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Abstract

Two main axiomatically based risk measures are the coherent risk measure, which as-
sumes subadditivity for random variables, and the insurance risk measure, which assumes
additivity for comonotonic random variables. We propose a new, data based, risk measure,
called natural risk statistic, that is characterized by a new set of axioms. The new axioms
only require subadditivity for comonotonic random variables, which is consistent with the
prospect theory in psychology. Comparing to two previous measures, the natural risk sta-
tistic includes the tail conditional median which is more robust than the tail conditional
expectation suggested by the coherent risk measure; and, unlike insurance risk measures,
the natural risk statistics can also incorporate scenario analysis. The natural risk statistic
includes the VaR as a special case and therefore shows that VaR, though simple, is not
irrational.
Keywords: Risk measure, tail conditional expectation, tail conditional median, value

at risk, quantile, robust statistics, L-statistics

1 Introduction

Broadly speaking a risk measure attempts to assign a single numerical value to the potential

random financial loss. Obviously, it can be problematic in using one number to summarize the

whole statistical distribution of the financial loss. Therefore, one shall avoid doing this if it is

at all possible. However, in many cases there is no alternative choice. Examples of such cases

include margin requirements in financial trading, insurance risk premiums, and government

regulatory deposit requirements, such as Basel Accord [5, 6, 7] for banking regulation. Conse-

quently, how to design a good risk measure becomes a problem of great practical importance,

and is essential to financial and insurance industries as well as to the regulators.

There are two main approaches in the literature, the coherent risk measure suggested by

Artzner et al. [3] and the insurance risk measure in Wang et al. [24]. In the coherent risk

measure, one first chooses a set of scenarios (different probability measures) and then compute
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the coherent risk measure as the maximal expectation of the loss under these scenarios. In

the insurance risk measure, one fixes a distorted probability and then compute the insurance

risk measure as the expectation with respect to one distorted probability. Both approaches are

axiomatic, meaning that some axioms are postulated first, and all the risk measures satisfying

the axioms are then identified.

Of course, once some axioms are set, there is room left to evaluate the axioms to see whether

the axioms are reasonable for one’s particular needs, and, if not, one should discuss possible

alternative axioms. In particular, the subadditivity axiom in the coherent risk measure has

been criticized by Daníelsson et al. [9] from a viewpoint of tail distribution, and by Dhaene et

al. [11], Dhaene et al. [12] from regulatory and merger viewpoints.

In this paper we complement the previous approaches of coherent and insurance risk mea-

sures by postulating a different set of axioms. The resulting risk measures are fully characterized

in the paper. More precisely, the contribution of the current paper is sixfold.

(1) We give more reasons on why a different set of axioms is needed: (a) In addition to

reviewing the critiques of subadditivity in [9], [11], [12], we point out some new critiques from

psychological and robustness viewpoints. See Section 3. (b) The main drawback of insurance

risk measure is that it does not incorporate scenario analysis; i.e. unlike the coherent risk

measure, the insurance risk measure chooses a (distorted) probability measure, and does not

allow one to compare different distorted probability measures. See Section 2. (c) What is missed

in both coherent and insurance risk measures is the consideration of data. Our approach is based

on data (either observed or simulated or both) rather than on hypothetical distributions.

(2) A different set of axioms based on data and comonotonic subadditivity is postulated in

Section 4, resulting in the definition of natural risk statistic. A complete characterization of the

natural risk statistics is given in Theorem 1.

(3) An alternative characterization of the natural risk statistic based on statistical accep-

tance sets is given in Section 5.

(4) VaR or quantile is among the most widely used risk measures in practice (see, e.g. the

Basil Accord). However the coherent risk measure rule out the use of VaR. In Section 6 we

show that the natural risk statistic gives an axiomatic justification to the use of VaR.

(5) Unlike the insurance risk measures, we show in Section 6 that the natural risk statistic

can incorporate scenario analysis by putting different weights on the sample order statistics.

(6) We point out in Section 7 that the natural risk statistic includes the tail conditional

median as a special case, which leads to more robust measures of risk than that of the tail
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conditional mean suggest by the coherent risk measure.

The mathematical difficulty of the current paper lies in the proof of Theorem 1. Unlike

in the case of coherent risk measures, one cannot use the results in Huber [18] directly. This

is because we only require comonotonic subadditivity, and the comonotonic sets are not open

sets. Therefore, one has to be careful in applying the theorem of separating hyperplanes. Also

we need to show that the weights are negative and add up to one.

2 Review of Two Risk Measures

2.1 Coherent Risk Measure

Let Ω be the set of all possible states and X be the set of all the random financial losses defined

on Ω. Then a risk measure is a mapping from X to R.
In Artzner et al. [3] a risk measure ρ is called a coherent risk measure, if it satisfies the

following three axioms:

Axiom A1. Translation invariance and positive homogeneity:

ρ(aX + b) = aρ(X) + b, ∀a ≥ 0, b ∈ R.

Axiom A2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y almost surely.

Axiom A3. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), for any X,Y ∈ X .
Axiom A1 states that the risk of a financial position is proportional to the size of the position

and that a sure loss of amount b simply increases the risk by b. Axiom A2 is a minimum

requirement for a reasonable risk measure. What is controversial lies in the subadditivity

requirement in Axiom A3, which basically means that “a merger does not create extra risk”

([3], p. 209). We will discuss the controversies related to this axiom in Section 3.

If Ω has finite number of elements, Artzner et al. [3] showed that a risk measure ρ is coherent

if and only if there exists a family P of probability measures on Ω, such that

ρ(X) = sup
P∈P

{EP [X]},∀X ∈ X ,

where EP [X] is the expectation of X under the probability measure P . Therefore, if Ω has finite

number of elements, then a coherent risk measure amounts to computing maximal expectation

under different scenarios (different P ’s), thus justifying scenarios analysis used in practise. Also

if Ω has finite number of elements, then Artzner et al. [3] also presented an equivalent approach

of defining the coherent risk measure through the specification of acceptance sets, the sets of

financial positions accepted by regulators or investors.
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The coherent risk measure gives an axiomatic justification to the use of the “SPAN” system

in calculating initial portfolio margin requirements at the Chicago Mercantile Exchange (see [8]).

SPAN essentially defines a margin requirement as the maximal expected loss of the portfolio

under 14 pre-specified scenarios.

However, from a practical viewpoint, a main drawback of the coherent risk measure is that

it rules out the use of quantiles as risk measures, as it only includes expectations. One of

the most widely used risk measures for regulators and internal risk management in banks is

Value-at-Risk, or VaR for short, which is nothing but a quantile at some pre-defined probability

level. More precisely, Given α ∈ (0, 1), the value-at-risk VaRα at level α of the loss variable X

is defined as the α-quantile of X, i.e.,

VaRα(X) = min{x | P (X ≤ x) ≥ α}. (1)

For example the banking regulation “Basil Accord” specifies a risk measure as VaR at 99

percentile.

Therefore, the very fact that coherent risk measures exclude VaR and quantiles post a

serious inconsistency between the academic theory and industrial practise. The main reason

of this inconsistency is due to the subadditivity in Axiom A3, which is a controversial axiom,

as we will explain in Section 3. By relaxing this axiom and requiring subadditivity only for

comonotonic random variables, we are able to find a new set of axioms in Section 4 which will

include VaR and quantiles, thus eliminating this inconsistency.

2.2 Insurance Risk Measure

Insurance risk premiums can also be viewed risk measures, as they aim at using one numerical

number to summarize future random financial losses. Wang et al. [24] proposed four axioms

to characterize insurance risk premiums. More precisely, a risk measure ρ is said to be an

insurance risk measure if it satisfies the following four axioms.

Axiom C1. Conditional state independence: ρ(X) = ρ(Y ), if X and Y have the same

distribution. This means that the risk of a position is determined only by the loss distribution.

Axiom C2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y almost surely.

Axiom C3. Comonotonic additivity:

ρ(X + Y ) = ρ(X) + ρ(Y ), if X and Y are comonotonic,

where random variables X and Y are comonotonic if and only if

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0
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holds almost surely for ω1 and ω2 in Ω.

