drift: dt = γ0

When a non-zero mean is allowed but no time trend exists, we have dt = γ0.
Then, we can use ỹt = yt−1 − y0, for t = 1, 2, ..., T, in (12). In this case, bias
= 0. Thus, no bias correction is necessary. Simulation results in the next
section suggest that the IV test performs best when the Bartlett window is
used with δ = 0.9.

2.2.2 Linear Trend: dt = γ0 + γ1t

When a linear trend is allowed for in the testing regression, we define dt =
γ0 + γ1t. Then, we have γ̂1 =

1
T

PT
t=1∆yt, so that ỹt = yt − tγ̂1 − y0, for

t = 1, ..., T, can be used in (12). In this case, we have

bias = −σ21

"³
1− mT

T

´ mTX
j=1

ψj +
1

T

mTX
t=2

tX
j=2

ψj−1

#
. (16)

In the Appendix, we show how the above result is derived. Note that σ21 = σ2

when errors are serially uncorrelated, and that in the presence of serially
correlated errors, σ21 is estimated as σ̂

2
1 = σ̂2/(1 − b(1)), where b(1) is the

sum of the coefficients of the lagged augmented terms of ∆ỹt. When we
use the uniform window, where ψj = 1, for all j,

PmT

j=1 ψj = mT , andPmT

t=2

Pt
j=2 ψj−1 =

1
2
mT (mT − 1). Hence, the bias is simplified as

bias = −σ21
∙
mT −

1

2T
mT (mT + 1)

¸
. (17)

When the Bartlett window is used, where ψj = 1 − j−1
mT

, we can show thatPmT

j=1 ψj =
1
2
(mT + 1),

PmT

t=2

Pt
j=2 ψj−1 =

1
3
(m2 − 1) , and

bias = −σ21
∙
1

2
(mT + 1)−

1

6T
(mT + 1)(mT + 2)

¸
. (18)

We found from our simulations that the test performs best when the Bartlett
window is used with δ = 0.7.

2.2.3 Structural Break: dt = γ0 + γ1t+ γ2Dt + γ3(t×Dt)

When a time series involves a structural break, we have dt = γ0 + γ1t +
γ2Dt+ γ3(t×Dt). It may be informative to show detailed expressions of the
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detrending procedure. For this model, we have z∗t = [t,Dt, tDt] and ∆z∗t =
[1,∆Dt,∆(t×Dt)]. Note that ∆Dt = 1 at t = TB+1, and 0 elsewhere. Then,
we obtain numerically identical estimators of γ1 and γ3 from the regression
∆yt on [1,∆(t×Dt)] omitting the row at t = TB+1 in the regression. We ob-
tain γ̂1 = ∆y1, γ̂3 = ∆y2−∆y1, where ∆y1 =

1
TB

PTB
t=1∆yt = (yTB − y0) /TB

and ∆y2 =
1

T−(TB+1)
PT

t=TB+1
∆yt = (yT − yTB+1) /[T − (TB + 1)]. Mak-

ing use of the fact that the (TB + 1)-th residual is zero when ∆Dt is in-
cluded in the regression, we obtain γ̂2 = ∆yTB+1 − γ̂1 − (TB + 1)γ̂3. Using
these estimators, we can show that the expression for the detrended series
ỹt = yt − γ̂1t− γ̂2Dt − γ̂3tDt can be alternatively given as

ỹt =

½
yt − t∆y1 − y0, for t = 1, 2, ..., TB
(yt − yTB+1)− [t− (TB + 1)]∆y2, for t = TB + 1, ..., T.

(19)

Note in particular that ỹTB = ỹTB+1 = ỹT = ỹ0 = 0 in the detrended data.
The expression for the detrended series in (19) shows that the structural
break completely splits the data into two uncorrelated series under the null
hypothesis. Therefore, it is more reasonable to choose mT based on TB or
T −TB rather than on T. Following our simulation, the size of the test is the
most stable when mT is chosen based on the maximum of TB and T − TB,
namely

mT = [max(TB, T − TB)]
δ. (20)

However, note that two split series are correlated under the alternative hy-
pothesis. The bias term is given as

bias = −σ21

⎡⎣ ³
2− mT

TB
− mT

T−TB−1

´PmT

j=1 ψj+³
1
TB
+ 1

T−TB−1

´PmT

t=2

Pt
j=2 ψj−1

⎤⎦ , (21)

which is derived in the Appendix. Specifically, when we use the uniform
window, it becomes

bias = −σ21
∙
2mT −

T − 1
2TB(T − TB − 1)

mT (mT + 1)

¸
. (22)

When the Bartlett window is used, the bias is given as

bias = −σ21 (mT + 1)

∙
1− (T − 1)(mT + 2)

6TB(T − TB − 1)

¸
. (23)
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We note in passing that when there are two structural breaks the expression
for the bias will be

bias = −σ21

"µ
3− mT

T1
− mT

T2
− mT

T3

¶ mTX
j=1

ψj +

µ
1

T1
+
1

T2
+
1

T3

¶ mTX
t=2

tX
j=2

ψj−1

#
,

(24)
where T1, T2, T3 denotes the number of data points before the first break,
between two breaks and after the second break. A general pattern of the bias
will be obvious when there are three breaks or more.10

3 Simulations

In this section, we investigate the small sample properties of the IV unit root
tests through Monte Carlo simulations. We compare our IV tests with the
three widely used tests, DF, LM and GLS tests, for each of three models with
different deterministic terms. These tests are based on the OLS estimation.
The data generating process implies (1) and (2). In our simulations, dt is
generated by using γ0 = 10, γ1 = 1, γ2 = 5, and γ3 = 1 whenever the
corresponding deterministic components are included. We note that all tests
are invariant to the parameter γ in the corresponding DGP for which we use
dt = ztγ. Thus, using γ = 0 or any other values of γ in the DGP will not
change the simulation results when the corresponding expression of zt is used
for each of these models. We use pseudo-iid N(0,1) random numbers from
the Gauss 6.0.10 RNDNS procedure.11

We examine the cases for φ = 1, 0.9, 0.95 and 0.99 with different sample
sizes, T = 50, 100, 200, 300, 500, and 1000. Under the null hypothesis with
φ = 1, all tests are invariant to the initial value x0.We can take x0 simply as
a random draw from a standard normal distribution. However, power hinges
on the value of x0. For the results in Tables 1-3, x0 is given as a random
draw from the normal distribution with mean zero and variance 1/

¡
1− φ2

¢
10We do not pursue the issue of endogenous breaks in this paper. As discussed in

the previous section, existing endogenous tests entail certain limitations and difficulties.
Given that our IV tests do not depend on the nuisance parameter, it is possible that
an extension to endogenous version tests will involve fewer problems and provide better
results. However, this issue is usually dealt with separately as the nature of the problems
is quite different. Such extensions are best left for future research.
11Gauss codes used for our simulations are available from the authors upon request.

