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Abstract

This paper develops a methodology for modeling and estimating expected loss over

arbitrary horizons. We jointly model the probability of default and the recovery rate

given default. Different model specifications are estimated using an extensive default

and recovery data set that contains the majority of defaults between 1980–2004 of

AMEX, NYSE and NASDAQ listed companies. We undertake extensive out-of-sample

performance tests for both the default prediction models and recovery rate given default

models. Under the joint model specification, we find that the probability of default

and the recovery rate given default are negatively correlated out-of-sample, and that

the magnitude of the correlation varies with the credit cycle. We also compare the

accuracy of the out-of-sample one year ahead default predictions using quarterly and

annual data.
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1 Introduction

This paper provides a new methodology for modeling and estimating expected loss, defined as

the product of the probability of default, loss given default, and exposure at default. Under

the advanced internal ratings based approach in the New Basel Capital Accord (Basel II),

banks are allowed to develop their own estimates of these three parameters so that they

reflect the nature of their portfolios. The estimates are subject to supervisory review to

ensure that they are ”reasonable”. The Accord is not explicit as to all the steps that banks

must take to show that their models are reasonable in order to gain regulatory approval,

instead it requires banks to present enough evidence about the properties and performance

of their models to satisfy regulators. However, regulators themselves are unsure about how to

assess whether the models that an institution uses are reasonable.2 In this paper we develop

a methodology for modelling and estimating expected loss over arbitrary horizons in the

presence of unobservable heterogeneity, and we demonstrate how to assess the performance

of the different components of this methodology.

This paper makes four contributions. First, we provide a methodology for the joint

modeling of the probability of default and of the recovery rate given default. Our framework

models the evolution of the state variables explaining the probability of default and the

loss given default, and can therefore be used for estimating the expected loss over arbitrary

horizons. This is important, since banks typically examine their risk exposure over multi–

year horizons, while the majority of extant methodologies are static in nature3 and generate

predictions over a given horizon, usually one year.4

Second, we address explicitly the issue of estimating the effects of unobserved heterogene-

ity and incomplete information. Investors usually have only incomplete information about

the true state of a firm. There are individual variations among firms that affect the proba-

bility of default but that are not directly observable, such as differences in managerial styles,

in the skill sets of workers, and in firm culture. Even differences in such areas as produc-

tion skills, resource usage, cost control, and risk management are only partially revealed in

accounting statements. While the quarterly reports of a public firm must satisfy generally

accepted accounting principles, they are generated based on a large set of unidentified as-

sumptions. Investors do not have complete knowledge about these implicit assumptions, or

the reliability of the firm’s reporting system, or the integrity of its auditors,5 yet they must

2See the recent report issue by the BIS (May 2005) on the validation of the internal rating systems.
3However, see Janosi, Jarrow and Yildirim (2002) and Duffie, Saita and Wang (2005) who estimate the

stochastic processes describing the covariates.
4This coincides with the one year Bank of International Settlement (BIS) regulatory horizon.
5The Public Company Accounting Oversight Board found significant deficiencies in a quarter of the audit
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base their projections on the reports. The uncertainty surrounding these projections will, in

general, depend on the state of the economy, the state of the particular sector in which the

company operates, and the unique characteristics of the firm.

Third, we estimate the parameters of different extant models using an extensive default

and recovery data set, containing the majority of defaults of companies listed on the AMEX,

NYSE and NASDAQ between 1980–2004. Many start-up firms are listed on NASDAQ and

tend to have negative cash flows over the initial few years; failure rates also tend to be

higher among start-ups than among established firms. This increases the heterogeneity of

the sample universe. However, most extant academic studies on default prediction limit their

analyses to data from firms listed on AMEX and NYSE. We investigate whether there is a

NASDAQ effect on model performance, and we find that both the in-sample and the out-of-

sample performance of default prediction models are indeed better for the more homogeneous

AMEX and NYSE data set, while the relative ranking of models remains unchanged.

Fourth, we assess the out-of-sample performance of eight different default models and

six recovery models over the period 1996–2004, in order to address the concerns of regula-

tors about the reasonableness of model specification. For default prediction, we investigate

another facet of the effects of data heterogeneity on model performance, by separately consid-

ering the set non–financial firms and the set of manufacturing firms. Our results confirm the

superiority of the Shumway (2001) default prediction model. Over the same period, we find

that several different models for the recovery rate given default have similar out-of-sample

performance. Finally, we compare the one year out-of-sample default model performance

using yearly and quarterly data. With quarterly data, one year represents four periods and

it is then necessary to also estimate the parameters describing the stochastic processes for

the covariates. Due to the added covariate estimation error, we find that a history of at

least five years of quarterly data is needed for similar levels of out-of-sample performance as

that of one-period models estimated with annual data. This is an issue for young firms that

typically trade on NASDAQ.

The Basel II framework recognizes that changes in the probability of default and the

loss given default are generally related for most asset classes,6 and it requires financial

institutions to recognize this dependence.7 We demonstrate that our joint model specification

implies that out-of-sample, the probability of default and the recovery rate given default are

engagements undertaken by one of the top four accounting firms in 2004. See the Financial Times, September
30, 2005, p1.

6The dependence between the probability of default and the loss given default (one minus the recovery
rate), implies that for a portfolio of loans the distribution describing the loss can vary substantially from
that estimated employing the foundation IRB approach with its assumed loss given default.

7See the Basel Committee on Banking Supervision (2005) guideline.
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negatively correlated. Furthermore, the magnitude of the correlation varies with the credit

cycle.

This paper is related to several different strands of previous research. There is a large

and growing literature devoted to the modeling of the probability of default — see Shumway

(2001), Chava and Jarrow (2004), Campbell, Hilscher and Szilagyi (2004) and Duffie, Saita

and Wang (2005). An extensive survey of methodologies is given in Altman and Hotchkiss

(2005). There is also an emerging literature addressing the modeling of the determinants of

the recovery rate given default. A survey of empirical evidence regarding the properties of

recovery rates is given in Schuermann (2004) — see also Acharya, Bharath and Srinivasan

(2003). Several recent studies model the dependence between the probability of default

and the recovery rate given default, by assuming there is a common latent factor affecting

both (Frye, 2000; Pykhtin, 2003; Dullmann and Trapp, 2004). However, to the best of our

knowledge, there are no empirical studies that attempt to explicitly model the covariates

affecting the probability of default, the recovery rate given default, and their dependence.

The paper is structured as follows. In Section 2 we develop our modeling methodology,

and in Section 3 we describe the data set used in this study. The empirical results for the

estimation of the probability of default and the recovery rate over a one-period horizon are

given in Section 4. In Section 5 we examine the implications for the modeling of the expected

loss over arbitrary horizons. Section 6 concludes the paper with a summary of our findings.

2 The Default and Recovery Models

In this section we first describe the specification of default models with unobservable het-

erogeneity and develop the estimation methodology. Next, we discuss several specifications

of recovery rate models.

2.1 The Default Models

The sample data contains firms grouped in G groups or industries. Let ni be the number of

firms in the ith group, and n =
∑G

i=1 ni be the total number of firms in the sample. During

the observation period [0, T ], any particular firm may experience a default, may leave the

sample before time T for reasons other than default (for example a merger, an acquisition,

or a liquidation), or may survive in the sample until time T . A firm’s lifetime is said to

be censored if either default does not occur by the end of the observation period, or if the
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firm leaves the sample because of a non–default event. Let Tij denote the observed (possibly

censored) lifetime of the jth firm in the ith group, and let Nij be the censoring indicator,

where Nij = 1 if Tij is a default time and Nij = 0 if Tij is a censoring time. The total number

of failures in group i is given by Ni. =
∑ni

j=1 Nij. For every s = 1, . . . , d, let δij(s) = 1 if the

jth firm in the ith group is in the sample at time ts, and zero otherwise. For example, if the

firm is in the sample at the beginning of the observation period and censoring only occurs

at time T , then δij(s) = 1, for s = 1, ..., d.

Let Xij(t) be a 1 ×K vector of covariates at time t. The vector Xij(t) usually includes

a constant component representing an intercept term, and it is composed of both firm-

specific variables and macroeconomic variables. Information about the firm-specific variables

terminates at time Tij, and information about the macroeconomic variables is available at

all times. We observe the covariates at discrete time intervals 0 < t1 < t2 · · · < td ≤ T , and

assume that Xij(t) is constant during the period between two consecutive observations.

Let λij(t) be the default intensity function (the hazard function) for the jth firm in the

ith group. In order to model the correlation between defaults of firms in the same group,

we assume that the unobservable heterogeneity can be represented by a latent non–negative

random variable Yi, common to all firms in the same industry, which we shall refer to as

frailty8 and which represents the effects of the unobservable measurement errors and missing

variables.9 The shared frailty Yi acts multiplicatively on the intensity functions λij(t), so

8An introduction to frailty models is given in Kiefer (1988), Klein and Moeschberger (1997, chapter
13), and Hougaard (2000, chapter 7). There is a large biostatistical and demographic literature on frailty
modelling, but to–date there have been only a small number of applications in the credit risk area. Gagliardini
and Gourieroux (2003) and Schönbucher (2003a) introduce the notion of unobservable heterogeneity or frailty
to model information driven contagion.

9Let XT (t) represent the true value of the vector of covariates and X(t) be the observed covariates, where
we assume that

XT
k (t) = Xk(t) + ek(t).

Here ek(t) is the measurement error of the kth covariate for the firm. Hence XT (t)β = X(t)β + y(t), where
y(t) represents the effects of the measurement errors and β is a vector of parameters giving the dependence
of the default intensity on the covariate vector. We shall assume that the baseline default intensity is
λ0(t) = exp(X(t)β).

If there are missing variables, let m(t) denote the vector of missing variables and βM the corresponding
vector of parameters. The intensity is now given by

λ(t) = exp(X(t)β + m(t)βM + y(t)),

which we can rewrite as
λ(t) = Y (t) exp(X(t)β).
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that the hazard rates are specified by

λij(t) = Yi exp(Xij(t)β), (1)

where β denotes the K×1 vector of regression parameters. Conditional on the unobserved Yi,

the lifetimes of firms in the ith group are independent. When the unknown Yi is integrated

out, the lifetimes become dependent; the dependence is induced by the common value of Yi.

The shared frailty model specified by (1) is a natural approach for modeling dependence

and taking into account unobservable heterogeneity. The model can be easily extended to

the case where the frailties are time-varying, multivariate rather than univariate, or obligor

specific rather than shared by all obligors in the same sector. Such extensions allow modeling

of more flexible patterns of default dependence. For example, the shared frailty model (1)

implies positive correlation of defaults within an industry; in practice, however, some degree

of negative correlation may be conceivable, for example due to competition. The multivariate

lognormal frailty model (Stefanescu and Turnbull, 2006) can accommodate negative default

dependence as well.