Axiom C4. Continuity:

lim
d→0

ρ((X − d)+) = ρ(X+), lim
d→∞

ρ(min(X,d)) = ρ(X), lim
d→−∞

ρ(max(X,d)) = ρ(X),

where (X − d)+ = max(X − d, 0).
The notion of comonotonic random variables in axiom C3 is discussed by Schmeidler [25],

Yaari [29] and Denneberg [10]. If two random variables X and Y are comonotonic, then X(ω)

and Y (ω) always move in the same direction as the state ω changes. Wang et al. [24] imposed

axiom C3 based on the argument that the comonotonic random variables do not hedge against

each other, leading to the additivity of the risks. However, this is only true if one focuses on

one scenario. Indeed, if one have multiple scenarios, then the counterexample at the end of

Section 6 will show that comonotonic additivity fail to hold.

Wang et al. [24] proved that if X contains all the Bernoulli(p) random variables, 0 ≤ p ≤ 1,
then risk measure ρ satisfies axioms C1-C4 and ρ(1) = 1 if and only if ρ has a Choquet integral

representation with respect to a distorted probability

ρ(X) =

Z
Xd(g ◦ P ) =

Z 0

−∞
(g(P (X > t))− 1)dt+

Z ∞

0
g(P (X > t))dt, (2)

where g(·) is called the distortion function which is nondecreasing with g(0) = 0 and g(1) = 1,
and g ◦P (A) := g(P (A)) is called the distorted probability. The detailed discussion of Choquet
integration can be found in Denneberg [10].

It should be emphasized that VaR satisfies the axioms C1-C4 (see Corollary 4.6 in Denneberg

[10] for a proof that VaR satisfying axiom C4) and henceforth is an insurance risk measure.

But VaR is not a coherent risk measure, because it may not satisfy subadditivity (see [3]). In

general, the insurance risk measure in (2 does not satisfy subadditivity, unless the distortion

function g(·) is concave (see Denneberg [10]).
A main drawback of insurance risk measure is that it does not incorporate scenario analysis.

More precisely, unlike the coherent risk measure, the insurance risk measure chooses a fixed

distortion function g and a fixed probability measure P , and does not allow one to compare

different measures within a family P of probability measures. This is inconsistent with industrial
practices, as people generate different scenarios to get a suitable risk measure.

The main reason that the insurance risk measure rules out scenario analysis is that it

requires comonotonic additivity. The counterexample at the end of Section 6 shows that even for

comonotonic random variables, with different scenarios we may get strict subadditivity rather
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than additivity. In our new approach in Section 4 we shall require comonotonic subadditivity

instead of comonotonic additivity.

Remark: What is missing in both coherent and insurance risk measures is the consideration

of data. Our approach in Section 4 is based on data (either observed or simulated or both)

rather than on hypothetical distributions.

3 Is Subadditivity too Restrictive?

3.1 Review of Existing Critiques

3.1.1 Tail Subadditivity of VaR

VaR has been criticized because of its lack of subadditivity, except for elliptically distributed

random vectors (see Embrechts et al. [14]). In fact, if Z = (Z1, . . . , Zn) is an n-dimensional

random vector with an elliptical distribution, then for any two linear portfolio X =
Pn
i=1 aiZi

and Y =
Pn
i=1 biZi, ai, bi ∈ R, the subadditivity holds: VaRα(X + Y ) ≤VaRα(X)+VaRα(Y ).

Although in the center of the distributions VaR may violate the subadditivity, in practice

VaR is mostly used in tail regions. In an interesting paper Daníelsson et al. [9] showed that

VaR is subadditive in the tail regions, provided that the tails are not too fat. More precisely,

they proved that: (1) If X and Y are two asset returns having jointly regularly varying non-

degenerate tails with tail index bigger than one, then there exists α0 ∈ (0, 1), such that

VaRα(X + Y ) ≤ VaRα(X) +VaRα(Y ),∀α ∈ (α0, 1).

(2) If the tail index of the X and Y are different, then a weaker form of tail subadditivity holds

lim sup
α→1

VaRα(X + Y )

VaRα(X) +VaRα(Y )
≤ 1.

Asset returns with tail index less than one have very fat tails; they are hard to find and easy to

identify, and Daníelsson et al. [9] argued that they can be treated as special cases in financial

modeling.

According to the Basel Accord, 99% VaR is the primary risk measurement tool for determin-

ing capital charges against market risk. Daníelsson et al. [9] also carried out simulations which

show that VaRα is indeed subadditive when α ∈ [95%, 99%] for most practical applications.

3.1.2 Critique from the Viewpoint of Regulator

For a risky business like an insurance company with potential loss X, regulators impose a

solvency capital requirement ρ(X) on the company to protect the insurance policyholder from
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insolvency, where ρ is a risk measure. In other words, the company has to hold the capital ρ(X)

in order to pay out the claims from the policyholders. The shortfall of a portfolio with loss X

and solvency capital requirement ρ(X) is therefore max(0,X − ρ(X)) = (X − ρ(X))+, which is

the part of the loss that cannot be covered by the insurer.

Dhaene et al. [11] suggested that from the point of view of the regulator, a merger of two

portfolios X and Y should decrease the shortfall, i.e.

(X + Y − ρ(X + Y ))+ ≤ (X − ρ(X))+ + (Y − ρ(Y ))+

However, Dhaene et al. [11] showed that this condition implies superaddivitivity not subadditiv-

ity ; and they also show that even the weaker requirement

E[(X + Y − ρ(X + Y ))+] ≤ E[(X − ρ(X))+] +E[(Y − ρ(Y ))+]

is violated by coherent risk measures, such as the tail conditional expectation.

3.1.3 Critique from the Merger Viewpoint

Subadditivity basically means that “a merger does not create extra risk” ([3], p. 209). However,

Dhaene et al. [12] pointed out that many times merger may increase risk, particularly due to

bankruptcy protections for each firms. For example, it is better to split a risky trading business

into a separate sub-firm. This way, even if the loss from a sub-firm is enormous, the parent firm

can simply let the sub-firm go bankrupt, thus confining the loss to that one sub-firm. Therefore,

creating sub-firms may incur less losses compared to the situation that the parent firm does

not split into sub-firms. In this sense merger may increase firm risk.

The famous example of the collapse of Britain’s Barings Bank (which has a long operating

history and even helped finance the Louisiana Purchase by the United States in 1802) in Feb-

ruary 1995 due to the failure of a single trader, Nick Leeson, in Singapore clearly indicates that

merger may increase risk. Had Barings Bank set up a separate firm for its Singapore unit, the

bankruptcy in that unit would not have sink the entire bank.

3.2 Two New Critiques

3.2.1 Critique from the Psychological Theory of Uncertainty and Risk

Risk measures have a close connection with the psychological theory of people’s preference

of uncertainties and risk. By the late 1970’s, psychologists and economists have discovered

many preference anomalies in which rational people may systematically violate the axioms of
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the expected utility theory. In particular, Kahneman and Tversky [19] proposed a model of

choice under uncertainty called the “prospect theory” which departed from the expected utility

model, leading to a Nobel prize in Economics. The theory has been further developed by many

people, including the contributions from Kahneman and Tversky [27], Tversky and Wakker

[28], Quiggin [21], Schmeidler [25], [26] and Yaari [29] on using comonotonic random variables

in prospect theory. Their models are also referred to as “anticipated utility”, “rank-dependent

models” and “Choquet expected utility”.

The prospect theory postulates that (a) it is better to impose preference on comonotonic

random variables rather than on arbitrary random variables; and (b) people evaluate uncertain

prospects using “decision weights” that may be viewed as distorted probabilities of outcomes.

The theory can explain a variety of preference anomalies including the Allais and Ellsberg

paradoxes.

Here is a simple example, by modifying a similar one in Schmeidler [26], that illustrates that

risk associated with non-comonotonic random variables may violate subadditivity, because of

Ellsberg’s paradox.

Suppose there are two urns I and II. Urn I contains 50 black balls and 50 white balls, while

Urn II has unknown number of red and green balls. Let IB be the event that a ball drawn from

Urn I is black, and let IW, IIR, IIG be defined similarly. The participates in the experiment

are asked about their judgements of risk preference of losing 10,000 if one of the four events

IB, IW, IIR, IIG happens. Then almost all participates seem to agree that the risk of IB and

IW should be the same, and so does IIR and IIG. Furthermore, if we assign 10,000 as a risk

measure for the sure loss of 10,000 with probability one, then people will have no problem

accepting that the risk measures for IB and IW are all equal to 5,000. However, the paradox is

that for a significant number of rational participates (for example people who know calculus,

etc.), due to uncertainty in Urn II and people’s attitude towards large loss (p. 298 in Tversky

and Kahneman [27]), they will prefer the loss of 10,000 associated with the event IIR over that

with the event IB, and the event IIG over IW.

