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Abstract

Several papers have questioned the ability of multifactor affine models to extract interest rate
volatility from the cross-section of bond prices. These studies find that the conditional volatility
implied by these models is very poorly or even negatively correlated with model-free volatility.
We provide an in-depth investigation of the conditional volatility of monthly Treasury yields
implied by three-factor affine models. We investigate different specifications of the price of risk
and different specifications of volatility. For long maturities, the correlation between model-
implied and EGARCH volatility estimates is approximately 82% for yield differences and 92%
for yield levels. For short-maturity yields, the correlation varies between 58% and 71% for yield
differences and between 62% and 76% for yield levels. The differences at short maturities are
largely accounted for by the number of factors affecting volatility. A model-free measure of the
level factor is highly correlated with EGARCH volatility as well as model-implied volatilities,
which explains most of our findings. We conclude that multifactor affine models are much better
at extracting time-series volatility from the cross-section of yields than argued in the literature.
However, existing models have difficulty capturing volatility dynamics at the short end of the
maturity spectrum, perhaps indicating some form of segmentation between long-maturity and
short-maturity bonds. These results are robust to the choice of sample period, interpolation
method and estimation method.
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1 Introduction

The class of multifactor affine term structure models (ATSMs) has emerged as the workhorse
in the fixed income literature, and a consensus has emerged in the literature that three-factor
ATSMs are needed to successfully capture certain stylized facts of the term structure of interest

! Empirical implementations of these models often find that the term structure can be

rates.
characterized in terms of the interest rate level, the slope of the term structure and term structure
curvature. However, recently a number of papers have questioned the ability of multifactor ATSMs,
and of three-factor ATSMs in particular, to capture some important aspects of term structure
dynamics. Part of this recent criticism has been directed at the ability of multifactor ATSMs to
model volatility. While these models are able to generate the hump-shaped pattern for unconditional
volatility in both swap and Treasury markets (see Dai and Singleton (2000, 2003)), several studies
have questioned their ability to model conditional volatility. Using swap data, Collin-Dufresne,
Goldstein and Jones (2004) find that a popular and well-documented three-factor affine model
implies volatility paths that are negatively correlated with the GARCH volatility estimates of
weekly changes in the six-month rate. Andersen and Benzoni (2005) use intra-day Treasury data
to document that realized yield volatility is unrelated to principal components extracted from the
cross-section, which proxy for model-implied volatility.?

These findings question some of the most important building blocks of ATSMs, and in fact more
fundamentally question the validity of a large class of arbitrage based term-structure models. It
is a key implication of these models that the yields’ conditional volatility is a linear combination
of the state variables. For example, in the model used by Collin-Dufresne et al. (2004), in which
volatility is driven by a single state variable, the failure of the model can be explained by the fact
that the volatility factor will reflect the level of the yield curve, which may not be highly correlated
with the time series volatility of the six-month rate. This feature is often referred to as unspanned
stochastic volatility (USV), and it reflects a tension between the time series and the cross-sectional
properties of the model.

These empirical findings have far-reaching practical implications, because if the yield curve fails
to span volatility, fixed income volatility risk cannot be hedged by positions in the bond market
alone. Consequently, any term structure model that relates the conditional volatility to the cross-
section of yields will fail to capture the time variability of the conditional volatility. To resolve these
problems, Collin-Dufresne and Goldstein (2002) and Collin-Dufresne et al. (2004) have proposed
a new family of affine models, labeled USV models, in which the volatility does not affect the

'See Chen and Scott (1993) and Balduzzi et al. (1996) for early multifactor models. See Duffie and Kan (1996)
for a full characterization and Dai and Singleton (2000) for a useful classification of multifactor ATSMs. Litterman
and Scheinkman (1991) established that three-factor models are able to explain a large part of the variation in bond

yields. See Duffee (2002) and Duarte (2004) for recent implementations of three-factor ATSMs.
2 Collin-Dufresne and Goldstein (2002) document that the conditional volatility implied by term structure models

is unrelated to implied volatility from interest rate options.



cross section of bonds yields. However, there is considerable disagreement about the empirical
performance of these models (see for example Bikbov and Chernov (2004), Collin-Dufresne et al.
(2004) and Thompson (2004)).

This paper examines the ability of affine models to simultaneously match the cross-sectional
and time series properties of the term structure of monthly Treasury yields. More specifically, we
examine the ability of heteroskedastic three-factor ATSMs to capture the conditional volatility for
a large cross-section of Treasury yields. Because reconciling the time series and cross-sectional
properties of the model critically depends on the mapping between the physical and risk-neutral
model dynamics, we pay particular attention to the market price of risk, and we investigate three
classes of models: completely affine models, essentially affine models (Duffee (2002)), and extended
essentially affine models (Cheridito, Filipovi¢ and Kimmel (2005)). We follow the popular classi-
fication by Dai and Singleton (2000), which is very appropriate for volatility modeling. Dai and
Singleton (2000) characterize four different three-factor models, dependent on how many factors
affect the conditional volatility. For each specification of the price of risk, we investigate A; (3),
Ag (3) and Az (3) models.® Rather than using the volatility factor as a proxy for the conditional
volatility of the short rate, we regress the exact model-implied conditional volatility for yields of
different maturities on EGARCH volatility estimates for different maturities.

We document a sizeable positive correlation between model-implied conditional volatility and
EGARCH volatility estimates. For long-maturity yields, the correlation is very robust across models
and is approximately 82% for yield differences and 90% for yield levels. The correlation for the
shortest-maturity yields is much more dependent on the model and varies between 58% and 71% for
yield differences and between 62% and 76% for yield levels. The correlations generally increase with
maturity. For short maturities, models with a higher number of volatility factors generate higher
correlations, but the specification of the price of risk seems inconsequential. We also investigate
the out-of-sample modeling of conditional volatility, and we find that the models do a better job of
forecasting long-maturity yields than short-maturity yields.

We provide more insight for these findings by reporting a large and statistically significant
correlation between EGARCH volatility estimates and the level factor. Estimated correlations
are rather robust across models, but they are again highest for models with a higher number of
volatility factors. The correlation of conditional volatility with slope and curvature is smaller but
nonetheless significantly estimated for many models and maturities.

These findings lead to two important conclusions. First, Collin-Dufresne et al. (2004) and
Andersen and Benzoni (2005) conclude that affine models fail in spanning the volatility because
the conditional variance of yields is restricted to be a linear combination of yields. They interpret
their negative results as a failure of existing multifactor models and conclude that different models
are needed. Based on our evidence, we believe that the verdict for multifactor ATSMs is much

more positive. Our findings clearly suggest that yields are informative about conditional volatility.

3An A,,(N) model is an N-factor model with m volatility factors.



Second, whereas three-factor ATSMs do not fail as spectacularly as suggested in other studies,
our findings suggest that bond markets are incomplete and that the form of the incompleteness is a
segmentation of the market. Yields with a maturity under one year have a very different volatility
structure from long maturity yields, and the conditional volatility of short-maturity yields seems to
exhibit an idiosyncratic variation that affine models are not able to match when calibrated on the
full cross-section, regardless of the specification of the market price of risk. The reported tension
between the cross-sectional and time series properties of the yield curve may therefore reflect some
type of segmentation between the time series properties of the short and long end of the term
structure.*

To provide some additional motivation for this interpretation, we separately estimate the short
and long end of the term structure with three-factor models. In this case, the correlation from the
regression of the model-implied volatility on the model-free volatility is roughly the same across
maturities, which supports our interpretation. We document a number of other stylized facts
suggesting that three-factor ATSMs have difficulty characterizing the conditional volatility at the
short end of the yield curve. While the number of factors affecting volatility and the price of
risk somewhat affect the ability of the model to match the correlation between yield volatilities
and between conditional volatility and term structure factors at different maturities, it is a robust
conclusion that the models experience their most serious problems at the short end of the maturity
spectrum.

We investigate the robustness of our findings with respect to the choice of sample period,
estimation method, and interpolation technique for the term structure data, and the results change
very little. We also investigate the robustness with respect to the use of model-free benchmark by
using different GARCH models, and by using instantaneous conditional volatility as an alternative
to GARCH models, and again the results are robust. When we use realized volatility instead of
EGARCH volatility as a measure of model-free volatility, the results change somewhat, but the
correlation between model-free and model-implied volatility is still around 60%.

Even though Collin-Dufresne et al. (2004) and Andersen and Benzoni (2005) reach diametrically
opposite conclusions, we note that some of our empirical results are confirmed by other studies.
Dai and Singleton (2003) report that the A; (3) model performs quite satisfactory when it comes to
match the time variation in the conditional volatility of the 5-year yield in both swap and Treasury
markets. Thompson (2004) documents a correlation of 56% between a short-maturity volatility
LIBOR forecast and model-free GARCH volatility, which is similar to the correlation we find at
short maturities. Almeida, Graveline and Joslin (2006) study swap rates and find correlations
similar to ours for longer maturities, but lower correlations for shorter maturities. Bikbov and

Chernov (2004) conduct a more ambitious comparison of Gaussian term structure models, stochastic

*The literature on segmentation between short-maturity and long-maturity fixed income securities goes back a
long way (see for example Modigliani and Sutch (1967)). See Duffee (1996) for more recent evidence on idiosyncratic

variation in short-maturity yields and segmentation in Treasury markets.



volatility models and USV models, using data on Eurodollar futures and options. While their focus
is on the economic and statistical comparison of these models based on estimation using different
data, their investigation confirms that affine term structure models are able to match time variation
in the state variables, which is consistent with our findings.

The paper proceeds as follows. Section 2 discusses the modeling of conditional volatility in affine
term structure models and the restrictions on volatility implied by the theory. Section 3 introduces
the data and discusses the estimation technique. Section 4 presents the empirical results. Section

5 reports on an extensive robustness exercise and Section 6 concludes.

2 Conditional Volatility in Affine Term Structure Models

2.1 Affine Term Structure Models

We study affine models where the short rate is given by r; = dg + 61 X;. The state vector X; follows

an affine diffusion under the risk-neutral measure O
X, :'g(’é—xt) dt + S/Syd W, (1)

where Wt is a N—dimensional vector of independent standard @—Brownian motions, ¥ and X are

N x N matrices and S; is a diagonal matrix with a ¢th diagonal element given by
[Se);; = i + Bi X
From Duffie and Kan (1996), we know that
P(t,7) = exp(A(T) — B(1)' Xy),

where A(7) and B(7) satisfy the following ODEs

N

dA(T) 2 1 o
o = —0RB(r) + 5 Z; [SB(r)]} a; — 8o (2)
and 0 ) o 2
S = —RB(T) + 5 ; [SB(T)]: B; + &1 (3)

Equations (2) and (3) can be solved numerically with the initial conditions A(0) = 0 and B(0) =
Ogn~.> Throughout, we will use the classification scheme proposed by Dai and Singleton (2000)).
The model is completely specified through the dynamics of state prices. The pricing kernel 7,
is given by
dme _ —redt — AydWy, (4)

Tt

We use the Rosenbrock method rather than the Runge-Kutta method because it is more convenient for stiff

differential equations, which is sometimes the case for the A; (3), Az (3) and Asz (3) models.



where W; is a N —dimensional vector of independent standard 7P —Brownian motions and A; denotes
the market price of risk. The dynamics of the state vector under the actual measure P can be
obtained by subtracting ¥+/S;A; from the drift of equation (1).

2.2 The Price of Risk in Affine Term Structure Models

Several specifications for the market price of risk A; are available in the literature. Traditionally

the market price of risk was specified as

Ar =/ Sido, (5)

Models that adopt this specification are referred to as completely affine models. Duffee (2002)
proposes a more general specification that leads to the essentially affine class of models (see also
Dai and Singleton (2000,2002) and Duarte (2003))

Ar = /Siho + \/S; M X, (6)

where Ag is an N x 1 vector of constants, A1 is a N X N matrix of constants and the diagonal matrix
S; has zeros in its first m entries and (ozi + B;Xt)_l fort =m+1,..., N. Note that the variance of
the pricing kernel is not an affine function of the state vector, but since the latter does not affect
bond prices, the affine property is maintained.

From (6), it can be seen that essentially affine models offer a number of advantages. They
allow A; (and the term premia) to vary independently of the level of the volatility and remove the
restriction on its sign. Duffee (2002) shows that this improves the model’s ability to match the
time variability of excess returns.