The frailty has an assumed prior distribution which is updated as the default information

set evolves over time. For example, if no firms within a particular sector default, this might

help to increase confidence in the credit worthiness of the firms in this sector. Conversely, if

there is a failure in a particular sector or the aggregate number of defaults in the economy

increases, this might adversely affect the assessment of credit worthiness. There is a range

of choices for the distribution of the frailties — the most popular is the gamma distribution

G(r, α), partly due to mathematical convenience.10 With gamma frailties, the scale parame-

ter needs to be restricted for identifiability reasons, and the standard restriction is r = α as

this implies a mean of one for Yi. We complete the specification of model (1) by assuming

that the sector frailties Yi are independent and identically distributed with a gamma distri-

bution G(1/θ, 1/θ), with θ > 0. The unconditional frailty means are thus equal to one, while

the conditional means vary across sectors.

We next show how to estimate the parameters of the default model in a maximum

likelihood framework. Let γ denote the vector of the parameters to be estimated for the

stochastic processes {Xij(t)}, and LX denote the likelihood function of the covariates.11 The

likelihood of the sample is a product of the survival likelihood conditional on the frailties,

10The gamma density function of Yi is given by f(yi) = αryr−1
i exp(−αyi) · 1

Γ(r) , where Γ(r) is the gamma
function. The expected value is E[Yi] = r/α and the variance var(Yi) = r/α2.The parameter α is referred
to as the scale parameter and r as the shape parameter.

11The covariate likelihood may correspond, for example, to an autoregressive time series process.
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the likelihood of the frailties, and the likelihood of the covariates:

L = L(θ, β | {N}, {T}, {Y }, {X}) · LY (θ) · LX(γ),

where the likelihood function for the frailties is given by

LY (θ) =
G∏

i=1

f(yi) =
G∏

i=1

1

θ1/θΓ(1/θ)
y

1/θ−1
i · exp(−yi/θ).

The parameters to be estimated are the regression coefficients β, the frailty variance θ,

and the parameters γ for the covariate processes {Xij}. The maximization program separates,

implying that γ is estimated separately from β and θ. In general, the estimation of γ is the

standard numerical procedure of fitting a multivariate time series process to the covariate

vectors {X(t)}. In this section we shall focus on the estimation of β and θ.

Let L(θ, β) denote the likelihood conditional on the data {Tij, Xij, Nij} and including the

frailties. This is given by

L(θ, β) = LY (θ)
G∏

i=1

ni∏
j=1

L(θ, β |Tij, Nij, Xij, yi),

where

L(θ, β |Tij, Nij, Xij, yi) = [yi exp(Xij(Tij)β)]Nij · exp

(
−

∫ Tij

0

λij(t)dt

)
,

and the integrated hazard is given by

∫ Tij

0

λij(t)dt = Yi

d∑
s=1

δij(s) exp(Xij(ts)β) ≡ YiΛij.

The log–likelihood function is therefore

log L(θ, β) = log LY (θ) +
G∑

i=1

ni∑
j=1

log L(θ, β |Tij, Nij, Xij, yi),

where

log L(θ, β |Tij, Nij, Xij, yi) = Nij[log(yi) + Xij(Tij)β]− yiΛij, (2)
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and

log LY (θ) =
G∑

i=1

[(1/θ − 1) log(yi)− yi/θ − log Γ(1/θ)− (1/θ) log(θ)]. (3)

From (2) and (3) it follows that the log–likelihood function is given by

log L(θ, β) =
G∑

i=1

[(1/θ − 1 + Ni.) log(yi)− yi/θ] (4)

−G[log Γ(1/θ) + (1/θ) log(θ)]

+
G∑

i=1

ni∑
j=1

NijXij(Tij)β − yiΛij.

In order to maximize the likelihood, we use the Expectation–Maximization (EM) algo-

rithm (Dempster, Laird and Rubin, 1977), which is the classic tool for obtaining maximum

likelihood estimates from incomplete or missing data. The complete data for model (1)

consists of the realized values of the frailties Y1, . . . , YG and the uncensored lifetimes. The

observed but incomplete data consists in the observed lifetimes {Tij} and the censoring in-

dicators {Nij}. The EM algorithm starts with some initial estimates; for the β coefficients

these can be computed by ignoring the frailty terms, and the initial estimate for the frailty

variance θ can be set equal to one. Then the algorithm iterates between two steps: the ex-

pectation (E) step computes expected values of the sufficient statistics for the complete data,

conditional on the observed data and current values of the parameters. In the maximization

(M) step, new estimates of the unknown parameters are obtained by numerically maximiz-

ing the likelihood computed with the expected values of the sufficient statistics from the

previous E–step. These two steps are repeated until convergence is achieved, and it can be

shown that, under mild conditions, the EM algorithm converges to the maximum likelihood

estimates.

Conditional on the observed data {Tij, Nij, Xij} and on the current values of parameters

θ and β, the frailty Yi has a gamma distribution G(Ai, Ci) with scale parameter Ci =

1/θ +
∑nij

j=1 Λij and shape parameter Ai = Ni. + 1/θ. The conditional means are therefore

E[Yi] = Ai/Ci (5)

E[log(Yi)] = ψ(Ai)− log(Ci),

where ψ(·) is the digamma function. From (4) and (5) it follows that the expected value of
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the log–likelihood function which is maximized in the M step is given by

E[log L(θ, β)] =
G∑

i=1

(1/θ − 1 + Ni.)[ψ(Ai)− log(Ci)]− [Ai/Ci]/θ

−G[log Γ(1/θ) + (1/θ) log(θ)]

+
G∑

i=1

ni∑
j=1

NijXij(Tij)β − [Ai/Ci]Λij.

After convergence of the EM algorithm, the standard errors of the estimates of θ and β

can be computed from the inverse of the observed information matrix. Using these estimates,

we can also calculate the expected value of the frailty for each group.

This methodology can be easily extended to the case of competing risks.12 Firms may

exit the sample for reasons other than default, such as a merger or an acquisition. These

non–default events are all competing risks that may cause censoring of a firm’s lifetime. For

the jth firm in the ith group, let Mij denote the indicator if the firm exits the sample for

reasons other than default, and let αij(t) be the intensity function for the competing risks

which will also depend on the firm’s covariates Xij(t)).

With multiple causes for exit, we consider a bivariate frailty model whereby the frailty

for the ith group is given by Yi = (Yi1, Yi2). The hazard rates are specified by

λij(t) = Y1i exp(Xij(t)β1), (6)

and

αij(t) = Y2i exp(Xij(t)β2), (7)

where Y1i is the frailty associated with default and Y2i is the frailty associated with exit for

reasons other than default for the ith group. We assume that Y1i and Y2i are independent,

with gamma distributions G(1/θ1, 1/θ1) and G(1/θ2, 1/θ2) respectively. Let θ = (θ1, θ2)

denote the vector of parameters for the frailty distributions, and β = (β1, β2) denote the

vector of covariate coefficients. The likelihood conditional on the data {Tij, Xij, Nij,Mij}
and including the frailties is given by

L(θ, β) = LY (θ)
G∏

i=1

ni∏
j=1

L(θ, β |Tij, Nij,Mij, Xij, yi),

12An introduction to competing risk models is given in Crowder (2001). See also Hougaard (2000), Lawless
(2003), and Duffie et al. (2005).
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where

LY (θ) = LY1(θ1) · LY2(θ2),

and

L(θ, β |Tij, Nij,Mij, Xij, yi) = [yi1 exp(Xij(Tij)β1)]
Nij exp(−yi1Λij1)

×[yi2 exp(Xij(Tij)β2)]
Mij exp(−yi2Λij2). (8)

Here Λij1 and Λij2 are the integrated hazards for default and competing risks respectively.

The likelihood function in expression (8) is separable. Maximum likelihood estimates of

θ and β can be computed using an extension of the EM algorithm as outlined previously.

2.2 The Recovery Rate Models

Let Rij(t) be the recovery rate of the jth firm in the ith sector at time t. We assume that

the recovery rate depends on the set of covariates Xij(t) through a function of the linear

form Uij(t) = Xij(t)βr, where βr is a vector of regression coefficients. Recovery rates are

non–negative and usually less than one.13

Several different approaches have been used in the literature to model the dependence

of recovery rate on covariates. Acharya et al. (2003) and Varma and Cantor (2005) assume

that

Rij(t) = Xij(t)βr,

implying that Uij(t) ≡ Rij(t) and the recovery rates are normally distributed and uncon-

strained. Schönbucher (2003b) models the recovery rate through a logit specification

Rij(t) =
1

1 + exp(Xij(t)βr)
,

implying that Uij(t) ≡ log(Lij(t)/Rij(t)), where Lij(t) = 1−Rij(t) is the loss given default.

Andersen and Sidenius (2005) use the probit transformation:

Rij(t) = Φ(Xij(t)βr),

where Φ(·) is the cumulative distribution function of the standard normal distribution. Then

13It is possible for recovery rates to be greater than one, especially if bond prices within one month of
default are used. In our data set, four recovery rates were greater than one and these were eliminated for
the empirical estimation.
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Uij(t) ≡ Φ−1(Rij(t)).

With missing variables or measurement errors, we can write

Uij(t) = Xij(t)βr + eij,

where eij represents the effects of the missing variables.

3 Data Description

In this section we first describe the data sources and then discuss the covariates used at

different stages of the analysis.

3.1 Data Sources

3.1.1 Bankruptcy, Defaults and Recovery Data

Bankruptcy is defined as the event that a company makes either a Chapter 7 or a Chapter 11

filing.14 The initial source of bankruptcy data is the data set from Chava and Jarrow

(2004). This database consists of all bankruptcy filings as reported in the Wall Street

Journal Index (1962–1980), the SDC Database (Reorganizations module 1980–2002), SEC

filings (1978–2002), CCH Capital Changes Reporter and New Generation Research. As

such, the bankruptcy data includes most of the bankruptcy filings between 1962–2004 of

publicly traded companies on either the NYSE, AMEX or NASDAQ stock exchanges. To

our knowledge, this is the most comprehensive bankruptcy database available. In this paper

we focus on bankruptcies during the 1980–2004 time period.15

Data on defaults and recovery is taken from the Moody’s Default Risk Service Database for

the period 1980–2004. In addition to the recovery data, this database has detailed issue level

information. We supplement this information with the Mergent’s Fixed Income Securities

Database, when necessary. See Varma and Cantor (2005) and Covitz and Han (2004) for

more details on Moody’s DRS.