In other words, these rational participates view the risk of loss associated with IIR to be

smaller than that with IB, and similarly for IIG and IW. Mathematically we have

ρ(IB) > ρ(IIR), ρ(IW ) > ρ(IIG), ρ(IB) = 5000, ρ(IW ) = 5000.

But IIR ∪ IIG corresponds a sure loss of 10,000, which leads to that

ρ(IIR ∪ IIG) = ρ(10, 000) = 10, 000 = ρ(IB) + ρ(IW ) > ρ(IIR) + ρ(IIG), (3)
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violating the subadditivity. Clearly the random losses associated with IIR and IIG are not

comonotonic. Therefore, this example shows that non-comonotonic random variables may not

have subadditivity.

Schmeidler [26] attributes this phenomena, such as the inequality in (3), to the difference

between randomness and uncertainty, and further postulates that even for rational decision

makers their subjective probabilities may not add up to one, due to uncertainty. Schmeidler [26]

also indicated that risk preference for comonotonic random variables are easier to justified than

the risk preference for arbitrary random variables

Following the prospect theory, we think it may be appropriate to relax the subadditivity

to comonotonic subadditivity. In other words, we impose ρ(X + Y ) ≤ ρ(X) + ρ(Y ) only for

comonotonic random variables X and Y .

The insurance risk measure imposes comonotonic additivity in axiom C3 based on the

argument that comonotonic losses have no hedge effect against each other. However, this

intuition only holds when one focuses only on one scenario or one distorted probability. The

counterexample at the end of Section 6 shows that if one incorporates different scenarios, then

additivity may not hold even for comonotonic random variables. Hence, the comonotonic

additivity condition in Axiom C3 may be too restrictive and its relaxation to comonotonic

subadditivity may be a better choice.

3.2.2 Critique from the Robustness Viewpoint

When a regulator imposes a risk measure based on either probabilistic models of the loss

or historical data of the loss, the risk measure must be unambiguous, stable, and must give

consistent answers. Otherwise, different firms using different models may report very different

risk measures to the regulator, and the risk measures may also fluctuate dramatically when

firms update their historical database. In short, from a regulator viewpoint, the risk measure

should demonstrate robustness with respect to underlying models or updating of historical data,

in order to enforce the regulation and to maintain the stability of the regulation.

The robustness of the coherent risk measure is questionable:

(1) The coherent risk measure suggests to use tail expectations to compute risk measures,

and tail expectations may be sensitive to model assumptions of heaviness of tail distributions,

which is a controversial subject. For example, although it is accepted that real returns data

has tails heavier than those of normal distribution, one school of thought believes tails to be

exponential type (e.g. [13] [4]) and another believes power-type tails (e.g. [22]).
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Heyde and Kou [17] shows that it is very difficult to distinguish between exponential-type

and power-type tails with 5,000 observations (about 20 years of daily observations). This is

mainly because the quantiles of exponential-type distributions and power-type distributions may

overlap. For example, surprisingly, an exponential distribution has larger 99 percentile than the

corresponding t-distribution with degree of freedom 5. Therefore, with ordinary sample data

(e.g. 20 years of daily data), one cannot easily identify exact tail behavior from data. Therefore,

the tail behavior may be a subjective issue depending on people’s modeling preference.

We show in Section 7 that the tail conditional expectation, a widely used coherent risk

measures, is sensitive to the assumption on the tail behavior of the loss distribution.

(2) Some risk measures may be coherent, satisfying subadditivity, but not robust at all.

A simple example is the sample maxima. More precisely, given a set of observations x̃ =

(x1, . . . , xn) from a loss random variable X, let (x(1), . . . , x(n)) denote the order statistics of

the data x̃ with x(n) being the largest. Then x(n) is a coherent risk measure, as it satisfies

subadditivity. However, the maximum loss x(n) is not robust at all, and is quite sensitive to

both outliers and model assumptions.

More generally, let w̃0 = (w01, . . . , w
0
n) ∈ Rn be a weight with 0 ≤ w01 ≤ w02 ≤ · · · ≤ w̃0n

and
Pn
i=1w

0
i = 1. Then the risk measure ρ̂(x̃) =

Pn
i=1w

0
i x(i) is an empirically coherent risk

measure satisfying subadditivity, as will be shown in Section 6. However, since this risk measure

puts larger weights on larger observations, it is obviously not robust with respect to outliers in

the data and model assumptions. We will discuss the issue of robustness in detail in Section 7.

4 Natural Risk Statistic and its Representation

4.1 The Axioms and the Representation

In this section we shall propose a new measure of risk based on data. Suppose we have a

collection of data observation x̃ = (x1, x2, ...xn) ∈ Rn on the random variable X. The collection
x̃ may be a set of empirical data observations from X, or a set of simulated data observation

regarding (subjective) possible outcomes of X from a given model, or a combination of the

two. Our risk measure, call natural risk statistic, is based on the data x̃. More precisely, a risk

statistic ρ̂ is a mapping from the data in n to a numerical value in R.
Remark: In the setting of the coherent risk measure, Ω has to be finite and consequently

the random variable X has to be discrete. In our setting of risk statistic, X can be any random

variable, discrete or continuous. What we need is a set of data observation (could be empirical
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or subjective or both) x̃ = (x1, x2, ..., xn) ∈ Rn from X.

Next we shall introduce a set of axioms for ρ̂.

Axiom D1. Positive homogeneity and translation invariance:

ρ̂(ax̃+ b1) = aρ̂(x̃) + b, ∀x̃ ∈ Rn, a ≥ 0, b ∈ R,

where 1 = (1, 1, ..., 1)T ∈ Rn.
Axiom D2. Monotonicity:

ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ,

where x̃ ≤ ỹ if and only if xi ≤ yi, i = 1, . . . , n.
The above two axioms have been proposed for the coherent risk measure. Here we simply

adapted them to the case of risk statistic. Note that Axiom D1 yields

ρ̂(0 · 1) = 0, ρ̂(b1) = b, b ∈ R,

Also Axioms D1 and D2 imply the continuity of ρ̂. Indeed, suppose ρ̂ satisfies Axioms D1

and D2. Then for any x̃ ∈ Rn, ε > 0, and ỹ satisfying |yi − xi| < ε, i = 1, . . . , n, we have

x̃− ε1 < ỹ < x̃+ ε1. By the monotonicity in Axiom D2, we have ρ̂(x̃− ε1) ≤ ρ̂(ỹ) ≤ ρ̂(x̃+ ε1).

Applying Axiom D1, the inequality further becomes ρ̂(x̃)−ε ≤ ρ̂(ỹ) ≤ ρ̂(x̃)+ε, which establishes

the continuity of ρ̂.

Axiom D3. Comonotonic subadditivity:

ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), if x̃ and ỹ are comonotonic,

where x̃ and ỹ are comonotonic if and only if (xi − xj)(yi − yj) ≥ 0, for any i 6= j.
In Axiom D.3 we relax the subadditivity requirement in the coherent risk measure so that

the axiom is only enforced for comonotonic data. This also relaxes the comonotonic additivity

requirement in the insurance risk measure. Comonotonic subadditivity is consistent with the

prospect theory of risk in psychology, as we only specify our preference among comonotonic

random variables.

Axiom D4. Permutation invariance:

ρ̂((x1, . . . , xn)) = ρ̂((xi1 , . . . , xin)), for any permutation (i1, . . . , in).

This axiom is postulated because we focus on risk measures of a single random variable X

with data observation x̃. In other words, just like the coherent risk measure and insurance risk

measure, here we discuss static risk measures rather than dynamic risk measures.
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Definition 1. A risk statistic ρ̂ : Rn → R is called a natural risk statistic if it satisfies

Axioms D1-D4.

The following representation theorem for natural risk statistic is a main result of the current

paper.