The calculation of the bias term is rather simple.
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to ensure that the variance of x0 matches with that of other xt series. In
Table 4, we vary the value of x0 to see the effect of the initial values on the
power of the tests.
We report the size, power and the size-adjusted power of the tests at the

5% significance level. We only report the results when m depends on T ,
but the results using a finite value of m are also available. The power of the
tests is computed as the proportion of rejections using the asymptotic critical
values. For all IV tests, we use the asymptotic one-sided critical value −1.645
of the standard normal distribution. For other tests, we use the critical values
reported in the literature. The size-adjusted power is calculated based on the
simulated critical values under the null, which are generated by using 50,000
replications for each case. The size of the tests is calculated from 50,000
replications, and the power and the size-adjusted power are calculated from
10,000 replications. The size-adjusted powers are reported in the parentheses
in Tables 1 - 3. In Table 4, all figures are size-adjusted powers.
Table 1 presents the simulation results for the "drift" model (dt = γ0).

When there is no time trend, we do not have an LM version test. For the
GLS test, we follow Elliott et al. (1996) and use c = 7, which ensures the
50% asymptotic power against the local alternative φ = 1 − c/T . For the
IV tests, we report results from using both the uniform window and the
Bartlett window with mT = T δ for δ = 0.7, 0.8, and 0.9. These values of δ
have been selected from intensive simulations. As seen in Table 1, there is
a slight tendency to over-rejections in the IV tests when the sample size is
small. The size of the IV tests ranges from 7% to 9% regardless of different
types of windows and different values of δ . The size of the tests improves as
T gets larger, but the speed of improvement is slow. Although the over-size
tendency is a little bit stronger when δ = 0.9, the power is the best when
δ = 0.9. As is well known, GLS is shown to be more powerful than DF,
especially when T = 50 and T = 100. But, the comparison is rather mixed
when T gets larger, depending on how close 1− c/T is to the true value of φ.
In contrast, the IV tests based on the Bartlett window with δ = 0.9 are shown
to be more powerful in almost all cases. For example, when T = 100 and
φ = 0.9, the size-adjusted power of the DF, GLS, and IV tests are 0.341, 0.495
and 0.512, respectively. When T = 200 and φ = 0.9, they are 0.877, 0.840
and 0.936, respectively. This favorable result for the IV tests over the GLS
test may be rather surprising since the GLS test is commonly known to be
the most powerful test.
Table 2 reports the result for the "linear trend" model (dt = γ0 + γ1t).
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For the GLS test, we use c = 13.5 and the small sample critical values as
suggested by Elliott et al. (1996). Again, the Bartlett window-based IV
tests are significantly more powerful than the tests based on the uniform
window-based IV tests. The size is the closest to the nominal size when
δ = 0.7 in all cases with different T values. The size ranges from 5.3% to
5.7%. Hence, we recommend the Bartlett window in practice with δ = 0.7.
Although the power of the DF test remains somewhat lower than the power
of the other three tests, the discrepancy is much smaller when compared with
the “drift” model. It is interesting to see that the powers of the LM, GLS
and IV tests are virtually in a tie with most cases, with a slight edge for
GLS. The favorable result in power of the IV tests over the GLS test in the
model with drift largely disappears.
In Table 3, we report results for the "trend shift" model (dt = γ0+ γ1t+

γ2Dt+ γ3(t×Dt)) for two cases with TB = 0.5T and TB = 0.2T 12. Since the
asymptotic distributions of the DF, LM and GLS tests depend on the location
of the breaks, the critical values vary for these tests and no corresponding
critical values are readily available. Thus, only the size-adjusted power is
reported for these tests. Our main interest is to compare the sensitivity of
the IV tests to the DGP with different locations of breaks, and to examine
the generic power of the IV tests. For the GLS test, we use c = 22.5 which
ensures the 50% asymptotic power in the local alternatives of φ = 1− c/T,
as suggested by Perron and Rodriguez (2003). Note that we use mT = [max
(TB, T−TB)]δ for the IV tests. In both cases with TB = 0.5T and TB = 0.2T ,
the results on the size and power of the IV tests are very similar, implying
that the IV tests are free of the nuisance parameter, λ = TB/T, indicating the
location of the break13. The size of the test is the closest to the nominal size
when δ = 0.7. Looking at the power, we observe that the Bartlett window
provides better power than the uniform window for the IV tests. Comparing
the size-adjusted power of the tests, we observe that the GLS test is more
powerful than others. The powers of the IV tests and the LM tests are very

12We also simulated the cases when TB = 0.8T , but the results are almost identical to
those from the case with TB = 0.2T. These results are not reported to conserve space.
13This is an encouraging result, since no existing test with trend-shift is invariant to

nuisance parameters. The trend-shift model involves both level and trend shifts. As a
special case, we also considered the IV test with level shift only. The results are similar
to those in Table 2 and are omitted here. The LM tests with level shift already have
the invariance property that they are free of the nuisance parameter; see Amsler and Lee
(1995).
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close, and the DF test shows the least power.
Overall, in most cases, the powers of the IV tests are fairly comparable

to the GLS test. This result is encouraging since the IV tests have the
additional important feature that their distributions are standard normal
and free of nuisance parameters. This desirable property is obtained without
a sacrifice in power. Clearly, the IV tests have an operating advantage. It is
not necessary for the IV tests to simulate different critical values for various
combinations of structural break locations, while such a task is necessary to
employ the GLS, LM and DF extension tests. This advantage will become
more useful in extended models with multiple breaks and other models.
In Figure 1, we provide the estimated empirical pdfs of various tests under