Recently, Cheridito, Filipovi¢ and Kimmel (2005) extend the essentially affine class of models

as follows
1 -1
A =St X+ VSt MXy, (7)

where Ag is an NV X 1 vector of constants, A1 is a N X N matrix of constants such that A;;; =
0,Vi < m and j > m. The resulting models are referred to as extended essentially affine models.
The literature has hitherto focused on the implications of the price of risk specification for
modeling excess returns. When the market is complete, i.e. the dimension of the vector of Brownian
motions is smaller than the number of traded bonds, the no-arbitrage condition combined with 1t6’s
lemma implies that the bond-price dynamics can be written as
dP(t,T)

W = (re +ery) dt + Ve dWy, (8)

where the instantaneous expected excess return and its volatility term are restricted as follows

ert = —B(7)'Sv/SiAs and Vi = ~B(7)'SV/S,. 9)



The specification of the term premia or the expected excess return on a given maturity bond differs
significantly between essentially affine and extended essentially affine specifications. From equation

(9), for the essentially affine model we have
ert = —B(T),Z (StA() + I_AlXt) ,

where I~ is a diagonal matrix with elements equal to one except the first entry that is equal to
zero. Although excess returns implied by this model can vary independently from the level of the
conditional variance matrix St, the link between the conditional variance and the expected excess
return is not totally broken. In contrast, the extended essentially affine model allows the term
premia to be completely independent of the level of the conditional volatility. The form of the term
premia in this case is

ert = —B(’T),E ()\0 + >\1Xt) .

Note that this form is similar to the one implied by essentially affine Gaussian models. A key
ingredient of the success of the Ag(3) (see Duffee (2002) and Dai and Singleton (2002)) may be the
simple stylized fact that the term premia exclusively depend on the state vector. The extended
essentially affine model specifies the market price of risk in a way that preserves the benefits of the
Gaussian model, i.e. an affine term premium, while taking into account time varying conditional
volatility.

It is important to consider alternative specifications for the price of risk for this study, because
flexibility in modeling excess returns may extend to modeling conditional volatility. However,
the additional flexibility of the extended essentially affine specification comes at a cost: the Feller
condition has to be satisfied to rule out arbitrage opportunities, which makes extended essentially
affine models more constrained than their essentially affine counterparts.® Whether the model’s
additional flexibility helps to match second moments of yields depends on the impact of the Feller
condition on the parameter estimates.

While the time series performance of ATSMs depends on the specification of the market price
of risk, their cross-sectional performance depends to a large extent on the number of factors. We
limit our empirical investigation to three-factor models, because there is substantial evidence that
(at least) three factors are needed to explain the variation in yield co-movements (see for example
Litterman and Scheinkman (1991) and Dai and Singleton (2000)). Furthermore, for the purpose of
modeling conditional volatility, it seems natural to use the classification of Dai and Singleton (2000),
who organize three-factor models based on the number of factors impacting on the conditional
volatility.” Since our goal is to assess the behavior of the conditional volatility in affine models, it

seems natural to consider a heteroskedastic model, and therefore we only consider A; (3), Az (3) and

%The Feller condition implies that the volatility factors cannot attain the zero boundary. Since the market price

of risk is proportional to the volatility factors, it will always be finite if the Feller condition is satisfied.
"Collin-Dufresne et al. (2004) use a somewhat different canonical representation of these models based on this

classification in their empirical work.



A3 (3) models. While some other papers document the ability of the homoskedastic Ag (3) model
to capture conditional volatility, we eliminate this rather contradictory model feature by using
analytical conditional moments, rather than the reprojection technique of Gallant and Tauchen
(1998). A formal description of the A; (3), A2 (3) and Az (3) models under different specifications
of the price of risk is provided in Appendix A.

2.3 Restrictions on Conditional Yield Volatility in Affine Models

In affine models, the conditional variance of a given maturity yield is an affine function of the state
variable or equivalently a linear combination of yields. The conditional variance of a yield with

maturity 7 is

vary (yern) = B (r)vare(Xy 1) B(7), (10)
where B
B(r) = f). (11)

Using the Kronecker product operator ® and the fact that
vec (ABC) = (C' @ B) vec (4),
where vec denotes the vectorized representation of a matrix, we get®

var (Yern) = (EI(T) ® E(T)) x vec (vary(Xiyp))
= b+ b1 X:. (12)

The relationship in (12) is quite restrictive, because it indicates that in affine models the condi-
tional yield variance is an affine function of the state vector. As such, it seems that the conditional
variance is severely constrained in these models. In fact, (12) suggests that the conditional variance
implied by affine models estimated using cross-sections of yields may be more intimately related
to the properties of the level of yields than to the true volatility of these yields. Indeed, Collin-
Dufresne et al. (2004) and Andersen and Benzoni (2005) have found that volatilities extracted
from cross-sections of swap and Treasury yields are essentially unrelated to conventional volatility
measures. In this sense the restriction in (12) has been interpreted as an indication of the failure
of affine models in these markets.

It must be noted at this point that the ability of affine models to extract volatility from the
cross-section can be evaluated in different ways. The empirical framework may differ dependent
on whether one is exclusively interested in volatility or also in the modeling of the conditional
mean. The approach used by Collin-Dufresne, Goldstein and Jones (2004) and Thompson (2004)
is rather similar to ours, because they focus on volatility and evaluate the volatility measure of

interest using an analytical formula, as we do with (12). Dai and Singleton (2003) and Bikbov and

8Note that while the restriction in (12) is on conditional variances, we empirically investigate correlations between

model-free and model-implied volatility. Regressions using variances yield fairly similar correlations.



Chernov (2004) are interested in modeling the first two conditional moments, and therefore use a
different approach based on the reprojection method (Gallant and Tauchen (1998)). This involves
estimating a GARCH model on either the model-implied time series of yields, or on a simulated
time series. The resulting estimate of volatility may be dependent on the specification of the model
for the conditional mean.

A related issue is that some studies focus on the conditional volatility of the yields, while others
investigate the conditional volatility of the instantaneous short rate. Our focus on (12) is practically
motivated: the conditional yield volatility is available analytically for any maturity. Consequently

a discretization of the short rate is not necessary to infer the level of conditional volatility.

3 Data and Estimation Technique

3.1 Data

For our main results, we use zero-coupon Treasury bond yields with maturities of 3 months, 6
months, 1 year, 2 years, 5 years and 10 years that are extracted using the unsmoothed Fama and
Bliss (1987) method. Several other studies have used these data, see for example Ang and Piazzesi
(2003), Cochrane and Piazzesi (2005) and Duffee (2005). Monthly observations for these data are
available from January 1970 to December 2003.” We use data from 1970 to 1999 for in-sample
estimation, and the period 2000-2003 is used for an out-of-sample exercise.

We conduct a robustness check to verify if the results depend on the sample size and the
interpolation scheme. We use zero-coupon yields for maturities of 3 months, 6 months, 1 year,
2 years, 5 years and 10 years constructed using the McCulloch (1975) cubic spline interpolation
method.'® Monthly observations for these data are available from January 1952 to December 2003.
Originally, this technique was used by McCulloch and Kwon (1991) to construct a dataset that ends
in February 1991. Robert Bliss periodically updates this data set using a slightly different method
(see Bliss (1997)). Although the yields constructed by McCulloch and Kwon (1991) and Bliss (1997)
are somewhat different in overlapping periods, we use the McCulloch and Kwon (1991) data until
February 1991 and the Bliss data thereafter. This dataset allows us to conduct two robustness
exercises. We first compare the 1970-1999 results obtained using the cubic spline interpolation
method with those obtained using the unsmoothed Fama and Bliss method. Subsequently we
compare the results for the 1952-1999 sample with those for the 1970-1999 sample.

3.2 Estimation Technique

To estimate the models, we use the quasi-maximum likelihood (QML) method as implemented
by Chen and Scott (1993) and Fisher and Gilles (1996). QML relies on the following state-space

9We thank Robert Bliss for graciously providing us with the data.
'0This method is used among others by Duffee (2002), Duarte (2004) and Cheridito et al. (2006).



representation

u(7) = A(r) + B (1) Xy, (13)
and
dX; = k(0 — X;) dt + 2/ Sy dW, (14)
where
A7) = —A(TT) and B(r) = 2 (TT).

Although the state vector is not observed, it can be inverted from observed yields using equation
(13) . However, because there are more observed yields than unobserved state variables, the market
completeness hypothesis implies that yields other than those used to invert the state vector are
perfectly predicted. In order to circumvent this problem, we use an approach that has become
standard in the literature: we assume that we exactly observe a number of yields equal to the
number of state variables and assume that the remaining yields are measured with error. To set
the notation, assume that there are M observable yields, among which N are observed exactly
and are denoted by the N dimensional vector y;(7*). The remaining (M — N) are assumed to be
measured with error and are denoted by the (M — N) dimensional vector y;(7°). Equation (13) can

then be written as

u(T*) = A(7*) + B () X, (15)
and
y(r) = A(T) + B (7) Xy + ue, (16)
where
ug ~ N (0,%) and ¥ = L'L. (17)

The conditional probability distribution of yields is obtained from the conditional distribution of the
state vector via the Jacobian of the affine transformation (15) that relates yields to the state vector
and the distribution of the measurement errors. For a given date ¢, the conditional probability

density function can be written as

1

e (1) | (7)) = mf (Xt—i-l | Xt) + g (Uttn) (18)

where )?t is the implied value of the state vector computed as

~

X, =B"! (yt(T*) — Z(T*)) , (19)
and -,
B (1)
B — (20)
E,(TN)



QML is then relatively easy to implement since it only relies on the two first conditional moments
of the state vector and does not impose any restriction on the parameters of the model. The log

likelihood of the ' observation is

M 1 1
Ly (©) = — log (27) — log (|det (B)|) — 3 log (det (L'L)) — 5 log (det (var—1(X¢))) (21)
1,5 N 1. -1 .
—§(Xt — B 1(Xy) var—1(Xy)( Xy — Ei1(Xy)) — iut/ (L'L) " u,
where the measurement error vector u; is obtained from (16) .

In optimization, the initial log likelihood is computed using the unconditional distribution of
the state vector. We assume that the total number of observed yields is equal to six. We assume
that the 6-month, 2-year and 10-year yields are observed exactly, whereas the 3-month, 1-year and
5-year yields are assumed to be measured with errors. The expressions for the two first conditional

moments of the state vector are provided in Appendix B.

4 Empirical Results

4.1 Parameter Estimates

We estimate term structure models for the in-sample period January 1970-December 1999. Max-
imizing the log likelihood function for models of this kind is not straightforward and it is critical
to find good starting values for the parameters to ensure convergence to a global optimum and
avoid non-admissible dynamics (see Duffee (2002) for more on convergence problems in affine term
structure models). We use the following heuristics to improve the optimization procedure. We first
simulate 10000 admissible starting values using the multivariate normal distribution based on plau-
sible means and variances. By admissible, we mean starting values that ensure the positivity of the
state variables and satisfy the admissibility and stationarity conditions described in the appendix.
For each of these 10000 starting values, we compute the log likelihood function and choose the 50
best starting values. Optimization is then performed 50 times using these starting values and sub-
sequently we pick the parameter vector that maximizes the likelihood function among these local
optima. It is reassuring that this optimal parameter vector is obtained repeatedly with different
starting values.

Tables 1-3 report the parameter estimates, which are roughly consistent with the available
literature. Note that Table 2 does not report estimation results for the essentially affine A3z(3)
model, because the model is identical to the completely affine A3(3) model. We also do not report
estimation results for the extended essentially affine A(3) model in Table 3, because we were
unable to obtain economically meaningful estimation results. Some of the parameter estimates for
this model in Cheridito et al. (2005) are also hard to interpret. Because our investigation does not
critically depend on this particular model, we decided it was safer to drop it.

The parameters satisfy admissibility and stationarity conditions under the actual measure P
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for all models.!! As is now well established in the literature, the state variables can be thought as
proxies for the level, slope and curvature factors identified by Litterman and Scheinkman (1991).
We verified this by examining the response to shocks to each of the state variables. The time series
properties of the state vector critically depend on the matrix with the speed of mean reversion x. For
the A;(3) model, the first state variable X, that drives the conditional volatility is very persistent,
as demonstrated by the first column of the matrix k. The second state variable is as persistent as
the volatility factor and the third state variable reverts quickly to its mean. Under the essentially
and extended essentially affine specifications, the estimates of the vector Ay and the matrix A; show
that the market price of risk and the instantaneous excess return on bonds are mainly driven by
the second and the third state variable. This suggests that the volatility factor X1; plays a minor
role in capturing the time variability of the instantaneous excess returns, and confirms that both
essentially and extended essentially affine models free up the term premia from the level of the
conditional volatility. For the Ay(3) model, the first state variable X1, is the most persistent and
corresponds therefore to the level factor, whereas the second state variable Xy; exhibits slightly
less persistence and the third state variable is the least persistent. Interestingly, the completely
and essentially affine As(3) models are quite comparable as the estimates of the matrix A; are close
to zero for the essentially affine specification. This result is consistent with the findings in Duffee
(2002), who uses a different data set. For both completely and extended essentially affine As3(3)
models, the first state variable becomes a curvature factor, the second state variable can be viewed
as a level factor, whereas the third variable represents the slope factor. Once again, this can be

seen by examining the response to shocks to each of these state variables.

