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ABSTRACT 

The Vasicek single factor model of portfolio credit loss is generalized to include correlated 
stochastic exposures and loss rates. The new model can accommodate any distribution and 
correlation assumptions for the loss and exposure rates of individual credits and will produce 
a closed-form approximation for an asymptotic portfolio’s conditional loss rate. Revolving 
exposures are modeled as draws against committed lines of credit. Draw rates and loss rates 
on defaulted credits are random variables with known probability distributions. Dependence 
among defaults, individual exposures, and loss rates are modeled using a single common 
Gaussian factor. A closed-form expression for an asymptotic portfolio’s inverse cumulative 
conditional loss rate is used to calculate a portfolio’s unconditional loss rate distribution, 
estimate economic capital allocations, and analyze portfolio loss rate characteristics.  Positive 
correlation in individual credit exposures and loss rates increases systematic risk. As a 
consequence, portfolio loss rate distributions exhibit wider ranges and greater skewness. 
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A Generalized Single Factor Model of Portfolio Credit Risk 

 
1. INTRODUCTION 

The Gaussian asymptotic single factor model of portfolio credit losses (ASFM), 

developed by Vasicek (1987), Finger (1999),  Schönbucher (2000), Gordy (2003) and others, 

provides an approximation for the loss rate distribution for a credit portfolio in which the 

dependence among individual defaults is driven by a single common latent factor.  The 

ASFM assumes the unconditional probability of default on an individual credit (PD) is fixed 

and known. In addition, all obligors’ exposures at default (EAD), and loss rates in default 

(LGD) are assumed to be known non-stochastic quantities. In a large portfolio of credits, 

idiosyncratic risk is fully diversified and the only source of portfolio loss uncertainty is the 

uncertainty in the portfolio default rate that is driven by the common latent Gaussian factor. 

The ASFM has been widely applied in the financial industry. It has been used to 

estimate economic capital allocations [e.g., Finger (1999), Schönbucher (2000), Gordy 

(2003), and others]. It is the model that underlies the Basel II Advanced Internal Ratings-

based approach (AIRB) for setting banks’ minimum regulatory capital requirements.  In 

addition to capital allocation applications, the ASFM has been adapted to estimate potential 

loss distributions for tranches of portfolio credit products and to price basket credit risk 

transfer products.[e.g., Li (2000), Andersen, Sidenius, and Basu (2003), Gibson (2004), 

Gordy and Jones (2002) and others].  Notwithstanding widespread use of the ASFM, 

empirical findings suggest that the model omits important systematic factors that in part 

determine the characteristics of a portfolio’s true underlying credit loss distribution.  
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In analysis of historical data, many studies find significant time variability among the 

realized LGDs for a given credit facility or ratings class and negative correlation between 

observed default frequencies and contemporaneous recovery rates on defaulted credits. 

Default losses increase in periods when default rates are elevated.  Studies by Frye (2000b), 

Hu and Perraudin (2002), Schuermann (2004), Araten, Jacobs, and Varshney (2004), Altman, 

Brady, Resti and Sironi (2004), Hamilton, Varma, Ou and Cantor (2004), Carey and Gordy 

(2004), Emery, Cantor and Arnet (2004) and others show pronounced decreases in the 

recovery rates during recessions and other periods with elevated default rates. These results 

suggest the existence of a systematic relationship between default frequencies and default 

recovery rates that is not captured in the Vasicek ASRM framework.1   

In addition to issues related to stochastic LGD, the ASFM often is employed to 

estimate capital needs for portfolios of revolving credits even though the model is based on 

the assumption that individual credit EADs are fixed. The available evidence, including 

studies by Allen and Saunders (2003), Asarnow and Marker (1995), Araten and Jacobs 

(2001), and Jiménez, Lopez, and Saurina (2006) suggests that obligors draw down committed 

lines of credit as their credit quality deteriorates.  Analysis of creditors’ draw rate behavior 

shows that EADs on revolving exposures are positively correlated with default rates 

suggesting that there is at least one common factor that simultaneously determines portfolio 

EAD and default rate realizations. 

                                                 
1 Cary and Gordy (2004) question the strength of systematic LGD-default rate correlations. 
Their estimates of correlations between default rates and total firm recovery rates—total 
dollars recovered to total dollar claims outstanding- show less pronounced correlations 
compared studies that estimate these correlations for specific liability classes. 
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 The assumption of nonstochastic LGD and EAD precludes the ASFM model from 

incorporating important sources of systematic credit risk that are present in historical loss 

rate data.  A number of existing models, including models by Frye (2000), Pykhtin (2003), 

Tasche (2004), and Andersen and Sidenius (2005), have extended the Vasicek ASFM 

framework to include stochastic LGD rates. These extensions all require complex numerical 

techniques or restrictive assumptions for the LGD distribution to produce tractable 

expressions for an asymptotic portfolios’ loss rate distribution.  No existing study (of which I 

am aware) extends the ASFM framework to include stochastic EAD and LGD and produce a 

closed-form expression for a portfolio loss rate distribution.     

In the remainder of this paper, the Gaussian ASFM is extended to incorporate 

obligors with EADs and LGDs that are correlated random variables. In this extension, default 

is a random event driven by a compound latent factor as in the standard ASFM.  Two 

additional compound latent factors are introduced to drive correlations among individual 

credits’ EADs and LGDs. A closed-form expression for the inverse of the portfolio’s credit 

loss distribution is constructed using a step function to approximate the underlying LGD and 

EAD distributions. The characteristics of the LGD and EAD distributions that can be modeled 

using this new approach are unrestricted. The approximation can be taken to any desired 

level of precision by adjusting the step function increment size. Portfolio loss rate 

distributions are analyzed under alternative EAD and LGD distribution and correlation 

assumptions that are consistent with stylized representations of alternative corporate and 

retail portfolios. Basel II-style capital allocation rules are constructed using the step-function 

approximation and some selected examples are used to illustrate the approach.    
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 2.  A GRID APPROXIMATION FOR A CUMULATIVE DISTRIBUTION FUNCTION  

In this section we introduce an approximation method that can be used to represent 

any cumulative distribution function. A random variable’s range of support is divided into a 

mesh of equal increments and the mesh representation is used in conjunction with compound 

latent Gaussian factors to construct a step-function approximation for individual credit EAD 

and LGD distributions. The step function approximation facilitates the derivation of a closed-

form expression for the conditional loss rate and exposure distributions of an asymptotic 

portfolio of credits.   