the null hypothesis when T = 100. These are based on the kernel estimation
using a Gaussian kernel function. Using other kernel functions does not make
a big difference. The solid curve depicts the pdf of the standard normal
distribution. The curve with short dashes in the upper graph denotes the
pdf of the IV statistics of the trend model with δ = 0.7. It is seen that the
pdf of the IV statistic is close to that of the standard normal distribution.
The pdf of the IV statistic is clearly far off the left-shifted pdfs of the LM
(dashed curve) and GLS (dots and dashed) statistics which are based on the
OLS estimation. In the lower graph in Figure 1, we provide the pdfs of the
IV statistics using different parameter values of λ = 0.5, 0.2 and 0.8. The
pdfs of the IV statistics using λ = 0.2 and 0.8 overlap exactly and are hardly
separable. The pdf of the IV statistic using λ = 0.5 almost overlaps the pdfs
of the IV statistics using λ = 0.2 and 0.8. These pdfs of the IV statistics are
very close regardless of different values of λ, implying the invariance property
of the IV tests using different break locations. For the left-shifted pdfs of
the LM and the GLS statistics, we use the model with trend shift using the
break location parameter λ = 0.5. The shape and location of these pdfs are
different from those in the upper graph of the trend model. This observation
is obvious since they are not invariant to λ. On the other hand, for the IV
tests, the shape and the location of the pdf (lower graph) of the trend-shift
model are similar to those of the pdf (upper graph) of the trend model. In
Figure 2, we examine the case with a large sample. We report the estimated
pdfs when T = 500. The results are similar to those in Figure 1, except that
the pdfs of the IV statistics are somewhat closer to the pdf of the standard
normal distribution when the sample size is bigger.
We next examine how effectively the augmented version test controls for

the effect of autocorrelated errors. We have examined the cases with the
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DGP of AR(1) errors and AR(2) errors; εt = a1εt−1 + a2εt−2 + ut, where
ut is serially uncorrelated with a constant variance. For AR(1) errors, we
use the values of a1 = 0.8, 0.5, 0.0,−0.5, and −0.8, and a2 = 0. For the
DGP with AR(2) errors, the coefficients are given from a1 = c1 + c2, a2
= −c1c2,where c1 and c2 are the roots of (λ − c1)(λ − c2) = 0. We use
the values of (c1, c2) = (−0.5,−0.8), (−0.5, 0.8), (0.5, 0.3) and (−0.5,−0.3);
then, we have (a1, a2) = (−0.3, 0.4), (0.3, 0.4), (0.8,−0.15) and (−0.8, 0.15),
respectively. For all cases, the IV tests with the Bartlett windows and δ = 0.7
are used. We report the results for the model with a linear trend, but similar
results on the effect of serially correlated errors are expected for other models.
Table 4 provides the results when p = 1, 2, and 3 are used. We are more
interested in the cases under the null. Looking at the results with AR(1)
errors, we observe that the size properties are fairly reasonable, regardless of
different AR(1) coefficients in the DGP. This is so in large samples equal to or
greater than 200, although we observe a little size distortion when T = 100.
In the presence of AR(2) errors, we can see that the IV tests exhibit the
same pattern of good size properties when enough augmented lagged terms
are used (p ≥ 2). It is obvious that the tests will show size distortions when
p = 1 is used. Using more augmentation terms than necessary (that is, using
p ≥ 2 for AR(1) errors, or using p ≥ 3 for AR(2) errors) can lead to proper
sizes. However, we observe a loss of power as compared with the result using
the optimal value of p (that is, p = 1 for AR(1) errors, and p = 2 for AR(2)
errors). In general, the order of AR terms is unknown, and the usual data
dependent lag selection procedures can be similarly applied to our IV tests;
see Ng and Perron (1995) in this regard.
In Table 5, we examine the size-adjusted power of the tests in two models

with "drift" and "trend" when the initial values vary. It is known that the
power of the GLS tests drops as the initial value of the stochastic process,
x0, gets bigger in absolute terms, while the DF test becomes more powerful;
see DeJong et al. (1992), Hwang and Schmidt (1996), and Müller and Elliott
(2003) for simulation results and detailed discussion. The same result is
expected from the LM tests. A similar pattern of power loss is observed for
the IV tests as x0 gets bigger. This is so, since the IV tests are based on the
LM detrending method. The IV tests based on the GLS detrending will be
subject to the same result. We report results for the IV tests with δ = 0.9
for the "drift" model, and δ = 0.7 for the "trend" model. When x0 = 0,
the GLS test is the most powerful in both cases. However, the power of the
GLS test drops the most rapidly and more so in the drift model where no
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time trend is present. When x0 is non-zero such that x0 = 2σ/
p
1− φ2,

the GLS test shows the least power. When the initial value problem appears
significant, one may alternatively employ the DF type detrending method for
the IV tests. A recent paper by Harvey and Leybourne (2005) suggests using
a weighted average of the DF and the GLS test. Such a treatment would be
possible in the IV framework.

4 Summary and Concluding Remarks

In this paper, we have developed new unit root tests using stationary instru-
mental variables. Our new unit root tests utilize moment conditions different
from those of existing unit root tests. The asymptotic distributions of our
IV test statistics are standard normal under the null hypothesis. As such, in
light of our new testing procedures it is possible to perform valid statistical
inference based on standard distribution theory to test for a unit root. This
result appears pretty general in the sense that the result holds in models with
differing deterministic terms or using different detrending methods. Also, it
is encouraging to see that the normality result is obtained without incurring
any notable loss of power. Our IV tests are more powerful than the popular
DF tests, and are comparable to the LM tests of Schmidt and Phillips (1992)
or the GLS based tests suggested by Elliott, Rothenberg and Stock (1996)
and Hwang and Schmidt (1996).
An important feature of our IV unit root tests is that they are free of nui-

sance parameters. This desirable invariance property will be useful in other
extended models, while we have demonstrated this point, as an immediate ex-
tension of the IV test, with the models involving structural changes. The IV
unit root tests are invariant to nuisance parameters even in the models with
trend shift. This case is one important illustration of applying our IV tests
to resolve the nuisance parameter dependence problem. The same invari-
ance result holds in models with multiple breaks. There are other important
circumstances where the invariance property will be useful. One example
includes the model with stationary covariates. As shown by Hansen (1995),
the use of stationary covariates can enhance the power of unit root tests.
The distribution of the usual tests utilizing stationary covariates becomes
dependent on the nuisance parameter. However, the asymptotic distribution
of our IV tests using stationary covariates will remain as standard normal. In
addition, applying our IV tests to cointegration models appears promising.
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The OLS based ECM statistics for cointegration in a single equation model
depend on a nuisance parameter; see Kremers, Ericsson and Dolado (1992).
The asymptotic distribution of the IV based cointegration ECM test becomes
standard normal. This topic is being pursued in a separate work. We expect
that other important extensions are possible in seasonality models, dynamic
system models, and nonlinear threshold models. Furthermore, when extend-
ing our tests to panel unit root tests (with or without breaks), there is an
additional advantage. The present paper has already shown that asymptotic
normality is obtained when N = 1. We leave these topics to future research.
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5 Appendix

Lemma 1. Let

ξt−1 =

½ Pt−1
j=1 ψt−jεj, for t = 2, ...,mT ,PmT

j=1 ψmT+1−jεt−(mT+1)+j, for t = mT + 1,mT + 2, ..., T,
(25)

where mT = T δ, for 0 ≤ δ < 1, 0 < ψj ≤ 1, for j = 1, 2, ...,mT . Define
ψ̄2 ≡ 1

mT

PmT

j=1 ψ
2
j so that 0 < ψ̄2 ≤ 1. Then, under Assumption 1
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Proof of Lemma 1. Let ΓT be the (T − 1) × (T − 1) lower triangular
matrix

ΓT =
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Also, we let ξ−1 = (ξ1, ξ2, ..., ξT−1)
0, ε−1 = (ε1, ε2, ..., εT−1)0, and ε = (ε2, ε3, ..., εT )0.