4.2 Variance Forecasts

We evaluate the quality of a model’s variance forecast by comparing the model-implied conditional
variance of yields with the "true" conditional variance implied by an EGARCH(1,1) model.'?> The

model-implied conditional variance of yields is given by

B(r)'

vary (Y1 (1)) = - var(Xis1 | )A(t)

B f) +var(ups (7)), (22)
where )A(t is the inverted value of the state vector, and w11 (7) is the measurement error (if the
yield is not measured exactly) that corresponds to the yield with maturity 7. Much of our empirical
investigation uses the conditional variance of yield differences, which is also equal to (22), but is
compared with the EGARCH volatility estimates for yield differences.

To assess the quality of the forecast, we compute the unconditional correlation between the
model-implied volatility forecast and the EGARCH(1,1) conditional volatility. Several studies have

computed the model-implied conditional variance of yields using the reprojection technique of

'Note that we do not impose stationarity under the risk-neutral measure Q since this condition is not critical for

estimation.
2Results were very similar when we used a GARCH(1,1) model instead of an EGARCH(1,1) model.
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Gallant and Tauchen (1998) rather than by using (22). This technique is typically used when
evaluating the first two conditional moments. The basic idea behind this approach is to assess the
performance of a model by comparing the conditional probability distribution implied by the data
to that implied by the model. This is implemented by extracting the model implied time series
of the unobserved factors, computing the in-sample yield forecasts and subsequently estimating a
GARCH model on these forecasts. The estimates of the GARCH model are then compared to the
GARCH model estimated on the actual data. For studying conditional volatility, we prefer using
(22) because it is simpler and because other authors have noted that in some cases the results of
the reprojection technique may be hard to interpret. For example, Bikbov and Chernov (2004)
apply this technique using Eurodollars futures and options data and find that the homoskedastic
Ap(3) model does a good job in fitting the conditional volatility. As noted by Bikbov and Chernov
(2004), this is a surprising result. A potential explanation is that the state vector and the errors
are either filtered or inverted from observed yields. For instance, if QML is used, the state vector is
usually inverted from yields that are observed without errors and are therefore a linear combination
of yields with various maturities. As a result, the heteroskedasticity of the yields will show up in
the time series of the implied state vector even though the original dynamics of the state vector are
homoskedastic. In our approach using (22), the state vector is inverted from the observed yields,
but the forecast of the variance is constructed using the statistical properties of the model, which
eliminates the paradoxical possibility that a homoskedastic model is considered as a good model
for fitting conditional volatility.

Tables 4 and 5 report on regressions of model-implied volatility on EGARCH estimates of
the first difference and the level of yields with an AR(1) specification for the conditional mean.'3
Following the literature, we report correlation coefficients rather than R-squares. Panel A reports
these correlation coefficients for the different term structure models. The R-square can be obtained
as the square of the correlation coefficient. For future reference, Panels B and C report more
detailed results for two models, the essentially affine A;(3) model and the extended essentially
affine A3(3) model, which were chosen because their empirical performance is somewhat different.
Standard errors are computed using the Newey and West (1987) estimator.

Table 4 documents a robust and significant positive relationship between model-implied and
EGARCH volatility estimates of changes in yields at all maturities. ~We document a sizeable
positive correlation between model-implied conditional volatility and EGARCH volatility. The
correlation for long-maturity yields is very robust across models and is approximately 82%. The
correlation for the shortest-maturity yields is much lower, much more dependent on the model and
varies between 58% and 71%. Table 5 indicates that the correlation is even higher when EGARCH

volatility estimates on yields are used as a model-free benchmark. The correlation is approximately

13We investigated the robustness of the results with respect to alternative specifications of the conditional mean.
An AR(2) and an ARMA(1,1) specification yield virtually the same results. A constant conditional mean implies an
even higher correlation for the first difference in yields and a lower correlation for the level of yields, but we found

substantial evidence that this model is misspecified.
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92% at the long end of the yield curve and varies between 62% and 76% at the short end. These
results are clearly in contrast with the small positive or even negative correlation reported elsewhere
in the literature (see Collin-Dufresne et al. (2004) and Andersen and Benzoni (2005)). Figures 1
and 2 further emphasize these findings by plotting the conditional volatility implied by the model
and the EGARCH estimates of changes in yields over time for two cases, the essentially affine A;(3)
model and the extended essentially affine Az(3) model. While the model-implied volatility is too
smooth compared to the EGARCH estimates for most maturities, the problem is exacerbated at
short maturities. Figure 3 provides additional intuition on the differences between the short and
the long end of curve. This figure depicts the autocorrelation path of the standardized squared
changes in yields implied by the essentially affine A;(3) model, and the Bartlett standard errors

bands.!* The standardized squared change in yields is computed as

Ay; (1)

vary(yei1 (7))

(23)

where vary(ys+1 (7)) is computed as (22). A good variance model should imply an autocorrelation
path that has no systematic patterns. Clearly, one can see that this goal is only achieved for long
maturity yields (5 and 10-year); the shorter the maturity, the poorer is the performance of the
model.

Tables 4 and 5 suggest that while affine term structure models do a much better job of extracting
volatility from the cross-section of yields than suggested in some of the available literature, even the
most complex models we consider have substantial shortcomings. We now provide some additional
evidence on these shortcomings, with an emphasis on the differences between the modeling of the
volatility of short maturity and long maturity yields. To save space, we only report on results for
yield differences. Results for the levels of yields are very similar.

We first focus on the correlation between volatilities for yield differences of different maturities.
Panel A in Table 6 presents the correlation matrix for EGARCH volatilities at different maturities.
The correlation is close to one for yields that are nearer in maturity, but much lower between short-
maturity and long-maturity yields. Panels B-E present correlation matrices for model-implied
volatilities. Note that by definition, these correlations are equal to one for A;(3) models. Panels
B and C in Table 7 indicate that Ay(3) models cannot capture the correlation between volatilities
for short-maturity and long-maturity bonds. Panels D and E indicate that As(3) models perform
much better in this dimension but still fall short of the EGARCH-based correlations in Panel A.
To demonstrate how poor the performance of most models is in this dimension, consider Table 7
which reports similar correlation matrices for yield levels for two very different models. For both

models, model-implied correlations are close to the correlations obtained from the raw data.

1 Results are very similar for the other models. The standard error bands correspond to plus/minus two standard

errors arround zero.
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4.3 Volatility and the Cross-Section of Yields

Our analysis demonstrates that a large proportion of the time variation in the conditional volatility
can be inferred from the cross-section of yields, using the model-implied variance of the state
variables in (22). Note that because the model-implied variance is affine in the yields, an alternative
approach would be to relate the time variation in conditional volatility more directly to the cross-
section of yields, as in (12). Table 8 takes this perspective and reports correlations between model-
free measures of the factors that capture variation in the yield curve, and either the EGARCH
volatility or the model-implied volatility. Based on the results of Litterman and Scheinkman (1991),
we investigate level, slope and curvature factors. The level factor is proxied by the 3-month yield,
the slope factor is measured by the difference between the 10-year and the 3-month yields whereas
the curvature is calculated as the yield on a butterfly that is long on the 10-year and 3-month bonds
and short on the 1-year bond. This approach is similar to Collin-Dufresne et al. (2004). Andersen
and Benzoni (2005) use a related approach, in which they use principal component analysis to
reduce the dimensionality of the cross-section of yields.

Table 8 indicates a high positive correlation between EGARCH volatility and the level of the
yield curve. The correlations range between 66% and 77%, and are not affected by the maturity of
the bond. Correlations between EGARCH volatility and slope and curvature are usually negative
and, in contrast with the level, are model- and maturity-dependent. Whereas the A;(3) model is
able to capture the co-movements between volatility and the level of the yields, it does not capture
the co-movements between volatility and the slope of the yield curve nor the co-movements between
volatility and the curvature of the yield curve very well. The reason is that the volatility in this
one-factor volatility model is simply a proxy for the level factor. The As(3) and A3(3) models
capture the correlation between the volatility and all the factors affecting the yield co-movements
much better. Presumably this is due to the fact that more factors drive the volatility. Interestingly,
differences between EGARCH-based correlations and correlations implied by the As(3) and A3(3)
models are less prominent at the long end of the curve.

These results are entirely consistent with the regression results in Tables 4 and 5. The corre-
lations between model-free (EGARCH) and model-implied volatility are higher for the A2(3) and
A3(3) models, because these models are able to incorporate the component of volatility that is
accounted for by the slope and curvature factors. The A;(3) model on the other hand only picks
up the volatility correlated with the level factor, but because this factor accounts for a very large
percentage of the cross-section, the differences with the A2(3) and A3(3) models in Tables 4 and 5
are not very large. Our findings contrast with those of Collin-Dufresne et al. (2004), who docu-
ment a small unconditional correlation between the EGARCH volatility estimates and level, slope,
and curvature using the 6-month LIBOR rate. This finding may indicate a fundamental difference

between swap and Treasury markets.
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4.4 Volatility and the Market Price of Risk

Our findings show that the specification of the price of risk has a very minimal impact on the results.
Dai and Singleton (2003) report that an essentially affine A;(3) model substantially outperforms
its completely affine counterpart for the purpose of volatility modeling, which contrasts with our
findings. We replicated our empirical exercise with the reprojection method used in Dai and
Singleton (2003), and in this case our results are in line with theirs. We focus on the results in
Tables 4 and 5 because we believe that the more direct approach in (12) is preferable when focusing
on conditional volatility. The reprojection technique is more appropriate when assessing the ability
of the model to jointly capture the time varying nature of excess returns and conditional volatility.

There is no a priori reason that renders the market price of risk irrelevant for the extraction of
conditional volatility. A closer examination of the conditional volatility as implied by equation (22)
provides the intuition behind this surprising empirical result. The conditional volatility implied by
affine models depends on two components: the factor loadings B(7) and the conditional variance
of the state vector. It turns out that the factor loadings, which determine the cross-sectional
performance of the model, are almost identical across models. Moreover, the conditional variance
of the state vector is determined by the components of x and 3 that drive the conditional volatility,

and those estimates are roughly the same across specifications of the price of risk.

4.5 The Segmentation Hypothesis

The verdict on the ability of affine models to extract conditional volatility from the cross-section of
yields is decidedly mixed. Clearly, for our data and using the EGARCH measure for true volatility,
the performance of affine models is not nearly as bad as suggested in several places in the literature.
Nevertheless, Figures 1-2 clearly indicate that model-implied volatility forecasts are too smooth
over time, and Table 8 indicates that the model-implied correlation with the state variables is very
different from the correlation with the EGARCH measure. In this Section we further investigate
the finding that the model seems to match the data much better for longer maturities. To save
space, we report results on the essentially affine A;(3) model. The results for the other three-factor
models are similar.

The interest rate and term structure literature has repeatedly observed that the dynamics
of short maturity yields are different from those of long maturity yields (see for example Duffee
(1996) and Modigliani and Sutch (1976)). In its most extreme form, this hypothesis is known
as the segmentation hypothesis, indicating that the short and long end of the term structure are
segmented. We investigate the relevance of this hypothesis for estimating conditional volatility
by repeating the analysis using only yields with maturities less than one year in estimation. More
precisely, we use zero-coupon bond yields with maturities of 1 month, 3 months, 5 months, 7 months,
9 months and 12 months that are extracted using the unsmoothed Fama and Bliss method. We also

estimate the model using only yields with maturities of more than one year in estimation, namely
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zero-coupon bond yields with maturities of 1 year, 2 years, 3 years, 5 years, 7 years and 10 years.