Let ( )a~Ξ  represent the cumulative density function for [ ].1,0~∈a  Because ( )a~Ξ  is a 

cumulative density function, it is monotonic and non-decreasing in .~a   Over the range of 

support for ,~a  define a mesh of n  equal increments of size 
n
1 , and use these to define a set 

of overlapping events that span the support.  Define ( ) ,,...,2,1,0,,,~ njnja =Ε  such that: 

( )na ,0,~Ε  is the event 0~ =a ; ( )na ,1,~Ε  is the event ⎥⎦
⎤

⎢⎣
⎡∈

n
a 1,0~ ; ( )nja ,,~Ε  is the event  

⎥⎦

⎤
⎢⎣

⎡∈
n
j

a ,0~ ; ( )nna ,1,~ −Ε  is the event  ⎥⎦
⎤

⎢⎣
⎡ −

∈
n

na 1,0~ ; and, ( )nna ,,~Ε  is the event [ ]1,0~∈a .  The 

probability that event ( )nja ,,~Ε occurs is ⎟
⎠
⎞

⎜
⎝
⎛Ξ

n
j .   

Let ( )nja ,,~1Ε  be the indicator function for the event ( )nja ,,~Ε ,  

( )
( )

⎩
⎨
⎧ Ε∈

=Ε otherwise0
,,~if1

1 ,,~
njaai

nja                                                     (1) 
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The expected value of the indicator function is the probability of occurrence of the indicated 

event.  It follows that ( )( )njaE
n
j

,,~1Ε=⎟
⎠
⎞

⎜
⎝
⎛Ξ  for nj ,,3,2,1,0 L= , where the correspondence is 

exact for integer values of j , but is undefined for intermediate values. 

To construct an approximation for ( )a~Ξ  that spans the support of a~  for fixed n , 

define 
n
a

x i
i =  for any [ ].1,0∈ia   Using ix , we approximate the cumulative density function 

for a~  as follows,  

] [( )( )nxa
i

i i
E

n
x

a ,,~1Ε≈⎟
⎠

⎞
⎜
⎝

⎛ =Ξ ,                                                                          (2) 

where ] [ix  is the so-called “ceiling function” that returns ix  if ix is an integer and returns ix  

rounded up to the next largest integer value if ix  in not an integer.  For non-integer ix  this 

approximation overstates the true cumulative probability, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ξ

n
xi , but the magnitude of the 

approximation error is decreasing in n  and can be reduced to any desired degree of precision 

by choosing n  sufficiently large.2  

To gain additional understanding about the precision of the approximation, consider 

the compound event, ( ) ( )njanja ,,~,1,~ Ε∩−Ε , as ∞→n   In the limit as 
                                                 
2 If [ ]1,0∈ia  is rational then 

n
jai =  for some integers, .and nj  If [ ]1,0∈ia  is irrational, then 

Lagrange has shown, 
25

1
nn

j
ai <− . Thus [ ]1,0∈ia  can be approximated to any desired 

degree of accuracy by 
n
j

ai ≈  for some integers, ,and nj where the precision of the 

approximation is increasing in .n  See Conway and Guy (1996), pp. 187-189. 
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,01and,, →∞→∞→
n

jn  but the ratio 
n
j  remains unchanged.  In the continuous case,  the 

event ( ) ( )njanja ,,~,1,~ Ε∩−Ε converges to the point [ ]1,0∈
n
j  as .∞→n  Consequently, 

( )( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛Ξ=− −ΕΕ∞→ n

jEE njanjan '11lim ,1,~,,~ , the probability density of a~ at the point [ ].1,0∈
n
j  

  In the discrete distribution case, as ∞→n  each point in the support of a~  can be 

associated with a unique set of compound events, ( ) ( )njania ,,~,,~ Ε∩Ε  ,  for some integers 

i and j , if n  is set sufficiently large. Consequently, a discrete distribution ( )a~Ξ  can be 

approximated exactly using this event-space representation. 

It is useful to define the mathematical expectation of a~ in terms of the indicator 

functions defined in expression (1). Proposition 1 in the appendix shows, 

( ) ( )( )∑
−

=
Ε∞→ ⎟

⎠
⎞

⎜
⎝
⎛−=

1

0
,,~11lim1~

n

j
njan E

n
aE .                                               (3) 

3.  THE GAUSSIAN ASFM MODEL 

 
The Vasicek single common factor model of portfolio credit risk assumes that 

uncertainty on credit i is driven by a latent unobserved factor,  iV~  with the following 

properties, 

.,,0)~~()~~(
),(~
)(~~

~1~~

jieeEeeE
ee
ee

eeV

jdMjdid

idid

MM

idVMVi

∀==

−+=

φ
φ

ρρ

                                         (4)                         
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)(⋅φ represents the standard normal density function. iV~  is distributed standard normal,  

( ) ,0~
=iVE  and ( ) .1~ 2 =iVE  Me~  is a factor common to all credits’ latent factors, iV~ . The 

correlation between individual credits’ latent factors is .Vρ  iV~  is often interpreted as a proxy 

for the market value of the firm that issued credit .i  

Credit i is assumed to default when its latent factor takes on a value less than a credit-

specific threshold, ii DV <
~ . The unconditional probability that credit i defaults is, 

( ),iDPD Φ=  where ( )⋅Φ  represents the cumulative standard normal density function. Time is 

not an independent factor in the ASFM but is implicitly recognized through the calibration of 

input values for PD.  

 

4.  A SINGLE FACTOR MODEL OF LOSSES ON A PORTFOLIO OF REVOLVING CREDITS WITH 
CORRELATED EXPOSURES AND LOSS RATES 

A Model of Stochastic EAD 
Assume that a generic revolving credit account, i , has a maximum line of credit, iM , 

upon which it may draw.  For any individual credit, the exposure at the end of the period, the 

facility utilization rate [ ]1,0~
∈iX , is a random variable that determines the end-of-period 

account exposure, .~
ii MX   Basel II conventions require that EAD be at least as large as initial 

exposure and so we model EAD by modeling an account’s initial exposure and it draw rate iδ
~  

on it remaining line of credit instead of directly modeling the accounts utilization rate.  