14A Chapter 11 filing does not necessarily imply that a company will file for Chapter 7 (liquidation).
15The Bankruptcy Reform Act of 1978 took effect on October 1, 1979, and substantially revamped

bankruptcy practices. A strong business reorganization chapter was created, Chapter 11. This replaced
the old Chapters X, XI and XII that were created by the 1898 Act and amended by the Chandler Act. In
general, the Reform Act of 1978 made it easier for both businesses and individuals to file a bankruptcy and
to reorganize.
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Default in this paper refers to Moody’s definition of default. A default is said to occur if

• There is a missed or delayed disbursement of interest and/or principal, including de-

layed payments made within a grace period.

• The company files for bankruptcy, administration, legal receivership, or other legal

blocks to the timely payment of interest or principal.

• A distressed exchange occurs when:

– the issuer offers bondholders a new security or a package of securities that rep-

resent a diminished financial obligation (such as preferred or common stock, or

debt with a lower coupon or par amount, lower seniority, or longer maturity), or

– the exchange has apparent purpose of helping the borrower avoid default.

3.1.2 Other Forms of Exit Data

We use the information in the CRSP de-listing files to determine other forms of exit. At

any given point of time, a firm can be active, become acquired or merged into another firm,

go bankrupt, or get liquidated and de-listed for performance or other reasons. We use the

de-listing codes in the CRSP files to determine the nature of exit. Specifically, we focus on

exit through merger and acquisitions and construct a separate database for exits other than

default.

3.1.3 Corporate Data

The firm level balance sheet data is taken from quarterly COMPUSTAT (active and research)

files for the period 1980–2004, and market data is taken from CRSP. Both the accounting

and market data are lagged by one quarter, so that they are observable by the market at

the beginning of each quarter. This is an attempt to ensure that at the time of estimation

we use only the accounting and market data that is available to market participants at that

time.

3.2 Covariates

3.2.1 Firm Level Factors

The following firm level variables are used in the default prediction models:
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• rsize denotes the relative size of the firm and is defined as the logarithm of each firm’s

equity value divided by the total NYSE/AMEX market equity value. This variable

is statistically significant in Shumway (2001), Chava and Jarrow (2004), Campbell et

al. (2004), and Beaver, McNichols and Rhie (2005). The effect of this variable is

expected to be negative, because the firm size might proxy for differential firm power

with respect to the ability to negotiate with creditors. The larger the firm, the greater

its ability to negotiate and the lower the probability of failure.

• exret denotes excess return and is defined as the return on the firm minus the value-

weighted CRSP NYSE/AMEX index return. The monthly returns are cumulated to

obtain the quarterly return.16 This variable is statistically significant in Shumway

(2001), Campbell et al. (2004), and Chava and Jarrow (2004). The effect of this

variable is expected to be negative: the larger the excess rate of return, the lower the

probability of default.

• nita represents the ratio of Net Income to Total Assets of the firm.17 In Shumway (2001)

this variable is not statistically significant, while Campbell et al. (2004), Beaver et al.

(2005), and Chava and Jarrow (2004) find it significant. The effect of this variable is

expected to be negative: the larger the ratio, the lower the probability of default.

• tlta represents the ratio of Total Liabilities to the Total Assets of the firm, and it is

statistically significant in Shumway (2001), Campbell et al. (2004), and Beaver et al.

(2005). The effect of this variable is expected to be positive: the larger the leverage

ratio, the greater the probability of default.

• retl denotes the firm’s trailing one year stock return. A negative relation is expected:

the greater the return in the previous year, the stronger the firm and the lower the

probability of default.

• sigma represents the standard deviation of daily stock returns of the previous quarter.

This variable is significant in Shumway (2001), Campbell et al. (2004), and Chava and

Jarrow (2004). The effect of this variable is expected to be positive: the larger the

standard deviation, the greater the probability of default.

• dd represents the Distance to Default and is constructed similarly to Bharath and

Shumway (2005). Note that this variable combines firm specific information and mar-

16Shumway (2001) uses an indicator function if the stock’s cumulative excess returns have been in the
lowest 5% of all the NYSE/AMEX stock returns during the last three years. This indicator is not statistically
significant.

17We measure Total Assets as the book value of liabilities plus the market value of equity.
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ket information. Hillegeist et al. (2004) examine the sensitivity of the default point

to different measures of the liabilities due, and find that their results are relatively

insensitive to the specification. The effect of this variable is expected to be negative:

the greater the distance to default, the lower the probability of default. This variable

is statistically significant in Campbell et al. (2004), Duffie et al. (2005), and Hillegeist

et al. (2004).

3.2.2 Macro Economic Factors

Many different macroeconomic variables have been used in previous studies. Hillegeist et

al. (2004) use the previous year economy wide default rate to calibrate the baseline hazard

rate and find it to be an important variable. Duffie and Wang (2003) investigate personal

income growth and find a negative and statistically significant relation. Duffie et al. (2005)

consider the firm’s trailing one year stock return, the trailing one year return on the S&P

index, and the three month Treasury bill rate. In the presence of these covariates, other

covariates are found to be statistically insignificant. Campbell et al. (2004) experiment with

different NBER indicators of recession, though none improves the fit of their model. They

also use the slope of the Treasury curve and the corporate bond spread, and find that several

interaction terms between leverage, the Treasury slope and the credit spread are significant.

In this study we investigate the effects of six macroeconomic variables:

• termspread, computed as the difference of the ten year Treasury yield and the one year

Treasury yield.

• creditspread, computed as the difference between AAA and BAA yields. The greater

the spread, the higher is the aggregate credit risk of the economy. One would expect the

greater the credit spread, the greater will be the probability of default for an individual

obligor.

• growth in real GDP (∆gdp) — a negative relation is expected: the greater the growth

in the economy, the lower the probability of default.

• growth in personal income (∆pi) — a negative relation is expected: the greater the

growth in personal income, the stronger the economy and the lower the probability of

default.

The information on the last two variables is taken from the Federal Reserve’s website.
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• the three month Treasury yield (tbsm3) — a positive relation is expected: the greater

the Treasury bill rate, the higher the probability of default.

• the S&P 500 index trailing one year return (spretl) — a negative relation is expected:

the greater the return in the previous year, the stronger the economy and the lower

the probability of default.

To avoid any outlier effects, all variables are winsorized at the 1% and 99% of the cross–

sectional distributions.

3.3 Additional Recovery Covariates

The following additional covariates are used in the recovery rate models.

• seniority — we identify five classes of seniority: junior, subordinated, senior subor-

dinated, senior unsecured and senior secured. The choice of these five classes was

dictated by the availability of data.

• log(issuesize) — logarithm of the initial amount issued. Larger issues may earn higher

recoveries than smaller issues, as a larger stakeholder may be able to exert greater

bargaining power in the bankruptcy proceedings.

• log(matoutstand) — logarithm of time to maturity

• couprate — the coupon rate on the bonds at the time of default. Acharya et al. (2003)

argue that if a bond is issued at a discount or premium, then the coupon on the bond

will affect the accelerated amount payable to bondholders in bankruptcy,18 as will the

remaining maturity of the issue.

• log(ta) – logarithm of the size of the firm as measured by the total assets

• mtb denotes the market to book ratio of the firm. The variable is a proxy for the firm’s

growth prospects, and thus it should have a positive effect on recoveries.

• ebitdasales denotes the ratio of earnings before interest, tax, depreciation and amor-

tization to the total sales of the firm, and it is a measure of the firm’s profitability.

Acharya et al. (2003) find a statistically significant effect of this variable. A positive

relation is expected: the higher the ratio, the greater should be the recovery.

18A common clause in bond indentures is that the accelerated amount payable to bondholders in
bankruptcy equals the remaining promised cash flows discounted at the original issue yield.
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• tanta denotes the ratio of property plant and equipment to the total assets of the firm,

and it is a measure of the firm’s tangible assets. Acharya et al. (2003) find the effect

of this variable to be statistically insignificant.

4 Empirical Results

In this section we discuss the results of estimating the default and recovery models described

in Section 2, using annual data.

4.1 Default Prediction Results

We consider eight different models for the probability of default, spanning the array of

current models that have been used by academics. The first model, M1, contains the same

covariates as in Shumway (2001), except for firm age which Shumway found to be statistically

insignificant. The second model, M2, is the reduced form model considered by Chava and

Jarrow (2004). The third model, M3, is obtained by replacing the volatility variable sigma

in M2 with a distance-to-default variable. The fourth model, M4, is obtained by adding two

macroeconomic variables, the Treasury spread and the credit spread to model M1. The fifth

model, M5, is obtained by adding the two macroeconomic variables to model M3, which

includes the distance-to-default. The sixth model, M6, is a private firm model that does not

utilize any equity market based variables. The seventh model, M7, is obtained from model

M4 by adding two more macroeconomic variables: the change in real gross domestic product

and the change in personal income. The eighth model, M8, uses the same covariates as in

Duffie et al. (2005).

The analyses are done on two subsets of the data, the first consisting of all non–financial

firms and the second consisting of only manufacturing firms.19 In order to set a benchmark,

we first estimate the parameters of all models without frailty. We then re-estimate the

parameters of the models with frailty and assess their performance out-of-sample.

4.1.1 No frailty

Table 2 reports the results for the case when there is no frailty. Panel A presents the results

for the sample of non-financial firms. For model M1 (Shumway, 2001), all covariates are

19A non–financial firm has a SIC code less than 6000 or greater than 7000. A manufacturing firm has a
SIC code between 2000 and 4000.
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significant and have the correct sign, except for net income to total assets.20 All coefficients

in model M2 (Chava and Jarrow, 2004) and model M3 have the expected sign and are sig-

nificant, except for relative size of the firm in M3. The credit spread coefficient is significant

and has the expected sign in model M4, and it is insignificant in model M5. The term spread

coefficient is significant in model M5, although it has a positive sign. The addition of the

credit spread and term spread variables in models M4 and M5 has only a small effect on

the magnitudes of the other coefficients. For the private firm model M6, the credit spread

covariate is insignificant, while the other coefficients are significant and have the expected

sign. For model M7, the Treasury spread remains insignificant, while the change in real gross

domestic product and the change in personal income are significant. Finally, for model M8

(Duffie et al, 2005) all covariates are statistically significant, except the three month Treasury

bill rate. The coefficient for the one year trailing S&P 500 index is positive, consistent with

findings in Duffie et al. (2005) who argue that this may be due to the correlation between

the individual stock returns and the S&P 500 index, or perhaps to the trailing nature of the

returns and the business cycle dynamics.