Theorem 1. Let x(1), ..., x(n) be the order statistics of the observation x̃ with x(n) being

the largest. Then ρ̂ is a natural risk statistic if and only if there exists a set of weights W =

{w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈ W satisfying
Pn
i=1wi = 1 and wi ≥ 0,∀1 ≤ i ≤ n,

such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn. (4)

The main difficulty in proving Theorem 1 is the “only if” part. Axiom D3 implies that

the functional ρ̂ satisfies subadditivity on comonotonic sets of Rn, for example, on the set
B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}. However, unlike in the case of the coherent risk measure,
the existence of the set of weights W such that (4) holds does not follow easily from the proof

in Huber [18]. The main difference here is that the comonotonic set B is not an open set in
Rn. The boundary points may not have nice properties as the interior points do. We have to
treat boundary points with more efforts. In particular, one should be cautious when using the

results of separating hyperplanes. Furthermore, we have to spend some effort in Lemma 2 to

show that

wi ≥ 0,∀1 ≤ i ≤ n.

4.2 Proof of Theorem 1

The proof relies on the following two Lemmas, which depend heavily on the properties of interior

points. Therefore, we can only show that they are true for the interior points of B. The results
for boundary points will be obtained by approximating the boundary points by the interior

points, and by employing continuity and uniform convergency.

Lemma 1. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}, and denote Bo to be the interior of
B. For any fixed z̃ = (z1, . . . , zn) ∈ Bo and any ρ̂ satisfying Axioms D1-D4 and ρ̂(z̃) = 1 there

exists a weight w̃ = (w1, . . . , wn) such that the linear functional λ(x̃) :=
Pn
i=1wixi, satisfies

λ(z̃) = 1, (5)

λ(x̃) < 1 for all x̃ such that x̃ ∈ B and ρ̂(x̃) < 1. (6)

Proof. Let U = {x̃ | ρ̂(x̃) < 1} ∩ B. Since x̃, ỹ ∈ B, we know that x̃ and ỹ are comonotonic,
Axioms D1 and D3 imply that U is convex, and, therefore, the closure Ū of U is also convex.

12



For any ε > 0, since ρ̂(z̃ − ε1) = ρ̂(z̃) − ε = 1 − ε < 1, it follows that z̃ − ε1 ∈ U .
Since z̃ − ε1 tends to z̃ as ε ↓ 0, we know that z̃ is a boundary point of U because ρ̂(z̃) = 1.

Therefore, there exists a supporting hyperplane for Ū at z̃, i.e., there exists a nonzero vector

w̃ = (w1, . . . , wn) ∈ Rn such that λ(x̃) :=
Pn
i=1wixi satisfies λ(x̃) ≤ λ(z̃) for all x̃ ∈ Ū . In

particular, we have

λ(x̃) ≤ λ(z̃),∀x̃ ∈ U. (7)

We shall show that the strict inequality holds in (7). Suppose, by contradiction, that there

exists x̃0 ∈ U such that λ(x̃0) = λ(z̃). For any α ∈ (0, 1), let x̃α = αz̃ + (1 − α)x̃0. Then we

have

λ(x̃α) = αλ(z̃) + (1− α)λ(x̃0) = λ(z̃) (8)

In addition, since z̃ and x̃0 are comonotonic (as they all belong to B) we have

ρ̂(x̃α) ≤ αρ̂(z̃) + (1− α)ρ̂(x̃0) < α+ (1− α) = 1, ∀α ∈ (0, 1). (9)

Since z̃ ∈ Bo, it follows that there exists a small enough α0 ∈ (0, 1) such that x̃α0 is also an
interior point of B. Hence, for all small enough ε > 0,

x̃α0 + εw̃ ∈ B. (10)

With wmax = max(w1, w2, ..., wn), we have x̃α0 + εw̃ ≤ x̃α0 + εwmax1. Thus, the monotonicity

in Axiom D2 and translation invariance in Axiom D1 yield

ρ̂(x̃α0 + εw̃) ≤ ρ̂(x̃α0 + εwmax1) = ρ̂(x̃α0) + εwmax. (11)

Since ρ̂(x̃α0) < 1 via (9), we have by (11) and (10) that for all small enough ε > 0,

ρ̂(x̃α0 + εw̃) < 1, x̃α0 + εw̃ ∈ U.

Hence, (7) implies λ(x̃α0 + εw̃) ≤ λ(z̃). However, we have, by (8), an opposite inequality

λ(x̃α0 + εw̃) = λ(x̃α0) + ε|w̃|2 > λ(x̃α0) = λ(z̃), leading to a contradiction. In summary, we

have shown that

λ(x̃) < λ(z̃),∀x̃ ∈ U. (12)

Since ρ̂(0) = 0, we have 0 ∈ U . Letting x̃ = 0 in (12) yields λ(z̃) > 0. So we can re-scale λ
such that

λ(z̃) = 1 = ρ̂(z̃).
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Thus, (12) becomes

λ(x̃) < 1 for all x̃ such that x̃ ∈ B and ρ̂(x̃) < 1,

from which (6) holds. ¤
Lemma 2. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}, and denote Bo to be the interior of B.

For any fixed z̃ = (z1, . . . , zn) ∈ Bo and any ρ̂ satisfying Axioms D1-D4, there exists a weight

w̃ = (w1, . . . , wn) such that

nX
i=1

wi = 1, (13)

wk ≥ 0, k = 1, . . . , n, (14)

ρ̂(x̃) ≥
nX
i=1

wixi, for ∀x̃ ∈ B, and ρ̂(z̃) =
nX
i=1

wizi. (15)

Proof. We will show this by considering three cases.

Case 1: ρ̂(z̃) = 1.

From Lemma 1, there exists a weight w̃ = (w1, . . . , wn) such that the linear functional

λ(x̃) :=
Pn
i=1wixi satisfies (5) and (6).

First we prove that w̃ satisfies (13). For this, it is sufficient to show that λ(1) =
Pn
i=1wi = 1.

To this end, first note that for any c < 1 Axiom D1 implies ρ̂(c1) = c < 1. Thus, (6) implies

λ(c1) < 1, and, by continuity of λ, we obtain that λ(1) ≤ 1. Secondly, ∀c > 1 Axiom

D1 implies ρ̂(2z̃ − c1) = 2ρ̂(z̃) − c = 2 − c < 1. Then it follows from (6) and (5) that

1 > λ(2z̃ − c1) = 2λ(z̃)− cλ(1) = 2− cλ(1), i.e. λ(1) > 1/c for any c > 1. So λ(1) ≥ 1, and w̃
satisfies (13).

Next, we will prove that w̃ satisfies (14). Let ẽk = (0, . . . , 0, 1, 0, . . . , 0) be the k-th standard

basis of Rn. Then wk = λ(ẽk). Since z̃ ∈ Bo, there exists δ > 0 such that z̃ − δẽk ∈ B. For any
ε > 0, we have

ρ̂(z̃ − δẽk − ε1) = ρ̂(z̃ − δẽk)− ε ≤ ρ̂(z̃)− ε = 1− ε < 1,

where the inequality follows from the monotonicity in Axiom D2. Then (6) and (5) implies

1 > λ(z̃ − δẽk − ε1) = λ(z̃)− δλ(ẽk)− ελ(1) = 1− ε− δλ(ẽk).

Hence wk = λ(ẽk) > −ε/δ, and the conclusion follows by letting ε goes to 0.
Finally, we will prove that w̃ satisfies (15). It follows from Axiom D1 and (6) that

∀c > 0, λ(x̃) < c, for all x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (16)
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For any c ≤ 0, we choose b > 0 such that b+ c > 0. Then by (16), we have

λ(x̃+ b1) < c+ b, for all x̃ such that x̃ ∈ B and ρ̂(x̃+ b1) < c+ b.

Since λ(x̃+ b1) = λ(x̃) + bλ(1) = λ(x̃) + b and ρ̂(x̃+ b1) = ρ̂(x̃) + b we have

∀c ≤ 0, λ(x̃) < c, for all x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (17)

It follows from (16) and (17) that

ρ̂(x̃) ≥ λ(x̃), for all x̃ ∈ B,

which in combination with ρ̃(z̃) = λ(z̃) = 1 completes the proof of (15).

Case 2: ρ̂(z̃) 6= 1 and ρ̂(z̃) > 0.