Assume an individual account begins the period with a drawn exposure of ii MDr 0 , 

where 0iDr  is the initial share of the account line of credit that is utilized. The line of credit 
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that can be drawn by the creditor over the subsequent period is, ( ) iio MDr−1 . Let [ ]1,0~
∈iδ  

represent the share of the remaining line of credit that is borrowed over the period and let 

( )iδ
~

Ω  represent the cumulative density function for .~
iδ  This representation accommodates 

the Basel II convention that requires that the exposure at the end of the one-year horizon is at 

least as large as the initial level of extended credit, iio MDr . This assumption can be relaxed 

and the model can recognize creditors’ ability to reduce or eliminate their outstanding 

balances by setting 00 =iDr  and modeling an account’s end-of-period utilization rate 

[ ]1,0~
∈iX  directly instead of modeling its draw rate .~

iδ  Under the draw rate specification, the 

account’s end-of- period exposure is, 

( )( ) ( ) [ ].1,0,~
~

,~1~
00 ∈Ω−+= iiiiiiiii dDrDrMXM δδδ                             (5) 

To construct the step function approximation, divide the [ ]1,0  range of support for the 

draw rate into 1+n overlapping regions and define 1+n corresponding events:  ( )n,0,~δΕ  is the 

event 0~
=iδ ; ( )n,1,~δΕ  is the event ⎥⎦

⎤
⎢⎣
⎡∈

ni
1,0~

δ ;  ( )nj,,~δΕ  is the event  ⎥⎦

⎤
⎢⎣

⎡∈
n
j

i ,0~δ ; and, ( )nn,,~δΕ  

is the event [ ]1,0
~
∈iδ .  

Systematic dependence among individual account’s draw rate behaviors can be 

incorporated by assuming that account draw rates are driven by a latent Gaussian factor, iZ~  

with the following properties, 

.,0)~~()~~()~~(
),(~
)(~~

~1~~

jieeEeeEeeE
ee
ee

eeZ

jdiZjZMjZiZ

iZiZ

MM

iZZMZi

∀===

−+=

φ
φ

ρρ

                                          (6)     
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We adopt the normalization convention that higher account draw rates are associated with 

smaller realizations of the latent variable, iZ~ .  The correlation between the latent variables 

that drive each account’s draw rate is Zρ , and the correlation between the latent factors that 

drive account exposures and defaults is VZ ρρ . 

The probability distribution for an account’s draw rate is approximated by a uniform- 

size step function defined on iZ  using the overlapping set of events defined above, 

 

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

<

<≤⎟
⎠
⎞

⎜
⎝
⎛ −

<≤⎟
⎠
⎞

⎜
⎝
⎛

<≤⎟
⎠
⎞

⎜
⎝
⎛

<≤⎟
⎠
⎞

⎜
⎝
⎛

≥

=

−

+

nii

niini

ijiij

iii

iii

ii

i

AZfor

AZAorn
n

AZAfor
n
j

AZAfor
n

AZAfor
n

AZfor

~1

~1

~

~2

~1

~0

~

1

1

23

12

1

MM

MMδ
                                                      (7) 

where .121 iiniin AAAA <<< − L  Expression (7) models the draw rate as a monotonically 

decreasing function of iZ~  with 1+n distinct draw rates with uniform increments of size 
n
1

 

beginning at 1=iδ .   This partition is used to define the latent variable thresholds 

{ }inii AAA ,,, 21 L  by equating the Gaussian probabilities for the latent variable thresholds to 

the probability that the corresponding events occur under the true draw rate distribution 

( )iδ
~

Ω . For example, the equality, ( ) ( )01 1 Ω=Φ− iA  defines ( )( )011
1 Ω−Φ= −
iA ; Similarly, 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛Ω=Φ−

n
Ai

11 2  defines ,111
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ω−Φ= −

n
Ai  and so. The step function approximation for the 

unconditional draw rate distribution is given in Table 1.  

Table 1: Step Function Approximation for an Individual Credit’s 

Draw Rate Distribution 

 
Draw 
Rate 

 
Event 

Cumulative 
Probability of  

Draw Rate 

 
Threshold Value for Latent 

Variable iZ~  
0 ( )nd ,0,

~
Ε  ( )0Ω  ( )( )011

1 Ω−Φ= −
iA  

n
1  ( )n,1,~

δΕ  ⎟
⎠
⎞

⎜
⎝
⎛Ω

n
1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ω−Φ= −

n
Ai

111
2  

n
2

 ( )nd ,2,~
Ε  ⎟

⎠
⎞

⎜
⎝
⎛Ω

n
2  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ω−Φ= −

n
Ai

211
3  

M  M  M  M  

n
n 1−

 ( )nn ,1,~
−Ε δ ⎟

⎠
⎞

⎜
⎝
⎛ −

Ω
n

n 1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

Ω−Φ= −

n
nA ni

111  

1  ( )nn,,~
δΕ  1  

 

A Model of Stochastic LGD 

Let [ ]1,0~
∈iλ  represent the loss rate that that will be experienced on credit i’s 

outstanding balance should the borrower default. Let ( )iλ
~

Θ  represent the cumulative density 

function for .~
iλ  Divide the interval [ ]1,0  into 1+n overlapping regions and define a 

corresponding set of events:  ( )n,0,~λΕ  is the event 0~
=iλ ;  ( )n,1,~λΕ  is the event 

⎥⎦
⎤

⎢⎣
⎡∈

ni
1,0~

λ ;  ( )nj,,~
λΕ   is the event  ⎥⎦

⎤
⎢⎣

⎡∈
n
j

i ,0~
λ ;  and  ( )nn,,~

λΕ  is the event [ ]1,0
~
∈iλ .  
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Systematic dependence in individual credit’s loss rates is introduced by assuming that 

iλ
~  is driven by a latent Gaussian factor, iY~  with the following properties, 

.,0)~~()~~()~~()~~(

),(~
)(~~

~1~~

jieeEeeEeeEeeE

ee
ee

eeY

idiYjZiYjYMjYiY

iYiY

MM

iYYMYi

∀====

−+=

φ
φ

ρρ

                          (8)     