In Panel B we report the results of the analysis for the sample of manufacturing firms.

The results are broadly similar; the net income to total assets covariate becomes insignificant

in models M1 and M4, and the change in real gross domestic product is now insignificant in

model M7.

As a measure of in–sample fit, the log-likelihood function is highest for models M1 and

M4, suggesting that these are the two best fitting models for both the non-financials and

the manufacturing samples. The difference in fit between M1 and M4 is not statistically

significant.

4.1.2 One frailty per sector

For the second part of the analysis we assume that there is one frailty specific to each sector.

We allocate firms to different sectors, first on the basis of the 4-digit SIC industry codes from

COMPUSTAT,21 then on the basis of the Fama–French sector classification.22 The two clas-

sifications gave very similar results, the only substantial difference being a higher estimated

frailty variance when firms are classified based on 4-digit SIC codes. This is to be expected,

as the frailty variance is a measure of within sector homogeneity, and sectors are more ho-

20The coefficient of this variable is negative in Shumway(2001), though not statistically significant — see
Table 6B.

21See Kahle and Walkling (1996) for the merits of using the Compustat versus CRSP SIC codes.
22There are 442 sectors defined by the 4-digit SIC industry codes, and 48 sectors defined by the Fama–

French sector classification.
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mogeneous when they are defined according to a more refined classification.23 Consequently

we only report the coefficients obtained from the classification using COMPUSTAT 4-digit

industry codes.

Table 3, Panel A presents the results for the non-financial sample. The frailty variance is

statistically significant for all models. In comparison to the results for the no-frailty models

in Panel A from Table 2, the signs of all coefficients generally remain unchanged, and there

are only small changes in the magnitudes of the coefficients. The net income to total assets

covariate is now statistically insignificant except in the private firm model M6, while the term

spread coefficient varies in sign and in statistical significance across models. The results for

the sample of manufacturing firms reported in Panel B from Table 3 lead to similar insights.

For all models, there is a significant improvement in the log-likelihood function over

the corresponding model without frailty, in both the non-financials and the manufacturing

samples. A χ2 test confirms that, for the same sets of covariates, a frailty default model

provides a statistically significant improvement in fit over a default model without frailty.

4.1.3 Competing Risks

Table 4 reports the estimation results from fitting the competing risks models described in

(6)–(7). This is the first study to examine the impact of exit due to reasons other than

default on a range of default prediction models. In comparison with Table 3, the estimated

frailty variance has decreased by about a factor of two, but still remains highly significant.

The coefficients for exit due to default change little from those reported in Table 3.

For exit due to other reasons, the coefficients for the excess return, the net income to total

assets, the change in real gross domestic product, the lagged stock return, and the lagged

S&P return are all positive and statistically significant. The coefficients for the relative size,

credit spread, and term spread are all negative and statistically significant in most models.

The coefficients for sigma, total liabilities to total assets, and the three month Treasury

yield are generally not significant. The results for model M8 are broadly consistent with the

findings reported in Duffie et al. (2005).

23As the classification of the sectors becomes more refined, implying that firms within a sector become
less heterogeneous, the dispersion across sectors increases. Hence the variance θ of the sector specific frailty
Y increases.
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4.2 Out-of-Sample Performance

We investigate the out-of-sample forecasting performance of the different default models,

using a one year horizon which is suggested by regulatory requirements. We estimate the

model coefficients using data between 1980–1995, then we compute the one-year probability

of default for each firm at the beginning of each year in which the firm is alive between

1996–2004. The probabilities of default for every year are then ranked by descending order

and grouped into deciles. We record the yearly number of actual defaults in each decile, and

we compute the aggregated percentage of defaults in each decile over the 1996–2004 period

for all models. The top two decile percentages are reported in Table 5, Panel A.

For the sample of non-financial firms, there is little difference in the out-of-sample perfor-

mance for the models with and without frailty. Models M1 and M4 have the best performance

without frailty, correctly identifying 77 percent of the defaulting firms in the first two deciles.

This compares well with the results in Chava and Jarrow (2004), who correctly identify 79

percent24 of the defaulting firms. With frailty, there is a minor deterioration in the out-of-

sample performance of models M1 and M4. The best performance comes from model M7,

which correctly identifies 79.8 percent of the defaulting firms.

For the more homogeneous sample of manufacturing firms, the out-of-sample performance

of all models is significantly better. Models with frailty provide better or equal classification

than models without frailty in all cases, although the differences tend to be small. Models

M1 and M4 have again the best out-of-sample performance, correctly identifying 84 percent

of the defaulting firms.

The NASDAQ Effect

Most academic studies, including Shumway (2001) and Beaver et al. (2005), restrict

their empirical analysis to AMEX and NYSE traded firms. Many start-up firms, however,

are listed on NASDAQ. These firms tend to have negative cash flows over the initial few years,

and failure rates tend to be higher among start-ups than among established firms.25 These

considerations will, in general, affect the estimation of the coefficients and the performance

of default prediction models when the sample data includes firms listed on NASDAQ.

This issue is examined in Chava and Jarrow (2004). First, they consider only firms with

price data from AMEX or NYSE during the period 1962–1999, including 404 bankruptcies.

24Chava and Jarrow (2004) use data on 1,197 defaulting firms over the period 1962 to 1999. For out-
of-sample testing, they estimate the coefficients over the period 1962 to 1990 and test the out-of-sample
performance over the period 1991 to 1999.

25This was the especially the case in the 1990s and the crash of the dot com epoch in the early 2000s.
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They test the out-of-sample performance of several models over the period 1991–1999, and

find that the Shumway model identifies 86.40 percent of bankruptcies in the top two deciles.

Next, they include in the analysis firms with price data from NASDAQ, and the size of their

bankruptcy sample increases to 1,066. They find that the model with best performance in

out-of-sample testing is now a public firm model with industry dummy variables, and this

model identifies only 79.12 percent of bankrupt firms in the top two deciles.

To investigate the NASDAQ effect in our sample, we first ran the analysis on the un-

restricted sample including firms listed on AMEX, NYSE and NASDAQ. The summary

forecasting results are reported in Table 5, Panel A, and we discussed them earlier. Next,

we restricted our analysis to firms trading only on AMEX and NYSE, and we report the

forecasting results in Table 5, Panel B. Comparing Panel B with Panel A, the out-of-sample

performance improves for all models, especially for models M1, M4 and M8. For non-

financials, without frailty models M1 and M4 again give the best performance, identifying

84.5 percent of the defaulting firms in the top two deciles. This compares favorably with

Shumway (2001) who identifies 87.5 percent of the bankrupt firms,26 and with Beaver et al.

(2005) who identify 88.1 percent of the bankrupt firms in the top two deciles.27 With frailty,

models M1 and M4 identify 83.2 percent of the defaulting firms in the top two deciles, while

the best performance with 84.5 percent is given by model M7. For manufacturing, without

frailty models M1 and M4 correctly identify 86.3 percent of the defaulting firms, and with

frailty they still give the best performance, identifying 89.2 percent of the defaults in the top

two deciles.

The numerical differences between the results in Panels A and B are of the order of

7%, which is substantial. The results illustrate, once again, the basic point that model

performance depends crucially on the characteristics of the data set.28 For regulators, the

important message to be gleaned from these results is that while a bank can demonstrate

the performance of a model on a particular data set, there is no guarantee that it will have

similar performance on another data set.

26Shumway (2001) uses a sample of 239 bankruptcies over the period 1962 to 1992 for estimating the
default model and tests the out-of-sample performance of his model over the period 1984 to 1992.

27Beaver et al. (2005) use a sample of 544 bankrupt firms covering the period 1962 to 2002. Using a
model similar to Shumway (2001), they estimate the coefficients over the period 1962 to 1993 and test the
out-of-sample performance over the period 1994 to 2002.

28This point is also demonstrated in Beaver et al. (2005). They divide randomly their data set for the
period 1962 to 1993 into two subsamples, then they estimate the model coefficients using data from one
subsample and test the model performance on correctly identifying the bankruptcies in the other subsample.
A similar exercise is then undertaken using data for the period 1994 to 2002. The percentage of bankrupt
firms correctly identified in the top two deciles varies between 76.90 and 85.60 percent.
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4.3 Recovery Rate Results

Our analysis follows that of Acharya et al. (2003) and considers contract specific, firm

specific, and macroeconomic variables, all of which have been described in Section 3.2.

The empirical results are shown in Table 6. We test the linear, logit and probit speci-

fications described in Section 2.2. The estimation results for the logit model are similar to

the ones for the probit model, and the out-of-sample performance of the probit model is

slightly superior to the performance of the logit model. Consequently we only report the

linear model results in Panel A and the probit model results in Panel B. For all models, the

dummy variables representing seniority are positive and are statistically and economically

important. The ordering is as expected for the dummy variables representing the senior

secured, senior unsecured, and senior subordinated recovery rates. However, the coefficient

for senior subordinated is less than the coefficient for subordinated recovery rate. This is

not suprising, as the mean senior subordinated recovery rate in the sample is 28.49 cents per

dollar (72 observations), compared to the mean subordinated recovery rate of 29.24 cents per

dollar (145 observations). In Acharya et al. (2005), the senior secured coefficient is less than

the senior unsecured coefficient and both are statistically significant, while the coefficients

for the other classes of seniority are not statistically significant. We find that the coefficient

of the coupon variable is positive and statistically significant, while in Acharya et al. (2005)

it is not significant. The coefficients for the logarithm of issue size and for the maturity

outstanding are insignificant, similar to Acharya et al. (2005). We find that all of the firm

specific variables are insignificant. Among the macroeconomic variables, the three month

Treasury bill yield is significant, while the lagged S&P return has the expected positive sign

and is borderline significant in several models.