Table 9 presents the parameter estimates for the essentially affine A;(3) model. Clearly there
are some important differences between the parameter estimates for short and long maturities, as
well as with the estimates in Table 2. Comparing the estimates of the matrix Ay with the estimates
in Table 2, one can see that the curvature factor impacts more on the term premia. This is not really
surprising, as such a shock can indeed be viewed as a "flight to quality" shock that primarily affects

15" Perhaps a more important difference

the willingness of investors to hold short-maturity bonds.
between the estimates of Tables 9 and 2, at least for the purpose of volatility analysis, is the time
series behavior of the state variables. The estimates of the matrix x demonstrate that the state
variables are overall more persistent than those implied by an estimation of the same model on
the whole yield curve, which has implications for the volatility factor. A more persistent volatility
factor could generate a more persistent conditional volatility and thus enhance the performance of
the model at the short end of the curve. Table 10 presents the results from regressions of EGARCH
volatility estimates of the first difference in yields on model-implied estimates. The correlations
for the long-maturity yields in Panel B are lower than those in Table 2, but the ones for the
short-maturity yields in Panel A are significantly higher.

In summary, there is evidence of segmentation between the markets for long-maturity and short-
maturity bonds. The model performs much better in key dimensions when it is estimated separately
for short-maturity and long-maturity bonds.

It is interesting to note that several studies document problems at the short end of the swap
curve.'® This is often attributed to the fact that swap data are not available for three and six
month maturities and that LIBOR rates are used to complete the term structure data, which may
lead to biases in estimation. It is an open question whether these results and results on Treasury
markets such as ours are indicative of some more structural underlying segmentation between the
short and long end of the fixed-income markets, or that the reason for the segmentation lies in

institutional issues that are quite different in both markets.

5 Robustness Analysis

This Section reports a number of robustness exercises. To economize on space, we only report
results for the essentially affine A;(3) model, and for yield differences. Results for other cases are

very similar.

5.1 Out-of-Sample Analysis

Table 11 verifies whether the in-sample differences in fit for different maturities also hold out-of-

sample. To evaluate the model’s performance, we compute the root mean squared error (RMSE),

"See Duffee (2002) for a more detailed discussion.

'6See for example Liu, Longstaff and Mandell (2006) for swap rates and Piazzesi (2001) for Treasury yields.
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which is based on the differences between model-implied conditional volatility and EGARCH volatil-
ity. Out-of sample EGARCH volatility estimates are obtained by extending the sample one month
at a time and re-estimating an EGARCH(1,1) on the new extended sample. Out-of-sample condi-
tional volatility implied by the essentially affine A;(3) is computed using the parameters in Table
2. The results show that the in-sample difference between short and long-maturity yields also hold
out-of-sample for both changes and levels of yields. This finding is very compelling evidence that
the differences in fit between maturities are very robust, because the in-sample and out-of-sample
data are very different. Most of the RMSE in the in-sample period 1970-1999 is driven by errors
in 1973-1974 following the first oil crisis and the period following the monetary policy experiment
in 1980-1982. In contrast, the out-of-sample period 2000-2003 is a very quiet period for Treasury

markets.

5.2 An Analysis of Instantaneous Conditional Volatility

Instead of focusing on model-implied conditional yield volatility at different horizons, Collin-
Dufresne et al. (2004) focus on the instantaneous volatility of the short rate implied by the model.
Table 12 presents the results of their approach for our data. We regress the conditional volatility
implied by EGARCH estimates of changes in yields based on 1-month and 3-month yields on the
instantaneous volatility of the short rate implied by the essentially affine A; (3) model. Panel A
of Table 12 shows that the correlations are of the same order of magnitude as the short-maturity
correlations in Table 2. Panel B shows that when re-estimating the model using short-maturity
yields only, the correlations increase. These results are more directly comparable to those of Collin-

Dufresne et al. (2004), who find a negative correlation using swap data.

5.3 An Analysis of Realized Volatility

While the use of a GARCH or EGARCH model to measure "true" conditional volatility over
different horizons is a well-established technique in the literature on term-structure volatility,'”
it obviously has some drawbacks. The use of realized volatility is an interesting alternative.!®
Unfortunately, it is not possible to construct indicators for realized volatility using high-frequency
data for our sample period. Therefore, we follow the technique pioneered by Schwert (1989) in the
equity return literature and construct measures of monthly volatility using within-month squared
changes in yields. Assuming that m observations are available within a month, an estimate of the

monthly variance can be calculated as

U?n,t+1 (1) = Z Ay7f2+i/m (7). (24)
i—1

"t is used among others by Bikbov and Chernov (2004), Collin-Dufresne et al (2004) and Dai and Singleton

(2003).
!8See Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and Labys (2001) for

applications of realized volatility.
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It has been shown that an ARMA(1,1) provides a good fit to the logarithm of the realized variance:

log (‘77271,75+1 (T)) = alog (072%75 (T)) + der + &1, (25)

with g,41 ~ N (0, 025) 19 The variance forecast implied by this model is

7 e (1) = (s ()" e (m 2) )

Panel A of Table 13 reports the correlation coefficients between the volatility forecast (26) and
the A1(3) model-implied volatility. The correlation between the essentially affine A;(3) model-
implied volatility and the realized volatility forecast is positive and significant for all maturities.
However, at long horizons the correlations are lower than the corresponding ones in Table 4. Inter-
estingly, Panel A of Table 13 indicates that at the long end of the curve the EGARCH estimates
are also not very highly correlated with the realized volatility estimates. Figure 4 depicts the dif-
ferences between the conditional volatility implied by the realized variance model and that implied
by the EGARCH model, and it can be seen that the differences mostly occur for longer maturities.
A comparison of Figure 4 with the model-implied volatility in Figure 1 provides further intuition
for these results.

What drives the differences between EGARCH conditional volatility and realized volatility evi-
dent from Figure 47 To provide more insight, Figure 5 presents the term structure of unconditional
yield volatility implied by the monthly data, the essentially affine A;(3) model, the EGARCH
model and the realized variance model. The "monthly data" term structure of unconditional yield
volatility is given by the standard deviation of the monthly changes in yields. The unconditional
model volatilities are computed as the averages of the conditional volatility path generated by each
model. Figure 5 shows that while there is a close correspondence between the "monthly data" term
structure, the EGARCH term structure and the term structure implied by the unconditional essen-
tially affine A1(3) model, the term structure of unconditional realized volatility is very different.2’
It is tempting to interpret this as a failure of the realized volatility approach, but it must be kept
in mind that the "monthly data" term structure is also just another measure of the true volatility.
These results therefore merely reflect some interesting differences between volatility measures that
deserve further study, but this is beyond the scope of this paper. Moreover, most recent studies
have used high-frequency data to construct realized volatility, and the properties of this time series
may differ significantly from the realized volatility data in Figure 5.

The realized volatility analysis in Panel A of Table 13 provides an analysis of ex-ante restrictions
implied by the model, in line with the analysis in Table 4 and the rest of the paper. Andersen

and Benzoni (2005) use realized volatility data and mostly focus on ex-post restrictions implied

19We also investigated an ARMA(1,1) with an EGARCH innovation, and this does not affect the results.
20We also explored the residuals of the ARMA(1,1) realized variance model. For long-maturity yields (5 and

10-year), the residuals contain more noise than short maturity yields.
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by term structure models. A detailed comparison with their results is beyond the scope of this
paper.?!  However, to provide a worst-case scenario for the correlation between model-implied
and data volatility using our data, consider Panel B of Table 13. We compute the correlation
between the model-implied variance and the (ex-post) realized variance, rather than the (ex-ante)
conditional expectation of the realized variance as in Panel A. We do not regard this comparison as
meaningful, because it involves an ex-ante and an ex-post measure, but the resulting correlations
present a worst-case scenario precisely because we compare the volatile ex-post realized volatility
measure with the smoother ex-ante model-implied measure. Panel B indicates that even in this
case, the correlations are 50% on average.

We conclude that whereas there are some interesting differences between the results obtained
using realized volatility and those obtained using EGARCH volatility, most notably at long matu-
rities, the correlations between model-implied and "true" volatility are reliably positive, even if we

use ex-post realized volatility as a measure of true volatility.

5.4 The Structure of the Measurement Errors

In this Section, we verify whether assumptions regarding measurement errors have a significant
impact on our results. To this end, we first estimate the essentially affine A; (3) model with QML
under different assumptions on the measurement errors. We use zero-coupon bond yields with
maturities of 6 months, 1 year, 2 years, 5 years, 7 and 10 years that are extracted using the
unsmoothed Fama and Bliss method. We assume that the 6-month, 2-year and 7-year yields are
observed without errors, whereas the 1-year, 5-year and 10-year yields are assumed to be measured
with errors. As a second robustness check, we estimate the essentially affine A; (3) model with the
data set used for Table 2, but using the extended Kalman Filter combined with quasi-maximum
likelihood, thereby allowing all yields to be measured with errors.?? Panel A of Table 14 shows
that even when different points on the yield curve are used to estimate the model, and different
points on the yield curve are assumed to be observed exactly, the differences between the short and
the long end of the yield curve prevail. Panel B of Table 14 presents results obtained using the
extended Kalman filter. Compared to Table 4, the correlations increase slightly, but the differences

in fit across maturities are very robust.

5.5 Sample Period and Interpolation Method

Comparisons between different models in the term structure literature are sometimes difficult be-

cause different techniques are used to interpolate zero-coupon bonds from raw yield data.?® A large

2! Andersen and Benzoni (2005) use Treasury data, but because they use measures of realized bond market volatility
that are constructed using high frequency data, they use a much shorter sample for 1991-2001. The ex-ante test results

they report are also very different from ours.
228ee Hamilton (1994) for a general presentation and Duan and Simonato (1999) for the estimation of term structure

models using the Kalman Filter.
#3See Dai, Singleton and Yang (2003) for a discussion on the importance of the interpolation method.
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number of papers use the unsmoothed Fama and Bliss method that we have used in our empirical
work. We now investigate the robustness of our findings by re-estimating the model using zero-
coupon yields interpolated using the equally popular McCulloch (1975) cubic spline approach. See
Section 3.1 for details of our implementation of the procedure. Panel A of Table 15 presents the
regression results using 1970-1999 data. Clearly the regression estimates and the correlations in
Panel A are similar to those in Table 4. We therefore conclude that our results are robust to the
choice of interpolation method.

As discussed in Section 3.1, the McCulloch-Kwon zero-coupon bond yields are available for
the more extended time period 1952-1999. Panel B of Table 15 reports the results of the same
regression using this extended sample. Results are similar, and we conclude that our results are

robust with respect to the choice of sample period.

6 Concluding Comments

This paper conducts an investigation of the ability of three-factor affine term structure models
to extract the time series of conditional yield volatility from the cross-section of Treasury yields.
Several papers have documented that these models fail in this dimension, but we find evidence to
the contrary. We find that for yield differences, the correlation between the conditional volatility
of model-implied yields and model-free conditional volatility as measured by EGARCH volatility
is approximately 82% at long maturities, and between 58% and 71% at short maturities. For
yield levels, correlations are even higher. Models in which more factors impact on the conditional
volatility perform better, but the specification of the price of risk impacts very little on results.
We also provide evidence that the models perform worse for short maturities in several other
dimensions, perhaps indicating some form of segmentation between the short and long end of the
yield curve. To provide intuition for these findings, we document a high and robust correlation
between EGARCH estimates and the level factor.

The empirical results are robust to a large number of variations in the empirical setup. When
using realized volatility as a measure of volatility, results for long maturities are somewhat different,
but correlations are still robustly positive. Our findings on the role of the price of risk specification
are different from existing studies. The reason is that we use an analytical expression for model-
implied volatility. Other studies do not exclusively focus on the second conditional moments of
yields, and therefore use different techniques.

We do not provide a solution that enables three-factor ATSMs to capture the conditional
volatility at the short end of the term structure, when the model is calibrated on the full cross-
section. It is tempting to suggest that the models considered in this paper are not rich enough for
the task at hand, and that a fourth factor may fix the problem. However, our results for three-factor
models indicate that the four-factor models most likely to be successful will likely be in the Ag (4) or

Ay (4) class, and these are very heavily parameterized models that are hard to estimate. Indeed, we
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speculate that the richness of the parametrization of such models may lead to a deterioration of the
out-of-sample performance for many issues of interest, such as yield forecasting. We believe that
the use of additional data such as option contracts to calibrate existing three-factor models may
hold more promise. See among others Almeida, Graveline and Joslin (2006), Bikbov and Chernov
(2004), Fan, Gupta and Ritchken (2003), Jagannathan, Kaplin and Sun (2003) and Li and Zhao
(2005).