The common Gaussian factor, Me~ ,  is identical in all latent factors, iii YZV ~and,~,~  and so the 

three latent factor are positively correlated for a single credit and across portfolio credits 

provided ,0,0 >> ZV ρρ  .0and >Yρ  The correlation between the latent factors that 

determine default and loss given default is ,0>YV ρρ  and the correlation between the 

Gaussian drivers of default and exposure at default is .0>ZV ρρ  

( )iλ
~

Θ  is approximated using the latent factor iY~  and the step function methodology 

outlined earlier. The model is normalized so that higher realized loss rates are associated with 

smaller realized values of iY~ . Using a uniform-size grid over the interval [ ]1,0  to define 1+n  

events, ( ) ( ) ( ){ }nnnn ,,~,,,1,~,,0,~ λλλ ΕΕΕ L , we approximate ( )iλ
~

Θ  as, 

 

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

<

<≤⎟
⎠
⎞

⎜
⎝
⎛ −

<≤⎟
⎠
⎞

⎜
⎝
⎛

<≤⎟
⎠
⎞

⎜
⎝
⎛

≥

=

−

ini

niini

iii

iii

ii

i

BYfor

BYBfor
n

n

BYBfor
n

BYBfor
n

BYfor

~1

~1

~2

~1

~0

~

1

23

12

1

MM

MM
λ

                                                (9) 
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for 121 iiinin BBBB <<<< − L .  The latent variable thresholds are defined by equating the 

Gaussian threshold probabilities with the cumulative probability of the corresponding events 

under the true draw rate distribution. The threshold calibrations are illustrated in Table 2.  

 

Table 2: Step Function Approximation for an Individual Credit’s 

Loss Rate Distribution 

 
Loss  
Rate 

 
Event 

Cumulative 
Probability of  

Loss Rate 

 
Threshold Value for 
Latent Variable iY~  

0 ( )n,0,~
λΕ  ( )0Θ  ( )( )011

1 Θ−Φ= −
iB  

n
1  ( )n,1,~

λΕ  
⎟
⎠
⎞

⎜
⎝
⎛Θ

n
1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Θ−Φ= −

n
Bi

111
2  

n
2

 ( )n,2,~
λΕ  

⎟
⎠
⎞

⎜
⎝
⎛Θ

n
2  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Θ−Φ= −

n
Bi

211
3  

M  M  M  M  

n
n 1−

 ( )nn ,1,~
−Ε λ  

⎟
⎠
⎞

⎜
⎝
⎛ −

Θ
n

n 1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

Θ−Φ= −
− n

nB ni
211

1  

1  ( )nn,,~
λΕ  1 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

Θ−Φ= −

n
nB ni

111  

 

 

The Loss Rate for an Individual Credit Facility 

The loss rate distribution for an individual account can be modeled using 12 +n   

indicator functions defined over the latent variables .~and,~,~
iii YZV  One indicator function 

indicates default status; n  indicator functions are used to approximate the cumulative EAD 
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distribution, ( )δ~Ω ; and n  indicator functions are used to approximate the cumulative LGD 

distribution, ( ),~
λΘ   

( )

( )

( ) .,...,3,2,1,0,
0

~1~1

,...,3,2,1,0,
0

~1~1

,
0

~1~1

nkfor
otherwise

BYifY

njfor
otherwise

AZif
Z

otherwise
DVifV

iki
i

iji
i

ii
i

ikB

ij
A

iD

=
⎪⎩

⎪
⎨
⎧ <

=

=
⎪⎩

⎪
⎨
⎧ <

=

⎪⎩

⎪
⎨
⎧ <

=

                                      (10) 

Each indicator function defines a binomial random variable with a mean equal to the 

cumulative standard normal distribution evaluated at its associated threshold value.  For 

example, ( )iV
iD

~1  has a binomial distribution with an expected value of ( )iDΦ ; similarly,  

( )iZ
ij

A
~1 is distributed  binomial with an expected value of ( )ijAΦ , and so on for the remaining 

indictor functions. 

 Let ( )nYZV iii
A
i ,~,~,~

Λ  represent the approximate loss rate for account i measured 

relative to the account’s maximum credit limit, iM . ( )nYZV iii
A
i ,~,~,~

Λ   is defined as, 

( ) ( ) ( ) ( ) ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+=Λ ∑∑

==

n

j
ii

n

k
iiiiii

A
i Y

n
Z

n
DrDrVnYZV

ijB
ik

AiD
11

00
~11~111~1,~,~,~

.             (11) 

The notation indicates that the approximation depends on ,n  the number of step function 

increments used to approximate the account’s LGD and EAD cumulative distribution 

functions.  
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The Conditional Loss Rate for an Individual Credit 

Let ( )Mi eV
iD |~1  represent the value of the default indicator function conditional on a 

realized value for Me , the common latent factor.  Similarly, let ( )Mi eZ
ij

A |~1  and ( )Mi eY
ijB |~1  

represent the values of the remaining indicator functions ( nj ...,,3,2,1= ) conditional on a 

realized value for Me . The conditional indicator functions define independent binomial 

random variables with properties,  
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for ....,,3,2,1 nj =   An individual account’s conditional loss rate is approximated as, 
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Because the conditional distributions of the latent factors are independent, the law of iterated 

expectations implies,  
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The Loss Rate on an Asymptotic Portfolio of Revolving Credits 

Consider a portfolio composed of N accounts that have identical credit limits, 

,MM i =  identical initial drawn balances, ,00 MDRMDR ii =   identical latent factor 

correlations, { }YXV ρρρ ,, , and identical default thresholds, .DDi =  Assume that all credits’ 

end-of-period draw rates, iδ
~

, and loss rates given default, ,~
iλ  are taken from respective 

unconditional distributions that are identical across credits (the distributions for iδ
~

 and iλ
~

 

may differ) . Under these assumptions,  the 12 +n  threshold values in expression (15) are 

identical across individual credits, and indicator function subscript i no longer is necessary, 

( ) ( )ii VV DiD
~1~1 = , ( ) ( ),~1~1 ii ZZ

jAijA =  and ( ) ( )ii YY
jBijB

~1~1 =  for .,,3,2,1 nj L=   The loss rate for 

an individual credit will depend on the identity of the credit, but the dependence arises only 

through the idiosyncratic risk factors in the latent variables ,~and,~,~
iii YZV  and so the 

subscript can be eliminated, ( ) ( )nYZVnYZV iii
A

iii
A
i ,~,~,~,~,~,~

Λ=Λ . 