In order to assess the out-of-sample performance of the recovery rate models, we choose

the initial sample period 1980–1995, then generate rolling one year ahead forecasts for the

period 1996–2004. The average root mean square error for each of the models is reported

in the last row of Table 6. We do not know of any extant studies that examine the out-of-

sample performance of recovery rates models, and consequently we have no benchmark. The

out-of-sample RMSE values are very similar across the six recovery rate models, and also

between the linear and probit specifications.29

29However, in the simulations used to estimate the expected loss over arbitrary horizons — discussed in
Section 5.1 — the linear model often led to negative values for estimated future recovery rates, because in
the linear formulation the recovery rate dependent variable is unconstrained.
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5 Expected Loss

In this section we outline the methodology for computing the expected loss over arbitrary

horizons, using the estimated parameters from the default and recovery models. The prob-

ability of default and the loss given default for firm j both depend on the set of covariates

{Xj(t)}. Let Ijt denote an indicator function that equals 1 if firm j defaults in period t

conditional on survival up to period t, and 0 if default does not occur in period t. The loss

in period t is

L̂jt =

{
Ljt; Ijt = 1

0; Ijt = 0

The expected loss over a one period horizon is

Et[L̂jt+1] = Et[Ijt · Ljt] = pjt+1(Xj(t)) · Et[Ljt+1(Xj(t))],

where pjt+1(Xj(t)) represents the probability of default over the next period t+1 conditional

on survival up to t + 1.

The expected loss in the second period is

Et[L̂jt+2] = Et{[1− pjt+1(Xj(t))] · pjt+2(Xj(t + 1)) · Ljt+2(Xj(t + 1))},

where the expectation is taken over the stochastic processes of the covariates {Xj(t + 1)}.
To compute the expected loss we simulate the paths of the covariates, calculate the term

[1− pjt+1(Xj(t))] · pjt+2(Xj(t + 1)) · Ljt+2(Xj(t + 1)),

and estimate its mean value.

5.1 Default and Recovery Correlation

We have no direct benchmark against which to calibrate our expected loss model. Conse-

quently, we examine some of its properties. Empirical evidence shows that the frequency of

default and the loss given default are negatively correlated, therefore we examine the corre-

lation between the probability of default and the expected loss given default implied by our

model.

Similar to the methodology for out-of-sample testing, we estimate the parameters for

the probability of default model M4 and for the recovery rate Model 3 (under the probit
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specification) over the period 1980–1995, separately for manufacturing and for non-financial

firms. For every year t during the out-of-sample period 1996–2004, we estimate the one-year

conditional probability of default and the expected recovery rate30 during year t for every firm

that is alive at the beginning of year t. We then compute the cross-sectional correlation in

year t between the estimated probability of default and the expected recovery rate, denoted

by ρ(t) = corr(p(t), R(t)). Figure 1 gives a time series plot of the cross correlations ρ(t) and

shows that for all nine years the correlations are negative and significant, as expected. The

magnitude of the correlation varies with the credit cycle. The correlation decreases as the

economy slides into recession during the late 1990s, and increases as the economy improves

during the new millennium.

5.2 Estimation Results with Quarterly Data

We estimate the default models M1–M8 with frailty using quarterly data, for purposes of

comparison with the similar analyses using annual data. The results are given in Table 7,

Part A for the non-financial sample and Part B for the manufacturing sample. They are

broadly similar with the corresponding results for annual data reported in Table 4. The only

differences are that the coefficient of net income to total assets is now significant in models

M1 and M4, and the coefficient of the three month Treasury yield becomes significant in

model M8, both for the non-financials and the manufacturing samples.

5.3 Multiperiod Out-of-Sample Performance

The methodology that we developed in Section 2 can be used for estimating the expected

loss over arbitrary horizons, rather than just over one period. This is particularly important

for banks, since they typically examine their risk exposure over multi–year horizons. For

modelling expected loss over arbitrary horizons it is also necessary to estimate the stochastic

30For the linear case the expected recovery is

Et[R(t + 1)] = X(t)β.

For the probit case we have
Et[R(t + 1)] = Et[Φ(X(t)β + σee(t))],

where e(t) is the error term with zero mean and unit variance, σe is the standard deviation of the error term,
and Φ(·) is the cumulative distribution function of the standard normal distribution. Evaluating the above
expression gives

Et[R(t + 1)] = Φ(X(t)β$),

where $ ≡ 1/(1 + σ2
e)

1/2.
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processes describing the evolution of the covariates, in addition to estimating the parameters

for default and recovery models.

We choose a one-year horizon and we compare the out-of-sample performance of default

model M4 estimated with quarterly data with the performance of model M4 estimated with

annual data. Note that in the case of quarterly data, the one-year horizon is in fact a four

period horizon over which we need to simulate the evolution of the covariate processes. In

the case of annual data, the one-year horizon is a one period horizon over which the last

observed covariate values will be used for predicting default probabilities; therefore it is not

necessary to simulate the evolution of the covariate processes in this case.

We estimate the coefficients in model M4 using both quarterly and annual data over the

initial period 1980–1995. For the case of quarterly data, we assume that the seven state

variables in model M4 follow a multivariate AR(1) process. Note that for the economy

level covariates the entire period 1980–1995 is available for estimation, while for firm level

covariates we only have available the history during the lifetime of the firm. The obligors

with short lifetimes did not have sufficient data to allow the estimation of the multivariate

time series process. Therefore, we first restricted the sample to those firms with at least

eight quarters of data. To investigate the impact of available history on model performance,

we next repeated the analysis on the sample restricted to those firms with at least twenty

quarters of data; this substantially altered the size of the sample.31 For every year between

1996–2004 and each obligor who is in the sample at the beginning of that year, we jointly

estimate the coefficients of the multivariate time series process for the underlying covariates.32

The obligor’s probability of default over the next one year horizon is then estimated using

simulation, and the procedure for assessing the out–of–sample performance of the default

model becomes similar to that described in Section 4.2.

The results are shown in Table 8, where Panel A reports the results for non-financials

and Panel B for industrials. Two salient features are noteworthy. First is the NASDAQ

effect: the model performance improves substantially when we remove the NASDAQ traded

firms and thus decrease the heterogeneity in the sample. This is not unexpected, given the

discussion of the NASDAQ effect in Section 4.2. Second is the history length effect: the

model performance improves again substantially when using at least twenty quarters of data

for the estimation of the parameters of the state variables process. This is also not surprising,

31In the case of a filter of 8 quarters, the restricted manufacturing sample contains 5,218 firms and 427
defaults. The restricted non-financials sample contains 11,143 firms and 1,058 defaults.

In the case of a filter of 20 quarters, the restricted manufacturing sample contains 3,619 firms and 272
defaults. The restricted non-financials sample contains 7,206 firms and 615 defaults.

32Estimation was performed using the software described in Neumaier and Schneider (2001).
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given that model performance depends on the ability to accurately describe the evolution

of the different correlated covariates. To estimate even a simple AR(1) process with only

eight observations is problematic. Unfortunately, defaults often occur for young firms, so

that the corresponding time series data are limited. This implies that a model that relies

only on market driven covariates, such as M8, has perhaps an advantage over firm specific

type models such as M4. However, the loan portfolios of many banks consist of a majority

of private firms, and hence model M8 is not applicable.

6 Summary

This paper develops a methodology for modeling and estimating expected loss over arbi-

trary horizons in the presence of unobservable heterogeneity in firm characteristics. In this

framework we model jointly the probability of default and the recovery rate given default.

Unobservable heterogeneity, representing the effects of measurement errors and missing vari-

ables, is modeled as a non-negative latent random variable that acts multiplicatively on the

default intensity function. Since firms in the same industry share the same latent random

variable, this specification induces within–industry correlation of default intensities. We esti-

mate the parameters of the different models using an extensive default and recovery data set,

containing the majority of defaults of companies listed on the AMEX, NYSE and NASDAQ

exchanges between 1980–2004. We also allow for exit due to reasons other than default, and

examine how this affects parameter estimation for the default prediction models.

We undertake extensive out-of-sample performance tests for both default prediction mod-

els and recovery rate given default models. This is the first study to test the out-of-sample

performance of models for the recovery rate given default. Our joint model specification

implies that out-of-sample, the probability of default and the recovery rate given default are

negatively correlated, and the magnitude of the correlation varies with the credit cycle. Using

our methodology, it is straightforward to estimate the expected loss over arbitrary horizons

instead of simply over a one-period horizon. We compare the out-of-sample default predic-

tions using quarterly and annual data, and find that the performance over multi-periods is

sensitive to the estimation accuracy for the parameters of the covariate processes. This has

practical implications for the choice of models, given data availability.

Under the advanced internal ratings based approach of the new Basel Capital Accord

(Basel II), banks can use their own estimates of the probability of default and loss given

default, subject to regulatory approval. The Accord is not explicit as to all the steps that
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banks must take to gain regulatory approval, instead it requires banks to present enough

evidence about the properties and performance of their models to satisfy regulators. This

paper provides banks with a framework that directly addresses the regulatory concerns about

demonstrating the performance and robustness of models for expected loss.
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Table 1: Descriptive Statistics

The following table presents the descriptive statistics for the variables used in the default and recovery esti-
mation. The sample is restricted to non-financial firms with information in CRSP and COMPUSTAT during
1980-2004. exret denotes excess return and is defined as the return on the firm minus the value-weighted
CRSP NYSE/AMEX index return. rsize denotes the relative size of the firm and is defined as the logarithm
of each firm’s equity value divided by the total NYSE/AMEX market equity value. sigma represents the
standard deviation of daily stock returns of the previous quarter. nita represents the ratio of Net Income to
Total Assets of the firm. tlta represents the ratio of Total Liabilities to the Total Assets of the firm. dd repre-
sents the Distance to Default, constructed similarly to Bharath and Shumway (2005). retl denotes the firm’s
trailing one year stock return. termspread is the difference of the ten year Treasury yield and the one year
Treasury yield, creditspread is the difference between AAA and BAA yields. ∆gdp is the growth in real GDP.
∆pi is the growth in personal income. tbsm3 is the three month Treasury yield. spretl is the trailing one year
S&P 500 index return. rec is the recovery on the bond (bond price within a month after default as given by
Moody’s DRS). couprate is the coupon rate on the bonds. log(issuesize) is the logarithm of the initial amount
of the bond issued. log(matoutstand) is the logarithm of time to maturity. ebitdasales denotes the earnings
before interest, tax, depreciation and amortization to the total sales of the firm. tanta denotes the ratio of
property plant and equipment to the total assets of the firm. mtb is the market to book ratio of the firm.

mean 25th pctl 50th pctl 75th pctl
Firm level covariates

exret 0.0248 -0.3134 -0.0706 0.1941
rsize -10.9699 -12.3407 -11.1137 -9.7547
sigma 0.5876 0.3089 0.4794 0.7378
nita -0.0372 -0.0241 0.0272 0.0710
tlta 0.5492 0.3423 0.5466 0.7298
dd 6.7301 -0.4435 5.3237 10.4771
retl 0.1842 -0.2193 0.0722 0.3769

Macroeconomic covariates

termspread 1.1161 0.2800 0.8700 2.1600
creditspread 1.0865 0.6900 0.9800 1.2800
∆gdp 3.4287 1.9000 3.1000 5.4000
∆pi 6.1205 3.8000 6.6000 8.1000
tbsm3 5.7974 4.3900 5.2000 7.6300
spretl 0.1160 -0.0154 0.1462 0.2633

Recovery covariates

rec 0.3434 0.1440 0.2800 0.5237
couprate 9.7648 7.8750 9.8750 12.0000
log(issuesize) 4.8642 4.3175 4.8283 5.4380
log(matoutstand) 8.2765 8.0548 8.2041 8.3859
ebitdasales -0.0326 0.0164 0.0739 0.1778
tanta 0.4100 0.2238 0.3805 0.5737
mtb 1.2755 0.9684 1.1307 1.4004
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Table 2: Default Estimation: No Frailty

Panel A: Non-financials. Annual Data.
The following table presents the estimates for the default prediction model with no frailty and exponential
hazards. Standard errors are given in parantheses. The sample is restricted to non-financial firms with
information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in Table 1. The
models M1 to M8 differ in the specification of the covariates. The last row gives the out-of-sample forecasting
accuracy for each model. Data from 1980–1995 is used to compute the parameter estimates for 1996, then
rolling 1-year ahead estimates are generated for 1997–2004. Every year, firms are ranked into deciles according
to their estimated probability of default, and the aggregate percentages of defaults in the top two deciles are
presented for each model.