Then, we can show ξ−1 = ΓTε−1 and
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The second result follows since T
PmT

j=1 ψ
2
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¢
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2
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. The first result follows from the Cheby-

shev’s inequality in view of the second result and E
∙
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¸
= 0. To verify

the third result, note that
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The first term is Op (1). Next, we want to show that the second term is
negligible asymptotically. In the second term, straightforward algebra shows
that

mTX
t=3

t−1X
j=2

j−1X
i=1

ψiψjεt−iεt−j = Op

¡
m2

T

¢
= Op

¡
T 2δ
¢
.

Therefore,

T−(1+δ)
mTX
t=3

t−1X
j=2

j−1X
i=1

ψiψjεt−iεt−j = Op

¡
T−(1−δ)

¢
.

The expression
TP

t=mT+1

mTP
j=2

j−1P
i=1

ψiψjεt−iεt−j contains
1
2
(T − mT )mT (mT − 1)

terms with the maximum mT − 1 repetitions for each of the cross product
terms εiεj (with different coefficients). Assumption 1 ensures that all the
cross product terms are uncorrelated unless they are the same, and that the
variance of εiεj is finite for all i and j. Then, it follows that

TX
t=mT+1

mTX
j=2

j−1X
i=1

ψiψjεt−iεt−j = Op

³
T δ+1

2
(1+δ)

´
,
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and

T−(1+δ)
TX

t=mT+1

mTX
j=2

j−1X
i=1

ψiψjεt−iεt−j = Op

³
T−

1
2
(1−δ)

´
.

The proof is complete if we show

T−(1+δ)

Ã
mTX
t=2

t−1X
j=1

ψ2jε
2
t−j +

TX
t=mT+1

mTX
j=1

ψ2jε
2
t−j

!
p→ ψ̄2σ

2.

For this, we have

T−(1+δ)

Ã
mTX
t=2

t−1X
j=1

ψ2jε
2
t−j +

TX
t=mT+1

mTX
j=1

ψ2jε
2
t−j

!

= T−(1+δ)

Ã
mTX
j=1

ψ2j

T−mTX
t=1

ε2t +

mT−1X
j=1

ψ2jε
2
T−j

!

= T−(1+δ)
mTX
j=1

ψ2j

TX
t=1

ε2t +Op(T
−(1−δ))

p→ ψ̄2σ
2.

The last equality is due to the martingale laws of large numbers.

Proof of Theorem 1. Under the null hypothesis, we have

tIV =

PT
t=1wt−1∆yt

σ̂
qPT

t=1w
2
t−1

=

PT
t=2 ξt−1εt

σ̂
qPT

t=2 ξ
2
t−1

,

where ξt−1 is defined in Lemma 1. Since
©
ξt−1εt

ª∞
t=2
is a martingale difference

sequence, and

V ar
³
T−(1+δ)/2

PT
t=2 ξt−1εt

´
= ψ̄2σ

4 + o (1) ,

which is consistently estimated by
³
T−(1+δ)

PT
t=2 ξ

2
t−1

´
σ̂2 as shown in Lemma

1, the martingale CLT applies to prove that tIV converges to a standard
normal distribution; see, for example, White (1999, Corollary 5.26).

Proof of Theorem 2. The t-statistic, tIV , is invariant to the value of γ.
We assume without loss of generality γ = 0. Therefore, ∆ỹt = ∆xt−∆z∗tγ̂∗,
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and γ̂∗ = Op(T
−1/2). The bias term can be ignored asymptotically since

bias = O(mT ) = O(T δ). Let ∆z∗ = (∆z∗1,∆z∗2, ...,∆z∗T )
0. Under the null

hypothesis

tIV =

PT
t=2 w̃t−1∆ỹt − bias

σ̂
qPT

t=2 w̃
2
t−1

=

PT
t=2 w̃t−1∆ỹt

σ̂
qPT

t=2 w̃
2
t−1

+ op(1)

=

¡
ξ−1 − ΓT∆z∗γ̂∗

¢0
(ε−∆z∗γ̂∗)

σ̂
q¡

ξ−1 − ΓT∆z∗γ̂∗
¢0 ¡

ξ−1 − ΓT∆z∗γ̂∗
¢ + op(1).

Dividing the both numerator and the denominator by
q
ξ0−1ξ−1, we have for

the numerator
ξ0−1εq
ξ0−1ξ−1

− ξ0−1ΓT∆z∗γ̂∗q
ξ0−1ξ−1

− γ̂0∗∆z
0
∗εq

ξ0−1ξ−1

+
γ̂0∗∆z

0
∗Γ
0
T∆z∗γ̂∗q

ξ0−1ξ−1

.

The first term is Op(1). Note that ∆z∗t = (1, Dt,∆Dt). Thus, the first
column of ξ0−1ΓT∆z∗ takes the highest order term. Letting ιT be the T × 1
vector, we have ξ0−1ΓT ιT = Op(T

1+δ
2 ). Hence, ξ0−1ΓT∆z∗γ̂∗ = Op(T

δ
2 ), and

the second term is Op(T
−1/2). Similarly, it is straightforward to show that

the third and fourth terms are op(1). The terms inside of the square root of
the denominator becomes

1− 2ξ
0
−1ΓT∆z∗γ̂∗
ξ0−1ξ−1

+
γ̂0∗∆z

0
∗Γ
0
TΓT∆z∗γ̂∗

ξ0−1ξ−1
.

Following similar analysis, we can have ξ
0
−1ΓT∆z∗γ̂∗
ξ0−1ξ−1

= op(1) and
γ̂0∗∆z

0
∗Γ

0
TΓT∆z∗γ̂∗

ξ0−1ξ−1
=

op(1). The desired result follows in view of Theorem 1.