Let V
r~  represent the vector ( )NVVV ~~,~

,,21 L  and define Y
r~  and Z

r~  analogously. Let  

⎟
⎠
⎞⎜

⎝
⎛Λ M

A
p enYZV |,~,~,~ rrr

 represent the approximate loss rate on the portfolio of N accounts 

conditional on a realization of  ,Me  and n increments in the step-function approximation, 
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Recall that ( )Miii
A enYZV |,~,~,~

Λ  is independent of ( )Mjjj
A enYZV |,~,~,~

Λ  for all ji ≠  and the 

conditional loss rates for individual credits are identically distributed. Thus, the Strong Law 

of Large Numbers requires, for any admissible value of ,Me    
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Independence among the conditional indicator functions implies, 
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Substitution of the expressions for the conditional expectations yields,  
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Expression (20) is an approximation for the inverse of the conditional distribution function 

for an asymptotic portfolio’s loss rate evaluated at ( ) .,+∞∞−∈Me  Propositions 2 and 3 in the 

Appendix can be applied to show that, in the limit, as ,∞→n the approximation converges 

to the true underlying asymptotic portfolio conditional loss rate that is consistent with the 

model assumptions. 
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The only random factor driving the unconditional portfolio loss rate distribution is 

common latent factor, Me~ . As a consequence, an approximation for an asymptotic portfolio’s 

loss rate density function is defined by the implicit function, 
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Many risk management applications make direct use of the inverse conditional loss 

distribution. For example, expression (20) can be used to estimate capital allocations or 

estimate the probability that cumulative portfolio credit losses will breach tranche loss rate 

thresholds in basket credit risk transfer products and securitizations.   

Calculation of the Critical Values of a Portfolio’s Loss Rate Distribution 

 Many risk management functions require estimates for portfolio loss rates that are 

consistent with a particular cumulative probability threshold.  Consider for example the 

portfolio loss rate that exceeds a proportion, α , of all potential portfolio credit losses (or 

alternatively, a loss rate exceed by at most α−1 of all potential portfolio losses). Because the 

portfolio loss rate function is decreasing in .
Me , expression (20) evaluated at ( )α−Φ= − 11

Me  

is the loss rate consistent with a cumulative probability of α .  Using the identity 

( ) ( )αα 11 1 −− Φ−=−Φ , and the definitions of the latent variable thresholds in Table 1 and 2, 

it follows that an approximation for the portfolio loss rate consistent with a cumulative 

probability of α  is, 
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Interpretation 

The first term in expression (22), ( ) ( )
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,  is the inverse of 

asymptotic portfolio’s cumulative default rate distribution3 evaluated at a probability of α . 

When EAD and LGD are both constant as they are in the Vasicek ASFM framework, 
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αρ
 is the formula used to estimate a capital allocation 

with a coverage rate ofα . For example, this loss rate formula (with 999.=α ) is used to 

calculate minimum regulatory capital requirements in the Basel II AIRB approach. The 

interpretation is that when capital is set at this level, 99.9 percent of all potential portfolio 

credit losses will be less than the capital allocation.   

                                                 
3 The default rate distribution is the probably distribution of the random proportion of credits 
in an asymptotic portfolio that default each period. 
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The remaining terms in expression (22) modify the Vasicek portfolio loss rate 

formula to account for stochastic credit exposures, ( )⎟⎟
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1 .  Additional interpretation for these expressions follows. 

Consider the case of a fixed-term loan, 10 =Dr , so there is no revolving account 

balance. Expression (22) then becomes, 
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Proposition 2 in the appendix shows that  ( )αB
n
⎟
⎠
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⎛ 1  is an approximation for the portfolio’s 

LGD rate conditional on a realized value of the common factor, 
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Proposition 3 in the appendix shows as 0→Yρ , and ,∞→n the portfolio’s conditional LGD 

rate converges in probability to the expected value of an individual credit’s unconditional 

LGD distribution,  
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Thus, when individual losses in default are uncorrelated, expression (25) is an approximation 

for the expression,  

( ) ( ) ( ) ( )λ
ρ

αρ
α ~

1
|,~,~,~lim

11

..
1 E

PD
enYZV

V

V
saM

A
pn ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

Φ+Φ
Φ⎯⎯→⎯⎟

⎠
⎞⎜

⎝
⎛ Φ−=Λ

−−
−

∞→

rrr

.                   (28) 



 

 - 21 -

Proposition 4 in the appendix shows, as 1→Yρ  and ,∞→n  the asymptotic portfolio’s 

conditional LGD rate, ( ),1 αB
n
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⎜
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 represents an asymptotic portfolio’s LGD 

rate conditional on a common factor realization ( )α−Φ= − 11
Me , it follows that the 

probability density of the asymptotic portfolio’s LGD rate is defined by the implicit function, 
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The remaining term in expression (22), ( )⎟⎟
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for the conditional utilization rate relative to the asymptotic portfolio’s total committed line 

of credit. Assume each account’s LGD is constant equal to 0LGD , that each account has an 

initial drawn exposure, ,0 MDr and each account has the potential to take down up to 

( )MDr01− in additional credit from a remaining open line. Under these assumptions, 

expression (22) simplifies to, 
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Applying Proposition 2 to evaluate ( )αA
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When draw rate realizations are uncorrelated, Proposition 3 can be applied to show, 
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To summarize the interpretation of expression (22), an asymptotic portfolio’s loss rate 

consistent with a cumulative probability of α is the product of: (i)  the asymptotic portfolio’s 

conditional default rate distribution evaluated at ( )α−Φ= − 11
Me ; (ii) the asymptotic 

portfolio’s conditional total credit facility utilization rate distribution evaluated at 

( )α−Φ= − 11
Me ;  and, (iii) the asymptotic portfolio’s conditional loss rate given default rate 

distribution evaluated at ( )α−Φ= − 11
Me .  Expressions (23) and (24) are, respectively, step 
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function approximations for an asymptotic portfolio’s conditional draw rate and conditional 

loss rate given default.  