M1 M2 M3 M4 M5 M6 M7 M8

intercept -7.746 -6.641 -4.367 -7.930 -4.312 -5.563 0.518 -3.781
(0.190) (0.182) (0.204) (0.208) (0.233) (0.095) (0.178) (0.088)

exret -2.738 -2.775 -2.088 -2.734 -2.064 -0.688
(0.094) (0.093) (0.089) (0.094) (0.090) (0.061)

sigma 0.199 0.215 0.205 0.374
(0.024) (0.022) (0.024) (0.011)

rsize -0.106 - 0.117 -0.022 -0.108 -0.013 0.382
(0.016) (0.016) (0.016) (0.016) (0.017) (0.012)

nita 0.231 0.221 -0.730 4.311
(0.081) (0.081) (0.070) (0.219)

tlta 2.252 2.247 2.224 2.553
(0.088) (0.088) (0.090) (0.087)

tbsm3 -0.014
(0.010)

creditspread 0.159 0.007 -0.010 -0.354
(0.063) (0.064) (0.061) (0.085)

∆gdp 0.052
(0.012)

∆pi -0.135
(0.007)

termspread -0.022 0.088 -0.083 -0.018
(0.023) (0.022) (0.021) (0.025)

retl -1.752
(0.078)

spretl 0.888
(0.162)

dd -0.183 -0.191 -0.391 -0.196
(0.009) (0.010) (0.007) (0.010)

Log L -6,284 -6,604 -6,398 -6,280 -6,390 -7,162 -7,500 -6,414

Out–of–sample performance

Top 2 deciles (%) 76.97 71.10 74.82 77.25 74.67 51.50 74.68 75.11
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Table 2: Default Estimation: No Frailty

Panel B: Manufacturing. Annual Data.
The following table presents the estimates for the default prediction model with no frailty and exponential
hazards. Standard errors are given in parantheses. The sample is restricted to manufacturing firms with
information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in Table 1. The
models M1 to M8 differ in the specification of the covariates. The last row gives the out-of-sample forecasting
accuracy for each model. Data from 1980–1995 is used to compute the parameter estimates for 1996, then
rolling 1-year ahead estimates are generated for 1997–2004. Every year, firms are ranked into deciles according
to their estimated probability of default, and the aggregate percentages of defaults in the top two deciles are
presented for each model.

M1 M2 M3 M4 M5 M6 M7 M8

intercept -8.711 -7.803 -5.820 -9.084 -6.141 -6.118 2.836 -4.249
(0.318) (0.315) (0.354) (0.347) (0.401) (0.153) (0.274) (0.145)

exret -2.528 -2.688 -2.231 -2.529 -2.251 -1.624
(0.153) (0.153) (0.148) (0.154) (0.151) (0.123)

sigma 0.284 0.332 0.313 0.911
(0.064) (0.052) (0.064) (0.035)

rsize -0.163 - 0.189 -0.114 -0.166 -0.118 0.609
(0.027) (0.028) (0.028) (0.027) (0.028) (0.019)

nita 0.196 0.188 -0.737 0.712
(0.124) (0.125) (0.107) (0.147)

tlta 2.390 2.380 2.545 2.635
(0.140) (0.141) (0.143) (0.127)

tbsm3 0.009
(0.015)

creditspread 0.319 0.200 0.087 -1.346
(0.100) (0.102) (0.096) (0.156)

∆gdp -0.031
(0.020)

∆pi -0.097
(0.012)

termspread -0.033 0.056 -0.086 -0.059
(0.036) (0.035) (0.033) (0.040)

retl -2.011
(0.133)

spretl 0.666
(0.265)

dd -0.160 -0.160 -0.284 -0.181
(0.015) (0.015) (0.013) (0.015)

Log L -2,477 -2,623 -2,567 -2,472 -2,563 -2,809 -2,924 -2,582

Out–of–sample performance

Top 2 deciles (%) 83.54 72.01 74.89 83.95 74.48 65.02 72.43 74.90

32



Table 3: Default Estimation: One Frailty per Sector

Panel A: Non-financials. Annual Data.
The following table presents the estimates for the default prediction model with one frailty per sector and
exponential hazards. Standard errors are given in parantheses. The sample is restricted to non-financial
firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in Table
1. The models M1 to M8 differ in the specification of the covariates. The last row gives the out-of-sample
forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter estimates
for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into deciles
according to their estimated probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M1 M2 M3 M4 M5 M6 M7 M8

frailty variance 0.256 0.338 0.288 0.254 0.294 0.397 0.223 0.290
(0.043) (0.048) (0.043) (0.042) (0.044) (0.056) (0.040) (0.044)

intercept -7.582 -6.629 -4.498 -7.751 -4.348 -5.411 -5.338 -3.602
(0.200) (0.189) (0.213) (0.217) (0.244) (0.105) (0.271) (0.096)

exret -2.671 -2.778 -2.137 -2.670 -2.103 -1.967
(0.095) (0.094) (0.092) (0.095) (0.092) (0.094)

sigma 0.216 0.255 0.221 0.164
(0.026) (0.024) (0.025) (0.036)

rsize -0.103 -0.124 -0.038 -0.106 -0.025 0.012
(0.017) (0.016) (0.017) (0.017) (0.017) (0.018)

nita 0.033 0.027 -0.858 0.016
(0.085) (0.086) (0.077) (0.086)

tlta 2.092 2.088 2.109 1.902
(0.095) (0.095) (0.096) (0.096)

tbsm3 -0.028
(0.010)

creditspread 0.140 -0.035 -0.035 0.179
(0.064) (0.066) (0.061) (0.080)

∆gdp 0.050
(0.012)

∆pi -0.038
(0.009)

termspread -0.015 0.104 -0.078 0.013
(0.023) (0.035) (0.021) (0.026)

retl -1.775
(0.080)

spretl 0.820
(0.165)

dd -0.175 -0.186 -0.158 -0.193
(0.010) (0.010) (0.010) (0.010)

Log L -4,644 -4,611 -4,581 -4,647 -4,544 -5,112 -4,572 -4,582

Out–of–sample performance

Top 2 deciles (%) 75.68 71.38 74.72 75.68 74.68 53.07 79.79 75.11
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Table 3: Default Estimation: One Frailty per Sector

Panel B: Manufacturing. Annual Data.
The following table presents the estimates for the default prediction model with one frailty per sector and
exponential hazards. Standard errors are given in parantheses. The sample is restricted to manufacturing
firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in Table
1. The models M1 to M8 differ in the specification of the covariates. The last row gives the out-of-sample
forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter estimates
for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into deciles
according to their estimated probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M1 M2 M3 M4 M5 M6 M7 M8

frailty variance 0.238 0.323 0.297 0.230 0.305 0.335 0.232 0.295
(0.063) (0.070) (0.067) (0.062) (0.068) (0.077) (0.062) (0.067)

intercept -8.640 -7.803 -5.914 -8.990 -6.113 -5.973 -7.194 -3.672
(0.331) (0.321) (0.363) (0.358) (0.411) (0.165) (0.448) (0.093)

exret -2.509 -2.740 -2.292 -2.515 -2.296 -2.070
(0.154) (0.156) (0.152) (0.155) (0.154) (0.154)

sigma 0.266 0.319 0.290 0.253
(0.064) (0.051) (0.063) (0.084)

rsize -0.168 - 0.199 -0.127 -0.171 -0.125 -0.076
(0.028) (0.028) (0.028) (0.028) (0.029) (0.031)

nita -0.003 0.000 -0.909 -0.060
(0.132) (0.132) (0.119) (0.133)

tlta 2.259 2.254 2.437 2.081
(0.149) (0.150) (0.153) (0.151)

tbsm3 -0.008
(0.016)

creditspread 0.284 0.145 0.035 0.270
(0.100) (0.103) (0.096) (0.125)

∆gdp 0.029
(0.019)

∆pi -0.005
(0.014)

termspread -0.018 0.083 -0.075 0.035
(0.036) (0.035) (0.034) (0.041)

retl -2.043
(0.135)

spretl 0.592
(0.267)

dd -0.151 -0.156 -0.162 -0.178
(0.015) (0.015) (0.010) (0.015)

Log L -2,141 -2,188 -2,157 -2,143 -2,148 -2,407 -2,098 -2,171

Out–of–sample performance

Top 2 deciles (%) 83.54 76.13 79.01 84.37 79.02 66.67 75.18 79.01
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Table 4: Default Estimation: One Frailty per Sector, Competing Risks.