Bias Term in Equation (16): We let ε−1 = (ε1, ε2, ..., εT−1)
0, and ε =

(ε2, ε3, ..., εT )
0; they are defined in the proof of Lemma 1. Let ε̄ = 1

T

PT
t=1 εt

and ιT−1 be the (T − 1)× 1 column vector of ones. We then have, under the
null hypothesis

E

Ã
TX
t=2

w̃t−1∆ỹt

!
= E

h
(ε−ε̄ιT−1)0 Γ

0
T (ε−1−ε̄ιT−1)

i
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h
ε0Γ

0
Tε−1 − ε̄

³
ε0Γ

0
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´
− ε̄

³
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0
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0
Tε
´
+ε̄2ιT−1Γ

0
T ιT−1

i
= −σ

2
1

T
ιT−1Γ

0
T ιT−1.
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Straightforward algebra provides the result in (16).

Bias Term in Equation (21): Let Γ1T be the TB dimensional ΓT , Γ2T
be the T − TB − 1 dimensional ΓT . Let ε1,−1 = (ε1, ε2, ..., εTB−1)

0, ε1 =

(ε2, ε3, ..., εTB)
0, and ε̄1 =

1
TB

PTB
t=1 εt. Let ε2,−1 = (εTB+1 , εTB+2 , ..., εT−1)

0,

ε2 = (εTB+2 , εTB+2, ..., εT )
0, and ε̄2 =

1
T−TB

PT
t=TB+1

εt. In the presence of a
structural break, we have

E

Ã
TX
t=2

w̃t−1∆ỹt

!

= E

∙
(ε1−ε̄1ιTB−1)

0 Γ
0
1T (ε1,−1−ε̄1ιTB−1)+

(ε2−ε̄1ιT−TB−1)
0 Γ

0
2T (ε2,−1−ε̄2ιT−TB−1)

¸
.

Equation (21) follows in view of the result for equation (16).
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Table 1.  Size and Power of IV tests 
(Drift Model, 0td γ= ) 

 
IV-Uniform Weight IV-Bartlett Weight T φ DF GLS 

δ=0.7 δ=0.8 δ=0.9 δ=0.7 δ=0.8 δ=0.9 
1 0.057 0.110 0.078 0.082 0.085 0.081 0.085 0.087 

0.147 0.383 0.245 0.257 0.268 0.274 0.300 0.317 0.9 
(0.133) (0.197) (0.164) (0.171) (0.172) (0.184) (0.195) (0.195) 
0.089 0.216 0.143 0.151 0.162 0.152 0.163 0.173 

50 

0.95 
(0.080) (0.099) (0.093) (0.096) (0.096) (0.094) (0.097) (0.101) 

1 0.054 0.077 0.075 0.080 0.086 0.076 0.082 0.086 
0.359 0.622 0.468 0.479 0.498 0.548 0.623 0.665 0.9 

(0.341) (0.495) (0.362) (0.361) (0.362) (0.438) (0.486) (0.512) 
0.145 0.284 0.234 0.253 0.269 0.250 0.284 0.313 

100 

0.95 
(0.135) (0.198) (0.166) (0.171) (0.168) (0.177) (0.192) (0.198) 

1 0.051 0.064 0.073 0.080 0.086 0.074 0.080 0.085 
0.879 0.871 0.803 0.794 0.777 0.929 0.966 0.973 0.9 

(0.877) (0.840) (0.728) (0.698) (0.665) (0.881) (0.930) (0.936) 
0.339 0.532 0.448 0.480 0.489 0.499 0.599 0.661 0.95 

(0.336) (0.467) (0.357) (0.360) (0.347) (0.405) (0.471) (0.507) 
0.071 0.112 0.116 0.130 0.142 0.117 0.130 0.142 

200 

0.99 
(0.069) (0.087) (0.081) (0.083) (0.084) (0.081) (0.085) (0.089) 

1 0.051 0.058 0.070 0.080 0.086 0.071 0.078 0.085 
0.996 0.940 0.943 0.913 0.883 0.996 0.999 0.998 0.9 

(0.996) (0.930) (0.909) (0.862) (0.820) (0.992) (0.996) (0.995) 
0.637 0.722 0.633 0.661 0.653 0.729 0.840 0.891 0.95 

(0.633) (0.687) (0.541) (0.542) (0.527) (0.649) (0.744) (0.786) 
0.082 0.135 0.143 0.164 0.182 0.141 0.168 0.184 

300 

0.99 
  (0.081) (0.118) (0.103) (0.107) (0.110) (0.099) (0.113) (0.113) 
1 0.050 0.055 0.070 0.075 0.084 0.071 0.076 0.083 

1.000 0.985 0.994 0.982 0.963 1.000 1.000 1.000 0.9 
(1.000) (0.983) (0.989) (0.967) (0.934) (1.000) (1.000) (1.000) 
0.970 0.875 0.885 0.866 0.833 0.968 0.992 0.994 0.95 

(0.969) (0.864) (0.837) (0.804) (0.746) (0.947) (0.981) (0.982) 
0.127 0.201 0.197 0.227 0.255 0.194 0.250 0.290 

500 

0.99 
  (0.126) (0.186) (0.146) (0.156) (0.165) (0.147) (0.174) (0.185) 
1 0.050 0.055 0.068 0.076 0.085 0.069 0.075 0.084 

1.000 0.999 1.000 0.999 0.995 1.000 1.000 1.000 0.9 
(1.000) (0.999) (1.000) (0.998) (0.991) (1.000) (1.000) (1.000) 
1.000 0.982 0.994 0.983 0.962 1.000 1.000 1.000 0.95 

(1.000) (0.979) (0.990) (0.969) (0.931) (1.000) (1.000) (1.000) 
0.333 0.451 0.380 0.447 0.476 0.390 0.527 0.632 

1000 

0.99 
(0.332) (0.431) (0.311) (0.345) (0.337) (0.315) (0.418) (0.483) 

 
Note: All of the tests are conducted at the 5% level. The figures in parentheses are size-adjusted 
power.  For the IV tests, the asymptotic one-tailed critical value (-1.645) of the standard normal 
distribution was used in all cases.   