 

5.  EXAMPLES OF UNCONDITIONAL DRAW RATE AND LOSS GIVEN DEFAULT DISTRIBUTIONS  

In this section, the step function algorithm is applied to approximate three alternative 

unconditional distributions that could be used to represent distributions for either individual 

draw rates or LGD rates depending on the specific application. The three distributions are all 

members of the beta distribution family, but the beta parameters are selected so that one 

unconditional distribution is skewed right, one is symmetric, and one is skewed left.  The 

analysis demonstrates that both the skewness and the correlation of individual LGD and EAD 

distributions are important determinants of the shape of the asymptotic portfolio loss rate 

distribution. The description of the distributions is independent of what quantities they may 

represent, so to simplify the discussion we describe them as unconditional LGD distributions.   

 

Figure 1: Beta (1.6, 7) Distribution
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Example 1: Positively Skewed Distribution 

The first distribution is the Beta distribution with the first parameter (alpha) equal to 

1.6 and the second parameter (beta) equal to 7. The density function is,  

( )
( ) ( ) ( ) 10for,1

76.1
6.8),7,6.1(

)~,7,6.1(~~

66.0 <<−
ΓΓ

Γ
= λλλλ

λλ

Beta

Beta
               (31) 

( ) 0,
0

1 >=Γ ∫
∞

−− bdyeyb yb , is the mathematical gamma function. This unconditional 

distribution is skewed right and might represent the random draw rates on revolving 

corporate credits or the loss given default rates on wholesale bank loans or alt-A mortgages.  

The ( )λ~,7,6.1Beta  probability density is plotted in Figure 1. 

 Assume individual LGD rates are distributed ( )λ~,7,6.1Beta  and loss rates are driven by 

the single common factor specification described earlier. Figure 2 plots an asymptotic 

portfolio’s LGD distribution for alternative correlation assumptions assuming individual 

LGDs are distributed ( )λ~,7,6.1Beta . The asymptotic portfolio’s LGD distribution is 

approximated using the step function approach,  ( ) ( )( ) [ ]1,0,,1 1 ∈∀
⎭
⎬
⎫

⎩
⎨
⎧

Φ⎟
⎠
⎞

⎜
⎝
⎛ − ααφαB

n
, using 

.2500=n   

When individual credit loss rates are uncorrelated, the portfolio’s unconditional LGD 

distribution converges to ( )( ) .1862.0~,7,6.1 =λBetaE  As correlation among individual LGD 

realizations increases, the range of the portfolio LGD distribution increases and the 

distribution becomes increasingly positively skewed.  When the correlation among individual 
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credit’s LGDs is 1, there is no longer any ability to diversify LGD risk within the portfolio 

and, the asymptotic portfolio LGD distribution converges to the ( )λ~,7,6.1Beta  distribution.  

 

      

Figure 2: Asymptotic Portfolio Unconditional LGD or Draw Rate 
Distribution for Alternative Correlations when Individual Credits are 

Distributed Beta  (1.6, 7)

Correlation=.01

0
0.1
0.2
0.3
0.4
0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Correlation=.05

0
0.1
0.2
0.3
0.4
0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Correlation=.20

0
0.1
0.2
0.3
0.4
0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Correlation=.40

unconditional mean=0.186

 



 

 - 26 -

Consider the upper tail values of an asymptotic portfolio’s unconditional LGD 

distribution.  Let pλ
~  represent the asymptotic portfolio’s random LGD rate and ( )YpP ρλ ,

~
Θ  

represent its associated unconditional cumulative distribution function. The notation indicates 

that the asymptotic portfolio’s LGD distribution is determined in part by the correlation 

between realizations in individual credits’ loss rates. The loss rate consistent a cumulative 

probability of α  is, ( ) ( ) ( )( ).|~1lim, 11 αλαρα −
∞→

− Φ−===Θ MnYp eEB
n

 

Figure 3: Effect of Corrlation on Large Loss Realizations of an 
Asymptotic Portfolio LGD Distribution when Individual Credits are 

Distributed Beta (1.6,7)
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For a given cumulative probability α , as the correlation among individual credit’s 

LGD realizations increases, the magnitude of the asymptotic portfolio’s conditional LGD 

increases, or  alternatively, 
( )

.0
,1

>
∂

Θ∂ −

Y

Yp

ρ

ρα
 Figure 3 plots, for alternative coverage rates and 

correlation assumptions, the ratio, 
( )
( )p

Yp

E λ

ρα
~
,1−Θ

.  This ratio can be applied as a multiplier to 

correct the simple Vasicek model unexpected loss measure (calculated using the expected 
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value of the LGD distribution) for the systematic risk that arises from correlation in 

individual LGD distributions.   

Example 2: Negatively Skewed Distribution 

The second unconditional distribution considered is the Beta distribution with 

parameters alpha=4 and beta=1.1. This probability density is negatively skewed, 

( )
( ) ( ) ( ) 10for,1

1.14
1.5),7,6.1(

)~,1.1,4(~~

1.03 <<−
ΓΓ

Γ
= λλλπ

λλ

Beta

Beta

.                                  (32) 

This distribution might be representative of individual draw rates or LGD rates on sub-prime 

credit card accounts or other revolving retail credits. The ( )λ~,1.1,4Beta  density function is 

plotted in Figure 4. 

        Figure 4: Beta (4, 1.1) Distribution
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Figure 5 plots the asymptotic portfolio LGD distribution that is generated under 

different correlations assumptions when individual LGDs are distributed, ( )λλ ~,1.1,4~~ Beta .  

The unconditional portfolio LGD distribution is approximated using the step function 

approach with .2500=n  When individual LGD realizations are uncorrelated, LGD risk is 
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completely diversified and the asymptotic portfolio’s LGD distribution converges 

to ( )( ) 7845.0~,1.1,4 =λBetaE . As the correlation among obligors’ LGD rates increases, the 

asymptotic portfolio’s LGD distribution becomes increasingly negatively skewed, 

converging in the extreme to the ( )λ~,1.1,4Beta distribution for 1=Yρ  (not shown). 