One caveat is that some related studies use different data, which may explain some of the
differences in the results. Collin-Dufresne et al. (2004) use swap data. Almeida, Graveline and
Joslin (2006) report results that are somewhat similar to ours for weekly swap rates. However,
they find that correlations for short maturities are lower than ours. It may prove interesting
to investigate if these differences are due to institutional differences between swap and Treasury
markets, or perhaps to some other feature such as the frequency of the data. In general, an

investigation of the robustness of our results with respect to data frequency may prove worthwhile.
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Appendices

A Three-Factor ATSMs

The A;1(3) model has the following canonical representation under the physical measure P

X1 kit 0 0 01 — X1t VXt 0 0
d| Xoy | = | ko1 K22 K23 —Xor  |dt+| 0 1+ By Xu 0 dW;.

X3t K31 K32 K33 — X3¢ 0 0 V1+ B3 X
(27)

Admissibility conditions require that x1161 > 0,61 > 0, 51(1) > 0,89, > 0 and 37 > 0. The Feller
condition requires k1161 > % The form of the market price of risk used in the essentially affine
A1(3) model is

0
Aoy VX1t
A1(21) X1t tA1(22) X2t +A1(23) X3¢

Av =1 MoV 1+ B X | + /1By X1t : (28)

A1(31) X1t +A1(32) X2t +A1(33) X3t
Aoy v/ 1+ B3 X1t \/1+5)31X1t :
or equivalently
Ao(1) X1t
VX1t
A Xo(2)+ (A2 Fho(2)Ba1 ) X1t+A1(22) Xt + A1 (23) Xt
t = V14891 X1 (29)
)\0(3)+(/\1(31)+)\0(3)531)X1t+)\1(32)X2t+>\1(33)X3t
\/1+631X1t

For the A;(3) model, the extended essentially affine model specifies A; as follows
oy than X

VX1t
Ao(2) HA1(21) X1t +A1(22) X2t +A1(23) X3¢

Ay = /T X1 : (30)

Ao(3) TA131) X1t +A1(32) X2t +A1(33) X3¢
V1+B31 X1t

Clearly, the essentially affine model is nested by its extended counterpart only if the § coefficients

are equal to zero. In this case, it imposes the restriction that Ag;) = 0. In other cases, the classical
likelihood ratio test cannot be performed. The extended model also differentiates itself from the
essentially affine model in that the Feller or the unattainability condition has to be satisfied to rule
out arbitrage. For the purpose of estimation, we make the following change of variable to guarantee

that the Feller condition is not violated

(k0); = (k0% +0.5). (31)
The A2(3) model has the following canonical representation under the physical measure P
X1t k11 k12 0 01 — X1t vXie 0 0
d Xoy = K21 K22 0 0 — Xoy dt+ 0 Xot 0 dW;.
X3y K31 K32 K33 — X34 0 0 /14 B3 X1+ B3 X
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Admissibility conditions require that k11601 + k12602 > 0, k21601 + ko262 > 0, 61 > 0, 65 > 0,
d11) = 0, dy(2) = 0, k12 < 0, ko1 < 0, B33 > 0 and B35 > 0. The Feller condition requires that
k1101 + K1209 > % and k9101 + Kogl9 > % The essentially affine Ay(3) specifies the market price of

risk as follows

>

o(1) X1t
VXt
Ao(2) X2t
Ay = s . (33)
Ao(3) Qo) Bs1 TA1(31)) X1t +(Ao3) Baa+A1(32)) X2t +A1(33) Xst

V14831 X16+835 X2

For the extended essentially affine A2(3) model, A; is specified as follows

Aoy FA1(11) X1t +A1(12) Xt

VX1t
Ao(2) +A1(21) X1t +A1(22) X2t

A= v Xot
Ao(3)+A1(31) X1t +A1(32) X2t +A1(33) X3¢
V14831 X1+ B30 Xt

As for the A;(3) model, both specification are in general not nested, but the extended specification
offers some extra degrees of freedom provided that the Feller condition is satisfied.

The A3(3) model has the following canonical representation under the physical measure P

X1t K11 K12 K13 01 — Xt X1t 0 0
d th == K21 K22 K23 02 — th dt + O th O th (34)
X3¢ K31 K32 K33 03 — X3¢ 0 0 VX

Admissibility conditions require that k1101 + k1202 4+ k13603 > 0, ko101 + Koobo + ko303 > 0, k31601 +
k32l + k333 > 0, 01 > 0, 02 > 0, 03 > 0, d11) > 0, dy(2) = 0, dy(3) > 0 and r;; < 0, Vi # j.
The Feller condition requires that k1101 + k1202 + k13603 > %, ko101 + K999 + Ko3ls > % and
k3101 + k3209 + K3303 > % Unlike the A1(3) and Ag(3) models, the essentially and the extended
essentially affine A3(3) models are nested.?* For the essentially affine model, the market price of

risk is specified as follows

A= | Dot | (35)

The extended essentially affine model specifies A; as follows

Ao(n) FA111) X1t tA1(12) X2t +A1(13) X3¢

X1t
A A Xit+A Xot+A X
At _ 0(2) TA1(21) X1t F+A1(22) X2t +A1(23) X3¢ ) (36)

v Xot
Ao(3)+A1(31) X1t +A1(32) X2t +A1(33) X3¢
VX3t

*Note that the completely affine Az(3) coincides with its essentially counterpart.



To estimate the extended affine A3(3) model, we use the following alternative canonical repre-

sentation
X1t K61 K11 Ki2 K13 X1 X1t 0 0
d|l Xot | = kb2 | — | K21 K22 Ko Xor | dt + 0 VX 0 dW;.
X3¢ K03 K31 K32 K33 X3¢ 0 0 VXy

Using this equivalent representation, we make a change of variable that guarantees that the
Feller condition is not violated
k0; = (k0 + 0.5)

B Conditional Moments of the State Vector

We compute explicit expressions for the two first conditional moments following Fackler (2000) who
extends the formula provided by Fisher and Gilles (1996).
B.1 Conditional Expectation

The integral form of the stochastic differential equation (1) under the actual probability measure
Pis t+7 t+7
Xior = X, + / k(0 — Xo) du + / S/ Sud V. (37)
t t

Applying the Fubini theorem, we get
t+T1
Et [XtJrT] = Xt + / K (9 — Et [Xu]) du.
t

Differentiating with respect to 7 implies the following ODE

dE¢ [Xi4r]

dr = /<al9 — KEt [Xt+'r] s (38)

with the initial condition
E, [ Xi] = X;. (39)

The solution to this ODE has the following form
Et [Xt+T] =a (t, 7') +b (t, 7') Xt. (40)

Making the identification with (37) yields the following ODE’s

da (t,7)
5 = kO — Kka (t,T) (41)
and ob (t.7)
87: = —rb(t, 1), (42)
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with the initial conditions
a(t,7)=0and b(t,7) = Iy.

If the matrix k is non-singular, the solution of equations (41) and (42) are
a(t,7) = Iy —exp(—k7))0 and b(t,7) = exp (—KT), (43)

where exp (—k (7 — t)) is given by the power series

-2
exp (—KT) :I—T/Q—i-glﬁz—i-"- .
Combining these expressions with (40), we get
By [Xerr] = (I — exp (—7)) 0+ exp (—7) Xo. (44)

One can notice that if the eigenvalues of the matrix x are strictly positive, then
lim exp (—k7) =0,

T—00

and the unconditional expectation of X;,, is given by

E[X,] = 0,Vt.

B.2 Conditional Variance
Applying 1t6’s lemma to (44) yields
dEt [Xt+7—] =b (t, 7') E\/ Stth,

or equivalently
t+T1
Xivr = By [ X4 r] +/ b(u,t+7—u) X/ SudW,.
t

Under some technical conditions®®

t+1
vary [Xipr] = wvary [/ b(u,t+7—u) Xy Suqu]
t
t+1
= L [/ b(u,t—i—T—u)ESUEb(u,t—i-T—u)Tdu}
t
t+1
= / b(u,t+7 —u) Sdiag (o + BE; [ X)) Sb (u, t+ 7 — )" du. (45)
t
Following Fackler (2000), the vectorized version of (45) is

t+1
vec (vary [Xiir]) = /t but+7—u)@b(u,t+7—u)) (ER3)D (a+ BE: [X,])du, (46)

%5 Gee Neftci (1996).

26



2

where ® denotes the Kronecker product operator and D is a n® X n matrix such that

Lifie (i—1 .
py—{ 11 (U )nfrj (47)
0 otherwise
In the case of a 3 factor model, D is expressed as
(48)

o]
Il
O 0 00 o o o o~

O O O O = O O o ©
= O O O O O O o O

Using (44), expression (46) can be rearranged as follows
vec (vary [Xitr]) = vo(t, 7) + v1(t, 7) Xy,
where
t+1
vo(t,T):/ but+7—u)@b(u,t+7—u)(ERX)D (a+ Ba (t,u—t))du (49)
t

and
t+71

vi(t,7) = O(u,t+7—u)@b(u,t+7—1u)) (X X)DBb(t,u —t)du. (50)

Differentiating (49) and (50) with respect to 7 yields the following ODE’s

vy (t
””8(7’7) = (£@)D(a+Ba(t,7)) — (r® Iy + Iy ® &) v (t, 7), (51)
and 5
ty
”18(77) = (S®%)DBb(t,7) — (v ® Iy + Iy @ &) va(t,7) (52)
Combining these ODEs with equations (41) and (42), we get the following two systems of ODE’s
da(t,) "
81)(?(7; T) =0-K a( ’T) ) (53)
B vo(t,7)
and
8bét7:‘l') b (t7 7_)
Ov1 (t,7) =K ) (54)
“or vi(t,7)
where
0
ol (55)
(X ® %) Da




and
K 0

—(X2X)DB (k®@IN+ Iy QK)
The initial conditions are a (¢t,7) = 0, b(¢,7) = In,vo(t,0) = 0 and v1(¢,0). Provided that & is

nonsingular, the solution to these two systems is given by

Kr =

(56)

a(t7) = —exp(—kT)) K}
[ v()(t, 7_) ] - (IN p( )) @7 (57)

and

[ b(t,7) ] =exp(—KT) [ In ] , (58)

(%] (t, 7‘) 0
where exp (—k (7 — t)) is given by the power series

2

eXp(—HT):I—TH—l-%H,Q—l-'”. (59)
Since k! can be written as
kL 0
-1 1 -1 ) (60)
kRIN+INRK)  (2X)DBk™! (k@ IN+ INy @ K)

if we assume that the eigenvalues of k are strictly positive, then

lim exp (—k7) =0
T—00

and the unconditional vectorized variance is

vec (var [Xy]) = Tli_)IgOUO(taT)
= k@®In+In®K) T (S@X)D(BI+a). (61)

Computing the first two conditional moments involves the evaluation of the power series (59).
Several methods for evaluating the exponential of a matrix are provided in the literature?¢. However,
as pointed out by Fackler (2000), the eigenvalues decomposition, suggested by Fisher and Gilles
(1996) and used by Duffee (2002), and the Padé approximation yield good results in this particular
context. In this paper, we use the Padé approximation to compute the conditional expectation and

variance.

C The Extended Kalman Filter

C.1 The Algorithm

The Extended Kalman Filter relies on the same state-space representation the QML method but

assumes that all yields are measured with errors, which does not allow the state vector to be inverted

?6See Moler and Van Loan (1978).
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from the cross section of yields. When all yields are measured with errors, the measurement equation

is rewritten as follows
yr = A+ BX; + u (62)

where y; is a vector that contains M observed yields, u;11 N (0,%), ¥ is a diagonal matrix with

elements o2,

_A(m1) B(71)
T1 T1
A= ' and B =
. A(T ) B(tn)
TM TM

The transition equation is discretized as follows
1
Xiv1 = By [Xiga] + v (Xp)2 g1, (63)

. | )
where &, 4 N (0,I), and v (X;)? = vary [X¢41]? is the Cholesky decomposition of the conditional
covariance matrix of the state vector.