Panel A: Non-financials. Annual Data.
The following table presents the estimates for the default prediction model with one frailty per sector,
exponential hazards and competing risks. Standard errors are given in parantheses. The sample is restricted
to non-financial firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions
are given in Table 1. The models M1 to M8 differ in the specification of the covariates. The last row gives the
out-of-sample forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter
estimates for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into
deciles according to their probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M1 M2 M3 M4
Default Merger Default Merger Default Merger Default Merger

frailty variance 0.133 0.165 0.149 0.132
(0.017) (0.018) (0.017) (0.017)

intercept -7.611 -3.603 -6.611 -3.459 -4.457 -3.666 -7.779 -3.025
(0.197) (0.104) (0.186) (0.095) (0.210) (0.109) (0.215) (0.113)

exret -2.694 0.037 -2.797 0.039 -2.145 0.035 -2.692 0.038
(0.095) (0.008) (0.094) (0.008) (0.091) (0.008) (0.095) (0.007)

sigma 0.214 -0.058 0.252 -0.136 0.219 -0.109
(0.026) (0.044) (0.024) (0.044) (0.025) (0.046)

rsize -0.103 -0.039 -0.120 -0.032 -0.033 -0.035 -0.106 -0.037
(0.017) (0.009) (0.016) (0.009) (0.016) (0.009) (0.017) (0.009)

nita 0.068 0.441 0.062 0.380
(0.085) (0.079) (0.085) (0.079)

tlta 2.116 0.047 2.112 0.046
(0.093) (0.067) (0.093) (0.067)

creditspread 0.141 -0.372
(0.063) (0.037)

termspread -0.017 -0.126
(0.023) (0.012)

dd -0.176 0.012
(0.009) (0.002)

Log L -17,344 -16,738 -16,937 -17,267

Out–of–sample performance

Top 2 deciles (%) 77.68 72.82 75.68 77.68
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Table 4: Default Estimation: One Frailty per Sector, Competing Risks.

Panel A: Non-financials. Annual Data (contd.).
The following table presents the estimates for the default prediction model with one frailty per sector,
exponential hazards and competing risks. Standard errors are given in parantheses. The sample is restricted
to non-financial firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions
are given in Table 1. The models M1 to M8 differ in the specification of the covariates. The last row gives the
out-of-sample forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter
estimates for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into
deciles according to their probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M5 M6 M7 M8
Default Merger Default Merger Default Merger Default Merger

frailty variance 0.151 0.171 0.126 0.149
(0.017) (0.020) (0.016) (0.017)

intercept -4.315 -3.231 -5.444 -2.677 -5.359 -3.568 -3.636 -3.267
(0.241) (0.119) (0.101) (0.060) (0.268) (0.136) (0.093) (0.047)

exret -2.111 0.036 -1.980 0.035
(0.092) (0.008) (0.094) (0.008)

sigma 0.162 -0.070
(0.036) (0.048)

rsize -0.021 - 0.038 0.012 -0.050
(0.017) (0.009) (0.018) (0.009)

nita -0.845 0.368 0.049 0.394
(0.076) (0.073) (0.085) (0.079)

tlta 2.121 0.034 1.924 0.098
(0.095) (0.067) (0.094) (0.067)

tbsm3 -0.026 0.009
(0.010) (0.005)

creditspread -0.033 -0.339 -0.032 -0.373 0.180 -0.076
(0.066) (0.037) (0.061) (0.037) (0.080) (0.044)

∆gdp 0.050 0.089
(0.012) (0.008)

∆pi -0.037 -0.047
(0.009) (0.005)

termspread 0.101 -0.150 -0.080 -1.124 0.011 -0.198
(0.022) (0.012) (0.021) (0.012) (0.026) (0.015)

retl -1.783 0.026
(0.080) (0.007)

spretl 0.831 0.633
(0.165) (0.098)

dd -0.187 0.018 -0.159 0.013 -0.194 0.006
(0.010) (0.002) (0.010) (0.003) (0.009) (0.002)

Log L -16,745 -17,136 -17,167 -16,924

Out–of–sample performance

Top 2 deciles (%) 75.68 54.65 80.55 76.54
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Table 4: Default Estimation: One Frailty per Sector, Competing Risks.

Panel B: Manufacturing. Annual Data.
The following table presents the estimates for the default prediction model with one frailty per sector,
exponential hazards and competing risks. Standard errors are given in parantheses. The sample is restricted
to manufacturing firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions
are given in Table 1. The models M1 to M8 differ in the specification of the covariates. The last row gives the
out-of-sample forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter
estimates for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into
deciles according to their probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M1 M2 M3 M4
Default Merger Default Merger Default Merger Default Merger

frailty variance 0.073 0.102 0.094 0.071
(0.019) (0.021) (0.021) (0.018)

intercept -8.665 -3.805 -7.776 -3.611 -5.857 -3.793 -9.027 -3.276
(0.325) (0.147) (0.317) (0.134) (0.358) (0.157) (0.352) (0.161)

exret -2.521 0.092 -2.736 0.091 -2.280 0.083 -2.525 0.104
(0.154) (0.022) (0.155) (0.021) (0.151) (0.021) (0.154) (0.021)

sigma 0.273 -0.016 0.324 -0.127 0.300 -0.059
(0.064) (0.069) (0.051) (0.070) (0.063) (0.071)

rsize -0.165 -0.045 -0.193 -0.037 -0.120 -0.039 -0.168 -0.042
(0.028) (0.013) (0.028) (0.013) (0.028) (0.012) (0.028) (0.013)

nita 0.081 0.609 0.080 0.559
(0.129) (0.121) (0.130) (0.120)

tlta 2.314 0.088 2.308 0.082
(0.145) (0.101) (0.146) (0.101)

creditspread 0.301 -0.312
(0.100) (0.053)

termspread -0.026 -0.136
(0.036) (0.017)

dd -0.154 0.010
(0.015) (0.004)

Log L -10,456 -10,453 -10,426 -10,410

Out–of–sample performance

Top 2 deciles (%) 81.90 74.48 74.07 81.89
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Table 4: Default Estimation: One Frailty per Sector, Competing Risks Model.

Panel B: Manufacturing. Annual Data (contd.).
The following table presents the estimates for the default prediction model with one frailty per sector,
exponential hazards and competing risks. Standard errors are given in parantheses. The sample is restricted
to manufacturing firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions
are given in Table 1. The models M1 to M8 differ in the specification of the covariates. The last row gives the
out-of-sample forecasting accuracy for each model. Data from 1980–1995 is used to compute the parameter
estimates for 1996, then rolling 1-year ahead estimates are generated for 1997–2004. Firms are ranked into
deciles according to their probability of default, and the aggregate percentages of defaults in the top two
deciles are presented for each model.

M5 M6 M7 M8
Default Merger Default Merger Default Merger Default Merger

frailty variance 0.096 0.093 0.073 0.092
(0.021) (0.021) (0.019) (0.020)

intercept -6.097 -3.426 -6.024 -2.833 -7.256 -3.896 -4.120 -3.414
(0.405) (0.173) (0.159) (0.083) (0.441) (0.198) (0.149) (0.066)

exret -2.290 0.093 -2.081 0.096
(0.153) (0.021) (0.154) (0.021)

sigma 0.255 -0.028
(0.084) (0.074)

rsize -0.120 - 0.043 -0.076 -0.052
(0.029) (0.013) (0.030) (0.014)

nita -0.858 0.489 0.026 0.574
(0.114) (0.110) (0.130) (0.120)

tlta 2.471 0.069 2.142 0.143
(0.149) (0.101) (0.147) (0.102)

tbsm3 -0.002 0.000
(0.016) (0.007)

creditspread 0.162 -0.281 0.055 -0.320 0.287 0.024
(0.102) (0.052) (0.096) (0.052) (0.125) (0.063)

∆gdp 0.029 0.105
(0.019) (0.011)

∆pi -0.005 -0.049
(0.014) (0.007)

termspread 0.072 -0.161 -0.081 -1.132 0.028 -0.205
(0.035) (0.018) (0.034) (0.017) (0.041) (0.022)

retl -2.038 0.065
(0.134) (0.018)

spretl 0.622 0.700
(0.267) (0.150)

dd -0.158 -3.426 -0.118 0.012 -0.179 0.004
(0.015) (0.004) (0.015) (0.004) (0.015) (0.003)

Log L -10,362 -10,664 -10,307 -10,439

Out–of–sample performance

Top 2 deciles (%) 74.07 65.44 83.95 74.48
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Table 5: Forecasting Accuracy: Summary

Panel A: AMEX, NYSE and NASDAQ data
This table summarizes the out-of-sample forecasting accuracy for the various models presented earlier. Data
from 1980–1995 is used to compute the parameter estimates for 1996, then rolling 1-year ahead estimates are
generated for 1997–2004. Every year, firms are ranked into deciles according to their estimated probability
of default, and the aggregate percentages of defaults in the top two deciles are presented for each model.

Model Non-Financials* Manufacturing**

No Frailty Frailty No Frailty Frailty

M1 76.97 75.68 83.54 83.54

M2 71.10 71.38 72.01 76.13

M3 74.82 74.72 74.89 79.01

M4 77.25 75.68 83.95 84.37

M5 74.67 74.68 74.48 79.02

M6 51.50 53.07 65.02 66.67

M7 74.68 79.79 72.43 75.18

M8 75.11 75.11 74.90 79.01

* For non-financial firms there are 1,430 defaults for the whole period 1980–2004, and 699 defaults for the
out–of–sample period 1996–2004.

** For manufacturing firms there are 541 defaults for the whole period 1980–2004, and 243 defaults for the
out–of–sample period 1996–2004.
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Table 5: Forecasting Accuracy: Summary

Panel B: AMEX and NYSE data
This table summarizes the out-of-sample forecasting accuracy for the various models presented earlier. Data
from 1980–1995 is used to compute the parameter estimates for 1996, then rolling 1-year ahead estimates are
generated for 1997–2004. Every year, firms are ranked into deciles according to their estimated probability
of default, and the aggregate percentages of defaults in the top two deciles are presented for each model.

Model Non-Financials* Manufacturing**

No Frailty Frailty No Frailty Frailty

M1 84.51 83.19 86.28 89.22

M2 83.19 82.30 81.38 79.42

M3 81.86 82.30 78.44 80.40

M4 84.51 83.19 86.28 89.22

M5 82.30 82.30 78.44 80.40

M6 53.54 58.85 66.67 72.55

M7 76.55 84.52 78.43 87.26

M8 82.74 84.07 82.36 82.35

* For non–financial firms there are 489 defaults for the whole period 1980–2004, and 226 defaults for the
out–of–sample period 1996–2004.