Since ρ̂
³

1
ρ̂(z̃) z̃

´
= 1 and 1

ρ̂(z̃) z̃ is still an interior point of B, it follows from the result proved in
Case 1 that there exists a linear functional λ(x̃) :=

Pn
i=1wixi, with w̃ = (w1, . . . , wn) satisfying

(13), (14) and

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂

µ
1

ρ̂(z̃)
z̃

¶
= λ

µ
1

ρ̂(z̃)
z̃

¶
,

or equivalently

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃) = λ(z̃).

Thus, w̃ also satisfies (15).

Case 3: ρ̂(z̃) ≤ 0.
Choose b > 0 such that ρ̂(z̃ + b1) > 0. Since z̃ + b1 is an interior point of B, it follows

from the result proved in Case 2 that there exists a linear functional λ(x̃) :=
Pn
i=1wixi with

w̃ = (w1, . . . , wn) satisfying (13), (14) and

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃ + b1) = λ(z̃ + b1),

or equivalently

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃) = λ(z̃).

Thus, w̃ also satisfies (15). ¤
Proof of Theorem 1. (I) The proof of the “if” part. Suppose ρ̂ is defined by (4). Then

obviously ρ̂ satisfies Axioms D1 and D4.

To check Axiom D2, write

(y(1), y(2), . . . , y(n)) = (yi1 , yi2 , . . . , yin),
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where (i1, . . . , in) is a permutation of (1, . . . , n). Then for any x̃ ≤ ỹ, we have

y(k) ≥ max{yij , j = 1, . . . , k} ≥ max{xij , j = 1, . . . , k} ≥ x(k), 1 ≤ k ≤ n,

which implies that ρ̂ satisfies Axiom D2 because

ρ̂(ỹ) = sup
w̃∈W

{
nX
i=1

wiy(i)} ≥ sup
w̃∈W

{
nX
i=1

wix(i)} = ρ̂(x̃).

To check Axiom D3, note that if x̃ and ỹ are comonotonic, then there exists a permutation

(i1, . . . , in) of (1, . . . , n) such that xi1 ≤ xi2 ≤ . . . ≤ xin and yi1 ≤ yi2 ≤ . . . ≤ yin . Hence, we
have (x̃+ ỹ)(i) = x(i) + y(i), i = 1, ..., n. Therefore,

ρ̂(x̃+ ỹ) = sup
w̃∈W

{
nX
i=1

wi(x̃+ ỹ)(i)} = sup
w̃∈W

{
nX
i=1

wi(x(i) + y(i))}

≤ sup
w̃∈W

{
nX
i=1

wix(i)}+ sup
w̃∈W

{
nX
i=1

wiy(i)} = ρ̂(x̃) + ρ̂(ỹ),

which implies that ρ̂ satisfies Axiom D3.

(II) The proof of the “only if” part. By Axiom D4, we only need to show that there exists a

set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈W satisfies
Pn
i=1wi = 1 and wi ≥

0, ∀1 ≤ i ≤ n, such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ B, (18)

where recall that B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}.
By Lemma 2, for any point ỹ ∈ Bo, there exists a weight w̃(ỹ) satisfying (13), (14) and (15).

Therefore, we can take the collection of such weights as

W = {w̃(ỹ) | ỹ ∈ Bo}.

Then from (15), for any fixed x̃ ∈ Bo we have

ρ̂(x̃) ≥
nX
i=1

w
(ỹ)
i xi, ∀ỹ ∈ Bo,

ρ̂(x̃) =
nX
i=1

w
(x̃)
i xi,

Therefore,

ρ̂(x̃) = sup
ỹ∈Bo

{
nX
i=1

w
(ỹ)
i xi} = sup

w̃∈W
{
nX
i=1

wixi}, ∀x̃ ∈ Bo, (19)
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where each w̃ ∈W satisfies (13) and (14).

Next, we will prove that the above equality is also true for any boundary point of B, i.e.,

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ ∂B. (20)

Let x̃0 be any boundary point of B. Then there exists a sequence {x̃k}∞k=1 ⊂ Bo such that
x̃k → x̃0 as k →∞. By the continuity of ρ̂, we have

ρ̂(x̃0) = lim
k→∞

ρ̂(x̃k) = lim
k→∞

sup
w̃∈W

{
nX
i=1

wix
k
i }, (21)

where the last equality follows from (19). If we can interchange sup and limit in (21), i.e. if

lim
k→∞

sup
w̃∈W

{
nX
i=1

wix
k
i } = sup

w̃∈W
{ lim
k→∞

nX
i=1

wix
k
i } = sup

w̃∈W
{
nX
i=1

wix
0
i }, (22)

then (20) holds and the proof is complete.

To show (22), note that we have by Cauchy-Schwartz inequality¯̄̄̄
¯
nX
i=1

wix
k
i −

nX
i=1

wix
0
i

¯̄̄̄
¯ ≤

Ã
nX
i=1

(wi)
2

! 1
2
Ã

nX
i=1

(xki − x0i )2
! 1

2

≤
Ã

nX
i=1

(xki − x0i )2
! 1

2

, ∀w̃ ∈W,

because wi ≥ 0 and
Pn
i=1wi = 1,∀w̃ ∈ W. Therefore,

Pn
i=1wix

k
i →

Pn
i=1wix

0
i uniformly for

all w̃ ∈W and (22) follows. ¤

5 Another Representation of the Natural Risk Statistic via Ac-
ceptance Sets

Similar to the coherent risk measure, the proposed natural risk statistic can also be characterized

via acceptance sets. A statistical acceptance set is a subset of Rn. Given a statistical acceptance
set A ∈ Rn, the risk statistic ρ̂A associated with A is defined to be the minimal amount of

risk-free investment that has to be added to the original position so that the resulting position

is acceptable, or in mathematical form

ρ̂A(x̃) = inf{m | x̃−m1 ∈ A}, ∀x̃ ∈ Rn. (23)

On the other hand, given a risk statistic ρ̂, one can define the statistical acceptance set associated

with ρ̂ by

Aρ̂ = {x̃ ∈ Rn | ρ̂(x̃) ≤ 0}. (24)
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We shall postulate the following axioms for statistical acceptance set A:
Axiom E1. The acceptance set A contains Rn− where Rn− = {x̃ ∈ Rn | xi ≤ 0, i = 1, . . . , n}.
Axiom E2. The acceptance set A does not intersect the set Rn++ where Rn++ = {x̃ ∈ Rn |

xi > 0, i = 1, . . . , n}.
Axiom E3. If x̃ and ỹ are comonotonic and x̃ ∈ A, ỹ ∈ A, then λx̃ + (1 − λ)ỹ ∈ A, for

∀λ ∈ [0, 1].
Axiom E4. The acceptance set A is positively homogeneous, i.e., if x̃ ∈ A, then λx̃ ∈ A

for all λ ≥ 0.
Axiom E5. If x̃ ≤ ỹ and ỹ ∈ A, then x̃ ∈ A.
Axiom E6. If x̃ ∈ A, then (xi1 , . . . , xin) ∈ A for any permutation (i1, . . . , in).

We will show that a natural risk statistic and a statistical acceptance set satisfying axioms

C.1-C.6 are mutually representable. More precisely, we have the following Theorem:

Theorem 2. (I) If ρ̂ is a natural risk statistic, then the statistical acceptance set Aρ̂ is

closed and satisfies axioms E1-E6.

(II) If a statistical acceptance set A satisfies axioms E1-E6, then the risk statistic ρ̂A is a

natural risk statistic.

(III) If ρ̂ is a natural risk statistic, then ρ̂ = ρ̂Aρ̂
.

(IV) If a statistical acceptance set D satisfies axioms E1-E6, then Aρ̂D = D̄, the closure of
D.

Remark: Theorem 2 shows that the risk statistic ρ̂ calculated from the data x̃ is equivalent

to the amount of risk-free investment that has to be added to make the original position

acceptable. This alternative characterization of the natural risk statistic is consistent with

a similar characterization of the coherent risk measure in Artzner et al. ??.

Proof. (I) (1) For ∀x̃ ≤ 0, Axiom D2 implies ρ̂(x̃) ≤ ρ̂(0) = 0, hence x̃ ∈ Aρ̂ by definition.