Since the conditional expectation of the state vector is an affine function, the transition equation

(63) can be rewritten as follows
1
Xt—i—At =a-+ bXt + v (Xt)z Et+ AL, (64)

where a and b are given by (43).
Let us denote the contemporaneous forecast (or the filtered value) of the state vector and its
corresponding covariance matrix by X;; and Py, the extended Kalman filter algorithm works as

follows at any time t:27

1. Given Xy; and Py;, compute the one period ahead forecast of the state vector and

its corresponding covariance matrix?®
Xip1e = a+ bXyy (65)

and
Pyiqjg = V' Pyb+ v (Xyy) - (66)

2. Compute the one period ahead forecast of y;+1 and its corresponding covariance

matrix

Yer1p = A+ BXyap (67)

and
Virae = Bv (X)) B+X. (68)

*7See Hamilton (1994) for further details.
28We make the normalization that At = 1.
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3.Compute the forecast error of yri1, €411t = Y1 — Yoq1)t-

4. Update the contemporaneous forecast of the state vector and its corresponding co-

variance matrix

Xiv1jerr = Xogp1e + Pt+1|t§‘/;11‘t€t+1|t (69)
and
=1 =/
Pt+1|t+1 = Pt+1\t - Pt+1|tBVt+htB Pt+1\t~ (70)

5. Return to step 1.

The log quasi-likelihood of observation ¢ + 1 is then

1

M 1
Ly (©) = Y log (2m) — 9 log (det (Vt+1\t)) - §e£+1|t‘/;t+1|tet+1|t- (71)

In order to start the recursion, we need the initial one period ahead forecast Xy and its
covariance matrix Pjg. The unconditional two first moments are used in the first step of the

recursion, which implies that
X0 = E[Xi] and Pyjg = var [Xy].

C.2 Variance Forecasts

Rather than using the implied value of the state vector as in (22), the model-implied conditional

variance of yields is computed using the filtered state vector Xy
vary(ye1 (7)) = B(7) Py B(T) + var (w1 (1)), (72)

where
P)t+1|t = b,Pt‘tb + vare [Xt+1] . (73)
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Figure 1: Conditional Volatility Implied by the Essentially Affine A;(3) Model and EGARCH(1,1)

Estimates for Various Maturities.
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Notes to figure: For each maturity, the dashed line depicts the conditional volatility implied by
the essentially affine A;(3) model and the solid line depicts the EGARCH (1,1) volatility estimates
of changes in yields. The EGARCH(1,1) is estimated assuming that the conditional mean of changes

in yields is generated by an AR(1) process. The sample period is from January 1970 to December

1999.
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Figure 2: Conditional Volatility Implied by the Extended Essentially Affine A3(3) Model and
EGARCH(1,1) Estimates for Various Maturities.
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Notes to figure: For each maturity, the dashed line depicts the conditional volatility implied by
the extended essentially affine A3(3) model, and the solid line depicts the EGARCH (1,1) volatility
estimates of changes in yields. The EGARCH(1,1) is estimated assuming that the conditional mean
of changes in yields is generated by an AR(1) process. The sample period is from January 1970 to
December 1999.
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Figure 3: Autocorrelation of the Standardized Squared Change in Yields Implied by the
Essentially Affine A;(3) Model and the EGARCH Estimates.

02 0z
A " | |-
s My s
B Mo n A A £ \ﬂfjwmwhmf\’wm#
20 “ &0 80 10w 120 W n 40 &0 W 1w 120 W
D)W N\A‘ e HTM
E [} J\AW«JV ‘Iw‘"'\,v—\.m_- E 0 JMMA,‘{'W
a2 : 4z
F N I T TR R I I
£ — | — L O
I A VN 1P% [ PTRPT T ! UWWN%WW
o - &0 80 100 o o n a0 &0 an 100 7o o

%
il
;
i

§
{
!
{

;
?
:
|

L F a3

Notes to figure: For each maturity, we plot the autocorrelation path of the standardized squared
changes in yields implied by the essentially affine A;(3) model (top panel) and EGARCH model
(bottom panel) with the Bartlett standard errors.
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Figure 4: Conditional Volatility Implied by the Realized Variance Model
and the EGARCH(1,1) Estimates for Various Maturities
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Notes to figure: For each maturity, the solid line depicts the EGARCH (1,1) volatility esti-
mates of changes in yields, and the diamonds depict the volatility implied by the realized variance
model. The EGARCH(1,1) is estimated assuming that the conditional mean of changes in yields
is generated by an AR(1) process. The sample period is from January 1970 to December 1999.
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Figure 5: Term Structure of Unconditional Yield Volatility.
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Notes to figure: The monthly data unconditional volatility is computed as the standard deviation
of changes in monthly yields. For each model, the unconditional volatility is computed as the

average of the conditional volatility paths.
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Table 1: Parameter Estimates for Completely Affine Models

Parameter Models
AQ) A,0) AsQ3)
Factor Factor Factor
1 2 3 1 2 3 1 2 3
5 0.0219 0.0260 0.02525
0 (0.1273) (0.0272) (0.0023)
5. 0.0015 0.0006 0.0042 0.0013 0.0020 0.0087 0.00098 0.00001 0.01356
i (0.001) (0.0000)  (0.0041) | (0.0024)  (0.0026)  (0.0031) | (0.0006)  (0.0007)  (0.0069)
- 0.0297 0 0 0.1344 -0.2814 0 0.58200 -0.14999 0
. (0.0353) (0.0516) (0.0319) (0.0282) (0.0135)
o -0.0951 0.3225 17.6585 -0.1691 0.4416 0 -0.02339 0.06580 -0.29900
4 (4.8206)  (0.2352)  (11.1584) | (0.1856)  (0.2631) (0.1369)  (0.0268)  (0.3018)
n 0.0496 -0.0184 1.8632 0.4313 -1.6688 1.5951 -1.08000 0 1.56000
% (0.2611)  (0.0166)  (0.2699) | (0.3362)  (0.4952)  (0.1775) | (0.0550) (0.0840)
0. 5.5100 0 0 2.9584 0.8271 0 5.24000 13.70000 1.85000
! (35.0114) (0.9364) (0.1439) (3.8613) (2.7803) (0.1457)
Ao -0.0405 -0.0167 -0.1143 -0.0418 -0.0063 -0.2228 -0.05262  -0.00118 -0.25601
0 (0.0262) (0.0404) (0.2522) (0.1463) (0.1032) (0.2551) (0.1992) (0.1482) (1.5073)
B4 1 0 0 1 0 0 1 0 0
42.0946
B2 (14.7709) 0 0 0 1 0 0 1 0
0.3204
B3 (0.1771) 0 0 0 1 0 0 0 1
0.0024 0.0023 0.00229
L (0.0001) 0 0 (0.0001) 0 0 (0.0001) 0 0
Ly -0.0006 0.0013 0 -0.0006 0.0013 0 -0.00061 0.00132 0
. (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
L. 0.0004 -0.0001 0.0016 0.0004 -0.0002 0.0016 0.00030 -0.00015 0.00156
3 (0.0002) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0003) (0.0001) (0.0001)
Log Likelihood 10149.13 10170.30 10219.31

Notes: We estimate the models using QML on a sample of monthly data from January 1970 to December 1999. Yields with maturities of 6 months, 2
years and 10 years are assumed to be measured exactly, whereas yields with maturities of 3 months, 1 year and 5 years are assumed to be measured with
errors. Zero-coupon yields are interpolated using the unsmoothed Fama and Bliss method. For the A,(3) model, fBs; is set equal to zero and Bs, is set
equal to one. For the A;(3) model, we constrain the coefficients k;; and K3, to be equal to zero. Standard errors are given in parentheses.
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Table 2: Parameter Estimates for Essentially Affine Models

Parameter Model
Ai) A3)
Factor Factor
1 2 3 1 2 3
5 0.0363 0.0260
0 (0.0310) (0.0434)
5. 0.0023 0.0018 0.0033 0.0013 0.0020 0.0087
i (0.0018) (0.0011) (0.0007) | (0.0039)  (0.0036) (0.0025)
u 0.0338 0 0 0.1340 -0.2810 0
] (0.0067) (0.0111)  (0.0219)
o -0.0504 0.4075 2.8481 -0.1690 0.4420 0
% (0.0202) (0.1788) 0.1121) | (0.0317)  (0.1234)
. 0.2295 -0.0287 2.9503 0.4310 -1.6700 1.6000
% (0.0186) (0.0366) (0.0410) | (0.0968)  (0.1344) (0.1390)
N 5.2514 0 0 2.9600 0.8270 0.0000
! (7.4337) (0.8815)  (0.2765)
Ay -0.0488 -6.0024 0.2481 -0.0418 -0.0063 -0.2230
] (0.1233) (9.1750) (2.0312) | (0.3251)  (0.0829) (0.3458)
Maj) 0 0 0 0 0 0
A 62.5415 0.0922 5.7439 0 0 0
1@ (7.3907) (0.1890) (1.2761)
A -0.1963 0.0127 -1.8131 -3.8E-08  -9.3E-09 1.2E-08
16) (0.5731) (0.7569) (0.0686) | (0.0538)  (0.9544) (1.5732)
B 1.0000 0 0 1 0 0
10.3841
B, (5.8989) 0 0 0 ! 0
Bs 0.2859
(0.9838) 0 0 0 ! 0
Ly; 0.0023 0 0 0.0023 0 0
(0.0002) (0.0001)
Ly -0.0006 0.0013 -0.0006 0.0013
(0.0003) (0.0001) (0.0002)  (0.0001)
L 0.0001 -0.0001 0.0016 0.0004 -0.0002 0.0016
(0.0013) (0.0002) (0.0003) | (0.0007)  (0.0002) (0.0001)
Log Likelihood 10179.00 10170.23

Notes: We estimate the models using QML on a sample of monthly data from January 1970 to December
1999. Yields with maturities of 6 months, 2 years and 10 years are assumed to be measured exactly,
whereas yields with maturities of 3 months, 1 year and 5 years are measured with errors. Zero-coupon
yields are interpolated using the unsmoothed Fama and Bliss method. For the A,(3) model, B3, is set equal

to zero and s, is set equal to one. Standard errors are given in parentheses.
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Table 3: Parameter Estimates for Extended Essentially Affine Models

Parameter Model
A3) As3)
Factor Factor
1 2 3 1 2 3
5 0.0321 0.0244
0 (0.0178) (0.0008)
5. 0.0021 0.0017 0.0052 0.0007 0.0002 0.0126
i (0.0016) (0.0010) (0.0052) (0.0005) (0.0000) (0.0007)
. 0.0667 0 0 1.6564 -0.2052 -0.1434
1 (0.1256) (0.0392) (0.0151) (0.0950)
. -0.2809 0.5031 4.7426 -0.0066 0.3561 -1.3930
4 (0.2090) (0.2310) (1.0343) (0.0518) (0.0809) (0.0865)
o 0.0620 -0.0543 3.1463 -1.3150 0 1.1875
K (0.1533) (0.1481) (0.4839) (0.0513) (0.1250)
" 0.1576 0 0 0.0064 0.0271 0.0033
] (0.3634) (0.3705) (0.1989) (0.1098)
" 0.3346 -6.0298 0.0104 0.2093 0.4104 1.0452
0 (0.9051) (23.4110) (1.8343) (0.0345) (0.2528) (0.0797)
w -0.0833 0 0 -0.9942 0.1253 0.0857
1) (0.2825) (0.0449) (0.0119) (0.2409)
v 0.0056 -0.1407 5.8465 0.2578 -0.3271 1.0821
1@ (1.4697) (1.4652) (1.6992) (0.2335) (0.1983) (0.1769)
- -0.0245 0.0286 -1.8283 -0.7061 0 -0.1196
163) (0.3413) (0.3319) (1.6672) (0.3631) (0.1469)
B4 1 0 0 1 0 0
10.5514
P2 (9.0713) 0 0 0 ! 0
B3 0.1576 0 0 0 0 |
(0.3230)
Ly 0.00229 0 0 0.00237 0 0
(0.0001) (0.0001)
La; -0.0006 0.0013 0 -0.0006 0.0013
(0.0001) (0.0001) (0.0001) (0.0001)
Ls; -0.0001 0.0001 0.0016 0.0002 -0.0002 0.0016
(0.0007) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
Log Likelihood 10174.75 10219.05

Notes: We estimate the models using QML on a sample of monthly data from January 1970 to December 1999.
Yields with maturities of 6 months, 2 years and 10 years are assumed to be measured exactly, whereas yields
with maturities of 3 months, 1 year and 5 years are measured with errors. Zero-coupon yields are interpolated
using the unsmoothed Fama and Bliss method. For the A3(3) model, we constrain k3, to be equal to zero.