** For manufacturing firms there are 213 defaults for the whole period 1980–2004, and 100 defaults for the
out–of–sample period 1996–2004.
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Table 6: Determinants of Recovery Rate

Panel A: Linear Models
This table reports coefficient estimates from the linear regression relating the recovery rate to the bond,
firm and macroeconomic variables during 1980–2004. The dependent variable is the recovery rate.
Other variable definitions are given in Table 1. Robust standard errors adjusted for firm level clus-
tering are given in parantheses, and the adjusted R2 and the number of observations N are also re-
ported. For out–of–sample forecasting the initial sample period is 1980–1995; rolling one year ahead
forecasts and the RMSE are calculated for the period 1996–2004, and the mean RMSE is presented.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
couprate 0.0182 0.0182 0.0272 0.0222 0.0240 0.0133

(0.0055) (0.0056) (0.0068) (0.0063) (0.0062) (0.0078)
log(issuesize) -0.0332 -0.0274 -0.0070 -0.0033 -0.0079 0.0105

(0.0185) (0.0189) (0.0195) (0.0205) (0.0194) (0.0235)
log(matoutstand) -0.0000 -0.0012 0.0087 -0.0248 0.0155 -0.0145

(0.0303) (0.0301) (0.0290) (0.0360) (0.0293) (0.0253)
subord 0.1849 0.1919 0.2332 0.2133 0.2136 0.1364

(0.0433) (0.0421) (0.0472) (0.0478) (0.0456) (0.0887)
sensub 0.1610 0.1636 0.1958 0.1666 0.1718 0.1392

(0.0649) (0.0636) (0.0650) (0.0665) (0.0647) (0.0861)
sensec 0.3161 0.3245 0.3289 0.3481 0.3150 0.3055

(0.0746) (0.0724) (0.1307) (0.1089) (0.1320) (0.1218)
senuns 0.2558 0.2635 0.2974 0.2957 0.2957 0.2508

(0.0580) (0.0567) (0.0531) (0.0531) (0.0489) (0.0705)
tbsm3 -0.0319 -0.0301 -0.0306 -0.0319 -0.0350 -0.0302

(0.0133) (0.0131) (0.0139) (0.0146) (0.0131) (0.0132)
ebitdasales 0.0450 0.0114

(0.0229) (0.0208)
tanta 0.1419

(0.0819)
log(ta) -0.0071

(0.0172)
mtb -0.0223

(0.0276)
creditspread 0.1892

(0.0875)
∆gdp -0.0086

(0.0113)
∆pi 0.0090

(0.0133)
dd 0.0158 0.0178 0.0132

(0.0096) (0.0121) (0.0106)
retl 0.0423 -0.0244 0.0125

(0.0466) (0.0593) (0.0510)
spretl 0.2119 0.2565 0.2867

(0.1375) (0.1250) (0.1408)
intercept 0.2625 0.2293 -0.1127 -0.1475 -0.1283 0.0123

(0.3074) (0.3059) (0.2854) (0.3376) (0.2977) (0.3083)

Adj R2 0.122 0.131 0.185 0.174 0.211 0.256
N 444 444 337 334 334 332
Out–of–sample RMSE 0.2544 0.2530 0.2496 0.2770 0.2666 0.2674
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Table 6: Determinants of Recovery Rate

Panel B: Probit Models
This table reports coefficient estimates from the probit regression relating the recovery rate to the bond,
firm and macroeconomic variables during 1980–2004. The dependent variable is probit of the recovery
rate. Other variable definitions are given in Table 1. Robust standard errors adjusted for firm level
clustering are given in parantheses, and the adjusted R2 and the number of observations N are also re-
ported. For out–of–sample forecasting the initial sample period is 1980–1995; rolling one year ahead
forecasts and the RMSE are calculated for the period 1996–2004, and the mean RMSE is presented.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
couprate 0.0674 0.0671 0.0941 0.0776 0.0831 0.0489

(0.0177) (0.0180) (0.0214) (0.0204) (0.0199) (0.0250)
log(issuesize) -0.1337 -0.1106 -0.0600 -0.0477 -0.0621 0.0152

(0.0634) (0.0627) (0.0694) (0.0714) (0.0677) (0.0728)
log(matoutstand) 0.0241 0.0195 0.0739 0.1265 0.0977 -0.0004

(0.0982) (0.0977) (0.0962) (0.1144) (0.0963) (0.0861)
subord 0.5370 0.5648 0.6996 0.6287 0.6295 0.3788

(0.1582) (0.1531) (0.1513) (0.1550) (0.1477) (0.2779)
sensub 0.4309 0.4412 0.5592 0.4572 0.4737 0.3319

(0.2242) (0.2194) (0.2154) (0.2219) (0.2160) (0.2897)
sensec 0.9726 1.0060 1.0226 1.0783 0.9761 0.9118

(0.2403) (0.2309) (0.4254) (0.3561) (0.4282) (0.3890)
senuns 0.8128 0.8431 0.9771 0.9652 0.9655 0.8081

(0.2012) (0.1943) (0.1723) (0.1740) (0.1609) (0.2172)
tbsm3 -0.1067 -0.0995 -0.1039 -0.1096 -0.1191 -0.0932

(0.0409) (0.0397) (0.0430) (0.0453) (0.0407) (0.0432)
ebitdasales 0.1781 0.0779

(0.1027) (0.1043)
tanta 0.5303

(0.2569)
log(ta) -0.0345

(0.0548)
mtb -0.1002

(0.0930)
creditspread 0.5640

(0.2921)
∆gdp -0.0144

(0.0363)
∆pi 0.0234

(0.0411)
dd 0.0501 0.0549 0.0403

(0.0305) (0.0383) (0.0344)
retl 0.1449 -0.0609 0.0763

(0.1432) (0.1823) (0.1580)
spretl 0.7560 0.8963 0.8664

(0.4436) (0.4093) (0.4610)
intercept -0.8731 -1.0045 -2.2061 -2.3092 -2.2499 -1.7773

(1.0170) (1.0014) (0.9652) (1.1017) (0.9963) (1.0351)

Adj R2 0.141 0.154 0.198 0.197 0.227 0.272
N 444 444 337 334 334 332
Out–of–sample RMSE 0.2581 0.2553 0.2528 0.2830 0.2713 0.2685
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Table 7: Default Estimation: One Frailty per Sector

Panel A: Non-financials. Quarterly Data.
The following table presents the estimates for the default prediction model with one frailty per sector and
exponential hazards. Standard errors are given in parantheses. The sample is restricted to non-financial
firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in
Table 1. The models M1 to M8 differ in the specification of the covariates.

M1 M2 M3 M4 M5 M6 M7 M8

frailty variance 0.260 0.394 0.302 0.252 0.289 0.367 0.205 0.270
(0.044) (0.054) (0.045) (0.043) (0.044) (0.054) (0.038) (0.041)

intercept -11.778 -10.493 -4.964 -12.082 -5.724 -8.381 -8.240 -4.859
(0.215) (0.203) (0.279) (0.234) (0.295) (0.122) (0.316) (0.107)

exret -2.235 -2.841 -1.314 -2.225 -1.308 -1.303
(0.096) (0.101) (0.103) (0.097) (0.103) (0.097)

sigma 0.209 0.282 0.215 0.190
(0.015) (0.014) (0.015) (0.033)

rsize -0.279 -0.364 -0.087 -0.286 -0.105 -0.085
(0.017) (0.016) (0.019) (0.017) (0.019) (0.020)

nita -1.736 -1.718 -4.254 -1.569
(0.223) (0.223) (0.211) (0.222)

tlta 3.649 3.651 4.165 3.142
(0.110) (0.111) (0.115) (0.112)

tbsm3 0.051
(0.012)

creditspread 0.281 0.565 0.035 0.351
(0.071) (0.070) (0.068) (0.075)

∆gdp 0.001
(0.011)

∆pi 0.014
(0.008)

termspread -0.061 -0.015 -0.079 -0.053
(0.026) (0.026) (0.026) (0.026)

retl -2.004
(0.104)

spretl 0.757
(0.156)

dd -0.396 -0.400 -0.247 -0.342
(0.015) (0.015) (0.022) (0.014)

Log L -5,597 -5,973 -5,749 -5,615 -5,761 -6,020 -5,506 -5,629
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Table 7: Default Estimation: One Frailty per Sector

Panel B: Manufacturing. Quarterly Data.
The following table presents the estimates for the default prediction model with one frailty per sector and
exponential hazards. Standard errors are given in parantheses. The sample is restricted to manufacturing
firms with information in CRSP and COMPUSTAT during 1980-2004. Variable definitions are given in
Table 1. The models M1 to M8 differ in the specification of the covariates.

M1 M2 M3 M4 M5 M6 M7 M8

frailty variance 0.251 0.365 0.319 0.234 0.292 0.309 0.206 0.280
(0.066) (0.077) (0.071) (0.063) (0.067) (0.073) (0.060) (0.065)

intercept -12.704 -11.461 -6.123 -13.225 -7.182 -9.150 -9.993 -4.946
(0.352) (0.338) (0.469) (0.379) (0.493) (0.196) (0.519) (0.162)

exret -1.959 -2.711 -1.376 -1.962 -1.373 -1.278
(0.156) (0.166) (0.169) (0.157) (0.169) (0.155)

sigma 0.174 0.261 0.180 0.195
(0.025) (0.022) (0.025) (0.059)

rsize -0.320 -0.426 -0.155 -0.330 -0.180 -0.154
(0.027) (0.027) (0.032) (0.028) (0.032) (0.033)

nita -1.624 -1.592 -3.855 -1.442
(0.357) (0.358) (0.342) (0.356)

tlta 4.091 4.097 4.686 3.649
(0.178) (0.180) (0.185) (0.182)

tbsm3 0.061
(0.018)

creditspread 0.456 0.757 0.214 0.519
(0.105) (0.106) (0.102) (0.114)

∆gdp 0.004
(0.018)

∆pi 0.018
(0.013)

termspread -0.076 -0.019 -0.088 -0.061
(0.042) (0.040) (0.041) (0.042)

retl -1.810
(0.157)

spretl 0.711
(0.254)

dd -0.351 -0.359 -0.195 -0.346
(0.023) (0.023) (0.022) (0.021)

Log L -2,554 -2,872 -2,735 -2,554 -2,727 -2,787 -2,493 -2,683
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Table 8: Multiperiod Forecasting Accuracy: Summary

This table summarizes the out-of-sample forecasting accuracy for the default model M4 with frailty. Data
from 1980–1995 is used to compute the parameter estimates for 1996, then rolling one-year ahead estimates
are generated for 1997–2004. Every year, firms are ranked into deciles according to their estimated probability
of default, and the aggregate percentages of defaults in the top two deciles are presented.

Panel A: Non–financial firms

Sample data Quarterly data Annual data

At least 8 quarters At least 20 quarters

AMEX and NYSE 72.43 80.00 83.19

AMES, NYSE and NASDAQ 64.48 71.34 75.68

Panel B: Manufacturing firms

Sample data Quarterly data Annual data

At least 8 quarters At least 20 quarters

AMEX and NYSE 85.56 92.40 89.22

AMES, NYSE and NASDAQ 76.10 83.33 84.37
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