 30

Table 2.  Size and Power of IV tests 
(Linear Trend Model, 0 1td tγ γ= + ) 

 
IV-Uniform Weight IV-Bartlett Weight T φ DF LM GLS 

δ=0.6 δ=0.7 δ=0.8 δ=0.6 δ=0.7 δ=0.8 
1 0.061 0.057 0.054 0.057 0.036 0.012 0.068 0.057 0.038 

0.106 0.115 0.111 0.102 0.060 0.022 0.136 0.115 0.078 0.9 
(0.087) (0.102) (0.103) (0.093) (0.083) (0.085) (0.101) (0.104) (0.104)
0.076 0.073 0.071 0.071 0.044 0.016 0.086 0.073 0.049 0.95 

(0.065) (0.065) (0.065) (0.063) (0.061) (0.059) (0.064) (0.064) (0.066)
0.059 0.056 0.056 0.057 0.036 0.013 0.071 0.057 0.038 

50 

0.99 
(0.048) (0.050) (0.052) (0.049) (0.049) (0.054) (0.050) (0.050) (0.050)

1 0.056 0.054 0.052 0.055 0.036 0.013 0.062 0.053 0.033 
0.223 0.253 0.269 0.209 0.137 0.046 0.277 0.264 0.190 0.9 

(0.204) (0.241) (0.260) (0.197) (0.176) (0.138) (0.237) (0.253) (0.255)
0.095 0.102 0.105 0.099 0.068 0.022 0.117 0.108 0.071 0.95 

(0.086) (0.097) (0.102) (0.094) (0.090) (0.078) (0.096) (0.102) (0.101)
0.059 0.058 0.056 0.061 0.039 0.013 0.066 0.057 0.037 

100 

0.99 
(0.053) (0.055) (0.055) (0.056) (0.052) (0.051) (0.054) (0.055) (0.054)

1 0.054 0.050 0.052 0.054 0.043 0.017 0.060 0.053 0.034 
0.656 0.715 0.746 0.543 0.409 0.142 0.689 0.733 0.650 0.9 

(0.637) (0.716) (0.734) (0.527) (0.448) (0.304) (0.649) (0.721) (0.742)
0.206 0.242 0.265 0.211 0.164 0.052 0.251 0.259 0.190 0.95 

(0.192) (0.243) (0.255) (0.199) (0.186) (0.134) (0.218) (0.248) (0.257)
0.061 0.058 0.061 0.064 0.052 0.020 0.070 0.065 0.041 

200 

0.99 
(0.057) (0.059) (0.057) (0.059) (0.059) (0.059) (0.059) (0.061) (0.061)

1 0.053 0.051 0.054 0.053 0.044 0.021 0.059 0.054 0.038 
0.956 0.946 0.952 0.821 0.685 0.310 0.929 0.966 0.951 0.9 

(0.951) (0.945) (0.948) (0.809) (0.718) (0.506) (0.913) (0.959) (0.972)
0.398 0.472 0.502 0.361 0.277 0.103 0.424 0.480 0.411 0.95 

(0.382) (0.469) (0.479) (0.345) (0.304) (0.211) (0.388) (0.454) (0.486)
0.069 0.069 0.077 0.070 0.056 0.029 0.078 0.075 0.052 

300 

0.99 
(0.065) (0.068) (0.070) (0.065) (0.064) (0.066) (0.067) (0.068) (0.070)

1 0.053 0.049 0.050 0.056 0.047 0.025 0.058 0.055 0.038 
1.000 0.999 0.997 0.988 0.958 0.694 0.999 1.000 1.000 0.9 

(1.000) (0.999) (0.997) (0.985) (0.963) (0.821) (0.999) (1.000) (1.000)
0.848 0.865 0.865 0.695 0.620 0.277 0.773 0.875 0.857 0.95 

(0.836) (0.868) (0.866) (0.667) (0.638) (0.426) (0.742) (0.863) (0.896)
0.083 0.089 0.096 0.100 0.083 0.041 0.101 0.103 0.076 

500 

0.99 
(0.078) (0.091) (0.096) (0.090) (0.089) (0.080) (0.087) (0.097) (0.098)

1 0.051 0.049 0.046 0.056 0.051 0.031 0.060 0.057 0.043 
1.000 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 0.9 

(1.000) (1.000) (1.000) (1.000) (1.000) (0.998) (1.000) (1.000) (1.000)
1.000 0.999 0.995 0.988 0.971 0.767 0.998 1.000 1.000 0.95 

(1.000) (0.999) (0.995) (0.986) (0.970) (0.854) (0.996) (1.000) (1.000)
0.190 0.232 0.238 0.201 0.189 0.103 0.193 0.233 0.217 

1000 

0.99 
(0.187) (0.237) (0.254) (0.185) (0.187) (0.156) (0.167) (0.210) (0.242)

See Table 1 footnotes. 
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Table 3-1.  Size and Power of IV tests 
(Level and Trend Shift with TB = 0.5T) 

( ( )0 1 2 3t t td t D D tγ γ γ γ= + + + × ) 
 

IV-Uniform Weighting IV-Bartlett Weighting T φ DF LM GLS 
δ=0.6 δ=0.7 δ=0.8 δ=0.6 δ=0.7 δ=0.8 

1 - - - 0.054 0.037 0.016 0.064 0.055 0.038 
- - - 0.145 0.091 0.035 0.187 0.173 0.123 0.9 

(0.116) (0.153) (0.160) (0.136) (0.117) (0.103) (0.151) (0.159) (0.159) 
- - - 0.077 0.053 0.022 0.094 0.083 0.058 0.95 

(0.071) (0.075) (0.077) (0.072) (0.069) (0.067) (0.074) (0.074) (0.077) 
- - - 0.056 0.041 0.017 0.069 0.061 0.042 

100 

0.99 
(0.055) (0.054) (0.053) (0.052) (0.053) (0.052) (0.054) (0.054) (0.054) 

1 - - - 0.051 0.037 0.017 0.059 0.051 0.033 
- - - 0.384 0.269 0.097 0.471 0.493 0.430 0.9 

(0.371) (0.491) (0.537) (0.379) (0.335) (0.232) (0.430) (0.489) (0.526) 
- - - 0.141 0.099 0.041 0.159 0.159 0.114 0.95 

(0.114) (0.155) (0.167) (0.138) (0.132) (0.112) (0.136) (0.156) (0.162) 
- - - 0.056 0.040 0.020 0.066 0.055 0.038 

200 

0.99 
(0.052) (0.055) (0.059) (0.054) (0.054) (0.055) (0.055) (0.054) (0.057) 

1 - - - 0.052 0.039 0.019 0.056 0.050 0.033 
- - - 0.667 0.533 0.193 0.783 0.841 0.802 0.9 

(0.741) (0.811) (0.875) (0.658) (0.597) (0.378) (0.759) (0.841) (0.874) 
- - - 0.235 0.191 0.065 0.271 0.286 0.230 0.95 

(0.212) (0.297) (0.316) (0.229) (0.229) (0.163) (0.249) (0.286) (0.307) 
- - - 0.059 0.045 0.022 0.068 0.058 0.040 