Thus, E1 holds. (2) For any x̃ ∈ Rn++, there exists α > 0 such that 0 ≤ x̃ − α1. Axioms D2

and D1 imply that ρ̂(0) ≤ ρ̂(x̃− α1) = ρ̂(x̃)− α. So ρ̂(x̃) ≥ α > 0 and henceforth x̃ /∈ Aρ̂, i.e.,

E2 holds. (3) If x̃ and ỹ are comonotonic and x̃ ∈ Aρ̂, ỹ ∈ Aρ̂, then ρ̂(x̃) ≤ 0, ρ̂(ỹ) ≤ 0, and λx̃

and (1− λ)ỹ are comonotonic for any λ ∈ [0, 1]. Thus D3 implies

ρ̂(λx̃+ (1− λ)ỹ) ≤ ρ̂(λx̃) + ρ̂((1− λ)ỹ) = λρ̂(x̃) + (1− λ)ρ̂(ỹ) ≤ 0.

Hence λx̃+ (1− λ)ỹ ∈ Aρ̂, i.e., E3 holds. (4) For any x̃ ∈ Aρ̂ and a > 0, we have ρ̂(x̃) ≤ 0 and
D1 implies ρ̂(ax̃) = aρ̂(x̃) ≤ 0. Thus, ax̃ ∈ Aρ̂, i.e., E4 holds. (5) For any x̃ ≤ ỹ and ỹ ∈ Aρ̂,

we have ρ̂(ỹ) ≤ 0. By D2, ρ̂(x̃) ≤ ρ̂(ỹ) ≤ 0. Hence x̃ ∈ Aρ̂, i.e., E5 holds. (6) If x̃ ∈ Aρ̂,
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then ρ̂(x̃) ≤ 0. For any permutation (i1, . . . , in), D4 implies ρ̂((xi1 , . . . , xin)) = ρ̂(x̃) ≤ 0. So
(xi1 , . . . , xin) ∈ Aρ̂, i.e., E6 holds. (7) Suppose x̃k ∈ Aρ̂, k = 1, 2, . . ., and x̃k → x̃ as k → ∞.
Then ρ̂(x̃k) ≤ 0,∀k. Suppose the limit x̃ /∈ Aρ̂. Then ρ̂(x̃) > 0. There exists δ > 0 such that

ρ̂(x̃ − δ1) > 0. Since x̃k → x̃, it follows that there exists K ∈ N such that x̃K > x̃ − δ1. By

D2, ρ̂(x̃K) ≥ ρ̂(x̃− δ1) > 0, which contradicts to ρ̂(x̃K) ≤ 0. So x̃ ∈ Aρ̂, i.e., Aρ̂ is closed.

(II) (1) For ∀x̃ ∈ Rn,∀b ∈ R, we have

ρ̂A(x̃+ b1) = inf{m | x̃+ b1−m1 ∈ A} = b+ inf{m | x̃−m1 ∈ A} = b+ ρ̂A(x̃).

For ∀x̃ ∈ Rn,∀a ≥ 0, if a = 0, then

ρ̂A(ax̃) = inf{m | 0−m1 ∈ A} = 0 = a · ρ̂A(x̃),

where the second equality follows from E1 and E2. If a > 0, then

ρ̂A(ax̃) = inf{m | ax̃−m1 ∈ A} = a · inf{u | a(x̃− u1) ∈ A}

= a · inf{u | x̃− u1 ∈ A} = a · ρ̂A(x̃),

by E4. Therefore, D1 holds. (2) Suppose x̃ ≤ ỹ. For any m ∈ R, if ỹ −m1 ∈ A, then E5 and
x̃−m1 ≤ ỹ −m1 imply that x̃−m1 ∈ A. Hence {m | ỹ −m1 ∈ A} ⊂ {m | x̃−m1 ∈ A}. By
taking infimum on both sides, we obtain ρ̂A(ỹ) ≥ ρ̂A(x̃), i.e., D2 holds. (3) Suppose x̃ and ỹ

are comonotonic. For any m and n such that x̃−m1 ∈ A, ỹ−n1 ∈ A, since x̃−m1 and ỹ−n1
are comonotonic, it follows from E3 that 1

2(x̃ −m1) +
1
2(ỹ − n1) ∈ A. By E4, the previous

formula implies x̃+ ỹ − (m+ n)1 ∈ A. Therefore,

ρ̂A(x̃+ ỹ) ≤ m+ n.

Taking infimum of all m and n satisfying x̃ − m1 ∈ A, ỹ − n1 ∈ A, on both sides of above
inequality yields

ρ̂A(x̃+ ỹ) ≤ ρ̂A(x̃) + ρ̂A(ỹ).

So D3 holds. (4) Fix any x̃ ∈ Rn and any permutation (i1, . . . , in). Then for any m ∈ R, E6
implies that x̃−m1 ∈ A if and only if (xi1 , . . . , xin)−m1 ∈ A. Hence

{m | x̃−m1 ∈ A} = {m | (xi1 , . . . , xin)−m1 ∈ A}.

Taking infimum on both sides, we obtain ρ̂A(x̃) = ρ̂A((xi1 , . . . , xin)), i.e., D.4 holds.
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(III) For ∀x̃ ∈ Rn, we have

ρ̂Aρ̂
(x̃) = inf{m | x̃−m1 ∈ Aρ̂} = inf{m | ρ̂(x̃−m1) ≤ 0} = inf{m | ρ̂(x̃) ≤ m} ≥ ρ̂(x̃),

via D1. On the other hand, for any δ > ρ̂(x̃), we have

δ > ρ̂(x̃)⇒ ρ̂(x̃− δ1) < 0 (since ρ̂ satisfies D1)

⇒ x̃− δ1 ∈ Aρ̂ (by definition)

⇒ ρ̂Aρ̂
(x̃− δ1) ≤ 0 (by definition)

⇒ ρ̂Aρ̂
(x̃) ≤ δ (since ρ̂Aρ̂

satisfies D1)

Letting δ ↓ ρ̂(x̃), we obtain ρ̂Aρ̂
(x̃) ≤ ρ̂(x̃). Therefore, ρ̂(x̃) = ρ̂Aρ̂

(x̃).

(IV) For any x̃ ∈ D, we have ρ̂D(x̃) ≤ 0. Hence x̃ ∈ Aρ̂D . Therefore, D ⊂ Aρ̂D . By the

results (I) and (II), Aρ̂D is closed. So D̄ ⊂ Aρ̂D . On the other hand, for any x̃ ∈ Aρ̂D , we have

by definition that ρ̂D(x̃) ≤ 0, i.e., inf{m | x̃−m1 ∈ D} ≤ 0. If inf{m | x̃−m1 ∈ D} < 0, then
there exists m < 0 such that x̃ −m1 ∈ D. Then since x̃ < x̃ −m1 by E5 x̃ ∈ D. Otherwise,
inf{m | x̃−m1 ∈ D} = 0. Then there exists mk such that mk ↓ 0 as k →∞ and x̃−mk1 ∈ D.
Hence x̃ ∈ D̄. In either case we obtain that Aρ̂D ⊂ D̄. Therefore, we conclude that Aρ̂D = D̄.
¤

6 Relation between the Natural Risk Statistic, Coherent Risk
Measure and Insurance Risk Measure

6.1 Relation with Coherent Risk Measures

To compare natural risk statistics with coherent risk measure in a formal manner, we first have

to extend the coherence risk measure to coherent risk statistics.

Definition 2. A risk statistic ρ̂ : Rn → R is called a coherent risk statistic, if it satisfies
Axioms D1, D2 and the following axiom F3:

Axiom F3. Subadditivity: ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), for every x̃, ỹ ∈ Rn.
By using the result from Huber [18], one can easily see that a risk statistic is a coherent risk

statistic if and only if there exists a set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each
w̃ ∈W satisfying

Pn
i=1wi = 1 and wi ≥ 0,∀1 ≤ i ≤ n, such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ Rn. (25)
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The next theorem shows the connection between natural risk statistics and coherent risk sta-

tistics.

Theorem 3. Consider a fixed scenario set W, where each w̃ ∈ W satisfies
Pn
i=1wi =

1 and wi ≥ 0,∀1 ≤ i ≤ n. Let ρ̂ be a natural risk statistic induced by W:

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn, (26)

If every weight w̃ is monotonic, i.e.,

w1 ≤ w2 ≤ . . . ≤ wn, ∀w̃ ∈W, (27)

then ρ̂ satisfies subadditivity and is, therefore, a coherent risk statistic.