For a given unexpected loss coverage rate ,α  ( )Yp ρα ,1−Θ  increases as the correlation 

increases, but not as dramatically as it does in the case of the ( )λ~,7,6.1Beta  distribution. As the 

correlation increases, ( )YpP ρλ ,
~

Θ  becomes more negatively skewed, and the negative skewness 

dampens the effect of an increase in correlation.  This relationship is illustrated in Figure 6 

where the ratio, ( )
( )p

Yp

E λ

ρα
~
,1−Θ , is plotted for alternative correlations.  A comparison of Figures 3 

and 6 will show that correlation has a much larger impact on the upper tail values of 

( )Yp ρα ,1−Θ  when individual LGD distributions are positively skewed.  
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Figure 5: Unconditional Asymptotic Portfolio LGD or Draw Rate 
Distribution for Alternative Correlations when Individual Credits are        

Distributed Beta  (4, 1.1)
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Figure 6: Effect of Corrlation on Large Loss Realizations of 
an Asymptotic Portfolio LGD Distribution when Individual 

Credits are Distributed Beta (4, 1.1)
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Figure 7: Beta  (7, 7) Distribution
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Example 3: Symmetric Distribution 

Example 3 is the Beta distribution with parameters alpha=7 and beta=7, 

 ( )
( ) ( ) ( ) 10for,1

77
14),7,7(

)~,7,7(~~

66 <<−
ΓΓ

Γ
= λλλλ

λλ

Beta

Beta
.                             (33) 
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This distribution is symmetric and might be representative of the distribution of LGD rates on 

investment grade corporate debt. The )~,7,7( λBeta density function is plotted in Figure 7. 

The relationship between correlation and upper tail values of the asymptotic 

portfolio’s LGD distribution, ( )Yp ρα ,1−Θ , is illustrated in Figure 8.  Figure 8 plots, for 

alternative cumulative probabilities and correlation assumptions, ( )
( )p

Yp

E λ

ρα
~
,1−Θ .  These implied 

multipliers are larger than those pictured in Figure 6, but smaller than those pictured in 

Figure 3 illustrating again the importance of interaction between the unconditional 

distribution’s skewness and the correlation among the Gaussian latent factors.  

Figure 8: Correlation Effects on the Conditional 
Expected Value of the Beta(7,7) Distribution
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Figure 9 plots, for different correlation assumptions, the unconditional asymptotic 

portfolio LGD distribution approximation ( 2500=n ) that is generated when LGDs are 

distributed ( )λλ ~,7,7~~ Beta . The distribution converges to ( )( ) 5.0~,7,7 =λBetaE  when 

individual LGD realizations are uncorrelated.  As the correlation increases, the range of the 
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asymptotic portfolio LGD distribution increases, and the portfolio LGD distribution 

converges to ( )λ~,7,7Beta as .1→Yρ    

 

Figure 9: Unconditional Asymptotic Portfolio LGD or Draw Rate 
Distribution for Alternative Correlations when Individual Credits are 

Distributed Beta  (7, 7)
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6. EXAMPLES OF ASYMPTOTIC PORTFOLIO UNCONDITIONAL LOSS RATE DISTRIBUTIONS  

In this section, we apply the step function algorithm to approximate the unconditional 

loss rate distributions for alternative asymptotic credit portfolios. The approximations are 

based on .2500=n  The examples are intended to resemble portfolios that include both fixed-

term loans and revolving credit facilities for both wholesale are retail credits.  

Published evidence on the shape and correlations of individual credits’ LGD and EAD 

distributions is limited. In the case EAD, few studies characterize the shape of exposure 

distributions and no study has attempted to estimate the strength of EAD correlation in a 

structural model.4 A larger number of studies focus on the distribution of LGD rates, but the 

evidence is still sparse and much of it is specialized to default rates for agency-rated credits.  

 Most studies investigating LGD correlation behavior investigate linear times series 

correlation estimates between observed default frequencies and default recovery rates. Only 

one study estimates a structural model LGD correlation parameter. Frye (2000b) estimates 

Yρ  to be about 20 percent for agency-rated bonds, but his estimate is based on a structural 

model that assumes that LGD distributions are symmetric. It seems likely that alternative 

specifications for LGD that include significant skew in the unconditional LGD distribution 

would produce more modest estimates of correlation, but such issues have yet to be studied. 

Also, as noted by Carey and Gordy (2004), most LGD correlation estimates have been 

                                                 
4 Araten and Jacobs (2001) provide simple descriptive statistics on a sample of Chase 
revolving facilities. Jiménez, Lopez and Saurina (2006) provide an aggregated histogram of 
all corporate EADs derived from the Spanish credit registry for all credit institution loans in 
excess of 6000 Euros over a period spanning 1984-2005. 
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derived from rating-agency bond data, and the correlations for different liability classes are 

likely to differ according to firm capital structure characteristics and the identity of important 

stakeholders, including the presence (or absence) of significant banking interests.  

A review of the publicly available literature suggests that the shape of individual 

unconditional LGD and EAD distributions as well as  the magnitudes of their correlations is 

an open issue. This study will not contribute to the calibration debate but instead will 

consider asymptotic portfolio loss rate distributions for a number of alternative 

parameterizations. 

Portfolio Loss Distribution Example 1: Portfolio of Term Loans 

 The first example is chosen to represent the portfolio loss rate distribution that may 

arise on a portfolio of term loans comprised of non investment-grade senior secured credits. 

Figure 10 plots the distribution of projected LGD rates on loans that receive a recovery rating 

by FitchRatings.5  A large share of the FitchRatings sample of credits are secured first-lien 

loans which in part explains the favorable recovery rate distribution. This forward-looking 

LGD rate distribution is not conditioned on any realized state of the economy and so it 

proxies for an unconditional LGD distribution. 

The distribution in Figure 10, while not very granular, is broadly similar to 

the ( )λ,7,6.1Beta  distribution we will use to represent the LGD distribution for individual 

secured first-lien loans. To construct the asymptotic portfolio loss rate distribution for this 

class of exposures, we assume that all loans are fully drawn (EAD=1) and individual credits 

have an unconditional probability of default of 0.5 percent. The default correlation parameter 
                                                 
5 Figure 10 is constructed from information provided in FitchRatings (2006). 
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is set at 20 percent ( )20.0=Vρ  to reflect the wholesale nature of these credits and the 

calibration used in the Basel AIRB capital framework.  