300 

0.99 
(0.057) (0.063) (0.064) (0.057) (0.058) (0.060) (0.059) (0.058) (0.062) 

1 - - - 0.051 0.043 0.022 0.056 0.050 0.035 
- - - 0.961 0.899 0.521 0.990 0.998 0.998 0.9 

(0.996) (0.989) (0.997) (0.960) (0.918) (0.712) (0.988) (0.998) (0.999) 
- - - 0.506 0.453 0.186 0.562 0.655 0.641 0.95 

(0.534) (0.678) (0.729) (0.502) (0.492) (0.338) (0.535) (0.653) (0.721) 
- - - 0.070 0.064 0.027 0.073 0.071 0.052 

500 

0.99 
(0.065) (0.072) (0.073) (0.069) (0.074) (0.066) (0.066) (0.071) (0.073) 

1 - - - 0.054 0.045 0.027 0.056 0.053 0.039 
- - - 1.000 1.000 0.969 1.000 1.000 1.000 0.9 

(1.000) (1.000) (1.000) (1.000) (1.000) (0.989) (1.000) (1.000) (1.000) 
- - - 0.951 0.931 0.618 0.970 0.996 0.999 0.95 

(0.996) (0.986) (0.995) (0.946) (0.940) (0.759) (0.964) (0.995) (0.999) 
- - - 0.128 0.121 0.065 0.132 0.147 0.127 

1000 

0.99 
(0.115) (0.156) (0.162) (0.120) (0.132) (0.117) (0.121) (0.142) (0.153) 

 
See Table 1 footnotes. 
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Table 3-2.  Size and Power of IV tests 
(Level and Trend Shift with TB = 0.2T) 

 ( ( )0 1 2 3t t td t D D tγ γ γ γ= + + + × ) 
 

IV-Uniform Weighting IV-Bartlett Weighting T φ DF LM GLS 
δ=0.6 δ=0.7 δ=0.8 δ=0.6 δ=0.7 δ=0.8 

1 - - - 0.049 0.033 0.025 0.057 0.047 0.030 
- - - 0.148 0.086 0.064 0.208 0.179 0.127 0.9 

(0.154) (0.189) (0.192) (0.151) (0.130) (0.112) (0.188) (0.190) (0.191)
- - - 0.075 0.053 0.039 0.093 0.079 0.052 0.95 

(0.077) (0.083) (0.086) (0.076) (0.079) (0.070) (0.082) (0.085) (0.085)
- - - 0.049 0.032 0.025 0.061 0.050 0.033 

100 

0.99 
(0.054) (0.050) (0.052) (0.050) (0.050) (0.051) (0.054) (0.054) (0.054)

1 - - - 0.046 0.033 0.020 0.054 0.043 0.026 
- - - 0.372 0.242 0.114 0.535 0.542 0.438 0.9 

(0.472) (0.570) (0.611) (0.391) (0.321) (0.235) (0.518) (0.575) (0.594)
- - - 0.142 0.100 0.049 0.178 0.165 0.108 0.95 

(0.142) (0.184) (0.192) (0.150) (0.141) (0.110) (0.166) (0.184) (0.188)
- - - 0.052 0.038 0.021 0.059 0.049 0.030 

200 

0.99 
(0.056) (0.054) (0.055) (0.055) (0.058) (0.052) (0.055) (0.055) (0.056)

1 - - - 0.046 0.035 0.019 0.051 0.043 0.025 
- - - 0.672 0.447 0.182 0.840 0.880 0.814 0.9 

(0.838) (0.883) (0.933) (0.688) (0.540) (0.347) (0.836) (0.899) (0.913)
- - - 0.249 0.167 0.070 0.311 0.317 0.226 0.95 

(0.277) (0.361) (0.373) (0.266) (0.227) (0.161) (0.305) (0.350) (0.363)
- - - 0.055 0.041 0.025 0.064 0.052 0.033 

300 

0.99 
(0.060) (0.061) (0.062) (0.059) (0.061) (0.060) (0.061) (0.061) (0.064)

1 - - - 0.049 0.037 0.020 0.053 0.046 0.026 
- - - 0.953 0.823 0.420 0.996 0.999 0.998 0.9 

(0.999) (0.994) (1.000) (0.955) (0.870) (0.634) (0.995) (0.999) (1.000)
- - - 0.541 0.401 0.144 0.638 0.712 0.643 0.95 

(0.668) (0.758) (0.809) (0.548) (0.474) (0.286) (0.620) (0.730) (0.790)
- - - 0.070 0.053 0.028 0.081 0.071 0.041 

500 

0.99 
(0.069) (0.081) (0.078) (0.072) (0.071) (0.072) (0.075) (0.078) (0.082)

1 - - - 0.049 0.039 0.022 0.056 0.049 0.030 
- - - 1.000 0.999 0.904 1.000 1.000 1.000 0.9 

(1.000) (1.000) (1.000) (1.000) (0.999) (0.967) (1.000) (1.000) (1.000)
- - - 0.960 0.878 0.452 0.989 0.998 0.999 0.95 

(0.999) (0.995) (1.000) (0.961) (0.909) (0.650) (0.986) (0.999) (1.000)
- - - 0.145 0.116 0.055 0.149 0.160 0.118 

1000 

0.99 
(0.143) (0.181) (0.185) (0.145) (0.144) (0.121) (0.138) (0.164) (0.176)

 
See Table 1 footnotes. 
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Table 4.  Size and Power of IV tests 
(Serially Correlated Errors, Linear Trend Model) 

 
DGP T = 100 T = 200 T = 500 

AR coeff # of lags used # of lags used # of lags used 
a1 a2 

 
φ p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

 
AR(1) Error 
 

1.0 0.036 0.030 0.031 0.045 0.038 0.036 0.049 0.047 0.046 
0.95 0.068 0.058 0.047 0.178 0.159 0.139 0.704 0.681 0.647 

0.8  

0.90 0.124 0.094 0.081 0.406 0.360 0.320 0.985 0.975 0.961 
1.0 0.037 0.033 0.033 0.046 0.045 0.045 0.048 0.045 0.045 
0.95 0.077 0.060 0.057 0.217 0.193 0.176 0.817 0.782 0.759 

0.5  

0.90 0.171 0.131 0.110 0.589 0.526 0.463 0.999 0.999 0.997 
1.0 0.038 0.031 0.029 0.045 0.044 0.044 0.048 0.046 0.046 
0.95 0.077 0.053 0.053 0.210 0.189 0.183 0.838 0.806 0.777 