Standard errors are given in parentheses.
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Table 4: Regressions of EGARCH Volatility Estimates of Changes in
Yields on the Conditional Volatility Implied by Different Models

Panel A: Correlations for Different Models

Maturity

Model 3-month | 6-month 1-year 2-year 5-year 10-year

CA(3) 0.5863 0.6283 0.6651 0.667 0.8199 0.8217

CA,(3) 0.6472 0.6678 0.7025 0.6593 0.8265 0.8246

CA;3(3) 0.7123 0.7077 0.7466 0.6705 0.8303 0.8285

EA;(3) 0.5935 0.6334 0.6733 0.6769 0.8147 0.8145

EA,(3) 0.6475 0.6685 0.7033 0.6605 0.8259 0.8241

ExA,(3) 0.5895 0.6278 0.6665 0.6654 0.8175 0.8117

ExA;(3) 0.7062 0.6949 0.7344 0.6544 0.8168 0.8228

Panel B: Regression Results for the Essentially Affine A;(3) Model

3-month | 6-month 1-year 2-year S-year 10-year

Intercept -0.0059 -0.0043 -0.0039 -0.0018 -0.0008 0.0001
(-2.9950) | (-2.7310) | (-2.8555) | (-1.7896) | (-1.7816) | (-0.3263)

Slope 1.7460 1.7012 1.6852 1.3449 1.1031 0.9577
(5.0578) | (5.3357) | (5.9075) | (5.7492) | (10.0554) | (13.0142)

Correlation 0.5935 0.6334 0.6733 0.6769 0.8147 0.8145

Panel C: Regression Results for the Extended Affine A;(3) Model

3-month | 6-month 1-year 2-year S-year 10-year

Intercept -0.0041 -0.0022 -0.0028 -0.0008 -0.0007 -0.0005
(-3.7889) | (-2.2509) | (-2.7312) | (-0.8754) | (-1.7173) | (-1.9061)

Slope 1.5261 1.3991 1.4897 1.1059 1.0639 1.1264
(7.6416) | (6.6697) | (7.1863) | (5.7024) | (10.5341) | (15.3460)

Correlation 0.7062 0.6949 0.7344 0.6544 0.8168 0.8228

Notes: We regress conditional volatility implied by EGARCH estimates of changes in yields on the conditional
volatility implied by different models. Asymptotic t-statistics, computed using five Newey and West lags, are

reported in parentheses.
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Table 5: Regressions of EGARCH Volatility Estimates of Yields on the

Conditional Volatility Implied by Different Models

Panel A: Correlations for Different Models

Maturity
Model 3-month | 6-month 1-year 2-year 5-year 10-year
CA(3) 0.6265 0.6543 0.6819 0.7410 0.8494 0.9207
CA,(3) 0.6883 0.7024 0.7340 0.7624 0.8855 0.9300
CA;(3) 0.7655 0.7521 0.7827 0.7753 0.8897 0.9330
EA;(3) 0.6297 0.6541 0.6836 0.7384 0.8477 0.9135
EA,(3) 0.6887 0.7031 0.7347 0.7634 0.8851 0.9296
ExA;(3) 0.6305 0.6548 0.6843 0.7396 0.8489 0.9145
ExA;(3) 0.7586 0.7391 0.7707 0.7591 0.8791 0.9287

Panel B: Regression Results for the Essentially Affine A;(3) Model

3-month | 6-month 1-year 2-year S-year 10-year

Intercept -0.0068 -0.0045 -0.0042 -0.0025 -0.0013 -0.0004
(-3.5509) | (-3.0735) | (-3.1263) | (-2.6432) | (-3.0611) | (-1.9148)

Slope 1.8914 1.7576 1.7474 1.4963 1.2334 1.1044
(5.6270) | (5.8031) [ (6.2239) | (6.9458) | (12.1511) | (18.5498)

Correlation 0.6297 0.6541 0.6836 0.7384 0.8477 0.9135

Panel C: Regression Results for the Extended Affine A;(3) Model

3-month | 6-month 1-year 2-year 5-year 10-year

Intercept -0.0049 -0.0026 -0.0032 -0.0016 -0.0014 -0.0011
(-4.5419) | (-2.6968) | (-3.1918) | (-1.8950) | (-3.5811) | (-5.3461)

Slope 1.6600 1.4739 1.5793 1.2849 1.2339 1.3015
(8.5499) | (7.3507) | (7.7505) | (7.1066) | (13.4746) | (22.8995)

Correlation 0.7586 0.7391 0.7707 0.7591 0.8791 0.9287

Notes: We regress conditional volatility implied by EGARCH estimates of yields on the conditional volatility
implied by different models. Asymptotic t-statistics, computed using five Newey and West lags, are reported in

parentheses.
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Table 6: Correlation Matrices for Conditional Volatility of
Changes in Yields

Panel A. EGARCH Volatility Estimates

Maturity | 3-month | 6-month | 1-year | 2-year | S-year | 10-year

3-month 1.0000 0.9828 0.9553 0.8862 0.7700 0.5713

6-month 1.0000 0.9808 0.9320 0.8147 0.6325
1-year 1.0000 0.9631 0.8600 0.6688
2-year 1.0000 0.9127 0.7404
S-year 1.0000 0.9083
10-year 1.0000

Panel B. Volatility Implied by the Completely Affine A,(3) Model

Maturity [ 3-month | 6-month | 1-year | 2-year | S-year | 10-year

3-month 1.0000 0.9996 0.9995 0.9991 0.9962 0.9585

6-month 1.0000 1.0000 0.9999 0.9944 0.9536
1-year 1.0000 1.0000 0.9999 0.9941 0.9526
2-year 1.0000 0.9938 0.9523
S-year 1.0000 0.9798
10-year 1.0000

Panel C. Volatility Implied by the Essentially Affine A,(3) Model

Maturity | 3-month | 6-month | 1-year | 2-year | S5-year | 10-year

3-month 1.0000 0.9996 0.9996 0.9992 0.9968 0.9632

6-month 1.0000 1.0000 0.9999 0.9954 0.9589
1-year 1.0000 0.9999 0.9951 0.9581
2-year 1.0000 0.9948 0.9577
5-year 1.0000 0.9815
10-year 1.0000

Panel D. Volatility Implied by the Completely Affine A;(3) Model

Maturity | 3-month | 6-month | 1-year | 2-year | S-year | 10-year

3-month 1.0000 0.9975 0.9839 0.9418 0.8816 0.7979

6-month 1.0000 0.9926 0.9601 0.9020 0.8138
1-year 1.0000 0.9866 0.9434 0.8582
2-year 1.0000 0.9771 0.8975
S-year 1.0000 0.9674
10-year 1.0000

Panel E. Volatility Implied by the Extended Essentially Affine A;(3) Model

Maturity | 3-month | 6-month | 1-year | 2-year | S-year | 10-year

3-month 1.0000 0.9961 0.9789 0.9272 0.8662 0.7931

6-month 1.0000 0.9906 0.9511 0.8916 0.8117
1-year 1.0000 0.9840 0.9426 0.8677
2-year 1.0000 0.9805 0.9109
5-year 1.0000 0.9698
10-year 1.0000

Notes: We report the unconditional correlation of the EGARCH estimates on changes in yields and the
conditional volatility implied by the A,(3) and A3(3) models at different horizons.
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Table 7: Correlation Matrix for Yields

Panel A: Correlation Matrix of Yields (Raw Data)

Maturity

3-month| 1-year | 5-year

3-month
1-year
S-year

1 0.9845  0.8976
1 0.9424
1

Panel B: Correlation Matrix of Yields Implied by the
Essentially Affine A(3) Model

Maturity

3-month| 1-year | 5-year

3-month
1-year
S-year

1 0.9872  0.895
1 0.948
1

Panel C: Correlation Matrix of Yields Implied by the
Extended Essentially Affine A;(3) Model

Maturity

3-month| 1-year | S-year

3-month
1-year
5-year

1 0.9861  0.8964
1 0.951
1

Notes: We report the unconditional correlation of the data yields and the yields implied by the essentially affine

A,(3) and the extended essentially affine A;(3).

45



Table 8: Correlations between Conditional Volatilities of Changes in Yields and Factors Affecting the Yield Curve

Panel A: Correlation with the Level Factor

Maturity 3-month 6-month 1-year 2-year 5-year 10-year

EGARCH 0.729 (0.000) | 0.742 (0.000) 0.774 (0.000) 0.714 (0.000) | 0.796  (0.000) | 0.664  (0.000)
CA,(3) 0.754 (0.000) | 0.751 (0.000) 0.752 (0.000) 0.751 (0.000) | 0.754  (0.000) | 0.751 (0.000)
CA,(3) 0.887 (0.000) | 0.883 (0.000) 0.884 (0.000) 0.882 (0.000) | 0.877  (0.000) | 0.833 (0.000)
CA;(3) 0.984 (0.000) | 0.979 (0.000) 0.975 (0.000) 0.941 (0.000) | 0.900 (0.000) | 0.832 (0.000)
EA,(3) 0.758 (0.000) | 0.752 (0.000) 0.755 (0.000) 0.754 (0.000) | 0.759  (0.000) | 0.752 (0.000)
EA,(3) 0.886 (0.000) | 0.883 (0.000) 0.884 (0.000) 0.882 (0.000) | 0.878  (0.000) | 0.837 (0.000)
ExA;(3) 0.759 (0.000) | 0.753 (0.000) 0.757 (0.000) 0.756 (0.000) | 0.761  (0.000) | 0.754  (0.000)
ExA;(3) 0.980 (0.000) | 0.971 (0.000) 0.966 (0.000) 0.923 (0.000) | 0.888 (0.000) | 0.841 (0.000)

Panel B: Correlation with the Slope Factor

Maturity 3-month 6-month 1-year 2-year 5-year 10-year

EGARCH -0.407  (0.000) | -0.371 (0.000) | -0.381 (0.000) -0.284 (0.000) | -0.219  (0.000) | -0.001  (0.980)
CA(3) 0.038 (0.476) | 0.041 (0.437) 0.040 0.4526 0.041 (0.441) | 0.038 (0.472) | 0.041 (0.439)
CA,(3) -0.266  (0.000) | -0.272  (0.000) | -0.274  (0.000) -0.272 (0.000) | -0.215 (0.000) | -0.092  (0.080)
CA;(3) -0.651 (0.000) | -0.625  (0.000) | -0.556  (0.000) -0.443 (0.000) | -0.265 (0.000) | -0.087  (0.010)
EA;(3) 0.027 (0.610) | 0.032 (0.545) 0.029 0.584 0.030 (0.572) | 0.026  (0.629) | 0.032 (0.551)
EA,(3) -0.264  (0.000) | -0.269  (0.000) | -0.271 (0.000) -0.269 (0.000) | -0.217  (0.000) | -0.100  (0.060)
ExA;(3) 0.025 (0.637) | 0.031 (0.563) 0.028 0.602 0.028 (0.595) | 0.024 (0.651) | 0.030  (0.572)
ExA;(3) -0.672  (0.000) | -0.638  (0.000) | -0.552  (0.000) -0.421 (0.000) | -0.260 (0.000) | -0.108  (0.040)

Panel C: Correlation with the Curvature Factor

Maturity 3-month 6-month 1-year 2-year 5-year 10-year

EGARCH -0.462  (0.000) | -0.418  (0.000) | -0.423  (0.000) -0.321 (0.000) |-0.2869 (0.000) | -0.129  (0.000)
CA(3) -0.085 (0.100) | -0.081 (0.123) | -0.083  (0.117) -0.082 (0.121) |-0.0846 (0.109) | -0.081  (0.123)
CA,(3) -0.492  (0.000) | -0.501 (0.000) | -0.504  (0.000) -0.502 (0.000) | -0.427 (0.000) | -0.266  (0.000)
CA;(3) -0.653 (0.000) | -0.662  (0.000) | -0.651 (0.000) -0.617 (0.000) | -0.466 (0.000) | -0.253  (0.000)
EA;(3) -0.091 (0.084) | -0.086  (0.105) | -0.089  (0.093) -0.088 (0.097) |-0.0921 (0.081) | -0.086  (0.103)
EA,(3) -0.489  (0.000) | -0.497  (0.000) | -0.500  (0.000) -0.498 (0.000) |-0.4298 (0.000) | -0.276  (0.103)
ExA;(3) -0.095 (0.073) | -0.089  (0.092) | -0.092  (0.080) -0.091 (0.083) | -0.0956 (0.070) | -0.089  (0.090)
ExA;(3) -0.679  (0.000) | -0.686  (0.000) | -0.662  (0.000) -0.613 (0.000) | -0.479 (0.000) | -0.285  (0.000)