Remark: Comparing (25), (26), and (27), we see the main differences between the natural

risk statistic and the coherent risk statistic:

(1) A natural risk statistic is a supremum of L-statistic (which is a weighted average of order

statistics), while a coherent risk statistic is a supremum of weighted sample average. There is

no simple linear function that can transform L-statistic to weighted sample average.

(2) Although VaR is not a coherent risk statistic, VaR is a natural risk statistic. In other

words, though being simple, VaR is not without justification, as it also satisfies a different set

of axioms.

(3) If one assigns larger weights to larger observations, resulting in (27), then a natural

risk statistic become a coherent risk statistic. However, assigning larger weights to larger

observations leads to less robust risk statistics, as the statistics become more sensitive to larger

observations.

Proof of Theorem 3. We only need to show that under condition (27), the risk statistic (26)

satisfies subadditivity for any x̃ and ỹ ∈ Rn. Let (k1, . . . , kn) be the permutation of (1, . . . , n)
such that (x̃+ ỹ)k1 ≤ (x̃+ ỹ)k2 ≤ . . . ≤ (x̃+ ỹ)kn . Then for i = 1, . . . , n− 1, the partial sum up

to i satisfies

iX
j=1

(x̃+ ỹ)(j) =
iX
j=1

(x̃+ ỹ)kj =
iX
j=1

(xkj + ykj ) ≥
iX
j=1

(x(j) + y(j)). (28)

In addition, we have for the total sum

nX
j=1

(x̃+ ỹ)(j) =
nX
j=1

(xj + yj) =
nX
j=1

(x(j) + y(j)). (29)
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Re-arranging the summation terms yields

ρ̂(x̃+ ỹ) = sup
w̃∈W

{
nX
i=1

wi(x̃+ ỹ)(i)} = sup
w̃∈W

{
n−1X
i=1

(wi − wi+1)
iX
j=1

(x̃+ ỹ)(j) + wn

nX
j=1

(x̃+ ỹ)(j)},

This, along with the fact wi − wi+1 ≤ 0 and equations (28) and (29), shows that

ρ̂(x̃+ ỹ) ≤ sup
w̃∈W

{
n−1X
i=1

(wi −wi+1)
iX
j=1

(x(j) + y(j)) +wn

nX
j=1

(x(j) + y(j))}

= sup
w̃∈W

{
nX
i=1

wix(i) +
nX
i=1

wiy(i)}

≤ sup
w̃∈W

{
nX
i=1

wix(i)}+ sup
w̃∈W

{
nX
i=1

wiy(i)} = ρ̂(x̃) + ρ̂(ỹ),

from which the proof is completed. ¤

6.2 Relation with the Insurance Risk Measure

Similar to the coherent risk statistic, we can extend the insurance risk measure to the insurance

risk statistic as follows:

Definition 3. A risk statistic ρ̂ : Rn → R is called a insurance risk statistic, if it satisfies
the following axioms G1-G3:

Axiom G1. Monotonicity: ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ.
Axiom G2. Comonotonic additivity: ρ̂(x̃+ ỹ) = ρ̂(x̃) + ρ̂(ỹ), if x̃ and ỹ are comonotonic.

Axiom G3. Continuity:

lim
d→0

ρ̂((x̃− d)+) = ρ̂(x̃+), lim
d→∞

ρ̂(min(x̃, d)) = ρ̂(x̃), lim
d→−∞

ρ̂(max(x̃, d)) = ρ̂(x̃),

where (x̃− d)+ = max(x̃− d, 0).
Given an observation x̃ = (x1, . . . , xn) from the loss variable X, the empirical distribution of

X is given by F̂ (x) = 1
n

Pn
i=1 1{x≤xi}. Replacing the tail probability P (X > t) by empirical tail

probability 1 − F̂ (t) in the distorted probability representation of the insurance risk measure
(2), we obtain the representation of insurance risk statistic

ρ̂(x̃) =

Z 0

−∞
(g(1− F̂ (t))− 1)dt+

Z ∞

0
g(1− F̂ (t))dt =

nX
i=1

wix(i), (30)

where wi = g(n−i+1n )− g(n−in ), i = 1, . . . , n. Since g is nondecreasing, g(0) = 0 and g(1) = 1, it
follows that wi ≥ 0, i = 1, . . . , n, and

Pn
i=1wi = 1.
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Comparing (4) and (30), we see that the natural risk statistic is the supremum of L-statistics,

while the insurance risk statistic is just one L-statistic. Therefore, the insurance risk statistics

cannot incorporate different scenarios. On the other hand, each weight w̃ = (w1, . . . , wn) in

a natural risk statistic can be considered as a “scenario” in which (subjective or objective)

evaluation of the importance of each ordered observations is specified. Hence, the nature risk

statistic reflects the idea of evaluating the risk under different scenarios, similar to the coherent

risk measure.

The following counterexample shows that if one incorporates different scenarios, then the

comonotonic additivity may not hold, as the strict comonotonic subadditivity may prevail.

A Counterexample: Consider a natural risk statistic defined by

ρ̂(x̃) = max(0.5x(1) + 0.5x(1), 0.72x(1) + 0.08x(2) + 0.2x(3)), ∀x̃ ∈ R3.

Let z̃ = (3, 2, 4) and ỹ = (9, 4, 16). By simple calculation we have

ρ̂(z̃ + ỹ) = 9.28 < ρ̂(z̃) + ρ̂(ỹ) = 2.5 + 6.8 = 9.3,

even though x̃ and ỹ are comonotonic. Therefore, the comonotonic additivity fails, and this

natural risk statistic is not an insurance risk statistic. In summary, insurance risk statistic

cannot incorporate those two simple scenarios.

7 Tail Conditional Median: a Robust Natural Risk Statistic

In this section, we propose a special case of the natural risk statistic, which we call the tail condi-

tional median and compare it with an existing coherent risk measure, the tail conditional mean.

Theoretical and numerical results are provided to illustrate the robustness of the proposed tail

conditional median.

7.1 The Differences between Tail Conditional Expectation and Tail Condi-
tional Median

A special case of coherent risk measures, the tail conditional expectation, or TCE for short, has

gained popularity since it was proposed by Artzner et al.[3]. TCE satisfies subadditivity for

continuous random variables, and also for discrete random variables if one define quantiles for

discrete random variables properly; see Acerbi and Tasche ??. The TCE is also called expected

shortfall by Acerbi et al.[1] and conditional value-at-risk by Rockafellar and Uryasev [23] and
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Pflug [20]. More precisely, the TCE at level α is defined by

TCEα(X) = mean of the α-tail distribution of X, (31)

where the distribution in question is one with distribution function Gα(x) defined by

Gα(x) =

(
0 for x < VaRα(X)
P (X≤x)−α

1−α for x ≥ VaRα(X).

If the distribution of X is continuous,

TCEα(X) = E[X|X ≥ VaRα(X)]. (32)

Essentially, TCEα(X) is the regularized version of the tail conditional expectation E[X|X ≥
VaRα(X)].

As we will see that TCE is not robust and is sensitive to model assumptions and outliers,

here we propose an alternative, the tail conditional median (TCM), as a way of measuring risk

to ameliorate the problem of robustness. The TCM at level α is defined as

TCMα(X) = median[X|X ≥ VaRα(X)]. (33)

Essentially, TCMα(X) is the conditional median of X given that X ≥ VaRα(X). If X is

continuous then TCMα(X) =VaR 1+α
2
(X). However, for discrete random variable or data, one

simply uses the definition (33) and there is a difference between TCMα(X) and VaR 1+α
2
(X),

depending on ways of defining quantiles for discrete random variables and discrete data.

There are several differences between the TCE and TCM. First, there are theoretical differ-

ences. For example, the TCM will not in general satisfy subadditivity, although TCE generally

does; and the TCM is a natural risk statistic while the TCE is a coherent risk statistic.