0.0  

0.90 0.186 0.137 0.117 0.640 0.571 0.514 0.999 0.999 0.999 
1.0 0.038 0.027 0.027 0.049 0.044 0.043 0.049 0.049 0.045 
0.95 0.066 0.052 0.044 0.180 0.169 0.157 0.775 0.773 0.733 

-0.5  

0.90 0.152 0.128 0.099 0.569 0.549 0.479 0.995 0.998 0.995 
1.0 0.035 0.025 0.026 0.047 0.040 0.042 0.050 0.048 0.047 
0.95 0.046 0.041 0.030 0.125 0.134 0.114 0.607 0.680 0.586 

-0.8  

0.90 0.103 0.102 0.069 0.425 0.470 0.363 0.929 0.988 0.938 
 
AR(2) Error 

 
1.0 0.000 0.032 0.029 0.000 0.044 0.044 0.000 0.049 0.046 
0.95 0.001 0.063 0.055 0.002 0.185 0.171 0.035 0.784 0.747 

-0.3 0.4 

0.90 0.003 0.140 0.109 0.022 0.537 0.473 0.614 0.999 0.997 
1.0 0.001 0.032 0.030 0.000 0.042 0.037 0.000 0.047 0.048 
0.95 0.001 0.058 0.051 0.003 0.168 0.150 0.027 0.692 0.671 

0.3 0.4 

0.90 0.003 0.103 0.092 0.015 0.378 0.345 0.337 0.981 0.971 
1.0 0.100 0.033 0.035 0.139 0.046 0.043 0.169 0.047 0.047 
0.95 0.183 0.061 0.058 0.442 0.188 0.177 0.961 0.769 0.754 

0.8 -0.15 

0.90 0.337 0.129 0.114 0.804 0.500 0.453 1.000 0.998 0.996 
1.0 0.006 0.026 0.024 0.009 0.040 0.040 0.010 0.048 0.046 
0.95 0.010 0.038 0.030 0.036 0.119 0.111 0.334 0.615 0.577 

-0.8 0.15 

0.90 0.029 0.085 0.064 0.190 0.390 0.342 0.853 0.950 0.930 
 
Note: For the DGP with AR(2) errors, the coefficients are given from a1 = c1+c2, a2 = -c1c2, where 
c1 and c2 are the roots of (λ-c1)( λ-c2)=0.  We use the values of (c1, c2) = (-0.5, -0.8), (-0.5, 0.8), 
(0.5, 0 .3) and (-0.5,-0.3), respectively.  For all cases, the IV tests with the Bartlett windows and 
δ=0.7 are used.  The asymptotic one-tailed critical value (-1.645) of the standard normal 
distribution was used in all cases.  
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Table 5.  Power Dependence on 0x , the Initial Values of the Stochastic Process 
 

Drift  Linear Trend 

T φ Std. 
Dev. 0x  

DF GLS 
IV-

Bartlett 
δ=0.9 

DF LM GLS 
IV-

Bartlett 
δ=0.7 

0 0 0.319 0.736 0.659 0.196 0.274 0.315 0.294 
1 2.23 0.339 0.398 0.479 0.199 0.238 0.244 0.246 0.9 
2 4.59 0.412 0.025 0.102 0.223 0.154 0.118 0.136 
0 0 0.121 0.315 0.287 0.083 0.107 0.113 0.110 
1 3.20 0.127 0.140 0.162 0.082 0.092 0.098 0.099 0.95 
2 6.41 0.156 0.010 0.022 0.082 0.072 0.063 0.067 
0 0 0.057 0.078 0.075 0.054 0.055 0.054 0.055 
1 7.09 0.056 0.062 0.062 0.053 0.056 0.055 0.056 

100 

0.99 
2 14.18 0.058 0.032 0.033 0.052 0.055 0.054 0.054 
0 0 0.862 0.997 0.987 0.619 0.774 0.861 0.775 
1 2.23 0.877 0.904 0.962 0.640 0.712 0.728 0.724 0.9 
2 4.59 0.917 0.082 0.705 0.685 0.533 0.340 0.549 
0 0 0.315 0.757 0.651 0.186 0.270 0.314 0.283 
1 3.20 0.335 0.329 0.473 0.195 0.237 0.234 0.241 0.95 
2 6.41 0.410 0.009 0.103 0.216 0.151 0.099 0.141 
0 0 0.066 0.119 0.114 0.056 0.061 0.060 0.063 
1 7.09 0.069 0.079 0.080 0.057 0.060 0.059 0.061 

200 

0.99 
2 14.18 0.075 0.020 0.026 0.055 0.053 0.055 0.055 
0 0 0.995 1.000 1.000 0.947 0.977 0.996 0.975 
1 2.23 0.996 0.998 1.000 0.952 0.950 0.975 0.964 0.9 
2 4.59 0.998 0.358 0.989 0.964 0.845 0.706 0.909 
0 0 0.604 0.966 0.902 0.371 0.513 0.601 0.504 
1 3.20 0.629 0.611 0.800 0.384 0.457 0.450 0.451 0.95 
2 6.41 0.707 0.015 0.362 0.425 0.306 0.165 0.299 
0 0 0.080 0.171 0.155 0.065 0.070 0.073 0.070 
1 7.09 0.085 0.088 0.100 0.063 0.068 0.070 0.067 

300 

0.99 
2 14.18 0.093 0.012 0.024 0.061 0.055 0.053 0.056 
0 0 0.965 1.000 0.999 0.824 0.915 0.970 0.895 
1 3.20 0.970 0.965 0.995 0.839 0.874 0.878 0.869 0.95 
2 6.41 0.982 0.094 0.921 0.868 0.729 0.452 0.752 
0 0 0.117 0.314 0.266 0.077 0.101 0.113 0.104 
1 7.09 0.127 0.128 0.160 0.078 0.095 0.096 0.095 

500 

0.99 
2 14.18 0.153 0.007 0.027 0.080 0.071 0.062 0.071 
0 0 0.314 0.744 0.609 0.184 0.275 0.320 0.236 
1 7.09 0.333 0.263 0.469 0.187 0.235 0.234 0.208 1000 0.99 
2 14.18 0.399 0.004 0.121 0.207 0.148 0.089 0.144 

Note: All the figures are size-adjusted power at the 5% significance level. Initial values of 
the stochastic process are 0, 1, and 2 standard deviations. For example, when φ = 0.99, x0 at 
the two standard deviations is 2

0 2 / 1 14.18x σ φ= − = .  
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Figure 1.  Estimated pdf (T = 100) 
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Figure 2.  Estimated pdf (T = 500) 