Notes: This table reports correlations between the model-implied conditional volatility and the common factors affecting the co-movements of yields as well as correlations
between the EGARCH volatility estimates on changes in yields and the common factors affecting the co-movements of yields . The level factor is defined as the 3-month yield.
The slope is measured as the difference between the 10-year yield and the 3-month yield. The curvature corresponds to the yield on a butterfly that is long in the 10-year and the 3-
month maturity bonds and short in two 1-year maturity bonds. Asymptotic p-values, computed using 5 Newey and West lags, are given in parentheses.
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Table 9: Parameters Estimates for the Essentially Affine A;(3) Model.
Separate Estimation for Short-Maturity and Long-Maturity Bonds

Panel A: Short Maturities

Panel B: Long Maturities

Factor Factor
1 2 3 1 2 3
5 0.0246 0.0388
(0.0026) (0.0075)
5 0.0072 0.0007 0.0037 0.0058 0.0057 -0.0021
1 (0.0011) (0.0001) (0.0005) | (0.0046)  (0.0047) (0.0030)
‘o 0.5441 0 0 0.0171
J (0.0188) (0.0250)
. -0.0499 1.8986 40.0197 0.1726 0.6113 0.3588
4 (0.0613) (0.1215) (3.0456) | (0.1042)  (0.0651) (0.2221)
. 0.7438 0.0055 9.3885 0.7553 0.1299 1.0864
3 (0.0297) (0.1213) (0.4718) | (0.3365)  (0.1050) (0.1627)
4.2491 0.4144
¢ (1.1630) 0 0 (0.3640) 0 0
- -0.622 0.1353 -0.3529 -0.0555 -1.5567 0.1642
0 (0.1442) (0.0395) (0.7022) | (0.0364)  (2.1220) (0.2426)
Maj) 0 0 0 0 0 0
- -7.3524 -0.1399 22.7333 4.7561 -0.1931 1.0456
1@ (2.6496) (0.1285) (10.1124) | (0.4965)  (0.1340) (0.5644)
- -0.1279 -0.3054 -10.8474 | -0.6262 -0.1738 -0.9059
16) (0.1301) (0.5661) (2.8236) | (0.5033)  (0.3418) (0.3991)
B4 1 0 0 1 0 0
39.5981 2.5237
B (12.5190) 0 0 (0.9512) 0 0
Bs 0.5962 0.1856
(0.0778) 0 0 (0.2638) 0 0
Ly 0.0027 0 0 0.0022 0 0
(0.0001) (0.0001)
Ly -0.0001 0.0008 0 -0.0004 0.0009
(0.0001) (0.0000) (0.0001)  (0.0000)
Ls; -0.0003 -0.0001 0.0008 -0.0008 -0.0001 0.0013
(0.0002) (0.0000) (0.0000) | (0.0001)  (0.0000) (0.0001)
Log Likelihood 10802.00 10660.84

Notes: In Panel A, we estimate the essentially affine A;(3) model on yields with a maturity of a less than

one year. Yields with maturities of 1 month, 5 months and 9 months are assumed to be measured exactly,

whereas yields with maturities of 3 months, 7 months and 1 year are assumed to be measured with errors. In

Panel B, we estimate the essentially affine A;(3) model on yields with a maturity of a more than one year.

Yields with maturities of 1 year, 3 years and 7 years are assumed to be measured exactly, whereas yields

with maturities of 2 years, 5 years and 10 years are measured with errors. Zero-coupon yields are

interpolated using the unsmoothed Fama and Bliss method. Standard errors are given in parentheses.
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Table 10: Regressions of EGARCH Volatility Estimates of Changes in Yields on
the Volatility Implied by the Essentially Affine A(3) Model

Panel A: Short Maturities

Maturity 1-month | 3-month | 5-month | 7-month | 9-month | 1-year
Intercept -0.0058 | -0.0034 [ -0.0031 -0.0031 -0.0030 | -0.0021
(-4.0905) [ (-2.9962) | (-3.0656) | (-2.9504) | (-2.8795) | (-2.2472)
Slope 1.9087 1.6088 1.4731 1.4312 1.3923 1.2631
(7.0799) | (6.6892) | (7.4423) | (6.9551) | (7.0169) | (7.0223)
Correlation 0.7112 0.6731 0.7159 0.7155 0.7148 0.7233
Panel B: Long Maturities
Maturity 1-year 2-year 3-year 5-year 7-year | 10-year
Intercept -0.0056 | -0.0027 | -0.0022 -0.0017 -0.0031 | -0.0004
(-3.3775) | (-2.2570) | (-2.2556) | (-2.9934) | (-4.5076) | (-1.0082)
Slope 1.7858 1.5281 1.4599 1.4225 1.7655 1.0833
(5.9833) | (5.6799) | (6.3316) | (9.5968) | (9.7334) [(10.4407)
Correlation 0.6697 0.6605 0.6991 0.7760 0.7512 0.7426

48

Notes: We regress conditional volatility implied by EGARCH estimates of changes in yields on the
conditional volatility implied by the essentially affine A;(3) Model. The model-implied volatility is

estimated using yields with a maturity less than one year in Panel A, and using yields with a maturity more
than one year in Panel B. Asymptotic t-statistics, computed using five Newey and West lags, are reported in
parentheses.



Table 11: In- and Out-of-Sample RMSE

Panel A: In Sample RMSE of the Change and the Level of Yields

Maturity| 3-month 6-month | 1-year | 2-year | S-year | 10-year
Change 32.1970 27.2600 | 21.8480 | 15.6870 [ 7.0358 5.5182
in Yields
Levelof | 350170 26.5740 | 21.8070 | 14.6740 | 6.9509 | 4.0134
Yields

Panel B: Out-of-Sample RMSE of the Change and the Level of Yields

Maturity | 3-month 6-month 1-year | 2-year | S-year | 10-year
Change 22.6460 13.6970 | 9.9599 | 8.0157 | 7.8069 | 9.5082

in Yields

Levelof | 5 (o 12.6820 | 9.7908 | 7.5843 | 6.9057 | 7.5711
Yields

Notes: We use the QML estimates from Table 2 to compute in- and out-of-sample root mean squared errors
(RMSE) (in basis points) of the model implied conditional volatility with respect to EGARCH volatility estimates.
The in-sample period is January 1970-December 1999, and the out-of-sample period is January 2000-December
2003.
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Table 12: Regressions of EGARCH Volatility Estimates of Changes in Yields on the Instantaneous
Volatility of the Short Rate Implied by the Essentially Affine A,(3) Model

Panel A: Estimation using Short-Maturity and Long-

Maturity Yields
Maturity 1 Month 3 Months
Intercept -0.0034 -0.0046
(-1.8836) (-2.7319)
Slope 1.3817 1.4837
(4.4181) (5.1692)
Correlation 0.5671 0.5987

Panel B: Estimation using Short-Maturity Yields Only

Maturity 1 Month 3 Months
Intercept -0.0031 -0.0035
(-2.7480) (-3.0657)

Slope 1.4781 1.4541
(6.6039) (6.7079)

Correlation 0.6871 0.6645

Notes: We regress of conditional volatility implied by EGARCH estimates of changes in yields based on 1-month and 3-
month yields on the instantaneous volatility of the short rate implied by the essentially affine A;(3) Model. Asymptotic t-

statistics, computed using five Newey and West lags, are reported in parentheses.
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Table 13: Regressions of Realized Volatility Based
Estimates on Model Implied and EGARCH volatility

Panel A: ARMA(1,1) Realized Variance Model

Maturity

Regressor 3-month | 6-month| 1-year | 2-year 5-year | 10-year
EA,(3) 0.6204 | 0.6345 | 0.5978 | 0.6290 | 0.6041 0.5658
EGARCH(1,1) | 09194 | 0.9245 | 0.8914 | 0.8909 | 0.8148 0.7247

Panel B: Ex-Post Realized Variance Model

Maturity

Regressor 3-month | 6-month| 1-year | 2-year 5-year | 10-year
EA,3) 0.5504 | 0.5859 | 0.5179 | 0.5408 0.5268 0.4299
EGARCH(1,1) | 0.8586 [ 0.8827 | 0.8212 | 0.8170 | 0.7207 | 0.5522

Notes: Panel A reports on the correlations between the conditional variance forecast implied by the realized
variance model on the one hand and either EGARCH volatility or the essentially affine A,(3) model on the

other hand. Panel B reports on the correlation between the ex-post realized volatility and either EGARCH
volatility or the essentially affine A;(3) model
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Table 14: Parameters Estimates and Regression Results using Different
Assumptions on Measurement Errors

Panel A: Results from Regressions of EGARCH Volatility Estimates on the Conditional
Volatility Implied by the Essentially Affine A;(3) Model Estimated with QML.

Maturity 6-month 1-year 3-year 5-year 7-year 10-year
Intercept -0.0058 -0.0035 -0.0023 -0.0017 -0.0031 -0.0004
(-2.9623) (-2.5360) | (-2.2810) | (-2.9933) | (-4.6165) | (-1.0123)

Slope 1.6768 1.5698 1.4665 1.4380 1.7783 1.0812
(5.1352) (5.6918) (6.1759) (9.4334) (9.9829) | (10.9204)

Correlation 0.6091 0.6502 0.6916 0.7754 0.7613 0.7461

Panel B: Results from Regressions of EGARCH Volatility Estimates on the Conditional
Volatility Implied by the Essentially Affine A;(3) Model Estimated using the Extended
Kalman Filter.

Maturity 3-month 6-month 1-year 2-year S-year 10-year
Intercept -0.0044 -0.0030 -0.0026 -0.0008 0.0000 0.0000
-2.6881 -2.2981 -2.3047 -0.9457 -0.1287 -0.0552

Slope 1.4869 1.4449 1.4297 1.1388 0.9757 0.9898
5.1805 5.4595 6.0397 5.8153 10.1492 13.6566

Correlation 0.5994 0.6398 0.6794 0.6719 0.8317 0.8268

In Panel A, we regress model implied conditional volatility on EGARCH estimates of changes in yields. Model-implied
volatility is obtained by estimating the model using QML on a sample of monthly data from January 1970 to December
1999. Yields with maturities of 1 year, 5 years and 10 years are assumed to be measured exactly, whereas yields with
maturities of 6 months, 3 years and 7 years are measured with errors. Zero-coupon yields are interpolated using the
unsmoothed Fama and Bliss method. Panel B reports the results of a similar regression, where model-implied volatility is
obtained by estimating the model using the extended Kalman filter on a sample of monthly yields from January 1970 to
December 1999, with maturities of 3 months, 6 months, 1 year, 2 years, 5 years and 10 years. Asymptotic t-statistics,
computed using five Newey and West lags, are reported in parentheses.
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Table 15: The McCulloch and Kwon Cubic Spline Method

Panel A: Regressions of EGARCH Volatility Estimates of Changes in Yields on the Conditional
Volatility Implied by the Essentially Affine A;(3) Model Estimated on the Sample Period 1970-

1999.
Maturity 3-month 6-month 1-year 2-year 5-year 10-year
Intercept -0.0056 -0.0045 -0.0040 -0.0040 -0.0008 0.0000
(-3.0071) (-2.9816) | (-2.8223) | (-2.8223) | (-1.4895) (0.1128)
Slope 1.6760 1.7465 1.6901 1.6901 1.1856 0.9663
(5.1516) (5.6061) (5.7421) (5.7421) (8.5468) (10.1192)
Correlation 0.6013 0.6527 0.6631 0.6631 0.8040 0.7371

Panel B: Regressions of EGARCH Volatility Estimates of Changes in Yields on the Conditional
Volatility Implied by the Essentially Affine A;(3) Model Estimated on the Sample Period 1952-

1999.
Maturity 3-month 6-month 1-year 2-year 5-year 10-year
Intercept -0.0033 -0.0018 -0.0019 -0.0012 -0.0019 -0.0012
(-2.9677) (-2.2039) | (-2.5933) | (-2.4103) | (-4.4089) (11.7242)
Slope 1.3223 1.2605 1.3402 1.2654 1.5655 1.4424
(5.8864) (6.2287) (7.0964) (8.7323) (10.9046) (11.7242)
Correlation 0.5954 0.6185 0.6719 0.7468 0.8166 0.8030

In Panel A, we report regression results for volatility implied by the essentially affine A;(3) model estimated using QML on a
sample of monthly data from January 1970 to December 1999. Yields with maturities of 6 months, 2 years and 10 years are
assumed to be measured exactly, whereas yields with maturities of 3 months, 1 year and 5 years are measured with errors.
Zero-coupon yields are interpolated using the McCulloch and Kwon cubic spline method. Panel B reports regressions results
using assumptions identical to Panel A, except that the sample period is January 1952 to December 1999. Asymptotic t-
statistics, computed using five Newey and West lags, are reported in parentheses.
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