Secondly, there may be significant numerical differences between TCE and TCM. To illus-

trate this, we shall use three data sets. The first one is a data set of auto insurance claims with

sample size 736. In Table 1, we calculated the risk measure TCEα and TCMα with α ranging

from 95% to 99%. The absolute difference and the relative difference of the two measures are

reported in the last two columns of the table, which shows that the relative differences can be

as high as over 60% when α < 99% and about 30% when α = 99%. The second one is a data

set of incendie insurance claims with sample size 736. Table 2 shows the TCEα and TCMα for

this data set. The relative differences between TCEα and TCMα are also very significant for

this data set .
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Table 1: TCM and TCE for auto insurance claim

α TCEα TCMα TCEα − TCMα
TCEα−TCMα

TCEα
99.0% 6390627.0523 4489416.3847 1901210.6676 29.75%
98.5% 4454513.7015 1682970.0123 2771543.6892 62.22%
98.0% 3681944.0471 1384060.8997 2297883.1474 62.41%
97.5% 3014237.8755 1039186.8726 1975051.0028 65.52%
97.0% 2579508.4877 962778.2851 1616730.2026 62.68%
96.5% 2333814.6040 851033.8563 1482780.7477 63.53%
96.0% 2073066.4541 705136.3357 1367930.1185 65.99%
95.5% 1865231.5196 676514.4433 1188717.0763 63.73%
95.0% 1736077.5343 662045.2762 1074032.2581 61.87%

Table 2: TCM and TCE for incendie insurance claim

α TCEα TCMα TCEα − TCMα
TCEα−TCMα

TCEα
99.0% 326941430.7051 221019625.0743 105921805.6308 32.40%
98.5% 217524078.9696 68744819.4502 148779259.5194 68.40%
98.0% 174769416.7362 41636726.9290 133132689.8072 76.18%
97.5% 138375399.0228 24408413.1754 113966985.8474 82.36%
97.0% 114576698.9187 23633013.0148 90943685.9039 79.37%
96.5% 101683055.9714 18352824.0186 83330231.9528 81.95%
96.0% 88411141.0208 13845230.0549 74565910.9660 84.34%
95.5% 78274066.9951 10493594.7803 67780472.2148 86.59%
95.0% 72110217.3841 8572087.3993 63538129.9848 88.11%

The third data set is S&P 500 daily index from January 03, 1980 to December 21, 2005.

More precisely, let x̃ = (x1, x2, . . . , xn) be the negative of the net daily return calculated from

the data, where n = 6556 here. Then we apply TCE and TCM to x̃ to measure the risk. Table

7.1 shows the results for α ranging from 95.0% to 99.9%. The relative differences of TCE and

TCM are in the range of 12.72% ∼ 25.70%.

7.2 Robustness Comparison between the Tail Conditional Expectation and
Tail Conditional Median

Next we show that the tail conditional median is more robust than the tail conditional expec-

tation. The left panel of Figure 1 shows the value of TCEα with respective to log(1 − α) for

Laplace distribution and T-distribution, where α is in the range [0.95, 0.999]. As demonstrated

in the graph, if the model assumes the loss distribution to be Laplace while the underlying true

25



α TCEα TCMα TCEα − TCMα
TCEα−TCMα

TCEα
99.9% 0.0922 0.0685 0.0237 25.70%
99.5% 0.0487 0.0389 0.0098 20.21%
99.0% 0.0383 0.0306 0.0078 20.24%
98.5% 0.0337 0.0280 0.0057 16.97%
98.0% 0.0308 0.0259 0.0050 16.15%
97.5% 0.0288 0.0245 0.0043 14.94%
97.0% 0.0272 0.0233 0.0038 14.13%
96.5% 0.0259 0.0224 0.0035 13.54%
96.0% 0.0248 0.0217 0.0032 12.72%
95.5% 0.0239 0.0207 0.0032 13.21%
95.0% 0.0231 0.0196 0.0035 15.05%

Table 3: The TCE and TCM for S&P 500 index daily losses (negative returns) from Jan 03,
1980 to Dec 21, 2005 with the range for α is from 95.0% to 99.9%. The table shows a significant
difference between the TCE and TCM.

loss distribution is T-distribution, the calculated TCE value can be far from the true value.
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Figure 1: TCE and TCM for Laplace and T-distributions with degree of freedom 3, 5, 12. All
distributions are normalized with mean 0 and variance 1. The TCM is less sensitive to changes
in distribution, as the right panel has narrower range in y-axis.

The right panel of Figure 1 shows the value of TCMα with respective to log(1 − α) for

Laplace distribution and T-distribution. As seen from the figure, TCMα is more robust than
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TCEα in the sense that it is less sensitive to the tail type of the underlying distribution.

7.3 Influence Functions of Tail Conditional Expectation and Tail Conditional
Median

Influence functions introduced by Hampel [15] [16] is a useful tool in assessing the robustness

of an estimator. Let F be a distribution function. The quantity of interest determined by

F is represented by an estimator, T (F ), where T is a functional mapping from a family of

distribution functions to R. For x ∈ R, let δx be the point mass 1 at x. The influence function
of the estimator T (F ) at x is defined by

IF (x, T, F ) = lim
ε↓0

T ((1− ε)F + εδx)− T (F )
ε

.

The influence function yields information about the rate of change of the estimator T (F ) with

respect to a contamination point x to the distribution F .

An estimator T is called bias robust at F , if its influence function is bounded, i.e.,

γ∗ = sup
x
IF (x, T, F ) <∞.

If the influence function of an estimator T (F ) is unbounded, an outlier in the data may cause

problems.

Lemma 3. Suppose the loss distribution has a density fX(·) which is continuous and
positive at VaR 1+α

2
(X), then the influence function of TCMα is given by

IF (x,TCMα,X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(α− 1)/2
fX(VaR 1+α

2
(X))

, x < VaR 1+α
2
(X)

0, x = VaR 1+α
2
(X)

(1 + α)/2

fX(VaR 1+α
2
(X))

x > VaR 1+α
2
(X)

Suppose the loss distribution has a density fX(·) which is continuous and positive at VaRα(X),

then the influence function of TCE is given by

IF (x,TCEα,X) =

⎧⎨⎩VaRα(X)−E[X|X ≥ VaRα(X)], if x ≤ VaRα(X)
x

1− α
−E[X|X ≥ VaRα(X)]−

α

1− α
VaRα(X) if x > VaRα(X)

(34)

Proof. The result of TCM is from [30] equation (3.2.3). To show (34), note that by equation

(3.2.4) in [30] the influence function of the (1 − α)-trimmed mean T1−α(X) := E[X|X <
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VaRα(X)] is

IF (x, T1−α,X) =

(
x−(1−α)VaRα(X)

α −E[X|X < VaRα(X)], if x ≤ VaRα(X)

VaRα(X)−E[X|X < VaRα(X)] if x > VaRα(X)
(35)

By simple calculation, the influence function of E[X] is

IF (x,E[X],X) = x−E[X]. (36)

Since E[X] = αT1−α(X) + (1− α)TCEα, it follows that

IF (x,E[X],X) = αIF (x, T1−α,X) + (1− α)IF (x,TCEα,X). (37)

Then (34) follows from equations (35), (36) and (37). ¤
From Lemma 3, we see that

sup
x
IF (x,TCMα,X) <∞, sup

x
IF (x,TCEα,X) =∞

Hence, TCE has unbounded influence function but TCM has bounded influence function, which

implies that TCM is more robust against the influence of outliers in the data.

8 Conclusion

We propose a new, data based, risk measure, called natural risk statistic, that are characterized

by a new set of axioms. The new axioms only require subadditivity for comonotonic random

variables, thus relaxing the subadditivity for all random variables in the coherent risk measure,

and the comonotonic additivity in the insurance risk measure. The relaxation is consistent with

the prospect theory in psychology.

Comparing to two previous risk measures, the natural risk statistic include tail conditional

median which is more robust than tail conditional expectation suggested by the coherent risk

measure; and, unlike the insurance risk measure, the natural risk statistic can also incorporate

scenario analysis. The natural risk statistic includes the VaR as a special case and therefore

show that VaR, though simple, is not irrational.

There are several open problems left. First, the natural risk statistic proposed here is only

a static risk measure. It will be of great interest if it can be extended to dynamic risk measures.

Furthermore, just like subadditivity in the coherent risk measure has been extended to convex

risk measures, we pose a conjecture that the comonotonic subadditivity can be extended to

comonotonic convexity.
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