Figure 10: Projected LGD Distribution Loans Rated by 
FitchRatings
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The asymptotic portfolio loss distribution is plotted for different LGD correlation 

assumptions in Figure 11.  The alternative panels in Figure 11 clearly highlight the 

importance of systematic risk in recovery rates. As the correlation between individual credit 

LGD rates increases, the skewness of the asymptotic portfolio’s loss rate distribution 

increases markedly. As correlation increases from 0 to 10 percent, the 99.5 percent critical 

value of the portfolio loss rate distribution increases by almost 60 percent. When individual 

LGD correlations are 20 percent, the portfolio 99.5 percent loss-coverage rate is about 87.5 

percent larger than the estimate produced by the simple Vasicek ASRF formula (from the top 

panel of Figure 11) that assumes uncorrelated LGDs. 

Portfolio Loss Distribution Example 2: Portfolio of Revolving Senior Unsecured Credits  

The second example is chosen to represent the loss rate distribution of an asymptotic 

portfolio of revolving senior unsecured bank loans made to investment-grade obligors. The 

example assumes that portfolio obligors begin the period with a 30 percent facility utilization 

rate and draw on their remaining credit line over the subsequent period. Because these are 



 

 - 36 -

wholesale credits, we use the Basel II default correlation assumption, .20.0=Vρ  We 

examine the shape of an asymptotic portfolio loss rate distribution under alternative 

correlations assumptions for LGD and EAD. 

 

Figure 11: Asymptotic Portfolio Loss Rate Distributions for 
Fixed EAD U nder Alternative Corrlation Assumptions.       
Individual Credits have PD =0.5% and Unconditional 

LGD s~Beta(1.6,7).
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Figure 12: Asymptotic Portfolio Loss Rate Distributions for Alternative Corrlations. 
Individual Credits have PD=0.25%, 30% Initial Utilization, and 70% Revolving 

Balances, with Unconditional Draw Rates~Beta (1.6,7) and Unconditional 
LGDs~Beta (7,7).
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Altman (2006, Table 2) reports data that suggests that the historical loss rate 

distribution on senior unsecured bank loans is very close to symmetric, with an average loss 

rate of about 50 percent and a standard deviation of about 25 percent. The ( )λ,7,7Beta   

distribution provides a close approximation to this LGD distribution. Araten and Jacobs 
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(2001, Table1) estimate for the Chase data they examine, a BBB+/BBB- rated credit has, on 

average, about a 55 percent loan equivalent value 1-year prior to default. We are not aware of 

any study that further characterizes the exposure distribution on these types of facilities, but 

the assumption of an initial utilization rate of 30 percent and a ( )λ,7,6.1Beta draw rate 

distribution matches both the mean of the Araten and Jacobs EAD data and conventional 

wisdom that suggests that bankers are at least partially successful at limiting takedowns by 

distressed obligors. We assume an unconditional default rate of 0.25 percent. 

Figure 12 plots estimates of the asymptotic portfolio loss rate distribution under 

alternative assumptions for LGD and EAD correlations. The panels in Figure 12 show that 

correlation in individual credit LGD and EAD distributions has a large effect of on the tails of 

the portfolio’s credit loss distribution. As correlation in EADs and LGDs increases from 0 to 

10 percent (0 to 20 percent), the loss value associated with a 99.5 percent cumulative 

probability increases by 43 percent (64 percent).  

Portfolio Loss Distribution Example 3: Sub-Prime Customer Credit Card Portfolio 

This example is intended to mimic a sub-prime credit card portfolio. Unlike the 

earlier examples, we are unable to reference a published study to anchor our choice of 

distributional assumptions. Individual accounts are assumed to have an unconditional 

probability of default of 4 percent, and default correlations are assumed to be 4 percent, 

consistent with the Basel AIRB treatment of qualified retail exposures. Customers are 

assumed to begin the period with a 20 percent credit limit utilization. They are assumed to 

draw on the remaining 80 percent of their credit limit randomly, with their draw rate modeled 
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using the ( )λ,1.1,4Beta  distribution.  Because these are unsecured credits, recovery rates are 

low. We model account LGDs using the ( )λ,1.1,4Beta  distribution. 

Figure 13: Asymptotic Portfolio Loss Rate Distributions for Alternative Corrlations. 
Individual Credits have PD=4%, 20% Initial Utilization, and 80% Revolving 

Balance, with Unconditional Draw Rates~Beta (4,1.1,l) and Unconditional 
LGDs~Beta (4,1.1,l).
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Figure 13 plots estimates of the asymptotic portfolio’s loss rate distribution under 

alternative assumptions for LGD and EAD correlations. Unlike the earlier two examples, the 

panels in Figure 13 show that correlation in individual credit LGD and EAD distributions has 

a relatively minor effect on the tails of the portfolio’s credit loss distribution. As correlation 

in EADs and LGDs increases from 0 to 10 percent (0 to 20 percent), the loss value associated 

with a 99.5 percent cumulative probability increases by only 26 percent (35 percent).   

 

7. CONCLUSIONS 

This paper has developed a tractable generalization of the single common factor 

portfolio credit loss model that includes correlated stochastic exposures and loss rates. The 

model uses a step function to approximate LGD and EAD distributions and a generalization 

of the latent factor framework of Vasicek to model correlations. The new model does not 

restrict EAD or LGD distributions or their correlations. The model produces a closed-form 

approximation for a portfolio’s inverse cumulative conditional loss rate that is used to 

calculate unconditional portfolio loss rate distributions and expressions that can be used to 

calculate economic capital allocations. Portfolio loss rate distributions are estimated for 

stylized representations of alternative wholesale and retail portfolios.  The results show that 

the additional systematic risk created by positive correlation in EAD and LGD distributions 

increases the skewness of an asymptotic portfolio’s loss rate distribution increasing the 

measured risk of loss in lower tranches of CDOs and securitizations and mandating the need 

for larger economic capital allocations relative to those calculated using the Vasicek model. 
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